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A short introduction: What is a polynomial map?

A map F : kn −→ kn given by n polynomials:

F = (F1(X1, . . . , Xn), . . . , Fn(X1, . . . , Xn)).

Example: F = (X + Y 2, Y ).

Various ways of looking at polynomial maps:

◮ A map kn −→ kn.

◮ A list of n polynomials: F ∈ (k[X1, . . . , Xn])
n.

◮ A ring automorphism of k[X1, . . . , Xn] sending

g(X1, . . . , Xn) to g(F1, . . . , Fn).

A polynomial map F is invertible if there is a polynomial map

G such that F (G ) = (X1, . . . , Xn).
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BIG STUPID CLAIM:

Polynomial Automorphisms Can Be Used Whenever Linear

Maps Are Used.

Why this bold claim? Polynomial maps seem to have similar

properties as linear maps (much more so than holomorphic

maps for example). Well. . . to be honest, most are

conjectures. . . Let’s look at a few of these conjectures!
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(

a b

c d

)

∈ C
∗ ⇐⇒ L ∈ GL2(C)

F = (F1, F2) ∈ MA2(C)

det

(

∂F1

∂X

∂F1

∂Y

∂F2

∂X

∂F2

∂Y

)

∈ C
∗ ??
⇐⇒ F ∈ GA2(C)

Jacobian Conjecture in dimension n (JC(n)):

Let F ∈ MAn(C). Then

det(Jac(F )) ∈ C
∗ ⇒ F is invertible.



Let V be a vector space. Then

V ×C ∼= C
n+1 =⇒ V ∼= C

n.



Let V be a vector space. Then

V ×C ∼= C
n+1 =⇒ V ∼= C

n.

Cancelation Problem:

Let V be a variety. Then

V ×C ∼= C
n+1 =⇒ V ∼= C

n.
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GLn(K) is generated by

◮ Permutations X1 ←→ Xi

◮ Map (aX1 + bXj , X2, . . . , Xn) (a ∈ C∗, b ∈ C)

GAn(K) is generated by ??? (Sometimes called “the

automorphism problem”, which means: “we don’t understand

the automorphism group, whatever understanding means”.)



GAn(R) : (Dynamical systems, flows

Markus-Yamabe Conjecture)

GAn(C) : (Complex Analysis)

O(V ) : (Algebraic Geometry,

GAn(k) : Ring theory)

GAn(R)

GAn(Fq) (Group theory, number theory,

Secret-sharing cryptography)
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Let us make some non-trivial polynomial automorphisms!

Elementary map: (X1 + f (X2, . . . , Xn), X2, . . . , Xn),

invertible with inverse

(X1 − f (X2, . . . , Xn), X2, . . . , Xn).

Triangular map: (X + f (Y , Z ), Y + g(Z ), Z + c)

= (X , Y , Z + c)(X , Y + g(Z ), Z )(X + f (Y , Z ), Y , Z )

Jn(K):= set of triangular maps.

Affn(K):= set of compositions of invertible linear maps and

translations.

TAn(K) :=< Jn(K), Affn(K) >
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(They are linear.)

In dimension 2: famous Jung-van der Kulk-theorem:

GA2(K) = TA2(K) = Aff2(K)|× J2(K)

Jung-van der Kulk is the reason that we can do a lot in

dimension 2 !!!!
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What about dimension 3? Stupid idea: uh, everything will be

tame? Perhaps?

1972: Nagata: “I cannot tame the following map:”

N := (X − Y ∆− Z∆2, Y + Z∆, Z ) where ∆ = XZ + Y 2.

Nagata’s map is the historically most important map for

polynomial automorphisms! No one could “tame Nagata”, it is

a very elegant but complicated map! It eluded everyone!

AMAZING result: Umirbaev-Shestakov (2004)

Nagata is not tame!!

(Difficult and technical proof. ) (2007 AMS Moore paper

award.) So now it is official. Nagata is complicated.



AMS E.H. Moore Research Article Prize

Ivan Shestakov

(center) and Ualbai Umirbaev (right) with Jim Arthur.
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n = 3? Let us focus on K = C.

Define

D := −2Y ∆
∂

∂X
+ Z∆

∂

∂Y

where ∆ = XZ + Y 2.

◮ D is a derivation: D(fg) = fD(g) + gD(f ),

D(f + g) = D(f ) + D(g).

◮ D is locally nilpotent: pick g , then exists n ∈ N:

Dn(g) = 0.

If D is LND(locally nilpotent derivation) then exp(D) is

automorphism !! We have a non-trivial way of making

automorphisms! In fact: Nagata = exp(D) !
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Conjecture 1:

GAn(C) =< Affn(C), ELNDn(C) > .

. . . candidate counterexamples start to emerge . . .
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If D is derivation, to be able to define exp(D) you do not need

“locally nilpotent”. You can define it in more cases:

D is called locally finite if

for all g ∈ C[n]: g , D(g), D2(g), . . . span a finite dimensional

C-vector space. EXAMPLE: D = X ∂
∂X

.

D locally finite −→ exp(D) automorphism.

exp(X ∂
∂X

) = X + X + 1
2!

X + 1
6!

X + . . . = eX .

Define: LFDn(C) = set of Locally Finite Derivations.

Conjecture 2:

GAn(C) = ELFDn(C).
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A very recent, simple remark:
KNOWN: Nagata is not linearizable.

( M. & Poloni) Nagata is shifted linearizable

Let Nλ := exp(λD) where λ ∈ C. Let

2N := (2X , 2Y , 2Z )◦N = (2X−2Y ∆−2Z∆2, 2Y +2Z∆, 2Z )

Now compute: N−
4
3 (2N)N

4
3 = (2X , 2Y , 2Z )!!!

Define GLINn(C) as the group generated by the linearizable

automorphisms. (I.e. GLINn(C) is smallest normal subgroup of

GAn(C) containing GL
n
(C).) Conjecture 4:

GAn(C) = GLINn(C).



GAn(k)

TAn(k)



GAn(k)

∪|

ELNDn(k) :=< Affn(k), exp(D) | D locally nilpotent derivation >

∪|

TAn(k)



GAn(k)

∪|

ELFDn(k) :=< exp(D) | D locally finite derivation >

∪|

ELNDn(k) :=< Affn(k), exp(D) | D locally nilpotent derivation >

∪|

TAn(k)



GAn(k)

∪|

ELFDn(k) :=< exp(D) | D locally finite derivation >

∪|

ELNDn(k) :=< Affn(k), exp(D) | D locally nilpotent derivation >

∪|

GLINn(k) := normalizer of GL
n
(k)

∪| not equal if char(k) 6= 0.

TAn(k)



GAn(k)

∪|

ELFDn(k) :=< exp(D) | D locally finite derivation >

∪|

ELNDn(k) :=< Affn(k), exp(D) | D locally nilpotent derivation >

∪|

GTAMn(k) := normalizer of TAn(k)

∪|

GLINn(k) := normalizer of GL
n
(k)

∪| not equal if char(k) 6= 0.

TAn(k)



GAn(k)

∪|

LFn(k) I will talk about this!

∪|

ELFDn(k) :=< exp(D) | D locally finite derivation >

∪|

ELNDn(k) :=< Affn(k), exp(D) | D locally nilpotent derivation >

∪|

GTAMn(k) := normalizer of TAn(k)

∪|

GLINn(k) := normalizer of GL
n
(k)

∪| not equal if char(k) 6= 0.

TAn(k)



Let us step back for a moment . . .

BIG STUPID CLAIM:

Polynomial Automorphisms Can Be Used Whenever Linear

Maps Are Used.



Let us step back for a moment . . .

BIG STUPID CLAIM:

Polynomial Automorphisms Can Be Used Whenever Linear

Maps Are Used.

If we want to have any hope of applying polynomial maps like

linear maps, then we need to strengthen the theoretical

foundation of polynomial maps.
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Now let’s be ambitious. What is the strongest theorem in

linear algebra. Tell me!

Very good: the Cayley-Hamilton theorem (characteristic

polynomials of linear maps etc.).

Now, let’s try to make a Cayley-Hamilton theorem for

polynomial maps! (Perhaps the constant term can replace that

stupid det(Jac(F )) = 1 requirement!)



Cayley-Hamilton:

Let L : Cn −→ Cn be a linear map. Then L is a zero of

PL(T ) := det(TI − L).



Cayley-Hamilton:

Let L : Cn −→ Cn be a linear map. Then L is a zero of

PL(T ) := det(TI − L).

What about generalizing MLn(C) −→ MAn(C)?



Cayley-Hamilton:

Let L : Cn −→ Cn be a linear map. Then L is a zero of

PL(T ) := det(TI − L).

What about generalizing MLn(C) −→ MAn(C)?

EXAMPLE:

Let F = (X 2, Y 2).



Cayley-Hamilton:

Let L : Cn −→ Cn be a linear map. Then L is a zero of

PL(T ) := det(TI − L).

What about generalizing MLn(C) −→ MAn(C)?

EXAMPLE:

Let F = (X 2, Y 2). Then deg(F n) = 2n.



Cayley-Hamilton:

Let L : Cn −→ Cn be a linear map. Then L is a zero of

PL(T ) := det(TI − L).

What about generalizing MLn(C) −→ MAn(C)?

EXAMPLE:

Let F = (X 2, Y 2). Then deg(F n) = 2n.

There exists no relation

F n + an−1F
n−1 + . . . + a1F + a0I = 0.



Cayley-Hamilton:

Let L : Cn −→ Cn be a linear map. Then L is a zero of

PL(T ) := det(TI − L).

What about generalizing MLn(C) −→ MAn(C)?

EXAMPLE:

Let F = (X 2, Y 2). Then deg(F n) = 2n.

There exists no relation

F n + an−1F
n−1 + . . . + a1F + a0I = 0. GR! It will not work!



Cayley-Hamilton:

Let L : Cn −→ Cn be a linear map. Then L is a zero of

PL(T ) := det(TI − L).

What about generalizing MLn(C) −→ MAn(C)?

EXAMPLE:

Let F = (X 2, Y 2). Then deg(F n) = 2n.

There exists no relation

F n + an−1F
n−1 + . . . + a1F + a0I = 0. GR! It will not work!

But. . .



Cayley-Hamilton:

Let L : Cn −→ Cn be a linear map. Then L is a zero of

PL(T ) := det(TI − L).

What about generalizing MLn(C) −→ MAn(C)?

EXAMPLE:

Let F = (X 2, Y 2). Then deg(F n) = 2n.

There exists no relation

F n + an−1F
n−1 + . . . + a1F + a0I = 0. GR! It will not work!
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Example:

F 0 := (X , Y )

F := (X + Y 2, Y )

F 2 := (X + 2Y 2, Y )

F 2 − 2F + I = 0, so F is “zero of T 2 − 2T + 1 = (T − 1)2”.
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Definition:

If F is a zero of some P(T ) ∈ C[T ]\{0}, then we will call F a

Locally Finite Polynomial Endomorphism (short LFPE).

Let’s be a little less ambitious and study this set. LFPE’s

should resemble linear maps more than general polynomial

maps!
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Some Remarks:

F is LFPE ⇐⇒ {deg(F n)}n∈N is bounded.

(F n =
∑n−1

i=0 aiF
i is equivalent to {I , F , F 2, . . .} generates a

finite dimensional C-vector space.)

IF := {P(T ) ∈ C[T ] | P(F ) = 0} is an ideal of C[T ]

(not completely trivial, as F (G + H) 6= FG + FH. But IF is

obviously closed under “+” and closed under multiplication by

T . That’s enough!)

F is LFPE ⇐⇒ G−1FG is LFPE

Proof: due to the first remark.

But: the minimum polynomial may change if G is not linear!
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Ft = (3tX + 1
2
(3t − 1)Y 2, Y ), t ∈ C.

FtFu = Ft+u so Ft ; t ∈ C is a flow.

(Means you can write Ft = F t .)

We’ll get back on that. . . First some results!
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“Cayley-Hamilton” in n variables

Let D := maxm∈N(deg(Fm)). (note: conjecture D = dn−1)

Let λ1, . . . , λn be the eigenvalues of the linear part of F .

Then F is a zero of

∏

α ∈ N
n

0 < |α| ≤ D

(T − λα)

(where λα = λα1
1 · · ·λ

αn
n )

(|α| = α1 + . . . + αn)
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Equivalent are:

◮ F is LFPE

◮ deg(Fm) is bounded

◮ n = 2: deg(F 2) ≤ deg(F )

Conjecture: in dimension n,

F is LFPE ⇐⇒ deg(Fm) ≤ deg(F )n−1 for all m ∈ N.
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F is LFPE, F (0) = 0 .

F invertible ⇐⇒ F is conjugate of

(aX + P(Y ), bY )

a, b ∈ C∗, P(Y ) ∈ C[Y ].

F not invertible ⇐⇒ F is conjugate of

(aX + YP(X , Y ), 0)

a,∈ C, P(X , Y ) ∈ C[X , Y ].
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n = 2: Cayley-Hamilton for LFPE

F is LFPE, and F (0) = 0.

Let d = deg(F ).

Let L be the linear part of F .

Then F is a zero of

PF (T ) :=
∏

0 ≤ k ≤ d − 1

0 ≤ m ≤ d

(k, m) 6= (0, 0)

(T 2−(detLk)(TrLm)T+det(L2k+m)).
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How did we prove that?

If F i = (F
(i)
1 , . . . , F

(i)
n ) and F

(i)
j =

∑

F
(i)
j ,αXα,

then
∑

aiF
i = 0 ⇐⇒

∑

aiF
(i)
j ,α = 0∀j , α.

If {F
(i)
j ,α}i∈N is such a sequence, then it is a linear recurrent

sequence belonging to
∑

aiT
i , etc.. . .
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Exponents of derivations

D locally finite derivation, then

exp(D)(g) := g + D(g) + 1
2!

D2(g) + 1
3!

D3(g) + . . . is

well-defined.

Inverse is exp(−D).

EXAMPLE: D = Y 2 ∂
∂X

+ Z ∂
∂Y

on C[X , Y , Z ]:

exp(D) = (exp(D)(X ), exp(D)(Y ), exp(D)(Z ))

= (X + Y 2 + YZ + 1
6
Z 2, Y + Z , Z )
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exp(D)2 = exp(D) ◦ exp(D) = exp(2D)

F n = exp(nD) = (X + nY 2 + n2YZ + n3

6
Z 2, Y + nZ , Z )

i.e. {deg(exp(nD))}n∈N is bounded sequence

⇒ exp(D) is LFPE.

So: F = exp(D) −→ F is LFPE.

Even: Ft := exp(tD) is a flow.

So: we can make many examples of LFPEs!
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(A flow of F is:

Ft for each t ∈ C

F1 = F , F0 = I , FtFu = Ft+u.)

F = exp(D)⇒ F is LFPE.

?⇐?



D locally finite automorphism, then unique decomposition

D = Dn + Ds

,



D locally finite automorphism, then unique decomposition

D = Dn + Ds where Dn is locally nilpotent, Ds is semisimple,

,



D locally finite automorphism, then unique decomposition

D = Dn + Ds where Dn is locally nilpotent, Ds is semisimple,

and DnDs = DsDn.

,



D locally finite automorphism, then unique decomposition

D = Dn + Ds where Dn is locally nilpotent, Ds is semisimple,

and DnDs = DsDn.

Given F LFPE, then we find unique decomposition

F = FnFs = FsFn

,



D locally finite automorphism, then unique decomposition

D = Dn + Ds where Dn is locally nilpotent, Ds is semisimple,

and DnDs = DsDn.

Given F LFPE, then we find unique decomposition

F = FnFs = FsFn where Fn = exp(Dn) where Dn is locally

nilpotent.

an example:

,



D locally finite automorphism, then unique decomposition

D = Dn + Ds where Dn is locally nilpotent, Ds is semisimple,

and DnDs = DsDn.

Given F LFPE, then we find unique decomposition

F = FnFs = FsFn where Fn = exp(Dn) where Dn is locally

nilpotent.

an example:

F = (2X + 2Y 2, 3Y )

,



D locally finite automorphism, then unique decomposition

D = Dn + Ds where Dn is locally nilpotent, Ds is semisimple,

and DnDs = DsDn.

Given F LFPE, then we find unique decomposition

F = FnFs = FsFn where Fn = exp(Dn) where Dn is locally

nilpotent.

an example:

F = (2X + 2Y 2, 3Y ) = (2X , 3Y ) ◦ (X + Y 2, Y )

,



D locally finite automorphism, then unique decomposition

D = Dn + Ds where Dn is locally nilpotent, Ds is semisimple,

and DnDs = DsDn.

Given F LFPE, then we find unique decomposition

F = FnFs = FsFn where Fn = exp(Dn) where Dn is locally

nilpotent.

an example:

F = (2X + 2Y 2, 3Y ) = (2X , 3Y ) ◦ (X + Y 2, Y )

(2X , 3Y ) = exp(λX∂X + µY ∂Y ),



D locally finite automorphism, then unique decomposition

D = Dn + Ds where Dn is locally nilpotent, Ds is semisimple,

and DnDs = DsDn.

Given F LFPE, then we find unique decomposition

F = FnFs = FsFn where Fn = exp(Dn) where Dn is locally

nilpotent.

an example:

F = (2X + 2Y 2, 3Y ) = (2X , 3Y ) ◦ (X + Y 2, Y )

(2X , 3Y ) = exp(λX∂X + µY ∂Y ), where

λ = log(2), µ = log(3).



D locally finite automorphism, then unique decomposition

D = Dn + Ds where Dn is locally nilpotent, Ds is semisimple,

and DnDs = DsDn.

Given F LFPE, then we find unique decomposition

F = FnFs = FsFn where Fn = exp(Dn) where Dn is locally

nilpotent.

an example:

F = (2X + 2Y 2, 3Y ) = (2X , 3Y ) ◦ (X + Y 2, Y )

(2X , 3Y ) = exp(λX∂X + µY ∂Y ), where

λ = log(2), µ = log(3).

(X + Y 2, Y ) = exp(Y 2∂X ).



D locally finite automorphism, then unique decomposition

D = Dn + Ds where Dn is locally nilpotent, Ds is semisimple,

and DnDs = DsDn.

Given F LFPE, then we find unique decomposition

F = FnFs = FsFn where Fn = exp(Dn) where Dn is locally

nilpotent.

an example:

F = (2X + 2Y 2, 3Y ) = (2X , 3Y ) ◦ (X + Y 2, Y )

(2X , 3Y ) = exp(λX∂X + µY ∂Y ), where

λ = log(2), µ = log(3).

(X + Y 2, Y ) = exp(Y 2∂X ).

Don’t know how to make Ds , given Fs .
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Case F = exp(Dn), Dn loc.nilp.:

F = exp(Dn) ⇐⇒

F is zero of (T − 1)n for some n

Example: F = exp(Y 2∂X ) = (X + Y 2, Y )

F 2 − 2F + I = 0 i.e. zero of (T − 1)2.
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Why the problem with general case?

In case F zero of (T − 1)n, then F has only eigenvalue 1.

Then there is one natural choice for “log(F ) = D”, only ONE

of them is loc. NILPOTENT Compare to: log(1) = 0. But

could have been: log(1) = 2πi . But 0 is natural choice.

if c ∈ C, then no natural choice log(c). So, to repeat:

QUESTION: if F is L.F., is F = exp(D)?

THANK YOU


