Locally Finite Polynomial Endomorphisms

Stefan Maubach

June 2008

A short introduction: What is a polynomial map?

A short introduction: What is a polynomial map?
A map $F: k^{n} \longrightarrow k^{n}$ given by n polynomials:

$$
F=\left(F_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, F_{n}\left(X_{1}, \ldots, X_{n}\right)\right)
$$

A short introduction: What is a polynomial map?
A map $F: k^{n} \longrightarrow k^{n}$ given by n polynomials:

$$
F=\left(F_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, F_{n}\left(X_{1}, \ldots, X_{n}\right)\right) .
$$

Example: $F=\left(X+Y^{2}, Y\right)$.

A short introduction: What is a polynomial map?
A map $F: k^{n} \longrightarrow k^{n}$ given by n polynomials:

$$
F=\left(F_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, F_{n}\left(X_{1}, \ldots, X_{n}\right)\right) .
$$

Example: $F=\left(X+Y^{2}, Y\right)$.
Various ways of looking at polynomial maps:

A short introduction: What is a polynomial map?
A map $F: k^{n} \longrightarrow k^{n}$ given by n polynomials:

$$
F=\left(F_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, F_{n}\left(X_{1}, \ldots, X_{n}\right)\right) .
$$

Example: $F=\left(X+Y^{2}, Y\right)$.
Various ways of looking at polynomial maps:

- A map $k^{n} \longrightarrow k^{n}$.

A short introduction: What is a polynomial map?
A map $F: k^{n} \longrightarrow k^{n}$ given by n polynomials:

$$
F=\left(F_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, F_{n}\left(X_{1}, \ldots, X_{n}\right)\right) .
$$

Example: $F=\left(X+Y^{2}, Y\right)$.
Various ways of looking at polynomial maps:

- A map $k^{n} \longrightarrow k^{n}$.
- A list of n polynomials: $F \in\left(k\left[X_{1}, \ldots, X_{n}\right]\right)^{n}$.

A short introduction: What is a polynomial map?
A map $F: k^{n} \longrightarrow k^{n}$ given by n polynomials:

$$
F=\left(F_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, F_{n}\left(X_{1}, \ldots, X_{n}\right)\right) .
$$

Example: $F=\left(X+Y^{2}, Y\right)$.
Various ways of looking at polynomial maps:

- A map $k^{n} \longrightarrow k^{n}$.
- A list of n polynomials: $F \in\left(k\left[X_{1}, \ldots, X_{n}\right]\right)^{n}$.
- A ring automorphism of $k\left[X_{1}, \ldots, X_{n}\right]$ sending

$$
g\left(X_{1}, \ldots, X_{n}\right) \text { to } g\left(F_{1}, \ldots, F_{n}\right) .
$$

A short introduction: What is a polynomial map?
A map $F: k^{n} \longrightarrow k^{n}$ given by n polynomials:

$$
F=\left(F_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, F_{n}\left(X_{1}, \ldots, X_{n}\right)\right) .
$$

Example: $F=\left(X+Y^{2}, Y\right)$.
Various ways of looking at polynomial maps:

- A map $k^{n} \longrightarrow k^{n}$.
- A list of n polynomials: $F \in\left(k\left[X_{1}, \ldots, X_{n}\right]\right)^{n}$.
- A ring automorphism of $k\left[X_{1}, \ldots, X_{n}\right]$ sending

$$
g\left(X_{1}, \ldots, X_{n}\right) \text { to } g\left(F_{1}, \ldots, F_{n}\right) .
$$

A polynomial map F is invertible if there is a polynomial map G such that $F(G)=\left(X_{1}, \ldots, X_{n}\right)$.

BIG STUPID CLAIM:

BIG STUPID CLAIM:

Polynomial Automorphisms Can Be Used Whenever Linear Maps Are Used.

BIG STUPID CLAIM:

Polynomial Automorphisms Can Be Used Whenever Linear Maps Are Used.

Why this bold claim?

BIG STUPID CLAIM:
 Polynomial Automorphisms Can Be Used Whenever Linear Maps Are Used.

Why this bold claim? Polynomial maps seem to have similar properties as linear maps (much more so than holomorphic maps for example).

BIG STUPID CLAIM:
 Polynomial Automorphisms Can Be Used Whenever Linear Maps Are Used.

Why this bold claim? Polynomial maps seem to have similar properties as linear maps (much more so than holomorphic maps for example). Well. . . to be honest, most are conjectures...

BIG STUPID CLAIM:
 Polynomial Automorphisms Can Be Used Whenever Linear Maps Are Used.

Why this bold claim? Polynomial maps seem to have similar properties as linear maps (much more so than holomorphic maps for example). Well. . . to be honest, most are conjectures... Let's look at a few of these conjectures!

$$
L=(a X+b Y, c X+d Y) \text { in } M L_{2}(\mathbb{C})
$$

$L=(a X+b Y, c X+d Y)$ in $M L_{2}(\mathbb{C})$

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathbb{C}^{*} \Longleftrightarrow L \in G L_{2}(\mathbb{C})
$$

$L=(a X+b Y, c X+d Y)$ in $M L_{2}(\mathbb{C})$

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathbb{C}^{*} \Longleftrightarrow L \in G L_{2}(\mathbb{C})
$$

$$
F=\left(F_{1}, F_{2}\right) \in M A_{2}(\mathbb{C})
$$

$L=(a X+b Y, c X+d Y)$ in $M L_{2}(\mathbb{C})$

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathbb{C}^{*} \Longleftrightarrow L \in G L_{2}(\mathbb{C})
$$

$F=\left(F_{1}, F_{2}\right) \in M A_{2}(\mathbb{C})$

$$
\operatorname{det}\left(\begin{array}{ll}
\frac{\partial F_{1}}{\partial X} & \frac{\partial F_{1}}{\partial Y} \\
\frac{\partial F_{2}}{\partial X} & \frac{\partial F_{2}}{\partial Y}
\end{array}\right) \in \mathbb{C}^{*} \stackrel{? ?}{\Longleftrightarrow} F \in G A_{2}(\mathbb{C})
$$

$$
\begin{aligned}
L= & (a X+b Y, c X+d Y) \text { in } M L_{2}(\mathbb{C}) \\
& \operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathbb{C}^{*} \Longleftrightarrow L \in G L_{2}(\mathbb{C}) \\
F= & \left(F_{1}, F_{2}\right) \in M A_{2}(\mathbb{C}) \\
& \operatorname{det}\left(\begin{array}{ll}
\frac{\partial F_{1}}{\partial X} & \frac{\partial F_{1}}{\partial Y} \\
\frac{\partial F_{2}}{\partial X} & \frac{\partial F_{2}}{\partial Y}
\end{array}\right) \in \mathbb{C}^{*} \stackrel{? ?}{\Longleftrightarrow} F \in G A_{2}(\mathbb{C})
\end{aligned}
$$

Jacobian Conjecture in dimension $n(\mathrm{JC}(\mathrm{n})$):
Let $F \in M A_{n}(\mathbb{C})$. Then

$$
\operatorname{det}(\operatorname{Jac}(F)) \in \mathbb{C}^{*} \Rightarrow F \text { is invertible. }
$$

Let V be a vector space. Then

$$
V \times \mathbb{C} \cong \mathbb{C}^{n+1} \Longrightarrow V \cong \mathbb{C}^{n}
$$

Let V be a vector space. Then

$$
V \times \mathbb{C} \cong \mathbb{C}^{n+1} \Longrightarrow V \cong \mathbb{C}^{n}
$$

Cancelation Problem:
Let V be a variety. Then

$$
V \times \mathbb{C} \cong \mathbb{C}^{n+1} \Longrightarrow V \cong \mathbb{C}^{n}
$$

$G L_{n}(\mathbb{K})$ is generated by

$G L_{n}(\mathbb{K})$ is generated by

- Permutations $X_{1} \longleftrightarrow X_{i}$
$G L_{n}(\mathbb{K})$ is generated by
- Permutations $X_{1} \longleftrightarrow X_{i}$
- Map $\left(a X_{1}+b X_{j}, X_{2}, \ldots, X_{n}\right)\left(a \in \mathbb{C}^{*}, b \in \mathbb{C}\right)$
$G L_{n}(\mathbb{K})$ is generated by
- Permutations $X_{1} \longleftrightarrow X_{i}$
- Map $\left(a X_{1}+b X_{j}, X_{2}, \ldots, X_{n}\right)\left(a \in \mathbb{C}^{*}, b \in \mathbb{C}\right)$
$G A_{n}(\mathbb{K})$ is generated by ??? (Sometimes called "the automorphism problem", which means: "we don't understand the automorphism group, whatever understanding means".)

$\underline{\mathrm{GA}_{n}(\mathbb{C})}$	$\underline{G A_{n}(\mathbb{R})}$: (Dynamical systems, flows
		Markus-Yamabe Conjecture)
		: (Complex Analysis)
$\underline{G A_{n}(k)}$	$\underline{\mathcal{O}(V)}$: (Algebraic Geometry,
	$\underline{\mathrm{GA}_{n}(R)}$: Ring theory)
$\underline{G A_{n}\left(\mathbb{F}_{q}\right)}$		(Group theory, number theory,
		Secret-sharing cryptography)

Let us make some non-trivial polynomial automorphisms! Elementary map: $\left(X_{1}+f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$, invertible with inverse

$$
\left(X_{1}-f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)
$$

Let us make some non-trivial polynomial automorphisms! Elementary map: $\left(X_{1}+f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$, invertible with inverse
$\left(X_{1}-f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$.
Triangular map: $(X+f(Y, Z), Y+g(Z), Z+c)$
$=(X, Y, Z+c)(X, Y+g(Z), Z)(X+f(Y, Z), Y, Z)$

Let us make some non-trivial polynomial automorphisms!
Elementary map: $\left(X_{1}+f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$, invertible with inverse
$\left(X_{1}-f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$.
Triangular map: $(X+f(Y, Z), Y+g(Z), Z+c)$
$=(X, Y, Z+c)(X, Y+g(Z), Z)(X+f(Y, Z), Y, Z)$
$\mathrm{J}_{n}(\mathbb{K}):=$ set of triangular maps.

Let us make some non-trivial polynomial automorphisms!
Elementary map: $\left(X_{1}+f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$, invertible with inverse
$\left(X_{1}-f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$.
Triangular map: $(X+f(Y, Z), Y+g(Z), Z+c)$
$=(X, Y, Z+c)(X, Y+g(Z), Z)(X+f(Y, Z), Y, Z)$
$J_{n}(\mathbb{K}):=$ set of triangular maps.
$\operatorname{Aff}_{n}(\mathbb{K}):=$ set of compositions of invertible linear maps and translations.

Let us make some non-trivial polynomial automorphisms!
Elementary map: $\left(X_{1}+f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$, invertible with inverse
$\left(X_{1}-f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$.
Triangular map: $(X+f(Y, Z), Y+g(Z), Z+c)$
$=(X, Y, Z+c)(X, Y+g(Z), Z)(X+f(Y, Z), Y, Z)$
$J_{n}(\mathbb{K}):=$ set of triangular maps.
$\operatorname{Aff}_{n}(\mathbb{K}):=$ set of compositions of invertible linear maps and translations.
$\mathrm{TA}_{n}(\mathbb{K}):=<\mathrm{J}_{n}(\mathbb{K}), \operatorname{Aff}_{n}(\mathbb{K})>$

In dimension 1: we understand the automorphism group.
(They are linear.)

In dimension 1: we understand the automorphism group.
(They are linear.)
In dimension 2: famous Jung-van der Kulk-theorem:

$$
\mathrm{GA}_{2}(\mathbb{K})=\mathrm{TA}_{2}(\mathbb{K})=\operatorname{Aff}_{2}(\mathbb{K}) \mid \times \mathrm{J}_{2}(\mathbb{K})
$$

Jung-van der Kulk is the reason that we can do a lot in dimension 2 !!!!

What about dimension 3?

What about dimension 3? Stupid idea: uh, everything will be tame? Perhaps?

What about dimension 3? Stupid idea: uh, everything will be tame? Perhaps?
1972: Nagata: "I cannot tame the following map:"
$N:=\left(X-Y \Delta-Z \Delta^{2}, Y+Z \Delta, Z\right)$ where $\Delta=X Z+Y^{2}$.

What about dimension 3? Stupid idea: uh, everything will be tame? Perhaps?
1972: Nagata: "I cannot tame the following map:"
$N:=\left(X-Y \Delta-Z \Delta^{2}, Y+Z \Delta, Z\right)$ where $\Delta=X Z+Y^{2}$.
Nagata's map is the historically most important map for polynomial automorphisms! No one could "tame Nagata", it is a very elegant but complicated map! It eluded everyone!

What about dimension 3? Stupid idea: uh, everything will be tame? Perhaps?
1972: Nagata: "I cannot tame the following map:"
$N:=\left(X-Y \Delta-Z \Delta^{2}, Y+Z \Delta, Z\right)$ where $\Delta=X Z+Y^{2}$.
Nagata's map is the historically most important map for polynomial automorphisms! No one could "tame Nagata", it is a very elegant but complicated map! It eluded everyone! AMAZING result: Umirbaev-Shestakov (2004)
Nagata is not tame!!

What about dimension 3? Stupid idea: uh, everything will be tame? Perhaps?
1972: Nagata: "I cannot tame the following map:"
$N:=\left(X-Y \Delta-Z \Delta^{2}, Y+Z \Delta, Z\right)$ where $\Delta=X Z+Y^{2}$.
Nagata's map is the historically most important map for polynomial automorphisms! No one could "tame Nagata", it is a very elegant but complicated map! It eluded everyone! AMAZING result: Umirbaev-Shestakov (2004)
Nagata is not tame!!
(Difficult and technical proof.) (2007 AMS Moore paper award.)

What about dimension 3? Stupid idea: uh, everything will be tame? Perhaps?
1972: Nagata: "I cannot tame the following map:"
$N:=\left(X-Y \Delta-Z \Delta^{2}, Y+Z \Delta, Z\right)$ where $\Delta=X Z+Y^{2}$.
Nagata's map is the historically most important map for polynomial automorphisms! No one could "tame Nagata", it is a very elegant but complicated map! It eluded everyone! AMAZING result: Umirbaev-Shestakov (2004)
Nagata is not tame!!
(Difficult and technical proof.) (2007 AMS Moore paper award.) So now it is official. Nagata is complicated.

AMS E.H. Moore Research Article Prize

Ivan Shestakov

(center) and Ualbai Umirbaev (right) with Jim Arthur.

So - what then? Can we give a generating set of $\mathrm{GA}_{n}(\mathbb{K})$? For $n=3$?

So - what then? Can we give a generating set of $\mathrm{GA}_{n}(\mathbb{K})$? For $n=3$? Let us focus on $\mathbb{K}=\mathbb{C}$.

Define

$$
D:=-2 Y \Delta \frac{\partial}{\partial X}+Z \Delta \frac{\partial}{\partial Y}
$$

where $\Delta=X Z+Y^{2}$.

So - what then? Can we give a generating set of $\mathrm{GA}_{n}(\mathbb{K})$? For $n=3$? Let us focus on $\mathbb{K}=\mathbb{C}$.
Define

$$
D:=-2 Y \Delta \frac{\partial}{\partial X}+Z \Delta \frac{\partial}{\partial Y}
$$

where $\Delta=X Z+Y^{2}$.

- D is a derivation: $D(f g)=f D(g)+g D(f)$, $D(f+g)=D(f)+D(g)$.

So - what then? Can we give a generating set of $\mathrm{GA}_{n}(\mathbb{K})$? For $n=3$? Let us focus on $\mathbb{K}=\mathbb{C}$.
Define

$$
D:=-2 Y \Delta \frac{\partial}{\partial X}+Z \Delta \frac{\partial}{\partial Y}
$$

where $\Delta=X Z+Y^{2}$.

- D is a derivation: $D(f g)=f D(g)+g D(f)$, $D(f+g)=D(f)+D(g)$.
- D is locally nilpotent: pick g, then exists $n \in \mathbb{N}$: $D^{n}(g)=0$.

So - what then? Can we give a generating set of $\mathrm{GA}_{n}(\mathbb{K})$? For $n=3$? Let us focus on $\mathbb{K}=\mathbb{C}$.
Define

$$
D:=-2 Y \Delta \frac{\partial}{\partial X}+Z \Delta \frac{\partial}{\partial Y}
$$

where $\Delta=X Z+Y^{2}$.

- D is a derivation: $D(f g)=f D(g)+g D(f)$,

$$
D(f+g)=D(f)+D(g) .
$$

- D is locally nilpotent: pick g, then exists $n \in \mathbb{N}$: $D^{n}(g)=0$.

If D is LND (locally nilpotent derivation) then $\exp (D)$ is automorphism !! We have a non-trivial way of making automorphisms! In fact: Nagata $=\exp (D)$!

Let

$\operatorname{LND}_{n}(\mathbb{C})$

be set of Locally Nilpotent Derivations,

Let

$\operatorname{LND}_{n}(\mathbb{C})$

be set of Locally Nilpotent Derivations, and

$\operatorname{ELND}_{n}(\mathbb{C})$

be group generated by all exponents of LNDs.

Let

$$
\operatorname{LND}_{n}(\mathbb{C})
$$

be set of Locally Nilpotent Derivations, and

$\operatorname{ELND}_{n}(\mathbb{C})$

be group generated by all exponents of LNDs.
Conjecture 1:

$$
\mathrm{GA}_{n}(\mathbb{C})=<\operatorname{Aff}_{n}(\mathbb{C}), \operatorname{ELND}_{n}(\mathbb{C})>
$$

... candidate counterexamples start to emerge ...

If D is derivation, to be able to define $\exp (D)$ you do not need "locally nilpotent". You can define it in more cases:

If D is derivation, to be able to define $\exp (D)$ you do not need "locally nilpotent". You can define it in more cases:
D is called locally finite if
for all $g \in \mathbb{C}^{[n]}: g, D(g), D^{2}(g), \ldots$ span a finite dimensional \mathbb{C}-vector space.

If D is derivation, to be able to define $\exp (D)$ you do not need "locally nilpotent". You can define it in more cases:
D is called locally finite if
for all $g \in \mathbb{C}^{[n]}: g, D(g), D^{2}(g), \ldots$ span a finite dimensional
\mathbb{C}-vector space. EXAMPLE: $D=X \frac{\partial}{\partial X}$.
D locally finite $\longrightarrow \exp (D)$ automorphism.
$\exp \left(X \frac{\partial}{\partial X}\right)=X+X+\frac{1}{2!} X+\frac{1}{6!} X+\ldots=e X$.

If D is derivation, to be able to define $\exp (D)$ you do not need "locally nilpotent". You can define it in more cases:
D is called locally finite if
for all $g \in \mathbb{C}^{[n]}: g, D(g), D^{2}(g), \ldots$ span a finite dimensional
\mathbb{C}-vector space. EXAMPLE: $D=X \frac{\partial}{\partial X}$.
D locally finite $\longrightarrow \exp (D)$ automorphism.
$\exp \left(X \frac{\partial}{\partial X}\right)=X+X+\frac{1}{2!} X+\frac{1}{6!} X+\ldots=e X$.
Define: $\operatorname{LFD}_{n}(\mathbb{C})=$ set of Locally Finite Derivations.

If D is derivation, to be able to define $\exp (D)$ you do not need "locally nilpotent". You can define it in more cases:
D is called locally finite if
for all $g \in \mathbb{C}^{[n]}: g, D(g), D^{2}(g), \ldots$ span a finite dimensional
\mathbb{C}-vector space. EXAMPLE: $D=X \frac{\partial}{\partial X}$.
D locally finite $\longrightarrow \exp (D)$ automorphism.
$\exp \left(X \frac{\partial}{\partial X}\right)=X+X+\frac{1}{2!} X+\frac{1}{6!} X+\ldots=e X$.
Define: $\operatorname{LFD}_{n}(\mathbb{C})=$ set of Locally Finite Derivations.
Conjecture 2:

$$
\mathrm{GA}_{n}(\mathbb{C})=\mathrm{ELFD}_{n}(\mathbb{C})
$$

A very recent, simple remark:

KNOWN: Nagata is not linearizable.
(M. \& Poloni) Nagata is shifted linearizable

A very recent, simple remark:

KNOWN: Nagata is not linearizable.
(M. \& Poloni) Nagata is shifted linearizable Let $N^{\lambda}:=\exp (\lambda D)$ where $\lambda \in \mathbb{C}$.

A very recent, simple remark:

KNOWN: Nagata is not linearizable.
(M. \& Poloni) Nagata is shifted linearizable
Let $N^{\lambda}:=\exp (\lambda D)$ where $\lambda \in \mathbb{C}$. Let
$2 N:=(2 X, 2 Y, 2 Z) \circ N=\left(2 X-2 Y \Delta-2 Z \Delta^{2}, 2 Y+2 Z \Delta, 2 Z\right)$

A very recent, simple remark:

KNOWN: Nagata is not linearizable.
(M. \& Poloni) Nagata is shifted linearizable
Let $N^{\lambda}:=\exp (\lambda D)$ where $\lambda \in \mathbb{C}$. Let
$2 N:=(2 X, 2 Y, 2 Z) \circ N=\left(2 X-2 Y \Delta-2 Z \Delta^{2}, 2 Y+2 Z \Delta, 2 Z\right)$

Now compute:

A very recent, simple remark:

KNOWN: Nagata is not linearizable.
(M. \& Poloni) Nagata is shifted linearizable
Let $N^{\lambda}:=\exp (\lambda D)$ where $\lambda \in \mathbb{C}$. Let
$2 N:=(2 X, 2 Y, 2 Z) \circ N=\left(2 X-2 Y \Delta-2 Z \Delta^{2}, 2 Y+2 Z \Delta, 2 Z\right)$

Now compute:
(2N)

A very recent, simple remark:

KNOWN: Nagata is not linearizable.
(M. \& Poloni) Nagata is shifted linearizable
Let $N^{\lambda}:=\exp (\lambda D)$ where $\lambda \in \mathbb{C}$. Let
$2 N:=(2 X, 2 Y, 2 Z) \circ N=\left(2 X-2 Y \Delta-2 Z \Delta^{2}, 2 Y+2 Z \Delta, 2 Z\right)$
Now compute: $N^{-\frac{4}{3}}(2 N) N^{\frac{4}{3}}$

A very recent, simple remark:

KNOWN: Nagata is not linearizable.
(M. \& Poloni) Nagata is shifted linearizable
Let $N^{\lambda}:=\exp (\lambda D)$ where $\lambda \in \mathbb{C}$. Let
$2 N:=(2 X, 2 Y, 2 Z) \circ N=\left(2 X-2 Y \Delta-2 Z \Delta^{2}, 2 Y+2 Z \Delta, 2 Z\right)$
Now compute: $N^{-\frac{4}{3}}(2 N) N^{\frac{4}{3}}=(2 X, 2 Y, 2 Z)!!!$

A very recent, simple remark:

KNOWN: Nagata is not linearizable.
(M. \& Poloni) Nagata is shifted linearizable
Let $N^{\lambda}:=\exp (\lambda D)$ where $\lambda \in \mathbb{C}$. Let
$2 N:=(2 X, 2 Y, 2 Z) \circ N=\left(2 X-2 Y \Delta-2 Z \Delta^{2}, 2 Y+2 Z \Delta, 2 Z\right)$
Now compute: $N^{-\frac{4}{3}}(2 N) N^{\frac{4}{3}}=(2 X, 2 Y, 2 Z)!!!$
Define $\operatorname{GLIN}_{n}(\mathbb{C})$ as the group generated by the linearizable automorphisms. (I.e. $\operatorname{GLIN}_{n}(\mathbb{C})$ is smallest normal subgroup of $\mathrm{GA}_{n}(\mathbb{C})$ containing $\mathrm{GL}_{\mathrm{n}}(\mathbb{C})$.)

A very recent, simple remark:

KNOWN: Nagata is not linearizable.
(M. \& Poloni) Nagata is shifted linearizable
Let $N^{\lambda}:=\exp (\lambda D)$ where $\lambda \in \mathbb{C}$. Let
$2 N:=(2 X, 2 Y, 2 Z) \circ N=\left(2 X-2 Y \Delta-2 Z \Delta^{2}, 2 Y+2 Z \Delta, 2 Z\right)$
Now compute: $N^{-\frac{4}{3}}(2 N) N^{\frac{4}{3}}=(2 X, 2 Y, 2 Z)!!!$
Define $\operatorname{GLIN}_{n}(\mathbb{C})$ as the group generated by the linearizable automorphisms. (I.e. $\operatorname{GLIN}_{n}(\mathbb{C})$ is smallest normal subgroup of $\mathrm{GA}_{n}(\mathbb{C})$ containing $\mathrm{GL}_{\mathrm{n}}(\mathbb{C})$.) Conjecture 4:

$$
\mathrm{GA}_{n}(\mathbb{C})=\operatorname{GLIN}_{n}(\mathbb{C})
$$

$\mathrm{GA}_{n}(k)$
$\mathrm{TA}_{n}(k)$
$\mathrm{GA}_{n}(k)$

U|
$E L N D_{n}(k) \quad:=<A f f_{n}(k), \exp (D) \mid D$ locally nilpotent derivation \cup
$\mathrm{TA}_{n}(k)$
$\mathrm{GA}_{n}(k)$

U|
$\operatorname{ELFD}_{n}(k) \quad:=<\exp (D) \mid D$ locally finite derivation $>$
U|
$E L N D_{n}(k) \quad:=<A f f_{n}(k), \exp (D) \mid D$ locally nilpotent derivation \cup
$\mathrm{TA}_{n}(k)$
$\mathrm{GA}_{n}(k)$

$E L F D_{n}(k) \quad:=<\exp (D) \mid D$ locally finite derivation $>$

$E L N D_{n}(k) \quad:=<A f f_{n}(k), \exp (D) \mid D$ locally nilpotent derivation \cup
$\operatorname{GLIN}_{n}(k) \quad:=$ normalizer of $\mathrm{GL}_{\mathrm{n}}(\mathrm{k})$not equal if $\operatorname{char}(k) \neq 0$.
TA ${ }_{n}(k)$
$\mathrm{GA}_{n}(k)$

$E L F D_{n}(k) \quad:=<\exp (D) \mid D$ locally finite derivation $>$
\cup
$E L N D_{n}(k) \quad:=<A f f_{n}(k), \exp (D) \mid D$ locally nilpotent derivation
\cup
$\operatorname{GTAM}_{n}(k) \quad:=$ normalizer of $\operatorname{TA}_{n}(k)$
\cup
$\operatorname{GLIN}_{n}(k) \quad:=$ normalizer of $\mathrm{GL}_{\mathrm{n}}(\mathrm{k})$
\cup
not equal if $\operatorname{char}(k) \neq 0$.
TA ${ }_{n}(k)$
$\mathrm{GA}_{n}(k)$
\cup
$\mathrm{LF}_{n}(k) \quad$ I will talk about this!
\cup
$\operatorname{ELFD}_{n}(k) \quad:=<\exp (D) \mid D$ locally finite derivation $>$
U|
$E L N D_{n}(k) \quad:=<A f f_{n}(k), \exp (D) \mid D$ locally nilpotent derivation
U|
$\operatorname{GTAM}_{n}(k) \quad:=$ normalizer of $\operatorname{TA}_{n}(k)$
U|
$\operatorname{GLIN}_{n}(k) \quad:=$ normalizer of $\mathrm{GL}_{\mathrm{n}}(\mathrm{k})$
\cup
not equal if $\operatorname{char}(k) \neq 0$.
$\mathrm{TA}_{n}(k)$

Let us step back for a moment ...

BIG STUPID CLAIM:

Polynomial Automorphisms Can Be Used Whenever Linear
Maps Are Used.

Let us step back for a moment ...

BIG STUPID CLAIM:
Polynomial Automorphisms Can Be Used Whenever Linear Maps Are Used.

If we want to have any hope of applying polynomial maps like linear maps, then we need to strengthen the theoretical foundation of polynomial maps.

Now let's be ambitious. What is the strongest theorem in linear algebra. Tell me!

Now let's be ambitious. What is the strongest theorem in linear algebra. Tell me!
Very good: the Cayley-Hamilton theorem (characteristic polynomials of linear maps etc.).

Now let's be ambitious. What is the strongest theorem in linear algebra. Tell me!
Very good: the Cayley-Hamilton theorem (characteristic polynomials of linear maps etc.).
Now, let's try to make a Cayley-Hamilton theorem for polynomial maps!

Now let's be ambitious. What is the strongest theorem in linear algebra. Tell me!
Very good: the Cayley-Hamilton theorem (characteristic polynomials of linear maps etc.).
Now, let's try to make a Cayley-Hamilton theorem for polynomial maps! (Perhaps the constant term can replace that stupid $\operatorname{det}(\operatorname{Jac}(F))=1$ requirement!)

Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then L is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L)
$$

Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then L is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L)
$$

What about generalizing $\mathrm{ML}_{n}(\mathbb{C}) \longrightarrow \mathrm{MA}_{n}(\mathbb{C})$?

Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then L is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L)
$$

What about generalizing $\mathrm{ML}_{n}(\mathbb{C}) \longrightarrow \mathrm{MA}_{n}(\mathbb{C})$? EXAMPLE:
Let $F=\left(X^{2}, Y^{2}\right)$.

Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then L is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L)
$$

What about generalizing $\mathrm{ML}_{n}(\mathbb{C}) \longrightarrow \mathrm{MA}_{n}(\mathbb{C})$? EXAMPLE:
Let $F=\left(X^{2}, Y^{2}\right)$. Then $\operatorname{deg}\left(F^{n}\right)=2^{n}$.

Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then L is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L)
$$

What about generalizing $\mathrm{ML}_{n}(\mathbb{C}) \longrightarrow \mathrm{MA}_{n}(\mathbb{C})$?
EXAMPLE:
Let $F=\left(X^{2}, Y^{2}\right)$. Then $\operatorname{deg}\left(F^{n}\right)=2^{n}$.
There exists no relation
$F^{n}+a_{n-1} F^{n-1}+\ldots+a_{1} F+a_{0} I=0$.

Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then L is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L)
$$

What about generalizing $\mathrm{ML}_{n}(\mathbb{C}) \longrightarrow \mathrm{MA}_{n}(\mathbb{C})$?
EXAMPLE:
Let $F=\left(X^{2}, Y^{2}\right)$. Then $\operatorname{deg}\left(F^{n}\right)=2^{n}$.
There exists no relation
$F^{n}+a_{n-1} F^{n-1}+\ldots+a_{1} F+a_{0} I=0$. GR! It will not work!

Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then L is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L)
$$

What about generalizing $\mathrm{ML}_{n}(\mathbb{C}) \longrightarrow \mathrm{MA}_{n}(\mathbb{C})$?
EXAMPLE:
Let $F=\left(X^{2}, Y^{2}\right)$. Then $\operatorname{deg}\left(F^{n}\right)=2^{n}$.
There exists no relation
$F^{n}+a_{n-1} F^{n-1}+\ldots+a_{1} F+a_{0} I=0$. GR! It will not work!
But. . .

Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then L is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L)
$$

What about generalizing $\mathrm{ML}_{n}(\mathbb{C}) \longrightarrow \mathrm{MA}_{n}(\mathbb{C})$?
EXAMPLE:
Let $F=\left(X^{2}, Y^{2}\right)$. Then $\operatorname{deg}\left(F^{n}\right)=2^{n}$.
There exists no relation
$F^{n}+a_{n-1} F^{n-1}+\ldots+a_{1} F+a_{0} I=0$. GR! It will not work!
But. .. Definition: If F is a zero of some $P(T) \in \mathbb{C}[T] \backslash\{0\}$, then we will call F a Locally Finite Polynomial Endomorphism (short LFPE).

Example:

$F:=\left(X+Y^{2}, Y\right)$

Example:

$$
\begin{aligned}
& F^{0}:=(X, Y) \\
& F:=\left(X+Y^{2}, Y\right) \\
& F^{2}:=\left(X+2 Y^{2}, Y\right) \\
& F^{2}-2 F+I=0, \text { so } F \text { is "zero of } T^{2}-2 T+1=(T-1)^{2} "
\end{aligned}
$$

Definition:

If F is a zero of some $P(T) \in \mathbb{C}[T] \backslash\{0\}$, then we will call F a Locally Finite Polynomial Endomorphism (short LFPE).

Definition:

If F is a zero of some $P(T) \in \mathbb{C}[T] \backslash\{0\}$, then we will call F a Locally Finite Polynomial Endomorphism (short LFPE).
Let's be a little less ambitious and study this set.

Definition:

If F is a zero of some $P(T) \in \mathbb{C}[T] \backslash\{0\}$, then we will call F a Locally Finite Polynomial Endomorphism (short LFPE). Let's be a little less ambitious and study this set. LFPE's should resemble linear maps more than general polynomial maps!

Some Remarks:

Some Remarks:

F is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.

Some Remarks:

F is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.
($F^{n}=\sum_{i=0}^{n-1} a_{i} F^{i}$ is equivalent to $\left\{I, F, F^{2}, \ldots\right\}$ generates a finite dimensional \mathbb{C}-vector space.)

Some Remarks:

F is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.
$\left(F^{n}=\sum_{i=0}^{n-1} a_{i} F^{i}\right.$ is equivalent to $\left\{I, F, F^{2}, \ldots\right\}$ generates a finite dimensional \mathbb{C}-vector space.)
$I_{F}:=\{P(T) \in \mathbb{C}[T] \mid P(F)=0\}$ is an ideal of $\mathbb{C}[T]$

Some Remarks:

F is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.
$\left(F^{n}=\sum_{i=0}^{n-1} a_{i} F^{i}\right.$ is equivalent to $\left\{I, F, F^{2}, \ldots\right\}$ generates a finite dimensional \mathbb{C}-vector space.)
$I_{F}:=\{P(T) \in \mathbb{C}[T] \mid P(F)=0\}$ is an ideal of $\mathbb{C}[T]$
(not completely trivial, as $F(G+H) \neq F G+F H$.
)

Some Remarks:

F is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.
$\left(F^{n}=\sum_{i=0}^{n-1} a_{i} F^{i}\right.$ is equivalent to $\left\{I, F, F^{2}, \ldots\right\}$ generates a finite dimensional \mathbb{C}-vector space.)
$I_{F}:=\{P(T) \in \mathbb{C}[T] \mid P(F)=0\}$ is an ideal of $\mathbb{C}[T]$
(not completely trivial, as $F(G+H) \neq F G+F H$. But I_{F} is obviously closed under " + " and closed under multiplication by
T. That's enough!)

Some Remarks:

F is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.
$\left(F^{n}=\sum_{i=0}^{n-1} a_{i} F^{i}\right.$ is equivalent to $\left\{I, F, F^{2}, \ldots\right\}$ generates a finite dimensional \mathbb{C}-vector space.)
$I_{F}:=\{P(T) \in \mathbb{C}[T] \mid P(F)=0\}$ is an ideal of $\mathbb{C}[T]$
(not completely trivial, as $F(G+H) \neq F G+F H$. But I_{F} is obviously closed under " + " and closed under multiplication by
T. That's enough!)
F is LFPE $\Longleftrightarrow G^{-1} F G$ is LFPE

Some Remarks:

F is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.
$\left(F^{n}=\sum_{i=0}^{n-1} a_{i} F^{i}\right.$ is equivalent to $\left\{I, F, F^{2}, \ldots\right\}$ generates a finite dimensional \mathbb{C}-vector space.)
$I_{F}:=\{P(T) \in \mathbb{C}[T] \mid P(F)=0\}$ is an ideal of $\mathbb{C}[T]$
(not completely trivial, as $F(G+H) \neq F G+F H$. But I_{F} is obviously closed under " + " and closed under multiplication by
T. That's enough!)
F is LFPE $\Longleftrightarrow G^{-1} F G$ is LFPE
Proof: due to the first remark.

Some Remarks:

F is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.
$\left(F^{n}=\sum_{i=0}^{n-1} a_{i} F^{i}\right.$ is equivalent to $\left\{I, F, F^{2}, \ldots\right\}$ generates a finite dimensional \mathbb{C}-vector space.)
$I_{F}:=\{P(T) \in \mathbb{C}[T] \mid P(F)=0\}$ is an ideal of $\mathbb{C}[T]$
(not completely trivial, as $F(G+H) \neq F G+F H$. But I_{F} is obviously closed under " + " and closed under multiplication by
T. That's enough!)
F is LFPE $\Longleftrightarrow G^{-1} F G$ is LFPE
Proof: due to the first remark.
But: the minimum polynomial may change if G is not linear!

Example:

$$
F:=\left(3 X+Y^{2}, Y\right)
$$

Example:

$$
\begin{aligned}
& F:=\left(3 X+Y^{2}, Y\right) \\
& F^{2}=\left(9 X+4 Y^{2}, Y\right)
\end{aligned}
$$

Example:

$$
\begin{aligned}
& F:=\left(3 X+Y^{2}, Y\right) . \\
& F^{2}=\left(9 X+4 Y^{2}, Y\right),
\end{aligned}
$$

So $F^{2}-4 F+3 I=0, F$ zero of

$$
T^{2}-4 T+3=(T-1)(T-3) .
$$

Example:

$$
\begin{aligned}
& F:=\left(3 X+Y^{2}, Y\right) \\
& F^{2}=\left(9 X+4 Y^{2}, Y\right)
\end{aligned}
$$

So $F^{2}-4 F+3 I=0, F$ zero of
$T^{2}-4 T+3=(T-1)(T-3)$.
$(\operatorname{NOT}(F-I) \circ(F-3 I)=0$.)

Example:

$$
\begin{aligned}
& F:=\left(3 X+Y^{2}, Y\right) . \\
& F^{2}=\left(9 X+4 Y^{2}, Y\right),
\end{aligned}
$$

So $F^{2}-4 F+3 I=0, F$ zero of
$T^{2}-4 T+3=(T-1)(T-3)$.
$(\operatorname{NOT}(F-I) \circ(F-3 I)=0$.)
$F^{n}=\left(3^{n} X+\frac{1}{2}\left(3^{n}-1\right) Y^{2}, Y\right)$

$$
F^{n}=\left(3^{n} X+\frac{1}{2}\left(3^{n}-1\right) Y^{2}, Y\right), n \in \mathbb{N} .
$$

$F^{n}=\left(3^{n} X+\frac{1}{2}\left(3^{n}-1\right) Y^{2}, Y\right), n \in \mathbb{N}$.
We can define

$$
F_{t}=\left(3^{t} X+\frac{1}{2}\left(3^{t}-1\right) Y^{2}, Y\right), t \in \mathbb{C} .
$$

$F^{n}=\left(3^{n} X+\frac{1}{2}\left(3^{n}-1\right) Y^{2}, Y\right), n \in \mathbb{N}$.
We can define
$F_{t}=\left(3^{t} X+\frac{1}{2}\left(3^{t}-1\right) Y^{2}, Y\right), t \in \mathbb{C}$.
$F_{t} F_{u}=F_{t+u}$ so $F_{t} ; t \in \mathbb{C}$ is a flow.
(Means you can write $F_{t}=F^{t}$.)
$F^{n}=\left(3^{n} X+\frac{1}{2}\left(3^{n}-1\right) Y^{2}, Y\right), n \in \mathbb{N}$.
We can define
$F_{t}=\left(3^{t} X+\frac{1}{2}\left(3^{t}-1\right) Y^{2}, Y\right), t \in \mathbb{C}$.
$F_{t} F_{u}=F_{t+u}$ so $F_{t} ; t \in \mathbb{C}$ is a flow.
(Means you can write $F_{t}=F^{t}$.)

We'll get back on that. . .
$F^{n}=\left(3^{n} X+\frac{1}{2}\left(3^{n}-1\right) Y^{2}, Y\right), n \in \mathbb{N}$.
We can define
$F_{t}=\left(3^{t} X+\frac{1}{2}\left(3^{t}-1\right) Y^{2}, Y\right), t \in \mathbb{C}$.
$F_{t} F_{u}=F_{t+u}$ so $F_{t} ; t \in \mathbb{C}$ is a flow.
(Means you can write $F_{t}=F^{t}$.)

We'll get back on that. . . First some results!

"Cayley-Hamilton" in n variables

"Cayley-Hamilton" in n variables

Let $D:=\max _{m \in \mathbb{N}}\left(\operatorname{deg}\left(F^{m}\right)\right.$). (note: conjecture $\left.D=d^{n-1}\right)$

"Cayley-Hamilton" in n variables

Let $D:=\max _{m \in \mathbb{N}}\left(\operatorname{deg}\left(F^{m}\right)\right)$. (note: conjecture $D=d^{n-1}$)
Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of the linear part of F.

"Cayley-Hamilton" in n variables

Let $D:=\max _{m \in \mathbb{N}}\left(\operatorname{deg}\left(F^{m}\right)\right.$). (note: conjecture $D=d^{n-1}$)
Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of the linear part of F.
Then F is a zero of

"Cayley-Hamilton" in n variables

Let $D:=\max _{m \in \mathbb{N}}\left(\operatorname{deg}\left(F^{m}\right)\right.$). (note: conjecture $D=d^{n-1}$)
Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of the linear part of F.
Then F is a zero of
(where $\lambda^{\alpha}=\lambda_{1}^{\alpha_{1}} \cdots \lambda_{n}^{\alpha_{n}}$)

"Cayley-Hamilton" in n variables

Let $D:=\max _{m \in \mathbb{N}}\left(\operatorname{deg}\left(F^{m}\right)\right.$). (note: conjecture $D=d^{n-1}$)
Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of the linear part of F.
Then F is a zero of

$$
\prod_{\alpha \in \mathbb{N}^{n}}\left(T-\lambda^{\alpha}\right)
$$

(where $\lambda^{\alpha}=\lambda_{1}^{\alpha_{1}} \cdots \lambda_{n}^{\alpha_{n}}$)

"Cayley-Hamilton" in n variables

Let $D:=\max _{m \in \mathbb{N}}\left(\operatorname{deg}\left(F^{m}\right)\right.$). (note: conjecture $D=d^{n-1}$)
Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of the linear part of F.
Then F is a zero of

$$
\prod_{\substack{\alpha \in \mathbb{N}^{n} \\ 0<|\alpha| \leq D}}\left(T-\lambda^{\alpha}\right)
$$

(where $\lambda^{\alpha}=\lambda_{1}^{\alpha_{1}} \cdots \lambda_{n}^{\alpha_{n}}$)
$\left(|\alpha|=\alpha_{1}+\ldots+\alpha_{n}\right)$

Equivalent are:

Equivalent are:

- F is LFPE

Equivalent are:

- F is LFPE
- $\operatorname{deg}\left(F^{m}\right)$ is bounded

Equivalent are:

- F is LFPE
- $\operatorname{deg}\left(F^{m}\right)$ is bounded
- $n=2: \operatorname{deg}\left(F^{2}\right) \leq \operatorname{deg}(F)$

Equivalent are:

- F is LFPE
- $\operatorname{deg}\left(F^{m}\right)$ is bounded
- $n=2: \operatorname{deg}\left(F^{2}\right) \leq \operatorname{deg}(F)$

Conjecture: in dimension n, F is LFPE $\Longleftrightarrow \operatorname{deg}\left(F^{m}\right) \leq \operatorname{deg}(F)^{n-1}$ for all $m \in \mathbb{N}$.

$n=2$: Classification of LFPE

$n=2$: Classification of LFPE

Two essential cases:

$n=2$: Classification of LFPE

Two essential cases:

$$
F=(a X+P(Y), b Y)
$$

$n=2$: Classification of LFPE

Two essential cases:

$$
F=(a X+P(Y), b Y)
$$

$$
F=(a X+Y P(X, Y), 0)
$$

$n=2$: Classification of LFPE

Two essential cases:
$F=(a X+P(Y), b Y)$
$F=(a X+Y P(X, Y), 0)$
Zero of $T^{2}-a T$.

$n=2$: Classification of LFPE

Two essential cases:
$F=(a X+P(Y), b Y)$
Zero of $(T-b)(T-a)\left(T-a^{2}\right) \cdots\left(T-a^{d}\right), d=\operatorname{deg}(P)$
$F=(a X+Y P(X, Y), 0)$
Zero of $T^{2}-a T$.

$n=2:$ Classification of LFPE

Two essential cases:
$F=(a X+P(Y), b Y) \quad(F$ invertible $)$
Zero of $(T-b)(T-a)\left(T-a^{2}\right) \cdots\left(T-a^{d}\right), d=\operatorname{deg}(P)$
$F=(a X+Y P(X, Y), 0) \quad(F$ not invertible $)$
Zero of $T^{2}-a T$.

$n=2$: Classification of LFPE

$n=2$: Classification of LFPE

F is LFPE, $F(0)=0$.

$n=2:$ Classification of LFPE

F is LFPE, $F(0)=0$.
F invertible
$\Longleftrightarrow F$ is conjugate of
$(a X+P(Y), b Y)$
$a, b \in \mathbb{C}^{*}, P(Y) \in \mathbb{C}[Y]$.

$n=2:$ Classification of LFPE

F is LFPE, $F(0)=0$.
F invertible
$\Longleftrightarrow F$ is conjugate of
$(a X+P(Y), b Y)$
$a, b \in \mathbb{C}^{*}, P(Y) \in \mathbb{C}[Y]$.
F not invertible
$\Longleftrightarrow F$ is conjugate of

$$
\begin{aligned}
& (a X+Y P(X, Y), 0) \\
& a, \in \mathbb{C}, P(X, Y) \in \mathbb{C}[X, Y] .
\end{aligned}
$$

$n=2:$ Cayley-Hamilton for LFPE

$n=2:$ Cayley-Hamilton for LFPE

F is LFPE, and $F(0)=0$.
Let $d=\operatorname{deg}(F)$.
Let L be the linear part of F.

$n=2:$ Cayley-Hamilton for LFPE

F is LFPE, and $F(0)=0$.
Let $d=\operatorname{deg}(F)$.
Let L be the linear part of F.
Then F is a zero of

$n=2:$ Cayley-Hamilton for LFPE

F is LFPE, and $F(0)=0$.
Let $d=\operatorname{deg}(F)$.
Let L be the linear part of F.
Then F is a zero of

$$
P_{F}(T):=\prod_{\substack{0 \leq k \leq d-1 \\ 0 \leq m \leq d \\(k, m) \neq(0,0)}}\left(T^{2}-\left(\operatorname{det} L^{k}\right)\left(T r L^{m}\right) T+\operatorname{det}\left(L^{2 k+m}\right)\right) .
$$

How did we prove that?

How did we prove that?

$$
\text { If } F^{i}=\left(F_{1}^{(i)}, \ldots, F_{n}^{(i)}\right) \text { and } F_{j}^{(i)}=\sum F_{j, \alpha}^{(i)} X^{\alpha} \text {, }
$$

How did we prove that?

If $F^{i}=\left(F_{1}^{(i)}, \ldots, F_{n}^{(i)}\right)$ and $F_{j}^{(i)}=\sum F_{j, \alpha}^{(i)} X^{\alpha}$,
then $\sum a_{i} F^{i}=0 \Longleftrightarrow \sum a_{i} F_{j, \alpha}^{(i)}=0 \forall j, \alpha$.

How did we prove that?

If $F^{i}=\left(F_{1}^{(i)}, \ldots, F_{n}^{(i)}\right)$ and $F_{j}^{(i)}=\sum F_{j, \alpha}^{(i)} X^{\alpha}$,
then $\sum a_{i} F^{i}=0 \Longleftrightarrow \sum a_{i} F_{j, \alpha}^{(i)}=0 \forall j, \alpha$.
If $\left\{F_{j, \alpha}^{(i)}\right\}_{i \in \mathbb{N}}$ is such a sequence, then it is a linear recurrent sequence belonging to $\sum a_{i} T^{i}$, etc....

Exponents of derivations

Exponents of derivations

D locally finite derivation, then
$\exp (D)(g):=g+D(g)+\frac{1}{2!} D^{2}(g)+\frac{1}{3!} D^{3}(g)+\ldots$ is well-defined.

Exponents of derivations

D locally finite derivation, then
$\exp (D)(g):=g+D(g)+\frac{1}{2!} D^{2}(g)+\frac{1}{3!} D^{3}(g)+\ldots$ is well-defined.
Inverse is $\exp (-D)$.

Exponents of derivations

D locally finite derivation, then
$\exp (D)(g):=g+D(g)+\frac{1}{2!} D^{2}(g)+\frac{1}{3!} D^{3}(g)+\ldots$ is well-defined.
Inverse is $\exp (-D)$.
EXAMPLE: $D=Y^{2} \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$ on $\mathbb{C}[X, Y, Z]$:

Exponents of derivations

D locally finite derivation, then
$\exp (D)(g):=g+D(g)+\frac{1}{2!} D^{2}(g)+\frac{1}{3!} D^{3}(g)+\ldots$ is well-defined.
Inverse is $\exp (-D)$.
EXAMPLE: $D=Y^{2} \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$ on $\mathbb{C}[X, Y, Z]$:

$$
\exp (D)=
$$

Exponents of derivations

D locally finite derivation, then
$\exp (D)(g):=g+D(g)+\frac{1}{2!} D^{2}(g)+\frac{1}{3!} D^{3}(g)+\ldots$ is
well-defined.
Inverse is $\exp (-D)$.
EXAMPLE: $D=Y^{2} \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$ on $\mathbb{C}[X, Y, Z]$:

$$
\exp (D)=(\exp (D)(X), \exp (D)(Y), \exp (D)(Z))
$$

Exponents of derivations

D locally finite derivation, then
$\exp (D)(g):=g+D(g)+\frac{1}{2!} D^{2}(g)+\frac{1}{3!} D^{3}(g)+\ldots$ is
well-defined.
Inverse is $\exp (-D)$.
EXAMPLE: $D=Y^{2} \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$ on $\mathbb{C}[X, Y, Z]$:

$$
\exp (D)=(\exp (D)(X), \exp (D)(Y), \exp (D)(Z))
$$

Exponents of derivations

D locally finite derivation, then
$\exp (D)(g):=g+D(g)+\frac{1}{2!} D^{2}(g)+\frac{1}{3!} D^{3}(g)+\ldots$ is
well-defined.
Inverse is $\exp (-D)$.
EXAMPLE: $D=Y^{2} \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$ on $\mathbb{C}[X, Y, Z]$:

$$
\begin{aligned}
\exp (D) & =(\exp (D)(X), \exp (D)(Y), \exp (D)(Z)) \\
& =\left(X+Y^{2}+Y Z+\frac{1}{6} Z^{2}, Y+Z, Z\right)
\end{aligned}
$$

$$
\exp (D)^{2}=\exp (D) \circ \exp (D)=\exp (2 D)
$$

$$
\begin{aligned}
& \exp (D)^{2}=\exp (D) \circ \exp (D)=\exp (2 D) \\
& F^{n}=\exp (n D)=\left(X+n Y^{2}+n^{2} Y Z+\frac{n^{3}}{6} Z^{2}, Y+n Z, Z\right)
\end{aligned}
$$

$\exp (D)^{2}=\exp (D) \circ \exp (D)=\exp (2 D)$
$F^{n}=\exp (n D)=\left(X+n Y^{2}+n^{2} Y Z+\frac{n^{3}}{6} Z^{2}, Y+n Z, Z\right)$
i.e. $\{\operatorname{deg}(\exp (n D))\}_{n \in \mathbb{N}}$ is bounded sequence
$\exp (D)^{2}=\exp (D) \circ \exp (D)=\exp (2 D)$
$F^{n}=\exp (n D)=\left(X+n Y^{2}+n^{2} Y Z+\frac{n^{3}}{6} Z^{2}, Y+n Z, Z\right)$
i.e. $\{\operatorname{deg}(\exp (n D))\}_{n \in \mathbb{N}}$ is bounded sequence
$\Rightarrow \exp (D)$ is LFPE.
$\exp (D)^{2}=\exp (D) \circ \exp (D)=\exp (2 D)$
$F^{n}=\exp (n D)=\left(X+n Y^{2}+n^{2} Y Z+\frac{n^{3}}{6} Z^{2}, Y+n Z, Z\right)$
i.e. $\{\operatorname{deg}(\exp (n D))\}_{n \in \mathbb{N}}$ is bounded sequence
$\Rightarrow \exp (D)$ is LFPE.

So: $F=\exp (D) \longrightarrow F$ is LFPE.
$\exp (D)^{2}=\exp (D) \circ \exp (D)=\exp (2 D)$
$F^{n}=\exp (n D)=\left(X+n Y^{2}+n^{2} Y Z+\frac{n^{3}}{6} Z^{2}, Y+n Z, Z\right)$
i.e. $\{\operatorname{deg}(\exp (n D))\}_{n \in \mathbb{N}}$ is bounded sequence
$\Rightarrow \exp (D)$ is LFPE.

So: $F=\exp (D) \longrightarrow F$ is LFPE.
Even: $F_{t}:=\exp (t D)$ is a flow.
$\exp (D)^{2}=\exp (D) \circ \exp (D)=\exp (2 D)$
$F^{n}=\exp (n D)=\left(X+n Y^{2}+n^{2} Y Z+\frac{n^{3}}{6} Z^{2}, Y+n Z, Z\right)$
i.e. $\{\operatorname{deg}(\exp (n D))\}_{n \in \mathbb{N}}$ is bounded sequence
$\Rightarrow \exp (D)$ is LFPE.

So: $F=\exp (D) \longrightarrow F$ is LFPE.
Even: $F_{t}:=\exp (t D)$ is a flow.
So: we can make many examples of LFPEs!

$$
F=\exp (D) \Longleftrightarrow F \text { has a flow }
$$

$F=\exp (D) \Longleftrightarrow F$ has a flow
(A flow of F is:
F_{t} for each $t \in \mathbb{C}$
$\left.F_{1}=F, F_{0}=I, F_{t} F_{u}=F_{t+u}.\right)$
$F=\exp (D) \Longleftrightarrow F$ has a flow
(A flow of F is:
F_{t} for each $t \in \mathbb{C}$
$\left.F_{1}=F, F_{0}=I, F_{t} F_{u}=F_{t+u}.\right)$
$F=\exp (D) \Rightarrow F$ is LFPE.
$F=\exp (D) \Longleftrightarrow F$ has a flow
(A flow of F is:
F_{t} for each $t \in \mathbb{C}$
$\left.F_{1}=F, F_{0}=I, F_{t} F_{u}=F_{t+u}.\right)$
$F=\exp (D) \Rightarrow F$ is LFPE.
$? \Leftarrow$?
D locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$
D locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where D_{n} is locally nilpotent, D_{s} is semisimple,
D locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where D_{n} is locally nilpotent, D_{s} is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.
D locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where D_{n} is locally nilpotent, D_{s} is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.

Given F LFPE, then we find unique decomposition $F=F_{n} F_{s}=F_{s} F_{n}$
D locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where D_{n} is locally nilpotent, D_{s} is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.

Given F LFPE, then we find unique decomposition $F=F_{n} F_{s}=F_{s} F_{n}$ where $F_{n}=\exp \left(D_{n}\right)$ where D_{n} is locally nilpotent.
an example:
D locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where D_{n} is locally nilpotent, D_{s} is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.

Given F LFPE, then we find unique decomposition $F=F_{n} F_{s}=F_{s} F_{n}$ where $F_{n}=\exp \left(D_{n}\right)$ where D_{n} is locally nilpotent.
an example:
$F=\left(2 X+2 Y^{2}, 3 Y\right)$
D locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where D_{n} is locally nilpotent, D_{s} is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.

Given F LFPE, then we find unique decomposition $F=F_{n} F_{s}=F_{s} F_{n}$ where $F_{n}=\exp \left(D_{n}\right)$ where D_{n} is locally nilpotent.
an example:
$F=\left(2 X+2 Y^{2}, 3 Y\right)=(2 X, 3 Y) \circ\left(X+Y^{2}, Y\right)$
D locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where D_{n} is locally nilpotent, D_{s} is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.

Given F LFPE, then we find unique decomposition $F=F_{n} F_{s}=F_{s} F_{n}$ where $F_{n}=\exp \left(D_{n}\right)$ where D_{n} is locally nilpotent.
an example:
$F=\left(2 X+2 Y^{2}, 3 Y\right)=(2 X, 3 Y) \circ\left(X+Y^{2}, Y\right)$
$(2 X, 3 Y)=\exp \left(\lambda X \partial_{X}+\mu Y \partial_{Y}\right)$,
D locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where D_{n} is locally nilpotent, D_{s} is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.

Given F LFPE, then we find unique decomposition $F=F_{n} F_{s}=F_{s} F_{n}$ where $F_{n}=\exp \left(D_{n}\right)$ where D_{n} is locally nilpotent.
an example:
$F=\left(2 X+2 Y^{2}, 3 Y\right)=(2 X, 3 Y) \circ\left(X+Y^{2}, Y\right)$
$(2 X, 3 Y)=\exp \left(\lambda X \partial_{X}+\mu Y \partial_{Y}\right)$, where
$\lambda=\log (2), \mu=\log (3)$.
D locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where D_{n} is locally nilpotent, D_{s} is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.

Given F LFPE, then we find unique decomposition $F=F_{n} F_{s}=F_{s} F_{n}$ where $F_{n}=\exp \left(D_{n}\right)$ where D_{n} is locally nilpotent.
an example:
$F=\left(2 X+2 Y^{2}, 3 Y\right)=(2 X, 3 Y) \circ\left(X+Y^{2}, Y\right)$
$(2 X, 3 Y)=\exp \left(\lambda X \partial_{X}+\mu Y \partial_{Y}\right)$, where
$\lambda=\log (2), \mu=\log (3)$.
$\left(X+Y^{2}, Y\right)=\exp \left(Y^{2} \partial_{X}\right)$.
D locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where D_{n} is locally nilpotent, D_{s} is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.

Given F LFPE, then we find unique decomposition $F=F_{n} F_{s}=F_{s} F_{n}$ where $F_{n}=\exp \left(D_{n}\right)$ where D_{n} is locally nilpotent.
an example:
$F=\left(2 X+2 Y^{2}, 3 Y\right)=(2 X, 3 Y) \circ\left(X+Y^{2}, Y\right)$
$(2 X, 3 Y)=\exp \left(\lambda X \partial_{X}+\mu Y \partial_{Y}\right)$, where
$\lambda=\log (2), \mu=\log (3)$.
$\left(X+Y^{2}, Y\right)=\exp \left(Y^{2} \partial_{X}\right)$.

Don't know how to make D_{s}, given F_{s}.

Case $F=\exp \left(D_{n}\right), D_{n}$ loc.nilp.:

Case $F=\exp \left(D_{n}\right), D_{n}$ loc.nilp.:

$$
F=\exp \left(D_{n}\right)
$$

Case $F=\exp \left(D_{n}\right), D_{n}$ loc.nilp.:

$$
F=\exp \left(D_{n}\right)
$$

F is zero of $(T-1)^{n}$ for some n

Case $F=\exp \left(D_{n}\right), D_{n}$ loc.nilp.:

$$
F=\exp \left(D_{n}\right) \Longleftrightarrow
$$

F is zero of $(T-1)^{n}$ for some n

Case $F=\exp \left(D_{n}\right), D_{n}$ loc.nilp.:

$F=\exp \left(D_{n}\right) \Longleftrightarrow$
F is zero of $(T-1)^{n}$ for some n

Example: $F=\exp \left(Y^{2} \partial_{X}\right)=\left(X+Y^{2}, Y\right)$

Case $F=\exp \left(D_{n}\right), D_{n}$ loc.nilp.:

$F=\exp \left(D_{n}\right) \Longleftrightarrow$
F is zero of $(T-1)^{n}$ for some n

Example: $F=\exp \left(Y^{2} \partial_{X}\right)=\left(X+Y^{2}, Y\right)$
$F^{2}-2 F+I=0$

Case $F=\exp \left(D_{n}\right), D_{n}$ loc.nilp.:

$F=\exp \left(D_{n}\right) \Longleftrightarrow$
F is zero of $(T-1)^{n}$ for some n

Example: $F=\exp \left(Y^{2} \partial_{X}\right)=\left(X+Y^{2}, Y\right)$
$F^{2}-2 F+I=0$ i.e. zero of $(T-1)^{2}$.

Why the problem with general case?

Why the problem with general case?

In case F zero of $(T-1)^{n}$, then F has only eigenvalue 1 .

Why the problem with general case?

In case F zero of $(T-1)^{n}$, then F has only eigenvalue 1 .
Then there is one natural choice for " $\log (F)=D$ ", only ONE of them is loc. NILPOTENT

Why the problem with general case?

In case F zero of $(T-1)^{n}$, then F has only eigenvalue 1 .
Then there is one natural choice for " $\log (F)=D$ ", only ONE of them is loc. NILPOTENT Compare to: $\log (1)=0$.

Why the problem with general case?

In case F zero of $(T-1)^{n}$, then F has only eigenvalue 1 .
Then there is one natural choice for " $\log (F)=D$ ", only ONE of them is loc. NILPOTENT Compare to: $\log (1)=0$. But could have been: $\log (1)=2 \pi i$. But 0 is natural choice.

Why the problem with general case?

In case F zero of $(T-1)^{n}$, then F has only eigenvalue 1 .
Then there is one natural choice for " $\log (F)=D$ ", only ONE of them is loc. NILPOTENT Compare to: $\log (1)=0$. But could have been: $\log (1)=2 \pi i$. But 0 is natural choice.
if $c \in \mathbb{C}$, then no natural choice $\log (c)$.

Why the problem with general case?

In case F zero of $(T-1)^{n}$, then F has only eigenvalue 1 .
Then there is one natural choice for " $\log (F)=D$ ", only ONE of them is loc. NILPOTENT Compare to: $\log (1)=0$. But could have been: $\log (1)=2 \pi i$. But 0 is natural choice.
if $c \in \mathbb{C}$, then no natural choice $\log (c)$. So, to repeat:
QUESTION: if F is L.F., is $F=\exp (D)$?

THANK YOU

