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Affine algebraic geometry

Study of Affine Varieties

Almost always: 1-1 correspondence between algebra and

geometry.

Example:

Zero sets of polynomials

V := {x ∈ kn | f1(x) = . . . = fn(x) = 0}

l
k-algebras

O(V ) := k[x1, . . . , xn]/(f1, . . . , fn)
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Affine algebraic geometry

Almost always: 1-1 correspondence between algebra and

geometry.

Example:

Additive group action on Cn

l
Locally nilpotent derivation

D : C[x1, . . . , xn] −→ C[x1, . . . , xn].



Affine algebraic geometry

Almost always: 1-1 correspondence between algebra and

geometry.

Example:

Polynomial automorphisms Cn −→ Cn

(notation: GAn(C))

l
Ring automorphisms of C[x1, . . . , xn].



Understanding polynomial automorphisms

A map F : kn −→ kn given by n polynomials:

F = (F1(X1, . . . ,Xn), . . . ,Fn(X1, . . . ,Xn)).

Example: F = (X + Y 2,Y ).

Various ways of looking at polynomial maps:

I A map kn −→ kn.

I A list of n polynomials: F ∈ (k[X1, . . . ,Xn])n.

I A ring automorphism of k[X1, . . . ,Xn] sending

g(X1, . . . ,Xn) to g(F1, . . . ,Fn).

Group of polynomial maps having polynomial inverse =:

GAn(k).
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Finite fields, characteristic p,

characteristic 0: What is different?

Correspondence

ring endomorphisms Fq[x1, . . . , xn]

−→
maps (Fq)n −→ (Fq)n

not injective!

π : GAn(Fq) −→ Perm((Fq)n)

has kernel: π(x + yq − y , y) = π(x , y).
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Even more:
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p is not a polynomial automorphism, even
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p !



Finite fields, characteristic p,

characteristic 0: What is different?

Even more:

(X p,Y ) : F2
p −→ F2

p is not a polynomial automorphism, even

though it induces a bijection of F2
p !



Problems in AAG: Jacobian Conjecture

char(k) = 0

L linear map;

L ∈ GLn(k) invertible ⇐⇒ det(L) = det(Jac(L)) ∈ k∗

F ∈ GAn(k) invertible ?? det(Jac(F )) ∈ k∗

F invertible, i.e.

G ◦ F = (X1, . . . ,Xn).
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Problems in AAG: Jacobian Conjecture

char(k) = 0

L linear map;

L ∈ GLn(k) invertible ⇐⇒ det(L) = det(Jac(L)) ∈ k∗

F ∈ GAn(k) invertible =⇒ det(Jac(F )) ∈ k∗

Jacobian Conjecture:

F ∈ GAn(k)invertible ⇐= det(Jac(F )) ∈ k∗



Jacobian Conjecture in char(k) = p:

L linear map;

L ∈ GLn(k) invertible ⇐⇒ det(L) = det(Jac(L)) ∈ k∗

F ∈ GAn(k) invertible ⇒ det(Jac(F )) ∈ k∗

F : k1 −→ k1

X −→ X − X p

Jac(F ) = 1 but F (0) = F (1) = 0.

Jacobian Conjecture in char(k) = p: Suppose

det(Jac(F )) = 1 and p 6 |[k(X1, . . . ,Xn) : k(F1, . . . ,Fn)]. Then

F is an automorphism.
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Jacobian Conjecture in char(k) = p:

char(k) = 0 :

F = (X + a1X 2 + a2XY + a3Y 2,Y + b1X 2 + b2XY + b3Y 2)

1 = det(Jac(F ))

= 1+

(2a1 + b2)X +

(a2 + 2b3)Y +

(2a1b2 + 2a2b1)X 2+

(2b2a2 + 4a1b3 + 4a3b1)XY +

(2a2b3 + 2a3b2)Y 2

In char(k)=2 : (parts of) equations vanish. Question: What

are the right equations in char(k) = 2? (or p?)



Linearization problem

Let F ∈ GAn(k).

Important to know if there exists

ϕ ∈ GAn(k) such that ϕ−1Fϕ ∈ GLn(k).

Needed: F has a fixed point p. (i.e. (X + 1,Y ) is not

linearizable.)

Main question here:

Linearization Problem: Let F s = I some s. Is F

linearizable?

Proven for n = 2.
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The Automorphism Group

(This whole talk: n ≥ 2)

GLn(k) is generated by

I Permutations X1 ←→ Xi

I Map (aX1 + bXj ,X2, . . . ,Xn) (a ∈ k∗, b ∈ k)

GAn(k) is generated by ???
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Elementary map: (X1 + f (X2, . . . ,Xn),X2, . . . ,Xn),

invertible with inverse

(X1 − f (X2, . . . ,Xn),X2, . . . ,Xn).

Triangular map: (X + f (Y ,Z ),Y + g(Z ),Z + c)

= (X ,Y ,Z + c)(X ,Y + g(Z ),Z )(X + f (X ,Y ),Y ,Z )

Jn(k):= set of triangular maps.

Affn(k):= set of compositions of invertible linear maps and

translations.

TAn(k) :=< Jn(k),Affn(k) >
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In dimension 1: we understand the automorphism group.

(They are linear.)

In dimension 2: famous Jung-van der Kulk-theorem:

GA2(K) = TA2(K) = Aff 2(K)|× J2(K)

Jung-van der Kulk is the reason that we can do a lot in

dimension 2 !
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What about dimension 3?

Stupid idea: everything will be

tame?

1972: Nagata: “I cannot tame the following map:”

N := (X − 2Y ∆− Z ∆2,Y + Z ∆,Z ) where ∆ = XZ + Y 2.

Nagata’s map is the historically most important map for

polynomial automorphisms. It is a very elegant but

complicated map.

AMAZING result: Umirbaev-Shestakov (2004)

N is not tame!! . . . in characteristic ZERO. . .

(Difficult and technical proof. ) (2007 AMS Moore paper

award.)
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Natural map:
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Theorem:

If q is odd, or q = 2, then

πq(TAn(Fq)) = Sym(qn).

If q = 4, 8, 16, . . . then

πq(TAn(Fq)) = Alt(qn).

Obvious question: π4(GAn(F4)) = Alt(4n) or Sym(4n)?

(open since 2000). Would give a very easy example which is

not tame!
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Proving non-tameness

Main question: Does TAn(Fp) differ from GAn(Fp)? (p

power of a prime)

Weaker question: Does πqTAn(Fp) differ from πqGAn(Fp)?

(q = pm)

Check if for some p, q we have: πq(N) 6∈ TA3(Fp), and we’ve

negatively answered both questions!

Theorem: For all non-tame candidate examples

C ∈ GAn(Fp): for each m ∈ N, there exists Tm ∈ TAn(Fp)

such that πpmC = πpmTm.

In short, each such map can be mimicked by tame maps.
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Another problem in char. p: Derksen’s

Theorem
Theorem (Derksen:) Let char. k=0. Define

DA3(k) :=< Aff 3(k), (x + y 2, y , z) >

Then

DA3(k) = TA3(k).

Proof uses following:

Let m ∈ N. Then the span of Lm where L runs over the

polynomials homogeneous of degree 1, is the set of all

homogeneous polynomials of degree m.

Wrong in char. k = p!
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Another problem in char. p: Derksen’s

Theorem

Proposition:

DA3(F2)&TA3(F2)

Proof:

π2(DA3(F2))&π2(TA3(F2))

Repair: replace (x + y 2, y , z) by (x + (yz)q−1, y , z).
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but there is no easy way to show this:

Theorem:

πqm < (x + (yz)q−1, y , z),Aff 3(Fq) >= πqmTA3(Fq).

Proof is elaborate, here and there technical, and very

nontrivial!
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Equivalence of polynomials

Let p, q ∈ k[x1, . . . , xn]. Define p ∼ q if exists ϕ, τ ∈ GAn(k)

such that ϕ(p, x2, . . . , xn)τ = (q, x2, . . . , xn).

Example: x2 ∼ (x + y 2)2 + y in k[x , y ].

Lemma: p(x) ∼ q(x) in k[x , y1, . . . , yn] then p′(x) ∼ q′(x) in

k[x ].

If chark = 0, this implies p(x) ∼ q(x) in k[x ].

If chark = p . . .

Are x8 + x4 + x and x8 + x2 + x equivalent in F2[x , y , z ]?
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Mock automorphisms

F ∈ MAn(Fq) is called a mock automorphism if

I det(Jac(F )) ∈ F∗q

I πq(F ) is a bijection

x8 + x4 + x and x8 + x2 + x are mock automorphisms for F2m

if 7 6 |m.



Equivalence classes of Mock

automorphisms

Theorem: If F ∈ MA3(F2) of degree ≤ 2, then F is

equivalent to:

I (x , y , z)

I (x4 + x2 + x , y , z)

I (x8 + x2 + x , y , z)

I (x8 + x4 + x , y , z)

. . . but are there 3 or 4 equivalence classes?
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Degree 3 over F2

Representant Bijection over #

1. (x , y , z) all 400

2. (x , y , z + x3z4 + xz2) F2,F4,F16,F32 56

3. (x , y , z + x3z2 + x3z4) F2,F4 168

4. (x , y , z + xz2 + xz6) F2 336

5. (x , y , z + x3z2 + xy2z4 + x2yz4 + x3z6) F2 336

6. (x , y , z + x3z2 + xy2z2 + x2yz4 + x3z6) F2 168

7. (x + y2z , y + x2z + y2z , z + x3 + xy2 + y3) F2 56



Additive group actions
Characteristic 0: (k ,+)-action on kn

Example:

t × (x , y , z) −→ (x + ty +
t2 + t

2
z , y + tz , z)

(1× (x , y , z) −→ (x + y + z , y + z , z))

Is the same as:

t × (x , y , z) −→ (exp(tD)(x), exp(tD)(y), exp(tD)(z))

where

D := (y +
1

2
z)
∂

∂x
+ z

∂

∂y
.

(a locally nilpotent derivation)
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Additive group actions

Characteristic p: (k ,+)-action on kn

Example:

t × (x , y , z) −→ (F1(t, x , y , z),F2(t, x , y , z),F3(t, x , y , z))

Is the same as:

t × (x , y , z) −→ (exp(tD)(x), exp(tD)(y), exp(tD)(z))

where

D

(is a locally finite iterative higher derivation)



Additive group actions char. p: problems

Characteristic 2: (k ,+)-action on kn

Example:

t × (x , y , z) −→ (x + ty +
t2 + t

2
z , y + tz , z)

is NOT a (k ,+) action! In particular,

(x + y + z , y + z , z)

is not the exponent of a locally finite iterative higher

derivation. Any k-action has order p !



Additive group actions char. p: solution

t × (x , y , z) −→ (x + ty +
t2 + t

2
z , y + tz , z)

Do not consider F2-actions but consider Z-actions!

Theorem: If f (x) ∈ Q[x ] such that f (Z) ⊆ Z then

f ∈ Z
[(

x

n

)
; n ∈ N

]
.

Theorem: If f (x) ∈ Q[x ] such that f (Zp) ⊆ Zp then

f ∈ Z
[(

x

pn

)
; n ∈ N

]
.

Corollary: If f (x) ∈ Q[x ] such that f mod p makes sense,

then

f ∈ Z
[(

x

pn

)
; n ∈ N

]
.
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Additive group actions char. p: solution

Char= 0: (x + ty + t2+t
2

z , y + tz , z) ∈ k[t][x , y , z ]

Char= 2: (x + ty + (Q1 + t)z , y + tz , z) ∈ k[t,Q1][x , y , z ]

where Q1 :=
(
t
2

)
.

In general:

R := k[Qi ; i ∈ N] where Qi :=

(
t

pi

)
.

F ∈ GAn(R)
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A puzzling question:

When does a locally nilpotent derivation

D : Q[x1, . . . , xn] −→ Q[x1, . . . , xn]

induce a polynomial map

exp(D) : Z[x1, . . . , xn] −→ Z[x1, . . . , xn]?



Strictly upper triangular group

Bn(k) := {(x1+f1, . . . , xn+fn ; fi ∈ k[xi+1, . . . , xn]} < GAn(k).

Bn(Fp) := πp(Bn(Fp))

Bn(Fp) < sym(Fn
p), #Bn(Fp) = vp(pn!)

Bn(Fp) is p-sylow subgroup of sym(Fn
p) !

(x1 + f1, . . . , xn + fn) ∈ Bn(Fp)

fi ∈ k[xi+1, . . . , xn]/(xp
i+1 − xi+1, . . . , x

p
n − xn)

(Motivation for studying Bn(Fp): cryptography)
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What do we want?

I A criterion to decide when σ ∈ Bn(Fp) is a permutation

of Fn
p having one orbit,

I To compute σm(v) easily for any m ∈ N, v ∈ Fn
p.

Theorem 1.

σ := (x1 + f1, . . . , xn + fn)

has one orbit if and only if for each 1 ≤ i ≤ n: the coefficient

of (xi+1 · · · xn)p−1 of fi is nonzero.
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Maps having one orbit only
Theorem 1.

σ := (x1 + f1, . . . , xn + fn)

has one orbit if and only if for each 1 ≤ i ≤ n: the coefficient

of (xi+1 · · · xn)p−1 of fi is nonzero.

Proofsketch. By induction: case n = 1 is clear. So,

σ = (x1 + f1, σ̃). Consider (c , α) ∈ Fn
p.

σ(c , α) = (c + f1(α), σ(α)). So:

σpn−1

(c , α) = (c +

pn−1∑
i=1

f1(σ̃iα), α)

To prove:
∑pn−1

i=1 f (σ̃iα) = 0 if and only if coefficient of

(xi+1 · · · xn)p−1 of f1 is nonzero.
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Conjugacy classes in Bn(Fp)

Theorem 2. Let

σ := (x1 + f1, . . . , xn + fn)

have only one orbit. Then representants of the conjugacy

classes are the (p − 1)n maps where fi = λi(xi+1 · · · xn)p−1.

Proof is very elegant but too long to elaborate on in this talk.
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What is an easy map ∆?

∆ := (x1 + g1, . . . , xn + gn)

where gi(p − 1, . . . , p − 1) = 1 and gi(α) = 0 for any other

α ∈ Fn−i
p .

Then ∆ is very simple:

Let ζ : Fn
p −→ Z/pnZ, then

ζ∆ζ−1(a) = a + 1, a ∈ Z/pnZ

i.e. ∆m is easy to compute! −→ Cryptographic application is

happy!
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