Affine algebraic geometry over finite fields

Stefan Maubach

December 2010

Study of Affine Varieties

Study of Affine Varieties

Almost always: 1-1 correspondence between *algebra* and *geometry*.

Study of Affine Varieties Almost always: 1-1 correspondence between *algebra* and *geometry*.

Example:

Zero sets of polynomials

$$V := \{x \in k^n \mid f_1(x) = \ldots = f_n(x) = 0\}$$

↓ *k*-algebras

$$\mathcal{O}(V) := k[x_1, \ldots, x_n]/(f_1, \ldots, f_n)$$

Almost always: 1-1 correspondence between *algebra* and *geometry*.

Example: Additive group action on \mathbb{C}^n \updownarrow Locally nilpotent derivation $D : \mathbb{C}[x_1, \dots, x_n] \longrightarrow \mathbb{C}[x_1, \dots, x_n].$

Almost always: 1-1 correspondence between *algebra* and *geometry*.

Example:

Polynomial automorphisms $\mathbb{C}^n \longrightarrow \mathbb{C}^n$ (notation: $GA_n(\mathbb{C})$) \updownarrow Ring automorphisms of $\mathbb{C}[x_1, \dots, x_n]$.

A map $F : k^n \longrightarrow k^n$ given by *n* polynomials:

$$F = (F_1(X_1,\ldots,X_n),\ldots,F_n(X_1,\ldots,X_n)).$$

A map $F : k^n \longrightarrow k^n$ given by *n* polynomials:

$$F = (F_1(X_1,\ldots,X_n),\ldots,F_n(X_1,\ldots,X_n)).$$

Example: $F = (X + Y^2, Y)$.

A map $F : k^n \longrightarrow k^n$ given by *n* polynomials:

$$F = (F_1(X_1,\ldots,X_n),\ldots,F_n(X_1,\ldots,X_n)).$$

Example: $F = (X + Y^2, Y)$.

Various ways of looking at polynomial maps:

A map $F : k^n \longrightarrow k^n$ given by *n* polynomials:

$$F = (F_1(X_1,\ldots,X_n),\ldots,F_n(X_1,\ldots,X_n)).$$

Example: $F = (X + Y^2, Y)$.

Various ways of looking at polynomial maps:

• A map
$$k^n \longrightarrow k^n$$
.

A map $F : k^n \longrightarrow k^n$ given by *n* polynomials:

$$F = (F_1(X_1,\ldots,X_n),\ldots,F_n(X_1,\ldots,X_n)).$$

Example: $F = (X + Y^2, Y)$.

Various ways of looking at polynomial maps:

• A map
$$k^n \longrightarrow k^n$$
.

• A list of *n* polynomials: $F \in (k[X_1, \ldots, X_n])^n$.

A map $F : k^n \longrightarrow k^n$ given by *n* polynomials:

$$F = (F_1(X_1,\ldots,X_n),\ldots,F_n(X_1,\ldots,X_n)).$$

Example: $F = (X + Y^2, Y)$.

Various ways of looking at polynomial maps:

• A map
$$k^n \longrightarrow k^n$$
.

- A list of *n* polynomials: $F \in (k[X_1, \ldots, X_n])^n$.
- A ring automorphism of k[X₁,...,X_n] sending g(X₁,...,X_n) to g(F₁,...,F_n).

A map $F : k^n \longrightarrow k^n$ given by *n* polynomials:

$$F = (F_1(X_1,\ldots,X_n),\ldots,F_n(X_1,\ldots,X_n)).$$

Example: $F = (X + Y^2, Y)$.

Various ways of looking at polynomial maps:

• A map
$$k^n \longrightarrow k^n$$
.

- A list of *n* polynomials: $F \in (k[X_1, \ldots, X_n])^n$.
- A ring automorphism of k[X₁,...,X_n] sending g(X₁,...,X_n) to g(F₁,...,F_n).

Group of polynomial maps having polynomial inverse =: $GA_n(k)$.

Finite fields, characteristic *p*, characteristic 0: What is different?

Correspondence

ring endomorphisms $\mathbb{F}_q[x_1, \dots, x_n]$ \longrightarrow maps $(\mathbb{F}_q)^n \longrightarrow (\mathbb{F}_q)^n$

not injective!

$$\pi: \mathrm{GA}_n(\mathbb{F}_q) \longrightarrow \mathrm{Perm}((\mathbb{F}_q)^n)$$

has kernel: $\pi(x + y^q - y, y) = \pi(x, y)$.

Finite fields, characteristic *p*, characteristic 0: What is different?

Even more:

Finite fields, characteristic *p*, characteristic 0: What is different?

Even more:

 $(X^p, Y) : \mathbb{F}_p^2 \longrightarrow \mathbb{F}_p^2$ is not a polynomial automorphism, even though it induces a bijection of \mathbb{F}_p^2 !

char(k) = 0

L linear map;

 $L \in \operatorname{GL}_n(k)$ invertible $\iff \det(L) = \det(\operatorname{Jac}(L)) \in k^*$

 $\operatorname{char}(k) = 0$

L linear map;

 $L \in \operatorname{GL}_n(k)$ invertible $\iff \operatorname{det}(L) = \operatorname{det}(\operatorname{Jac}(L)) \in k^*$ $F \in \operatorname{GA}_n(k)$ invertible ?? $\operatorname{det}(\operatorname{Jac}(F)) \in k^*$

 $\begin{array}{ll} \operatorname{char}(k) = 0 \\ L \text{ linear map;} \\ L \in \operatorname{GL}_n(k) \text{ invertible } \iff \operatorname{det}(L) = \operatorname{det}(\operatorname{Jac}(L)) \in k^* \\ F \in \operatorname{GA}_n(k) \text{ invertible } ?? & \operatorname{det}(\operatorname{Jac}(F)) \in k^* \end{array}$

F invertible, i.e.

$$G \circ F = (X_1, \ldots, X_n).$$

 $\begin{array}{ll} \operatorname{char}(k) = 0\\ L \text{ linear map;}\\ L \in \operatorname{GL}_n(k) \text{ invertible } \iff \operatorname{det}(L) = \operatorname{det}(\operatorname{Jac}(L)) \in k^*\\ F \in \operatorname{GA}_n(k) \text{ invertible } ?? \qquad \operatorname{det}(\operatorname{Jac}(F)) \in k^* \end{array}$

F invertible, i.e.

$$\operatorname{Jac}(G \circ F) = \operatorname{Jac}(X_1, \ldots, X_n).$$

 $\begin{array}{ll} \mathsf{char}(k) = 0\\ L \text{ linear map;}\\ L \in \mathsf{GL}_n(k) \text{ invertible } \iff \mathsf{det}(L) = \mathsf{det}(\mathsf{Jac}(L)) \in k^*\\ F \in \mathsf{GA}_n(k) \text{ invertible } ?? \qquad \mathsf{det}(\mathsf{Jac}(F)) \in k^* \end{array}$

F invertible, i.e.

 $\operatorname{Jac}(G \circ F) = I.$

 $\begin{array}{ll} \operatorname{char}(k) = 0\\ L \text{ linear map;}\\ L \in \operatorname{GL}_n(k) \text{ invertible } \iff \operatorname{det}(L) = \operatorname{det}(\operatorname{Jac}(L)) \in k^*\\ F \in \operatorname{GA}_n(k) \text{ invertible } ?? \qquad \operatorname{det}(\operatorname{Jac}(F)) \in k^* \end{array}$

F invertible, i.e.

 $\operatorname{Jac}(F) \cdot (\operatorname{Jac}(G) \circ F) = I.$

 $\begin{array}{ll} \operatorname{char}(k) = 0\\ L \text{ linear map;}\\ L \in \operatorname{GL}_n(k) \text{ invertible } \iff \operatorname{det}(L) = \operatorname{det}(\operatorname{Jac}(L)) \in k^*\\ F \in \operatorname{GA}_n(k) \text{ invertible } ?? \qquad \operatorname{det}(\operatorname{Jac}(F)) \in k^* \end{array}$

F invertible, i.e.

 $\det(\operatorname{Jac}(F)) \cdot \det(\operatorname{Jac}(G) \circ F) = \det I = 1.$

 $\begin{array}{ll} \operatorname{char}(k) = 0\\ L \text{ linear map;}\\ L \in \operatorname{GL}_n(k) \text{ invertible } \iff \operatorname{det}(L) = \operatorname{det}(\operatorname{Jac}(L)) \in k^*\\ F \in \operatorname{GA}_n(k) \text{ invertible } ?? \qquad \operatorname{det}(\operatorname{Jac}(F)) \in k^* \end{array}$

F invertible, i.e.

 $det(Jac(F)) \cdot det(blabla) = det I = 1.$

 $\begin{array}{ll} \operatorname{char}(k) = 0\\ L \text{ linear map;}\\ L \in \operatorname{GL}_n(k) \text{ invertible } \iff \operatorname{det}(L) = \operatorname{det}(\operatorname{Jac}(L)) \in k^*\\ F \in \operatorname{GA}_n(k) \text{ invertible } ?? \qquad \operatorname{det}(\operatorname{Jac}(F)) \in k^* \end{array}$

F invertible, i.e.

$$\det(\operatorname{Jac}(F)) \in k[X_1, \ldots, X_n]^* = k^*.$$

 $\begin{array}{ll} \operatorname{char}(k) = 0\\ L \text{ linear map;}\\ L \in \operatorname{GL}_n(k) \text{ invertible } \iff \operatorname{det}(L) = \operatorname{det}(\operatorname{Jac}(L)) \in k^*\\ F \in \operatorname{GA}_n(k) \text{ invertible } \implies \operatorname{det}(\operatorname{Jac}(F)) \in k^* \end{array}$

F invertible, i.e.

$$\det(\operatorname{Jac}(F)) \in k[X_1, \ldots, X_n]^* = k^*.$$

$$\operatorname{char}(k) = 0$$

 $L \text{ linear map;}$
 $L \in \operatorname{GL}_n(k) \text{ invertible } \iff \operatorname{det}(L) = \operatorname{det}(\operatorname{Jac}(L)) \in k^*$
 $F \in \operatorname{GA}_n(k) \text{ invertible } \Longrightarrow \operatorname{det}(\operatorname{Jac}(F)) \in k^*$

Jacobian Conjecture:

$$F \in GA_n(k)$$
 invertible $\longleftarrow \det(Jac(F)) \in k^*$

L linear map;

- $L \in \operatorname{GL}_n(k)$ invertible $\iff \operatorname{det}(L) = \operatorname{det}(\operatorname{Jac}(L)) \in k^*$
- $F \in GA_n(k)$ invertible \Rightarrow $det(Jac(F)) \in k^*$

L linear map;

 $L \in \operatorname{GL}_n(k) \text{ invertible } \iff \operatorname{det}(L) = \operatorname{det}(\operatorname{Jac}(L)) \in k^*$ $F \in \operatorname{GA}_n(k) \text{ invertible } \Rightarrow \operatorname{det}(\operatorname{Jac}(F)) \in k^*$

$$\begin{array}{rcl} F: & k^1 \longrightarrow k^1 \\ & X \longrightarrow X - X^p \end{array}$$

Jac(F) = 1 but F(0) = F(1) = 0.

L linear map;

 $L \in \operatorname{GL}_n(k) \text{ invertible } \iff \operatorname{det}(L) = \operatorname{det}(\operatorname{Jac}(L)) \in k^*$ $F \in \operatorname{GA}_n(k) \text{ invertible } \Rightarrow \operatorname{det}(\operatorname{Jac}(F)) \in k^*$

$$\begin{array}{rcl} F: & k^1 \longrightarrow k^1 \\ & X \longrightarrow X - X^p \end{array}$$

Jac(F) = 1 but F(0) = F(1) = 0. **Jacobian Conjecture in char**(k) = p: Suppose det(Jac(F)) = 1 and $p \not| [k(X_1, ..., X_n) : k(F_1, ..., F_n)]$. Then F is an automorphism.

char(k) = 0:

$$F = (X + a_1X^2 + a_2XY + a_3Y^2, Y + b_1X^2 + b_2XY + b_3Y^2)$$

$$1 = \det(Jac(F))$$

= 1+
(2a₁ + b₂)X+
(a₂ + 2b₃)Y+
(2a₁b₂ + 2a₂b₁)X²+
(2b₂a₂ + 4a₁b₃ + 4a₃b₁)XY+
(2a₂b₃ + 2a₃b₂)Y²

In char(k)=2 : (parts of) equations vanish. Question: What are the right equations in char(k) = 2? (or p?)

Linearization problem

Let $F \in GA_n(k)$.

Linearization problem

Let $F \in GA_n(k)$. Important to know if there exists $\varphi \in GA_n(k)$ such that $\varphi^{-1}F\varphi \in GL_n(k)$.

Linearization problem

Let $F \in GA_n(k)$. Important to know if there exists $\varphi \in GA_n(k)$ such that $\varphi^{-1}F\varphi \in GL_n(k)$. Needed: F has a fixed point p. (i.e. (X + 1, Y) is not linearizable.)

Let $F \in GA_n(k)$. Important to know if there exists $\varphi \in GA_n(k)$ such that $\varphi^{-1}F\varphi \in GL_n(k)$. Needed: F has a fixed point p. (i.e. (X + 1, Y) is not linearizable.)

Main question here:

Linearization Problem: Let $F^s = I$ some *s*. Is *F* linearizable?

Let $F \in GA_n(k)$. Important to know if there exists $\varphi \in GA_n(k)$ such that $\varphi^{-1}F\varphi \in GL_n(k)$. Needed: F has a fixed point p. (i.e. (X + 1, Y) is not linearizable.)

Main question here:

Linearization Problem: Let $F^s = I$ some *s*. Is *F* linearizable?

Proven for n = 2.

Let $F \in GA_n(k)$.

Main question here:

Linearization Problem: Let $F^s = I$ some *s*. Is *F* linearizable?

Wrong in characteristic p !

Let $F \in GA_n(k)$.

Main question here:

Linearization Problem: Let $F^s = I$ some *s*. Is *F* linearizable?

Wrong in characteristic p !

$$F := (x + y^2, y) \longrightarrow F^m = (x + my^2, y)$$

Let $F \in GA_n(k)$.

Main question here:

Linearization Problem: Let $F^s = I$ some *s*. Is *F* linearizable?

Wrong in characteristic p !

$$F := (x + y^2, y) \longrightarrow F^m = (x + my^2, y)$$

$$F^p = I$$

Let $F \in GA_n(k)$.

Main question here:

Linearization Problem: Let $F^s = I$ some *s*. Is *F* linearizable?

Wrong in characteristic p !

$$F := (x + y^2, y) \longrightarrow F^m = (x + my^2, y)$$

$$F^p = I$$

So perhaps additional assumption:

Let $F \in GA_n(k)$.

Main question here:

Linearization Problem: Let $F^s = I$ some *s*. Is *F* linearizable? Assume $p \not| s$.

Wrong in characteristic p !

$$F := (x + y^2, y) \longrightarrow F^m = (x + my^2, y)$$

$$F^p = I$$

So perhaps additional assumption:

(This whole talk: $n \ge 2$) $GL_n(k)$ is generated by

(This whole talk: $n \ge 2$) $GL_n(k)$ is generated by

• Permutations $X_1 \longleftrightarrow X_i$

- (This whole talk: $n \ge 2$) $GL_n(k)$ is generated by
 - Permutations $X_1 \longleftrightarrow X_i$
 - Map $(aX_1 + bX_j, X_2, ..., X_n)$ $(a \in k^*, b \in k)$

- (This whole talk: $n \ge 2$) $GL_n(k)$ is generated by
 - Permutations $X_1 \longleftrightarrow X_i$
 - Map $(aX_1 + bX_j, X_2, ..., X_n)$ $(a \in k^*, b \in k)$

 $GA_n(k)$ is generated by ???

$$(X_1-f(X_2,\ldots,X_n),X_2,\ldots,X_n).$$

 $(X_1 - f(X_2, ..., X_n), X_2, ..., X_n).$ Triangular map: (X + f(Y, Z), Y + g(Z), Z + c)

$$= (X, Y, Z + c)(X, Y + g(Z), Z)(X + f(X, Y), Y, Z)$$

 $(X_1 - f(X_2, ..., X_n), X_2, ..., X_n).$ Triangular map: (X + f(Y, Z), Y + g(Z), Z + c)

= (X, Y, Z + c)(X, Y + g(Z), Z)(X + f(X, Y), Y, Z) $J_n(k) := \text{set of triangular maps.}$

 $(X_1 - f(X_2, ..., X_n), X_2, ..., X_n).$ Triangular map: (X + f(Y, Z), Y + g(Z), Z + c)

= (X, Y, Z + c)(X, Y + g(Z), Z)(X + f(X, Y), Y, Z) $J_n(k) := \text{ set of triangular maps.}$ $Aff_n(k) := \text{ set of compositions of invertible linear maps and translations.}$

 $(X_1 - f(X_2, ..., X_n), X_2, ..., X_n).$ Triangular map: (X + f(Y, Z), Y + g(Z), Z + c)

= (X, Y, Z + c)(X, Y + g(Z), Z)(X + f(X, Y), Y, Z) $J_n(k) := \text{ set of triangular maps.}$ $Aff_n(k) := \text{ set of compositions of invertible linear maps and translations.}$

$$TA_n(k) := \langle J_n(k), Aff_n(k) \rangle$$

In dimension 1: we understand the automorphism group. (They are linear.)

In dimension 1: we understand the automorphism group. (They are linear.) In dimension 2: famous Jung-van der Kulk-theorem:

$$\mathsf{GA}_2(\mathbb{K}) = \mathsf{TA}_2(\mathbb{K}) = Aff_2(\mathbb{K}) \models \mathsf{J}_2(\mathbb{K})$$

Jung-van der Kulk is the reason that we can do a lot in dimension 2 !

What about dimension 3?

1972: Nagata: "I cannot tame the following map:"

 $N := (X - 2Y\Delta - Z\Delta^2, Y + Z\Delta, Z)$ where $\Delta = XZ + Y^2$.

1972: Nagata: "I cannot tame the following map:" $N := (X - 2Y\Delta - Z\Delta^2, Y + Z\Delta, Z)$ where $\Delta = XZ + Y^2$. Nagata's map is the historically most important map for polynomial automorphisms. It is a very elegant but complicated map.

1972: Nagata: "I cannot tame the following map:" $N := (X - 2Y\Delta - Z\Delta^2, Y + Z\Delta, Z)$ where $\Delta = XZ + Y^2$. Nagata's map is the historically most important map for polynomial automorphisms. It is a very elegant but complicated map. AMAZING result: Umirbaev-Shestakov (2004)

N is not tame!!

1972: Nagata: "I cannot tame the following map:" $N := (X - 2Y\Delta - Z\Delta^2, Y + Z\Delta, Z)$ where $\Delta = XZ + Y^2$. Nagata's map is the historically most important map for polynomial automorphisms. It is a very elegant but complicated map.

AMAZING result: Umirbaev-Shestakov (2004)

N is not tame!!

(Difficult and technical proof.) (2007 AMS Moore paper award.)

1972: Nagata: "I cannot tame the following map:" $N := (X - 2Y\Delta - Z\Delta^2, Y + Z\Delta, Z)$ where $\Delta = XZ + Y^2$. Nagata's map is the historically most important map for polynomial automorphisms. It is a very elegant but complicated map. AMAZING result: Umirbaev-Shestakov (2004) *N* is not tame!! ... in characteristic ZERO... (Difficult and technical proof.) (2007 AMS Moore paper

award.)

Natural map: $\pi_q : \quad GA_n(\mathbb{F}_q) \longrightarrow perm(q^n)$

Natural map:

Natural map:

Natural map:

Theorem:

If q is odd, or q = 2, then

$$\pi_q(\mathsf{TA}_n(\mathbb{F}_q)) = \mathsf{Sym}(q^n).$$

Theorem:

If q is odd, or q = 2, then

$$\pi_q(\mathsf{TA}_n(\mathbb{F}_q)) = \mathsf{Sym}(q^n).$$

If q = 4, 8, 16, ... then

$$\pi_q(\mathsf{TA}_n(\mathbb{F}_q)) = \mathsf{Alt}(q^n).$$

Theorem:

If q is odd, or q = 2, then

$$\pi_q(\mathsf{TA}_n(\mathbb{F}_q)) = \mathsf{Sym}(q^n).$$

If q = 4, 8, 16, ... then

$$\pi_q(\mathsf{TA}_n(\mathbb{F}_q)) = \mathsf{Alt}(q^n).$$

Obvious question: $\pi_4(GA_n(\mathbb{F}_4)) = Alt(4^n)$ or Sym (4^n) ? (open since 2000). Would give a *very easy* example which is not tame!

Proving non-tameness

Main question: Does $TA_n(\mathbb{F}_p)$ differ from $GA_n(\mathbb{F}_p)$? (*p* power of a prime)

Proving non-tameness

Main question: Does $TA_n(\mathbb{F}_p)$ differ from $GA_n(\mathbb{F}_p)$? (*p* power of a prime) **Weaker question:** Does $\pi_q TA_n(\mathbb{F}_p)$ differ from $\pi_q GA_n(\mathbb{F}_p)$? $(q = p^m)$

Proving non-tameness

Main question: Does $TA_n(\mathbb{F}_p)$ differ from $GA_n(\mathbb{F}_p)$? (*p* power of a prime) **Weaker question:** Does $\pi_q TA_n(\mathbb{F}_p)$ differ from $\pi_q GA_n(\mathbb{F}_p)$? ($q = p^m$) Check if for some *p*, *q* we have: $\pi_q(N) \notin TA_3(\mathbb{F}_p)$, and we've

negatively answered both questions!

Proving non-tameness

Main question: Does $TA_n(\mathbb{F}_p)$ differ from $GA_n(\mathbb{F}_p)$? (*p* power of a prime)

Weaker question: Does $\pi_q TA_n(\mathbb{F}_p)$ differ from $\pi_q GA_n(\mathbb{F}_p)$? $(q = p^m)$

Check if for some p, q we have: $\pi_q(N) \notin TA_3(\mathbb{F}_p)$, and we've negatively answered both questions!

Theorem: For all non-tame candidate examples

 $C \in GA_n(\mathbb{F}_p)$: for each $m \in \mathbb{N}$, there exists $T_m \in TA_n(\mathbb{F}_p)$ such that $\pi_{p^m}C = \pi_{p^m}T_m$.

In short, each such map can be *mimicked* by tame maps.

Theorem (Derksen:) Let char. k=0. Define

$$\mathsf{DA}_3(k) := < Aff_3(k), (x + y^2, y, z) >$$

Then

$$\mathsf{DA}_3(k) = \mathsf{TA}_3(k).$$

Theorem (Derksen:) Let char. k=0. Define

$$\mathsf{DA}_3(k) := < Aff_3(k), (x + y^2, y, z) >$$

Then

$$\mathsf{DA}_3(k) = \mathsf{TA}_3(k).$$

Proof uses following:

Let $m \in \mathbb{N}$. Then the span of L^m where L runs over the polynomials homogeneous of degree 1, is the set of all homogeneous polynomials of degree m.

Theorem (Derksen:) Let char. k=0. Define

$$\mathsf{DA}_3(k) := < Aff_3(k), (x + y^2, y, z) >$$

Then

$$\mathsf{DA}_3(k) = \mathsf{TA}_3(k).$$

Proof uses following:

Let $m \in \mathbb{N}$. Then the span of L^m where L runs over the polynomials homogeneous of degree 1, is the set of all homogeneous polynomials of degree m. Wrong in char. k = p!

Proposition:

 $\mathsf{DA}_3(\mathbb{F}_2) \subsetneqq \mathsf{TA}_3(\mathbb{F}_2)$

Proof:

Proposition:

 $\mathsf{DA}_3(\mathbb{F}_2) \subsetneqq \mathsf{TA}_3(\mathbb{F}_2)$

Proof:

 $\pi_2(\mathsf{DA}_3(\mathbb{F}_2)) \subsetneqq \pi_2(\mathsf{TA}_3(\mathbb{F}_2))$

Proposition:

 $\mathsf{DA}_3(\mathbb{F}_2) \subsetneqq \mathsf{TA}_3(\mathbb{F}_2)$

Proof:

 $\pi_2(\mathsf{DA}_3(\mathbb{F}_2)) \subsetneqq \pi_2(\mathsf{TA}_3(\mathbb{F}_2))$ **Repair:** replace $(x + y^2, y, z)$ by $(x + (yz)^{q-1}, y, z)$.

Conjecture:

< ($x + (yz)^{q-1}, y, z$), $Aff_3(\mathbb{F}_q) > \neq \mathsf{TA}_3(\mathbb{F}_q)$

Conjecture:

$$<(x+(yz)^{q-1},y,z), Aff_3(\mathbb{F}_q)>
eq \mathsf{TA}_3(\mathbb{F}_q)$$

but there is no easy way to show this:

Conjecture:

$$<(x+(yz)^{q-1},y,z), Aff_3(\mathbb{F}_q)>
eq \mathsf{TA}_3(\mathbb{F}_q)$$

but there is no easy way to show this:

Theorem:

$$\pi_{q^m} < (x + (yz)^{q-1}, y, z), Aff_3(\mathbb{F}_q) >= \pi_{q^m} \mathsf{TA}_3(\mathbb{F}_q).$$

Proof is elaborate, here and there technical, and very nontrivial!

Let $p, q \in k[x_1, ..., x_n]$. Define $p \sim q$ if exists $\varphi, \tau \in GA_n(k)$ such that $\varphi(p, x_2, ..., x_n)\tau = (q, x_2, ..., x_n)$. **Example:** $x^2 \sim (x + y^2)^2 + y$ in k[x, y].

Let $p, q \in k[x_1, \ldots, x_n]$. Define $p \sim q$ if exists $\varphi, \tau \in GA_n(k)$ such that $\varphi(p, x_2, \ldots, x_n)\tau = (q, x_2, \ldots, x_n)$. **Example:** $x^2 \sim (x + y^2)^2 + y$ in k[x, y]. Lemma: $p(x) \sim q(x)$ in $k[x, y_1, \ldots, y_n]$ then $p'(x) \sim q'(x)$ in k[x].

- Let $p, q \in k[x_1, \ldots, x_n]$. Define $p \sim q$ if exists $\varphi, \tau \in GA_n(k)$ such that $\varphi(p, x_2, \ldots, x_n)\tau = (q, x_2, \ldots, x_n)$. **Example:** $x^2 \sim (x + y^2)^2 + y$ in k[x, y]. **Lemma:** $p(x) \sim q(x)$ in $k[x, y_1, \ldots, y_n]$ then $p'(x) \sim q'(x)$ in k[x].
- If chark = 0, this implies $p(x) \sim q(x)$ in k[x].

Let $p, q \in k[x_1, \ldots, x_n]$. Define $p \sim q$ if exists $\varphi, \tau \in GA_n(k)$ such that $\varphi(p, x_2, \ldots, x_n)\tau = (q, x_2, \ldots, x_n)$. **Example:** $x^2 \sim (x + y^2)^2 + y$ in k[x, y]. **Lemma:** $p(x) \sim q(x)$ in $k[x, y_1, \dots, y_n]$ then $p'(x) \sim q'(x)$ in k[x]. If chark = 0, this implies $p(x) \sim q(x)$ in k[x]. If chark $= p \dots$ Are $x^8 + x^4 + x$ and $x^8 + x^2 + x$ equivalent in $\mathbb{F}_2[x, y, z]$?

Mock automorphisms

- $F \in MA_n(\mathbb{F}_q)$ is called a *mock automorphism* if
 - $det(Jac(F)) \in \mathbb{F}_q^*$
 - $\pi_q(F)$ is a bijection

 $x^8 + x^4 + x$ and $x^8 + x^2 + x$ are mock automorphisms for \mathbb{F}_{2^m} if 7 n.

automorphisms

automorphisms

automorphisms

automorphisms

- (x, y, z)• $(x^4 + x^2 + x, y, z)$
- $(x^8 + x^2 + x, y, z)$
- $(x^8 + x^4 + x, y, z)$

automorphisms

Theorem: If $F \in MA_3(\mathbb{F}_2)$ of degree ≤ 2 , then F is equivalent to:

(x, y, z)
 (x⁴ + x² + x, y, z)
 (x⁸ + x² + x, y, z)
 (x⁸ + x⁴ + x, y, z)

... but are there 3 or 4 equivalence classes?

Degree 3 over \mathbb{F}_2

	Representant	Bijection over	#
1.	(x, y, z)	all	400
2.	$(x, y, z + x^3 z^4 + x z^2)$	$\mathbb{F}_2, \mathbb{F}_4, \mathbb{F}_{16}, \mathbb{F}_{32}$	56
3.	$(x, y, z + x^3 z^2 + x^3 z^4)$	$\mathbb{F}_2, \mathbb{F}_4$	168
4.	$(x, y, z + xz^2 + xz^6)$	\mathbb{F}_2	336
5.	$(x, y, z + x^3z^2 + xy^2z^4 + x^2yz^4 + x^3z^6)$	\mathbb{F}_2	336
6.	$(x, y, z + x^3z^2 + xy^2z^2 + x^2yz^4 + x^3z^6)$	\mathbb{F}_2	168
7.	$(x + y^2 z, y + x^2 z + y^2 z, z + x^3 + xy^2 + y^3)$	\mathbb{F}_2	56

Characteristic 0: (k, +)-action on k^n Example:

$$t \times (x, y, z) \longrightarrow (x + ty + \frac{t^2 + t}{2}z, y + tz, z)$$

Characteristic 0: (k, +)-action on k^n Example:

$$t \times (x, y, z) \longrightarrow (x + ty + \frac{t^2 + t}{2}z, y + tz, z)$$

$$(1 \times (x, y, z) \longrightarrow (x + y + z, y + z, z))$$

Characteristic 0: (k, +)-action on k^n Example:

$$t \times (x, y, z) \longrightarrow (x + ty + \frac{t^2 + t}{2}z, y + tz, z)$$

$$(1 \times (x, y, z) \longrightarrow (x + y + z, y + z, z))$$

Is the same as:

$$t \times (x, y, z) \longrightarrow (\exp(tD)(x), \exp(tD)(y), \exp(tD)(z))$$

where

$$D:=(y+\frac{1}{2}z)\frac{\partial}{\partial x}+z\frac{\partial}{\partial y}.$$

(a locally nilpotent derivation)

Characteristic p: (k, +)-action on k^n Example:

$$t \times (x, y, z) \longrightarrow (F_1(t, x, y, z), F_2(t, x, y, z), F_3(t, x, y, z))$$

Is the same as:

 $t \times (x, y, z) \longrightarrow (\exp(tD)(x), \exp(tD)(y), \exp(tD)(z))$

where

D

(is a locally finite iterative higher derivation)

Additive group actions char. p: problems

Characteristic 2: (k, +)-action on k^n Example:

$$t \times (x, y, z) \longrightarrow (x + ty + \frac{t^2 + t}{2}z, y + tz, z)$$

is NOT a (k, +) action! In particular,

$$(x+y+z,y+z,z)$$

is not the exponent of a locally finite iterative higher derivation. Any k-action has order p !

$$t \times (x, y, z) \longrightarrow (x + ty + \frac{t^2 + t}{2}z, y + tz, z)$$

$$t \times (x, y, z) \longrightarrow (x + ty + \frac{t^2 + t}{2}z, y + tz, z)$$

Do not consider $\mathbb{F}_2\text{-actions}$ but consider $\mathbb{Z}\text{-actions!}$

$$t \times (x, y, z) \longrightarrow (x + ty + \frac{t^2 + t}{2}z, y + tz, z)$$

Do not consider \mathbb{F}_2 -actions but consider \mathbb{Z} -actions!

Theorem: If $f(x) \in \mathbb{Q}[x]$ such that $f(\mathbb{Z}) \subseteq \mathbb{Z}$ then

$$f \in \mathbb{Z}\left[\binom{x}{n} ; n \in \mathbb{N}\right].$$

$$t imes (x, y, z) \longrightarrow (x + ty + rac{t^2 + t}{2}z, y + tz, z)$$

Do not consider \mathbb{F}_2 -actions but consider \mathbb{Z} -actions!

Theorem: If $f(x) \in \mathbb{Q}[x]$ such that $f(\mathbb{Z}) \subseteq \mathbb{Z}$ then

$$f \in \mathbb{Z}\left[\binom{x}{n}; n \in \mathbb{N}\right].$$

Theorem: If $f(x) \in \mathbb{Q}[x]$ such that $f(\mathbb{Z}_p) \subseteq \mathbb{Z}_p$ then

$$f \in \mathbb{Z}\left[\begin{pmatrix} x\\p^n \end{pmatrix}; n \in \mathbb{N}\right].$$

$$t \times (x, y, z) \longrightarrow (x + ty + \frac{t^2 + t}{2}z, y + tz, z)$$

Do not consider \mathbb{F}_2 -actions but consider \mathbb{Z} -actions!

Theorem: If $f(x) \in \mathbb{Q}[x]$ such that $f(\mathbb{Z}) \subseteq \mathbb{Z}$ then

$$f \in \mathbb{Z}\left[\binom{x}{n} ; n \in \mathbb{N}\right].$$

Theorem: If $f(x) \in \mathbb{Q}[x]$ such that $f(\mathbb{Z}_p) \subseteq \mathbb{Z}_p$ then

$$f \in \mathbb{Z}\left[\begin{pmatrix} x\\p^n \end{pmatrix}; n \in \mathbb{N}\right].$$

Corollary: If $f(x) \in \mathbb{Q}[x]$ such that $f \mod p$ makes sense, then

$$f \in \mathbb{Z}\left[\begin{pmatrix} x\\p^n \end{pmatrix}; n \in \mathbb{N}\right].$$

Char= 0:
$$(x + ty + \frac{t^2+t}{2}z, y + tz, z) \in k[t][x, y, z]$$

Char= 0:
$$(x + ty + \frac{t^2+t}{2}z, y + tz, z) \in k[t][x, y, z]$$

Char= 2: $(x + ty + (Q_1 + t)z, y + tz, z) \in k[t, Q_1][x, y, z]$
where $Q_1 := {t \choose 2}$.

Char= 0:
$$(x + ty + \frac{t^2+t}{2}z, y + tz, z) \in k[t][x, y, z]$$

Char= 2: $(x + ty + (Q_1 + t)z, y + tz, z) \in k[t, Q_1][x, y, z]$
where $Q_1 := {t \choose 2}$.
In general:

$$egin{aligned} R &:= k[Q_i; i \in \mathbb{N}] ext{ where } Q_i &:= inom{t}{p^i}. \ F \in GA_n(R) \end{aligned}$$

A puzzling question:

When does a locally nilpotent derivation

$$D: \mathbb{Q}[x_1,\ldots,x_n] \longrightarrow \mathbb{Q}[x_1,\ldots,x_n]$$

induce a polynomial map

$$\exp(D): \mathbb{Z}[x_1,\ldots,x_n] \longrightarrow \mathbb{Z}[x_1,\ldots,x_n]?$$

Strictly upper triangular group

 $B_n(k) := \{ (x_1 + f_1, \ldots, x_n + f_n ; f_i \in k[x_{i+1}, \ldots, x_n] \} < GA_n(k).$

$$B_n(k) := \{(x_1+f_1,\ldots,x_n+f_n ; f_i \in k[x_{i+1},\ldots,x_n]\} < GA_n(k).$$

 $\mathcal{B}_n(\mathbb{F}_p) := \pi_p(B_n(\mathbb{F}_p))$

$$B_n(k) := \{(x_1+f_1,\ldots,x_n+f_n; f_i \in k[x_{i+1},\ldots,x_n]\} < GA_n(k).$$

$$egin{aligned} &\mathcal{B}_n(\mathbb{F}_p) := \pi_p(\mathcal{B}_n(\mathbb{F}_p)) \ &\mathcal{B}_n(\mathbb{F}_p) < \mathrm{sym}(\mathbb{F}_p^n), \quad \#\mathcal{B}_n(\mathbb{F}_p) = v_p(p^n!) \end{aligned}$$

$$B_n(k) := \{ (x_1 + f_1, \ldots, x_n + f_n ; f_i \in k[x_{i+1}, \ldots, x_n] \} < GA_n(k).$$

$$\mathcal{B}_n(\mathbb{F}_p) := \pi_p(\mathcal{B}_n(\mathbb{F}_p))$$

 $\mathcal{B}_n(\mathbb{F}_p) < \operatorname{sym}(\mathbb{F}_p^n), \quad \#\mathcal{B}_n(\mathbb{F}_p) = v_p(p^n!)$
 $\mathcal{B}_n(\mathbb{F}_p) \text{ is } p\text{-sylow subgroup of sym}(\mathbb{F}_p^n) !$

$$B_n(k) := \{(x_1+f_1,\ldots,x_n+f_n; f_i \in k[x_{i+1},\ldots,x_n]\} < GA_n(k).$$

$$egin{aligned} &\mathcal{B}_n(\mathbb{F}_p) := \pi_p(B_n(\mathbb{F}_p)) \ &\mathcal{B}_n(\mathbb{F}_p) < \operatorname{sym}(\mathbb{F}_p^n), \quad \#\mathcal{B}_n(\mathbb{F}_p) = v_p(p^n!) \ &\mathcal{B}_n(\mathbb{F}_p) ext{ is } p ext{-sylow subgroup of sym}(\mathbb{F}_p^n) ext{ !} \end{aligned}$$

$$(x_1+f_1,\ldots,x_n+f_n)\in\mathcal{B}_n(\mathbb{F}_p)$$

$$f_i \in k[x_{i+1}, \ldots, x_n]/(x_{i+1}^p - x_{i+1}, \ldots, x_n^p - x_n)$$

(Motivation for studying $\mathcal{B}_n(\mathbb{F}_p)$: cryptography)

What do we want?

- A criterion to decide when σ ∈ B_n(𝔽_p) is a permutation of 𝔽ⁿ_p having one orbit,
- To compute $\sigma^m(v)$ easily for any $m \in \mathbb{N}, v \in \mathbb{F}_p^n$.

What do we want?

- A criterion to decide when σ ∈ B_n(𝔽_p) is a permutation of 𝔽ⁿ_p having one orbit,
- To compute $\sigma^m(v)$ easily for any $m \in \mathbb{N}, v \in \mathbb{F}_p^n$.

Theorem 1.

$$\sigma := (x_1 + f_1, \ldots, x_n + f_n)$$

has one orbit if and only if for each $1 \le i \le n$: the coefficient of $(x_{i+1} \cdots x_n)^{p-1}$ of f_i is nonzero.

Theorem 1.

$$\sigma := (x_1 + f_1, \ldots, x_n + f_n)$$

has one orbit if and only if for each $1 \le i \le n$: the coefficient of $(x_{i+1} \cdots x_n)^{p-1}$ of f_i is nonzero.

Theorem 1.

$$\sigma := (x_1 + f_1, \ldots, x_n + f_n)$$

has one orbit if and only if for each $1 \le i \le n$: the coefficient of $(x_{i+1} \cdots x_n)^{p-1}$ of f_i is nonzero.

Proofsketch. By induction: case n = 1 is clear.

Theorem 1.

$$\sigma := (x_1 + f_1, \ldots, x_n + f_n)$$

has one orbit if and only if for each $1 \le i \le n$: the coefficient of $(x_{i+1} \cdots x_n)^{p-1}$ of f_i is nonzero.

Proofsketch. By induction: case n = 1 is clear. So,

 $\sigma = (x_1 + f_1, \tilde{\sigma}).$

Theorem 1.

$$\sigma := (x_1 + f_1, \ldots, x_n + f_n)$$

has one orbit if and only if for each $1 \le i \le n$: the coefficient of $(x_{i+1} \cdots x_n)^{p-1}$ of f_i is nonzero.

Proofsketch. By induction: case n = 1 is clear. So,

$$\sigma = (x_1 + f_1, \tilde{\sigma}). \quad \text{Consider } (c, \alpha) \in \mathbb{F}_p^n.$$

$$\sigma(c, \alpha) = (c + f_1(\alpha), \sigma(\alpha)).$$

Theorem 1.

$$\sigma := (x_1 + f_1, \ldots, x_n + f_n)$$

has one orbit if and only if for each $1 \le i \le n$: the coefficient of $(x_{i+1} \cdots x_n)^{p-1}$ of f_i is nonzero.

Proofsketch. By induction: case n = 1 is clear. So,

$$\sigma = (x_1 + f_1, \tilde{\sigma}).$$
 Consider $(c, \alpha) \in \mathbb{F}_p^n$.
 $\sigma(c, \alpha) = (c + f_1(\alpha), \sigma(\alpha)).$ So:

$$\sigma^{p^{n-1}}(\boldsymbol{c},\alpha) = (\boldsymbol{c} + \sum_{i=1}^{p^{n-1}} f_1(\tilde{\sigma}^i \alpha), \alpha)$$

Theorem 1.

$$\sigma := (x_1 + f_1, \ldots, x_n + f_n)$$

has one orbit if and only if for each $1 \le i \le n$: the coefficient of $(x_{i+1} \cdots x_n)^{p-1}$ of f_i is nonzero.

Proofsketch. By induction: case n = 1 is clear. So,

$$\sigma = (x_1 + f_1, \tilde{\sigma}).$$
 Consider $(c, \alpha) \in \mathbb{F}_p^n$.
 $\sigma(c, \alpha) = (c + f_1(\alpha), \sigma(\alpha)).$ So:

$$\sigma^{p^{n-1}}(\boldsymbol{c},\alpha) = (\boldsymbol{c} + \sum_{i=1}^{p^{n-1}} f_1(\tilde{\sigma}^i \alpha), \alpha)$$

To prove: $\sum_{i=1}^{p^{n-1}} f(\tilde{\sigma}^i \alpha) = 0$ if and only if coefficient of $(x_{i+1} \cdots x_n)^{p-1}$ of f_1 is nonzero.

Theorem 1.

$$\sigma := (x_1 + f_1, \ldots, x_n + f_n)$$

has one orbit if and only if for each $1 \le i \le n$: the coefficient of $(x_{i+1} \cdots x_n)^{p-1}$ of f_i is nonzero. **Proofsketch.**

$$\sigma^{p^{n-1}}(\boldsymbol{c},\alpha) = (\boldsymbol{c} + \sum_{i=1}^{p^{n-1}} f_1(\tilde{\sigma}^i \alpha), \alpha)$$

Theorem 1.

$$\sigma := (x_1 + f_1, \ldots, x_n + f_n)$$

has one orbit if and only if for each $1 \le i \le n$: the coefficient of $(x_{i+1} \cdots x_n)^{p-1}$ of f_i is nonzero. **Proofsketch.**

$$\sigma^{p^{n-1}}(\boldsymbol{c},\alpha) = (\boldsymbol{c} + \sum_{i=1}^{p^{n-1}} f_1(\tilde{\sigma}^i \alpha), \alpha)$$

Lemma

Let $M(x_1, \ldots, x_n) = x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$ where $0 \le a_i \le p-1$ for each $1 \le i \le n$. Then $\sum_{\alpha \in \mathbb{F}_p^n} M(\alpha) = 0$ unless $a_1 = a_2 = \ldots = a_n = p-1$, when it is $(-1)^n$.

Theorem 2. Let

$$\sigma := (x_1 + f_1, \ldots, x_n + f_n)$$

have only one orbit. Then representants of the conjugacy classes are the $(p-1)^n$ maps where $f_i = \lambda_i (x_{i+1} \cdots x_n)^{p-1}$.

Proof is very elegant but too long to elaborate on in this talk.

Conjugacy classes in $\mathcal{B}_n(\mathbb{F}_p)$ Theorem 2. Let

$$\sigma := (x_1 + f_1, \ldots, x_n + f_n)$$

have only one orbit. Then representants of the conjugacy classes are the $(p-1)^n$ maps where $f_i = \lambda_i (x_{i+1} \cdots x_n)^{p-1}$.

Conjugacy classes in $\mathcal{B}_n(\mathbb{F}_p)$ Theorem 2. Let

$$\sigma := (x_1 + f_1, \ldots, x_n + f_n)$$

have only one orbit. Then representants of the conjugacy classes are the $(p-1)^n$ maps where $f_i = \lambda_i (x_{i+1} \cdots x_n)^{p-1}$. **Theorem 3.** After that, conjugating by a diagonal linear map $D \in GL_n(\mathbb{F}_p)$ one can get all of them equivalent! Hence, any $\sigma \in \mathcal{B}_n(\mathbb{F}_p)$ having only one orbit can be written as

$$D^{-1}\tau^{-1}\Delta\tau D$$

where $\tau \in \mathcal{B}_n(\mathbb{F}_p)$, *D* linear diagonal, and Δ is one particular map you choose in $\mathcal{B}_n(\mathbb{F}_p)$.

What do we want?

- A criterion to decide when σ ∈ B_n(𝔽_p) is a permutation of 𝔽ⁿ_p having one orbit,
- To compute $\sigma^m(v)$ easily for any $m \in \mathbb{N}, v \in \mathbb{F}_p^n$.

What do we want?

- A criterion to decide when σ ∈ B_n(𝔽_p) is a permutation of 𝔽ⁿ_p having one orbit,
- To compute $\sigma^m(v)$ easily for any $m \in \mathbb{N}, v \in \mathbb{F}_p^n$.

Hence, any $\sigma \in \mathcal{B}_n(\mathbb{F}_p)$ having only one orbit can be written as

$$D^{-1}\tau^{-1}\Delta\tau D$$

where $\tau \in \mathcal{B}_n(\mathbb{F}_p)$, *D* linear diagonal, and Δ is one particular map you choose in $\mathcal{B}_n(\mathbb{F}_p)$.

What do we want?

- A criterion to decide when σ ∈ B_n(𝔽_p) is a permutation of 𝔽ⁿ_p having one orbit,
- To compute $\sigma^m(v)$ easily for any $m \in \mathbb{N}, v \in \mathbb{F}_p^n$.

Hence, any $\sigma \in \mathcal{B}_n(\mathbb{F}_p)$ having only one orbit can be written as

$$D^{-1}\tau^{-1}\Delta\tau D$$

where $\tau \in \mathcal{B}_n(\mathbb{F}_p)$, *D* linear diagonal, and Δ is one particular map you choose in $\mathcal{B}_n(\mathbb{F}_p)$.

$$\sigma^m(\mathbf{v}) = D^{-1}\tau^{-1}\Delta^m\tau D(\mathbf{v})$$

$$\Delta := (x_1 + g_1, \dots, x_n + g_n)$$

where $g_i(p - 1, \dots, p - 1) = 1$ and $g_i(\alpha) = 0$ for any other
 $\alpha \in \mathbb{F}_p^{n-i}$.

$$\Delta := (x_1 + g_1, \dots, x_n + g_n)$$

where $g_i(p - 1, \dots, p - 1) = 1$ and $g_i(\alpha) = 0$ for any other
 $\alpha \in \mathbb{F}_p^{n-i}$.
Then Δ is very simple:

$$\Delta := (x_1 + g_1, \dots, x_n + g_n)$$

where $g_i(p - 1, \dots, p - 1) = 1$ and $g_i(\alpha) = 0$ for any other
 $\alpha \in \mathbb{F}_p^{n-i}$.
Then Δ is very simple:
Let $\zeta : \mathbb{F}_p^n \longrightarrow \mathbb{Z}/p^n\mathbb{Z}$, then
 $\zeta \Delta \zeta^{-1}(a) = a + 1, a \in \mathbb{Z}/p^n\mathbb{Z}$

i.e. Δ^m is easy to compute!

$$\Delta := (x_1 + g_1, \dots, x_n + g_n)$$

where $g_i(p - 1, \dots, p - 1) = 1$ and $g_i(\alpha) = 0$ for any other
 $\alpha \in \mathbb{F}_p^{n-i}$.
Then Δ is very simple:
Let $\zeta : \mathbb{F}_p^n \longrightarrow \mathbb{Z}/p^n\mathbb{Z}$, then
 $\zeta \Delta \zeta^{-1}(a) = a + 1, a \in \mathbb{Z}/p^n\mathbb{Z}$

i.e. Δ^m is easy to compute! \longrightarrow Cryptographic application is happy!

Characteristic *p* different and the same! Some things more easy, some things more difficult.

Characteristic *p* different and the same! Some things more easy, some things more difficult. Finite fields in particular are interesting for representing finite groups, and applications in cryptography.

Characteristic *p* different and the same! Some things more easy, some things more difficult.

Finite fields in particular are interesting for representing finite groups, and applications in cryptography.

THANK YOU

(for enduring 136 .pdf slides...)