
A three dimensional UFD

cancellation counterexample

Stefan Maubach

June 1, 2007



Central question:

How to distinguish two rings?



Central question:

How to distinguish two rings?

Or: how to distinguish two varieties?



Cancelation problems

Cancelation problem: A C-algebra.

A[T ] ∼= C[n] ?
−→ A ∼= C[n−1].

Geometric formulation:

V × C ∼= Cn ?
−→ V ∼= Cn−1



Cancelation problems

Cancelation problem: A C-algebra.

A[T ] ∼= C[n] ?
−→ A ∼= C[n−1].

Geometric formulation:

V × C ∼= Cn ?
−→ V ∼= Cn−1

More ambitious:

A[T ] ∼= B[T ]
?

−→ A ∼= B .

V × C ∼= W × C
?

−→ V ∼= W



Cancelation problems

Cancelation problem: A C-algebra.

A[T ] ∼= C[n] ?
−→ A ∼= C[n−1].

Gemetric formulation:

V × C ∼= Cn ?
−→ V ∼= Cn−1

Too ambitious:

A[T ] ∼= B[T ]
?

−→ A ∼= B .

V × C ∼= W × C
?

−→ V ∼= W
1972 (Hochster) dim(A) = 5, A R-algebra UFD



Cancelation problems

Cancelation problem: A C-algebra.

A[T ] ∼= C[n] ?
−→ A ∼= C[n−1].

Gemetric formulation:

V × C ∼= Cn ?
−→ V ∼= Cn−1

Too ambitious:

A[T ] ∼= B[T ]
?

−→ A ∼= B .

V × C ∼= W × C
?

−→ V ∼= W
1972 (Hochster) dim(A) = 5, A R-algebra UFD

1986 (Danielewski) dim(A) = 2, A C-algebra



Cancelation problems

Cancelation problem: A C-algebra.

A[T ] ∼= C[n] ?
−→ A ∼= C[n−1].

Gemetric formulation:

V × C ∼= Cn ?
−→ V ∼= Cn−1

Too ambitious:

A[T ] ∼= B[T ]
?

−→ A ∼= B .

V × C ∼= W × C
?

−→ V ∼= W
1972 (Hochster) dim(A) = 5, A R-algebra UFD

1986 (Danielewski) dim(A) = 2, A C-algebra

2006 (Finston/Maubach) dim(A) = 3, A C-algebra UFD
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3-dimensional UFDs

Define Bn,m := C[X , Y , U , V ]/(XmU − Y nV − 1).

Theorem: Bn,m[T ] ∼= Bn′,m′[T ] for all n, m, n′, m′ ∈ N∗.

Theorem: Bn,m is UFD.

Question: If {n, m} 6= {n′, m′} then Bn,m 6∼= Bn′,m′

Too hard question!

Why too hard? Too many l.n.derivations on Bn,m!

Idea: take suitable rigid ring R , and

An,m := R[U , V ]/(xmU − ynV − 1) for some x , y ∈ R .
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A a C-algebra, then D : A −→ A is called derivation if it

behaves like “taking derivative”. For example, D = ∂
∂X

on

C[X ].

To be precise:

◮ D is C-linear,

◮ D(fg) = fD(g) + gD(f ) (Leibniz rule)

Examples: Let a1, . . . , an ∈ C[X1, . . . , Xn]. Then

a1
∂

∂X1

+ a2
∂

∂X2

+ . . . + an

∂

∂Xn

is a derivation.
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Locally nilpotent derivations

A a C-algebra, then D : A −→ A is called derivation if

◮ D is C-linear,

◮ D(fg) = fD(g) + gD(f ) (Leibniz rule)

If ∀f ∈ A, ∃n ∈ N such that Dn(f ) = 0, then D is called

locally nilpotent.

Example: ∂
∂X

on C[X ].

Not locally nilpotent: X ∂
∂X

on C[X ].



Makar-Limanov invariant



Makar-Limanov invariant

Let D be LND (Locally Nilpotent Derivation).



Makar-Limanov invariant

Let D be LND (Locally Nilpotent Derivation).

AD(= ker(D)) = {a ∈ A | D(a) = 0}



Makar-Limanov invariant

Let D be LND (Locally Nilpotent Derivation).

AD(= ker(D)) = {a ∈ A | D(a) = 0}

(You group action lovers: D LND corresponds to G, additive

group action. And AD = AG.)



Makar-Limanov invariant

Let D be LND (Locally Nilpotent Derivation).

AD(= ker(D)) = {a ∈ A | D(a) = 0}

(You group action lovers: D LND corresponds to G, additive

group action. And AD = AG.)

Makar-Limanov invariant:

ML(A) :=
⋂

D

AD



Makar-Limanov invariant

Let D be LND (Locally Nilpotent Derivation).

AD(= ker(D)) = {a ∈ A | D(a) = 0}

(You group action lovers: D LND corresponds to G, additive

group action. And AD = AG.)

Makar-Limanov invariant:

ML(A) :=
⋂

D

AD

Known fact:

ϕ ∈ AutC(A), then

ϕ(ML(A)) = ML(A).
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If R is rigid. . .

LND(An,m) = R · (yn
∂

∂U
+ xm

∂

∂V
)

. . . Then doing some more (nontrivial, but nice) algebra:

Complete description of AutC(An,m),

An,m is a UFD, dimension = 3, An,m[T ] ∼= An′,m′[T ], and

An,m
∼= An′,m′ ⇐⇒ {n, m} = {n′, m′}.

So let us focus on getting such a rigid ring R!
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“Fermat” or “ABC-conjecture” for

polynomials”

You Number Theory Lovers: we, Polynomials Lovers have

Theorems which are Big Conjectures in Your World!

Mason’s Theorem: (ABC-conjecture)

Let f , g , h ∈ k[X ] where k is an algebraically closed field.

Let f + g + h = 0.

Assume f , g , h of positive degree.

f , g , h relatively prime.

Then max{deg(f ), deg(g), deg(h)} < #Z (fgh).



“Fermat” or “ABC-conjecture” for

polynomials”

Corollary :



“Fermat” or “ABC-conjecture” for

polynomials”

Corollary :

If f , g , h ∈ k[X ] satisfy



“Fermat” or “ABC-conjecture” for

polynomials”

Corollary :

If f , g , h ∈ k[X ] satisfy

◮ f a + gb + hc = 0 where a, b, c ∈ N such that
1
a

+ 1
b

+ 1
c
≤ 1,



“Fermat” or “ABC-conjecture” for

polynomials”

Corollary :

If f , g , h ∈ k[X ] satisfy

◮ f a + gb + hc = 0 where a, b, c ∈ N such that
1
a

+ 1
b

+ 1
c
≤ 1,

◮ f , g , h relatively prime



“Fermat” or “ABC-conjecture” for

polynomials”

Corollary :

If f , g , h ∈ k[X ] satisfy

◮ f a + gb + hc = 0 where a, b, c ∈ N such that
1
a

+ 1
b

+ 1
c
≤ 1,

◮ f , g , h relatively prime

Then all f , g , h are constant.



“Fermat” or “ABC-conjecture” for

polynomials”

Corollary :

If f , g , h ∈ k[X ] satisfy

◮ f a + gb + hc = 0 where a, b, c ∈ N such that
1
a

+ 1
b

+ 1
c
≤ 1,

◮ f , g , h relatively prime

Then all f , g , h are constant.

(Number Theory: Only proved for a = b = c!)



“Fermat” or “ABC-conjecture” for

polynomials”

Corollary :

If f , g , h ∈ k[X ] satisfy

◮ f a + gb + hc = 0 where a, b, c ∈ N such that
1
a

+ 1
b

+ 1
c
≤ 1,

◮ f , g , h relatively prime

Then all f , g , h are constant.

(Number Theory: Only proved for a = b = c!)

We will choose R = C[X , Y , Z ]/(X a + Y b + Z c). . .
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Now Ã has a slice: s ∈ A, D(s) = 1. (s = pq−1).

Known theorem: If D has a slice S , then
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Let Ã := A[q−1], extend D to Ã.
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Let A be C-algebra domain, and D ∈ LND(A), D 6= 0.

Find p ∈ A such that D(p) = q 6= 0, D2(p) = D(q) = 0.

Let Ã := A[q−1], extend D to Ã.

Now Ã has a slice: s ∈ A, D(s) = 1. (s = pq−1).

Known theorem: If D has a slice S , then

Ã = ÃD [S ].

Example: ∂
∂X

on Q[X ].

One can even go more crazy: let K = Q(ÃD). Extend D to

K [S ]. Or even to K̄ [S ].

Example: extend ∂
∂X

on Z[X ], to Q[X ], and C[X ].



Using Mason’s in rings

Definition: R := C[X , Y , Z ]/(X a + Y b + Z c) = C[x , y , z ]

where 1
a

+ 1
b

+ 1
c
≤ 1.



Using Mason’s in rings

Definition: R := C[X , Y , Z ]/(X a + Y b + Z c) = C[x , y , z ]

where 1
a

+ 1
b

+ 1
c
≤ 1.

R C-algebra

D

D 6= 0



Using Mason’s in rings

Definition: R := C[X , Y , Z ]/(X a + Y b + Z c) = C[x , y , z ]

where 1
a

+ 1
b

+ 1
c
≤ 1.

R C-algebra −→ R̃ := R[q−1]

D

D 6= 0

p preslice, D(p) = q, D(q) = 0



Using Mason’s in rings

Definition: R := C[X , Y , Z ]/(X a + Y b + Z c) = C[x , y , z ]

where 1
a

+ 1
b

+ 1
c
≤ 1.

R C-algebra −→ R̃ := R[q−1] = R̃D [s]

D

D 6= 0

p preslice, D(p) = q, D(q) = 0, s := pq−1



Using Mason’s in rings

Definition: R := C[X , Y , Z ]/(X a + Y b + Z c) = C[x , y , z ]

where 1
a

+ 1
b

+ 1
c
≤ 1.

R C-algebra −→ R̃ := R[q−1] = R̃D [s]

D ∂
∂s

D 6= 0

p preslice, D(p) = q, D(q) = 0, s := pq−1



Using Mason’s in rings

Definition: R := C[X , Y , Z ]/(X a + Y b + Z c) = C[x , y , z ]

where 1
a

+ 1
b

+ 1
c
≤ 1.

R C-algebra −→ R̃ := R[q−1] = R̃D [s] −→ K [s]

D ∂
∂s

∂
∂s

D 6= 0

p preslice, D(p) = q, D(q) = 0, s := pq−1

K fraction field of R̃D



Using Mason’s in rings

Definition: R := C[X , Y , Z ]/(X a + Y b + Z c) = C[x , y , z ]

where 1
a

+ 1
b

+ 1
c
≤ 1.

R C-algebra −→ R̃ := R[q−1] = R̃D [s] −→ K [s] K [s]

D ∂
∂s

∂
∂s

∂
∂s

D 6= 0

p preslice, D(p) = q, D(q) = 0, s := pq−1

K fraction field of R̃D

K̄ algebraic closure of K



Using Mason’s in rings

Definition: R := C[X , Y , Z ]/(X a + Y b + Z c) = C[x , y , z ]

where 1
a

+ 1
b

+ 1
c
≤ 1.

R C-algebra −→ R̃ := R[q−1] = R̃D [s] −→ K [s] K [s]

D ∂
∂s

∂
∂s

∂
∂s

D 6= 0

p preslice, D(p) = q, D(q) = 0, s := pq−1

K fraction field of R̃D

K̄ algebraic closure of K

x = f (s), y = g(s), z = h(s)



Using Mason’s in rings

Definition: R := C[X , Y , Z ]/(X a + Y b + Z c) = C[x , y , z ]

where 1
a

+ 1
b

+ 1
c
≤ 1.

R C-algebra −→ R̃ := R[q−1] = R̃D [s] −→ K [s] K [s]

D ∂
∂s

∂
∂s

∂
∂s

D 6= 0

p preslice, D(p) = q, D(q) = 0, s := pq−1

K fraction field of R̃D

K̄ algebraic closure of K

x = f (s), y = g(s), z = h(s)

0 = xa + yb + zc = f a + gb + hc



Using Mason’s in rings

Definition: R := C[X , Y , Z ]/(X a + Y b + Z c) = C[x , y , z ]

where 1
a

+ 1
b

+ 1
c
≤ 1.

R C-algebra −→ R̃ := R[q−1] = R̃D [s] −→ K [s] K [s]

D ∂
∂s

∂
∂s

∂
∂s

D 6= 0

p preslice, D(p) = q, D(q) = 0, s := pq−1

K fraction field of R̃D

K̄ algebraic closure of K

x = f (s), y = g(s), z = h(s)

0 = xa + yb + zc = f a + gb + hc

Corollary implies: f , g , h ∈ K .



Using Mason’s in rings

Definition: R := C[X , Y , Z ]/(X a + Y b + Z c) = C[x , y , z ]

where 1
a

+ 1
b

+ 1
c
≤ 1.

R C-algebra −→ R̃ := R[q−1] = R̃D [s] −→ K [s] K [s]

D ∂
∂s

∂
∂s

∂
∂s

D 6= 0

p preslice, D(p) = q, D(q) = 0, s := pq−1

K fraction field of R̃D

K̄ algebraic closure of K

x = f (s), y = g(s), z = h(s)

0 = xa + yb + zc = f a + gb + hc

Corollary implies: f , g , h ∈ K ∩ R .



Using Mason’s in rings
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where 1
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R C-algebra −→ R̃ := R[q−1] = R̃D [s] −→ K [s] K [s]
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∂
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D 6= 0

p preslice, D(p) = q, D(q) = 0, s := pq−1

K fraction field of R̃D

K̄ algebraic closure of K

x = f (s), y = g(s), z = h(s)

0 = xa + yb + zc = f a + gb + hc

Corollary implies: f , g , h ∈ K ∩ R = RD .



Using Mason’s in rings

Definition: R := C[X , Y , Z ]/(X a + Y b + Z c) = C[x , y , z ]

where 1
a

+ 1
b

+ 1
c
≤ 1.

R C-algebra −→ R̃ := R[q−1] = R̃D [s] −→ K [s] K [s]

D ∂
∂s

∂
∂s

∂
∂s

D 6= 0

p preslice, D(p) = q, D(q) = 0, s := pq−1

K fraction field of R̃D

K̄ algebraic closure of K

x = f (s), y = g(s), z = h(s)

0 = xa + yb + zc = f a + gb + hc

Corollary implies: f , g , h ∈ K ∩ R = RD . So LND(R) = {0}!!



Just one more thing to say:



THANK YOU


