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Let K be a field. An old conjecture:

Conjecture: Tn(K) = GAn(K)

WRooooong!!!

Still open conjectures:

GA3(K)
?
=< Aff3(K), GA2(K[Z ]) >,

GAn(K)
?
=< ExpLNDn(K), Affn(K) > .

Other possible generating sets:

< ExpLNDn(K), Affn(K) >⊆< ExpLFD >⊆< LFPE >

. . . we’ll get back to this. . .



Nagata’s automorphism:

N := (X − Y ∆ − Z∆2, Y + Z∆, Z ) where ∆ = XZ + Y 2.

In fact:

N = exp(∆∂) where ∂ = −2Y ∂
∂X

+ Z ∂
∂Y

.

Let’s define:

Nλ = exp(λ∆∂) where λ ∈ C.
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Well, Umirbaev-Shestakov tell us that Nagata is not tame.

But, it can still be linearizable. Is it linearizable?

If it is linearizable, then it is triangularizable.

It is not triangularizable (Bass 1984). We will show this too,

today (a bit more general).

Question: (Dubouloz) Is Nagata tamizable? Can Nagata be

tamed? (= is it a conjugate of a tame one)
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So, Nagata is not triangularizable, let alone linearizable. Now

watch, and be amazed:

Let us define

2N := (2X , 2Y , 2Z )◦N = (2X−2Y ∆−2Z∆2, 2Y +2Z∆, 2Z )

Now compute: N−

1
3 (2N)N

1
3 = (2X , 2Y , 2Z )!!!

Nagata is shifted linearizable!

but, −N is not linearizable. Then again, iN is linearizable!

What is going on?
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Remember, ∂ = −2Y ∂X + Z∂Y . Let us define

L(a,b,c) := (aX , bY , cZ ).

Assume: ac = b2. For then:

(1) ∆L(a,b,c) = ac∆

(2) L(a,b,c)∂ = c
b
∂L(a,b,c)

(3) ∆∂L(a,b,c) = L(a,b,c)ab∆∂

So, if D := ∆∂ then DL(a,b,c) = abL(a,b,c)D. In other words:

L−1
(a,b,c)DL(a,b,c) = abD.

D is a homogeneous derivation (of degree 1 and 2), with

respect to a 2-dimensional “grading” space (i.e. 2 completely

different gradings).



L−1
(a,b,c)DL(a,b,c) = abD.

So:

L−1
(a,b,c)N

λL(a,b,c) = L−1
(a,b,c) exp(λD)L(a,b,c)

= exp(λL−1
(a,b,c)DL(a,b,c)) = exp(λabD) = Nabλ

In other words: NλL(a,b,c) = L(a,b,c)N
abλ.
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NλL(a,b,c) = L(a,b,c)N
abλ. Assume that ab 6= 1, and consider

L(a,b,c)N
λ. Conjugate by Nµ:

N−µL(a,b,c)N
λNµ = N−µL(a,b,c)N

λ+µ = L(a,b,c)N
−abµ+λ+µ

so choose µ such that µ(1 − ab) = −λ (which exactly uses

ab 6= 1).

Thus L(a,b,c)N
λ is shifted linearizable if ab 6= 1.
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What about ab = 1? We already had ac = b2, so

L(a,b,c) = Lb−1,b,b3 (let’s write Lb).

Define eigenspaces Eλ(ϕ) = {p | ϕ(p) = λp}.

Example: Eλ(N) = C if λ 6= 1 and E1 = ker(D) = C[Z , ∆].
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Lemma
If b is not a root of unity, then E1(LbN

λ) = C[Z 2∆].

Corollary

If b is not a root of unity, then LbN
λ is not linearizable.

Follows from the fact that then E1(LbN
λ) and

E1(Lb) = C[XZ 3, YZ ] have to be isomorphic.

Suppose bn = 1. Then (LbN
λ)n = Nnλ which is not

linearizable. Hence LbN
λ cannot be linearizable.
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Conclusion: if ab 6= 1 then L(a,b,c)N is linearizable, and if

ab = 1, then not.

conjecture: GAn(K) =< Linzblen(K) >.

Note: Tn(K) ⊂< Linzblen(K) >. (Example:

(X + f (Y ), Y ) = (1/2X , Y ) ◦ (2X + 2f (Y ), Y ) and

(2X + 2f (Y ), Y ) = (X − 2f (Y ), Y )(2X , Y )(X + 2f (Y ), Y ) )
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Question: what is E(Tn(Fq))?

Answer: if q = 2 or q = odd, then E(Tn(Fq)) = Sym(qn).

Answer: if q = 4, 8, 16, 32, . . . then E(Tn(Fq)) = Alt(qn).

Problem: Do there exist “odd” polynomial automorphisms

over F4?
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****THANK YOU****


