The Nagata Automorphism is Shifted Linearizable

.... and a conjecture that interests

discrete mathematicians

Stefan Maubach

February 2008

Let \mathbb{K} be a field. An old conjecture:

Let \mathbb{K} be a field. An old conjecture:
Conjecture: $\mathrm{T}_{n}(\mathbb{K})=\mathrm{GA}_{n}(\mathbb{K})$

Let \mathbb{K} be a field. An old conjecture:
Conjecture: $\mathrm{T}_{n}(\mathbb{K})=\mathrm{GA}_{n}(\mathbb{K})$

WRooooong!!!

Let \mathbb{K} be a field. An old conjecture:
Conjecture: $\mathrm{T}_{n}(\mathbb{K})=\mathrm{GA}_{n}(\mathbb{K})$

WRooooong!!!

Still open conjectures:

Let \mathbb{K} be a field. An old conjecture:
Conjecture: $\mathrm{T}_{n}(\mathbb{K})=\mathrm{GA}_{n}(\mathbb{K})$

WRooooong!!!

Still open conjectures:

$$
\mathrm{GA}_{3}(\mathbb{K}) \stackrel{?}{=}<\operatorname{Aff}_{3}(\mathbb{K}), \mathrm{GA}_{2}(\mathbb{K}[Z])>
$$

Let \mathbb{K} be a field. An old conjecture:
Conjecture: $\mathrm{T}_{n}(\mathbb{K})=\mathrm{GA}_{n}(\mathbb{K})$

WRooooong!!!

Still open conjectures:

$$
\mathrm{GA}_{3}(\mathbb{K}) \stackrel{?}{=}<\operatorname{Aff}_{3}(\mathbb{K}), \mathrm{GA}_{2}(\mathbb{K}[Z])>
$$

$\mathrm{GA}_{n}(\mathbb{K}) \stackrel{?}{=}<\operatorname{ExpLND}_{n}(\mathbb{K}), \operatorname{Aff}_{n}(\mathbb{K})>$.

Let \mathbb{K} be a field. An old conjecture:

Conjecture: $\mathrm{T}_{n}(\mathbb{K})=\mathrm{GA}_{n}(\mathbb{K})$

WRooooong!!!

Still open conjectures:

$$
\mathrm{GA}_{3}(\mathbb{K}) \stackrel{?}{=}<\operatorname{Aff}_{3}(\mathbb{K}), \mathrm{GA}_{2}(\mathbb{K}[Z])>
$$

$$
\mathrm{GA}_{n}(\mathbb{K}) \stackrel{?}{=}<\operatorname{ExpLND}_{n}(\mathbb{K}), \operatorname{Aff}_{n}(\mathbb{K})>
$$

Other possible generating sets:
$<\operatorname{ExpLND}_{n}(\mathbb{K}), \operatorname{Aff}_{n}(\mathbb{K})>\subseteq<E x p L F D>\subseteq<L F P E>$

Let \mathbb{K} be a field. An old conjecture:
Conjecture: $\mathrm{T}_{n}(\mathbb{K})=\mathrm{GA}_{n}(\mathbb{K})$

WRooooong!!!

Still open conjectures:

$$
\mathrm{GA}_{3}(\mathbb{K}) \stackrel{?}{=}<\operatorname{Aff}_{3}(\mathbb{K}), \mathrm{GA}_{2}(\mathbb{K}[Z])>
$$

$$
\mathrm{GA}_{n}(\mathbb{K}) \stackrel{?}{=}<\operatorname{ExpLND}_{n}(\mathbb{K}), \operatorname{Aff}_{n}(\mathbb{K})>
$$

Other possible generating sets:
$<\operatorname{ExpLND}_{n}(\mathbb{K}), \operatorname{Aff}_{n}(\mathbb{K})>\subseteq<E x p L F D>\subseteq<L F P E>$
... we'll get back to this. . .

Nagata's automorphism:
$N:=\left(X-Y \Delta-Z \Delta^{2}, Y+Z \Delta, Z\right)$ where $\Delta=X Z+Y^{2}$.
In fact:
$N=\exp (\Delta \partial)$ where $\partial=-2 Y \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$.
Let's define:
$N^{\lambda}=\exp (\lambda \Delta \partial)$ where $\lambda \in \mathbb{C}$.

Well, Umirbaev-Shestakov tell us that Nagata is not tame.

Well, Umirbaev-Shestakov tell us that Nagata is not tame.
But, it can still be linearizable. Is it linearizable?

Well, Umirbaev-Shestakov tell us that Nagata is not tame.
But, it can still be linearizable. Is it linearizable?
If it is linearizable, then it is triangularizable.

Well, Umirbaev-Shestakov tell us that Nagata is not tame.
But, it can still be linearizable. Is it linearizable?
If it is linearizable, then it is triangularizable.
It is not triangularizable (Bass 1984). We will show this too, today (a bit more general).

Well, Umirbaev-Shestakov tell us that Nagata is not tame.
But, it can still be linearizable. Is it linearizable?
If it is linearizable, then it is triangularizable.
It is not triangularizable (Bass 1984). We will show this too, today (a bit more general).
Question: (Dubouloz) Is Nagata tamizable?

Well, Umirbaev-Shestakov tell us that Nagata is not tame.
But, it can still be linearizable. Is it linearizable?
If it is linearizable, then it is triangularizable.
It is not triangularizable (Bass 1984). We will show this too, today (a bit more general).
Question: (Dubouloz) Is Nagata tamizable? Can Nagata be tamed?

Well, Umirbaev-Shestakov tell us that Nagata is not tame.
But, it can still be linearizable. Is it linearizable?
If it is linearizable, then it is triangularizable.
It is not triangularizable (Bass 1984). We will show this too, today (a bit more general).
Question: (Dubouloz) Is Nagata tamizable? Can Nagata be
tamed? ($=$ is it a conjugate of a tame one)

So, Nagata is not triangularizable, let alone linearizable.

So, Nagata is not triangularizable, let alone linearizable. Now watch, and be amazed:

So, Nagata is not triangularizable, let alone linearizable. Now watch, and be amazed:
Let us define
$2 N:=(2 X, 2 Y, 2 Z) \circ N=\left(2 X-2 Y \Delta-2 Z \Delta^{2}, 2 Y+2 Z \Delta, 2 Z\right)$

So, Nagata is not triangularizable, let alone linearizable. Now watch, and be amazed:
Let us define

$$
2 N:=(2 X, 2 Y, 2 Z) \circ N=\left(2 X-2 Y \Delta-2 Z \Delta^{2}, 2 Y+2 Z \Delta, 2 Z\right)
$$

Now compute:
(2N)

So, Nagata is not triangularizable, let alone linearizable. Now watch, and be amazed:
Let us define
$2 N:=(2 X, 2 Y, 2 Z) \circ N=\left(2 X-2 Y \Delta-2 Z \Delta^{2}, 2 Y+2 Z \Delta, 2 Z\right)$
Now compute: $N^{-\frac{1}{3}}(2 N) N^{\frac{1}{3}}$

So, Nagata is not triangularizable, let alone linearizable. Now watch, and be amazed:
Let us define

$$
2 N:=(2 X, 2 Y, 2 Z) \circ N=\left(2 X-2 Y \Delta-2 Z \Delta^{2}, 2 Y+2 Z \Delta, 2 Z\right)
$$

Now compute: $N^{-\frac{1}{3}}(2 N) N^{\frac{1}{3}}=(2 X, 2 Y, 2 Z)!!!$

So, Nagata is not triangularizable, let alone linearizable. Now watch, and be amazed:
Let us define
$2 N:=(2 X, 2 Y, 2 Z) \circ N=\left(2 X-2 Y \Delta-2 Z \Delta^{2}, 2 Y+2 Z \Delta, 2 Z\right)$
Now compute: $N^{-\frac{1}{3}}(2 N) N^{\frac{1}{3}}=(2 X, 2 Y, 2 Z)!!!$
Nagata is shifted linearizable!

So, Nagata is not triangularizable, let alone linearizable. Now watch, and be amazed:
Let us define
$2 N:=(2 X, 2 Y, 2 Z) \circ N=\left(2 X-2 Y \Delta-2 Z \Delta^{2}, 2 Y+2 Z \Delta, 2 Z\right)$
Now compute: $N^{-\frac{1}{3}}(2 N) N^{\frac{1}{3}}=(2 X, 2 Y, 2 Z)!!!$
Nagata is shifted linearizable!
but, $-N$ is not linearizable.

So, Nagata is not triangularizable, let alone linearizable. Now watch, and be amazed:
Let us define
$2 N:=(2 X, 2 Y, 2 Z) \circ N=\left(2 X-2 Y \Delta-2 Z \Delta^{2}, 2 Y+2 Z \Delta, 2 Z\right)$
Now compute: $N^{-\frac{1}{3}}(2 N) N^{\frac{1}{3}}=(2 X, 2 Y, 2 Z)!!!$
Nagata is shifted linearizable!
but, $-N$ is not linearizable. Then again, $i N$ is linearizable!

So, Nagata is not triangularizable, let alone linearizable. Now watch, and be amazed:
Let us define
$2 N:=(2 X, 2 Y, 2 Z) \circ N=\left(2 X-2 Y \Delta-2 Z \Delta^{2}, 2 Y+2 Z \Delta, 2 Z\right)$
Now compute: $N^{-\frac{1}{3}}(2 N) N^{\frac{1}{3}}=(2 X, 2 Y, 2 Z)!!!$
Nagata is shifted linearizable!
but, $-N$ is not linearizable. Then again, $i N$ is linearizable!
What is going on?

General shifted theorems

Remember, $\partial=-2 Y \partial_{X}+Z \partial_{Y}$.

General shifted theorems

Remember, $\partial=-2 Y \partial_{X}+Z \partial_{Y}$. Let us define
$L_{(a, b, c)}:=(a X, b Y, c Z)$.

General shifted theorems

Remember, $\partial=-2 Y \partial_{X}+Z \partial_{Y}$. Let us define
$L_{(a, b, c)}:=(a X, b Y, c Z)$.
Assume: $a c=b^{2}$. For then:
(1) $\Delta L_{(a, b, c)}=a c \Delta$

General shifted theorems

Remember, $\partial=-2 Y \partial_{X}+Z \partial_{Y}$. Let us define
$L_{(a, b, c)}:=(a X, b Y, c Z)$.
Assume: $a c=b^{2}$. For then:
(1) $\Delta L_{(a, b, c)}=a c \Delta$
(2) $L_{(a, b, c)} \partial=\frac{c}{b} \partial L_{(a, b, c)}$
(3) $\Delta \partial L_{(a, b, c)}=L_{(a, b, c)} a b \Delta \partial$

So, if $D:=\Delta \partial$ then $D L_{(a, b, c)}=a b L_{(a, b, c)} D$.

General shifted theorems

Remember, $\partial=-2 Y \partial_{X}+Z \partial_{Y}$. Let us define
$L_{(a, b, c)}:=(a X, b Y, c Z)$.
Assume: $a c=b^{2}$. For then:
(1) $\Delta L_{(a, b, c)}=a c \Delta$
(2) $L_{(a, b, c)} \partial=\frac{c}{b} \partial L_{(a, b, c)}$
(3) $\Delta \partial L_{(a, b, c)}=L_{(a, b, c)} a b \Delta \partial$

So, if $D:=\Delta \partial$ then $D L_{(a, b, c)}=a b L_{(a, b, c)} D$. In other words:

$$
L_{(a, b, c)}^{-1} D L_{(a, b, c)}=a b D .
$$

General shifted theorems

Remember, $\partial=-2 Y \partial_{X}+Z \partial_{Y}$. Let us define
$L_{(a, b, c)}:=(a X, b Y, c Z)$.
Assume: $a c=b^{2}$. For then:
(1) $\Delta L_{(a, b, c)}=a c \Delta$
(2) $L_{(a, b, c)} \partial=\frac{c}{b} \partial L_{(a, b, c)}$
(3) $\Delta \partial L_{(a, b, c)}=L_{(a, b, c)} a b \Delta \partial$

So, if $D:=\Delta \partial$ then $D L_{(a, b, c)}=a b L_{(a, b, c)} D$. In other words:

$$
L_{(a, b, c)}^{-1} D L_{(a, b, c)}=a b D
$$

D is a homogeneous derivation (of degree 1 and 2), with respect to a 2-dimensional "grading" space (i.e. 2 completely different gradings).

$$
L_{(a, b, c)}^{-1} D L_{(a, b, c)}=a b D .
$$

So:

$$
\begin{array}{ll}
L_{(a, b, c)}^{-1} N^{\lambda} L_{(a, b, c)} & =L_{(a, b, c)}^{-1} \exp (\lambda D) L_{(a, b, c)} \\
=\exp \left(\lambda L_{(a, b, c)}^{-1} D L_{(a, b, c)}\right) & =\exp (\lambda a b D)=N^{a b \lambda}
\end{array}
$$

In other words: $N^{\lambda} L_{(a, b, c)}=L_{(a, b, c)} N^{a b \lambda}$.

$$
N^{\lambda} L_{(a, b, c)}=L_{(a, b, c)} N^{a b \lambda} .
$$

$N^{\lambda} L_{(a, b, c)}=L_{(a, b, c)} N^{a b \lambda}$. Assume that $a b \neq 1$,
$N^{\lambda} L_{(a, b, c)}=L_{(a, b, c)} N^{a b \lambda}$. Assume that $a b \neq 1$, and consider $L_{(a, b, c)} N^{\lambda}$.
$N^{\lambda} L_{(a, b, c)}=L_{(a, b, c)} N^{a b \lambda}$. Assume that $a b \neq 1$, and consider $L_{(a, b, c)} N^{\lambda}$. Conjugate by N^{μ} :
$N^{\lambda} L_{(a, b, c)}=L_{(a, b, c)} N^{a b \lambda}$. Assume that $a b \neq 1$, and consider $L_{(a, b, c)} N^{\lambda}$. Conjugate by N^{μ} :

$$
N^{-\mu} L_{(a, b, c)} N^{\lambda} N^{\mu}
$$

$N^{\lambda} L_{(a, b, c)}=L_{(a, b, c)} N^{a b \lambda}$. Assume that $a b \neq 1$, and consider $L_{(a, b, c)} N^{\lambda}$. Conjugate by N^{μ} :

$$
N^{-\mu} L_{(a, b, c)} N^{\lambda} N^{\mu}=N^{-\mu} L_{(a, b, c)} N^{\lambda+\mu}
$$

$N^{\lambda} L_{(a, b, c)}=L_{(a, b, c)} N^{a b \lambda}$. Assume that $a b \neq 1$, and consider $L_{(a, b, c)} N^{\lambda}$. Conjugate by N^{μ} :

$$
N^{-\mu} L_{(a, b, c)} N^{\lambda} N^{\mu}=N^{-\mu} L_{(a, b, c)} N^{\lambda+\mu}=L_{(a, b, c)} N^{-a b \mu+\lambda+\mu}
$$

$N^{\lambda} L_{(a, b, c)}=L_{(a, b, c)} N^{a b \lambda}$. Assume that $a b \neq 1$, and consider $L_{(a, b, c)} N^{\lambda}$. Conjugate by N^{μ} :

$$
N^{-\mu} L_{(a, b, c)} N^{\lambda} N^{\mu}=N^{-\mu} L_{(a, b, c)} N^{\lambda+\mu}=L_{(a, b, c)} N^{-a b \mu+\lambda+\mu}
$$

so choose μ such that $\mu(1-a b)=-\lambda$ (which exactly uses $a b \neq 1$).
$N^{\lambda} L_{(a, b, c)}=L_{(a, b, c)} N^{a b \lambda}$. Assume that $a b \neq 1$, and consider $L_{(a, b, c)} N^{\lambda}$. Conjugate by N^{μ} :

$$
N^{-\mu} L_{(a, b, c)} N^{\lambda} N^{\mu}=N^{-\mu} L_{(a, b, c)} N^{\lambda+\mu}=L_{(a, b, c)} N^{-a b \mu+\lambda+\mu}
$$

so choose μ such that $\mu(1-a b)=-\lambda$ (which exactly uses $a b \neq 1$).
Thus $L_{(a, b, c)} N^{\lambda}$ is shifted linearizable if $a b \neq 1$.

What about $a b=1$?

What about $a b=1$? We already had $a c=b^{2}$, so
$L_{(a, b, c)}=L_{b^{-1}, b, b^{3}}$

What about $a b=1$? We already had $a c=b^{2}$, so
$L_{(a, b, c)}=L_{b^{-1}, b, b^{3}}$ (let's write L_{b}).

What about $a b=1$? We already had $a c=b^{2}$, so $L_{(a, b, c)}=L_{b^{-1}, b, b^{3}}$ (let's write L_{b}).
Define eigenspaces $E_{\lambda}(\varphi)=\{p \mid \varphi(p)=\lambda p\}$.

What about $a b=1$? We already had $a c=b^{2}$, so
$L_{(a, b, c)}=L_{b^{-1}, b, b^{3}}$ (let's write L_{b}).
Define eigenspaces $E_{\lambda}(\varphi)=\{p \mid \varphi(p)=\lambda p\}$.
Example: $E_{\lambda}(N)=\mathbb{C}$ if $\lambda \neq 1$ and $E_{1}=\operatorname{ker}(D)=\mathbb{C}[Z, \Delta]$.

Lemma

If b is not a root of unity, then $E_{1}\left(L_{b} N^{\lambda}\right)=\mathbb{C}\left[Z^{2} \Delta\right]$.

Corollary

If b is not a root of unity, then $L_{b} N^{\lambda}$ is not linearizable.
Follows from the fact that then $E_{1}\left(L_{b} N^{\lambda}\right)$ and
$E_{1}\left(L_{b}\right)=\mathbb{C}\left[X Z^{3}, Y Z\right]$ have to be isomorphic.

Lemma

If b is not a root of unity, then $E_{1}\left(L_{b} N^{\lambda}\right)=\mathbb{C}\left[Z^{2} \Delta\right]$.

Corollary

If b is not a root of unity, then $L_{b} N^{\lambda}$ is not linearizable.
Follows from the fact that then $E_{1}\left(L_{b} N^{\lambda}\right)$ and $E_{1}\left(L_{b}\right)=\mathbb{C}\left[X Z^{3}, Y Z\right]$ have to be isomorphic.
Suppose $b^{n}=1$. Then $\left(L_{b} N^{\lambda}\right)^{n}=N^{n \lambda}$ which is not linearizable. Hence $L_{b} N^{\lambda}$ cannot be linearizable.

Conclusion: if $a b \neq 1$ then $L_{(a, b, c)} N$ is linearizable, and if $a b=1$, then not.

Conclusion: if $a b \neq 1$ then $L_{(a, b, c)} N$ is linearizable, and if $a b=1$, then not. conjecture: $\mathrm{GA}_{n}(\mathbb{K})=<\operatorname{Linzble}_{n}(\mathbb{K})>$.

Conclusion: if $a b \neq 1$ then $L_{(a, b, c)} N$ is linearizable, and if $a b=1$, then not.
conjecture: $\mathrm{GA}_{n}(\mathbb{K})=<\operatorname{Linzble}_{n}(\mathbb{K})>$.
Note: $T_{n}(\mathbb{K}) \subset<\operatorname{Linzble}_{n}(\mathbb{K})>$.

Conclusion: if $a b \neq 1$ then $L_{(a, b, c)} N$ is linearizable, and if $a b=1$, then not.
conjecture: $\mathrm{GA}_{n}(\mathbb{K})=<\operatorname{Linzble}_{n}(\mathbb{K})>$.
Note: $T_{n}(\mathbb{K}) \subset<\operatorname{Linzble}_{n}(\mathbb{K})>$. (Example:
$(X+f(Y), Y)=(1 / 2 X, Y) \circ(2 X+2 f(Y), Y)$ and
$(2 X+2 f(Y), Y)=(X-2 f(Y), Y)(2 X, Y)(X+2 f(Y), Y))$

Second subject: . . . and a conjecture that interests discrete mathematicians

Consider $\varphi \in \mathrm{GA}_{n}\left(\mathbb{F}_{q}\right)$. Induces bijection $\mathcal{E}(\varphi): \mathbb{F}_{q}^{n} \longrightarrow \mathbb{F}_{q}^{n}$,
i.e. $\mathcal{E}(\varphi) \in \operatorname{Sym}\left(q^{n}\right)$.

Question: what is $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?

Question: what is $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?

Question: what is $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
(1) $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$ is transitive - even stronger, it is primitive.

Question: what is $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
(1) $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$ is transitive - even stronger, it is primitive. You might know: if $H<\operatorname{Sym}(m)$ is transitive + has a 2-cycle then $H=\operatorname{Sym}(m)$.

Question: what is $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
(1) $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$ is transitive - even stronger, it is primitive. You might know: if $H<\operatorname{Sym}(m)$ is transitive + has a 2-cycle then $H=\operatorname{Sym}(m)$.
If $q=2$ or q odd, then indeed we find a 2 -cycle!

Question: what is $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
(1) $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$ is transitive - even stronger, it is primitive. You might know: if $H<\operatorname{Sym}(m)$ is transitive + has a 2 -cycle then $H=\operatorname{Sym}(m)$.
If $q=2$ or q odd, then indeed we find a 2 -cycle! Hence if $q=2$ or $q=$ odd, then $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.

Question: what is $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.

Question: what is $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
If $q=4,8,16, \ldots$ then we can only find a 3 -cycle.

Question: what is $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
If $q=4,8,16, \ldots$ then we can only find a 3 -cycle. But: there's another theorem:

Theorem: $H<\operatorname{Sym}(m)$ Primitive +3 -cycle $\longrightarrow H=\operatorname{Alt}(m)$ or $H=\operatorname{Sym}(m)$.

Question: what is $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
If $q=4,8,16, \ldots$ then we can only find a 3 -cycle. But:
there's another theorem:
Theorem: $H<\operatorname{Sym}(m)$ Primitive +3 -cycle $\longrightarrow H=\operatorname{Alt}(m)$ or $H=\operatorname{Sym}(m)$.
Hence if $q=4,8,16, \ldots$ then $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$ is either $\operatorname{Alt}(m)$ or Sym(m).

Question: what is $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
If $q=4,8,16, \ldots$ then we can only find a 3 -cycle. But:
there's another theorem:
Theorem: $H<\operatorname{Sym}(m)$ Primitive +3 -cycle $\longrightarrow H=\operatorname{Alt}(m)$ or $H=\operatorname{Sym}(m)$.
Hence if $q=4,8,16, \ldots$ then $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$ is either $\operatorname{Alt}(m)$ or Sym (m).
But - you can check that all elementary maps will be even hence $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}(m)$!

Question: what is $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=\operatorname{odd}$, then $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
Answer: if $q=4,8,16,32, \ldots$ then $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$.

Question: what is $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
Answer: if $q=4,8,16,32, \ldots$ then $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$.
Problem: Do there exist "odd" polynomial automorphisms over \mathbb{F}_{4} ?

Consequences of an odd polynomial automorphism in dimension n :

Consequences of an odd polynomial automorphism in dimension n :
(1) $\mathrm{T}_{n}\left(\mathbb{F}_{4}\right) \neq \mathrm{GA}_{n}\left(\mathbb{F}_{4}\right)$.

Consequences of an odd polynomial automorphism in dimension n :
(1) $\mathrm{T}_{n}\left(\mathbb{F}_{4}\right) \neq \mathrm{GA}_{n}\left(\mathbb{F}_{4}\right)$.
(2) $\mathrm{GA}_{n}\left(\mathbb{F}_{4}\right) \neq<\operatorname{Linzble}_{n}\left(\mathbb{F}_{4}\right), \operatorname{Aff}_{n}\left(\mathbb{F}_{4}\right)>$.

Consequences of an odd polynomial automorphism in dimension n :
(1) $\mathrm{T}_{n}\left(\mathbb{F}_{4}\right) \neq \mathrm{GA}_{n}\left(\mathbb{F}_{4}\right)$.
(2) $\mathrm{GA}_{n}\left(\mathbb{F}_{4}\right) \neq<\operatorname{Linzble}_{n}\left(\mathbb{F}_{4}\right)$, Aff $_{n}\left(\mathbb{F}_{4}\right)>$.
(3) (if $n=3$:) $\mathrm{GA}_{3}(\mathbb{K}) \neq<\operatorname{Aff}_{3}(\mathbb{K}), \mathrm{GA}_{2}(\mathbb{K}[Z])>$.

Consequences of an odd polynomial automorphism in dimension n :
(1) $\mathrm{T}_{n}\left(\mathbb{F}_{4}\right) \neq \mathrm{GA}_{n}\left(\mathbb{F}_{4}\right)$.
(2) $\mathrm{GA}_{n}\left(\mathbb{F}_{4}\right) \neq<\operatorname{Linzble}_{n}\left(\mathbb{F}_{4}\right)$, Aff $_{n}\left(\mathbb{F}_{4}\right)>$.
(3) (if $n=3:$) $\mathrm{GA}_{3}(\mathbb{K}) \neq<\operatorname{Aff}_{3}(\mathbb{K}), \mathrm{GA}_{2}(\mathbb{K}[Z])>$.

So: Start looking for an odd automorphism!!! (Or prove they don't exist)

Consequences of an odd polynomial automorphism in dimension n :
(1) $\mathrm{T}_{n}\left(\mathbb{F}_{4}\right) \neq \mathrm{GA}_{n}\left(\mathbb{F}_{4}\right)$.
(2) $\mathrm{GA}_{n}\left(\mathbb{F}_{4}\right) \neq<\operatorname{Linzble}_{n}\left(\mathbb{F}_{4}\right)$, Aff $_{n}\left(\mathbb{F}_{4}\right)>$.
(3) (if $n=3:$) $\mathrm{GA}_{3}(\mathbb{K}) \neq<\operatorname{Aff}_{3}(\mathbb{K}), \mathrm{GA}_{2}(\mathbb{K}[Z])>$.

So: Start looking for an odd automorphism!!! (Or prove they don't exist)

