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Notations:
Linear Polynomial

All MLn(C) MAn(C)

Invertible GLn(C) GAn(C)
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BIG STUPID CLAIM:

Polynomial Automorphisms Can Be Used Whenever Linear

Maps Are Used.

Why this bold claim?Polynomial maps seem to have similar

properties as linear maps (much more so than holomorphic

maps for example). Well. . . to be honest, most are

conjectures. . . Let’s look at a few of these conjectures!
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det

(
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c d

)

∈ C
∗ ⇐⇒ L ∈ GL2(C)

F = (F1, F2) ∈ MA2(C)

det

(

∂F1

∂X

∂F1

∂Y

∂F2

∂X

∂F2

∂Y

)

∈ C
∗ ??
⇐⇒ F ∈ GA2(C)

Jacobian Conjecture in dimension n (JC(n)):

Let F ∈ MAn(C). Then

det(Jac(F )) ∈ C
∗ ⇒ F is invertible.
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Cancelation Problem:

Let V be a variety. Then

V × C ∼= C
n+1 =⇒ V ∼= C

n.
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invertible with inverse

(X1 − f (X2, . . . , Xn), X2, . . . , Xn).

Triangular map: (X + f (Y , Z ), Y + g(Z ), Z + c)

= (X , Y , Z + c)(X , Y + g(Z ), Z )(X + f (X , Y ), Y , Z )

Jn(C):= set of triangular maps.

Affn(C):= set of compositions of invertible linear maps and

translations.

TAn(C) :=< Jn(C), Affn(C) >
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n = 2 : (Jung-v/d Kulk, 1942)

TAn(C) = GAn(C)

Nagata’s map:

F =







X − 2(XZ + Y 2)Y − (XZ + Y 2)2Z ,

Y + (XZ + Y 2)Z ,

Z







n = 3:(Shestakov-Umirbaev, 2004)

Nagata’s map not tame, i.e. GA3(C) 6= TA3(C)
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If we want to have any hope of applying polynomial maps to

things in the Real World of Finance, Data Travel and Warfare,

we need to understand them better - give them a better

theoretical foundation!

Now let’s be ambitious. What is the strongest theorem in

linear algebra. Tell me!

Very good: the Cayley-Hamilton theorem (characteristic

polynomials of linear maps etc.).

Now, let’s try to make a Cayley-Hamilton theorem for

polynomial maps! (Perhaps the constant term can replace that

stupid det(Jac(F )) = 1 requirement!)
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Definition:

If F is a zero of some P(T ) ∈ C[T ]\{0}, then we will call F a

Locally Finite Polynomial Endomorphism (short LFPE).

Let’s be a little less ambitious and study this set. LFPE’s

should resemble linear maps more than general polynomial

maps!
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Some Remarks:

F is LFPE ⇐⇒ {deg(F n)}n∈N is bounded.

(F n =
∑n−1

i=0 aiF
i is equivalent to {I , F , F 2, . . .} generates a

finite dimensional C-vector space.)

IF := {P(T ) ∈ C[T ] | P(F ) = 0} is an ideal of C[T ]

(not completely trivial, as F (G + H) 6= FG + FH . But IF is

obviously closed under “+” and closed under multiplication by

T . That’s enough!)

F is LFPE ⇐⇒ G−1FG is LFPE

Proof: due to the first remark.

But: the minimum polynomial may change if G is not linear!
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2
(3t − 1)Y 2, Y ), t ∈ C.

FtFu = Ft+u so Ft ; t ∈ C is a flow.

(Means you can write Ft = F t .)

We’ll get back on that. . . First some results!
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n = 2: Classification of LFPE

F is LFPE, F (0) = 0 .

F invertible ⇐⇒ F is conjugate of

(aX + P(Y ), bY )

a, b ∈ C
∗, P(Y ) ∈ C[Y ].

F not invertible ⇐⇒ F is conjugate of

(aX + YP(X , Y ), 0)

a,∈ C, P(X , Y ) ∈ C[X , Y ].
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F is LFPE, and F (0) = 0.

Let d = deg(F ).

Let L be the linear part of F .

Then F is a zero of

PF (T ) :=
∏

0 ≤ k ≤ d − 1

0 ≤ m ≤ d

(k , m) 6= (0, 0)

(T 2−(detLk)(TrLm)T+det(L2k+m)).
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Equivalent are:

◮ F is LFPE

◮ deg(Fm) is bounded

◮ n = 2: deg(F 2) ≤ deg(F )

Conjecture: in dimension n,

F is LFPE ⇐⇒ deg(Fm) ≤ deg(F )n−1 for all m ∈ N.
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“Cayley-Hamilton” in n variables

Let D := maxm∈N(deg(Fm)). (note: conjecture D = dn−1)

Let λ1, . . . , λn be the eigenvalues of the linear part of F .

Then F is a zero of

∏

α ∈ N
n

0 < |α| ≤ D

(T − λα)

(where λα = λα1
1 · · ·λ

αn
n )

(|α| = α1 + . . . + αn)
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How did we prove that?

If F i = (F
(i)
1 , . . . , F

(i)
n ) and F

(i)
j =

∑

F
(i)
j ,αXα,

then
∑

aiF
i = 0 ⇐⇒

∑

aiF
(i)
j ,α = 0∀j , α.

If {F
(i)
j ,α}i∈N is such a sequence, then it is a linear recurrent

sequence belonging to
∑

aiT
i , etc.. . .
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D = Dn + Ds where Dn is locally nilpotent, Ds is semisimple,

and DnDs = DsDn.

Given F LFPE, then we find unique decomposition

F = FnFs = FsFn where Fn = exp(Dn) where Dn is locally

nilpotent.

an example:

F = (2X + 2Y 2, 3Y ) = (2X , 3Y ) ◦ (X + Y 2, Y )
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Don’t know how to make Ds , given Fs .
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F = exp(Dn) ⇐⇒

F is zero of (T − 1)n for some n

Example: F = exp(Y 2∂X ) = (X + Y 2, Y )

F 2 + 2F + I = 0 i.e. zero of (T − 1)2.
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a 1
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where t ∈ C. QUESTION: Does that work?? Is Ft flow?

(Note: can prove that this work if eigenvalues are “generic”,

to be precise:

λd1
1 · · ·λ

dn
n = 1 then all di = 0.)
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