# Locally finite polynomial endomorphisms 

Stefan Maubach

April 2007
$F: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ is a polynomial map if $F=\left(F_{1}, \ldots, F_{n}\right), F_{i} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.
$F: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ is a polynomial map if $F=\left(F_{1}, \ldots, F_{n}\right), F_{i} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.
Examples: all linear maps.
$F: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ is a polynomial map if $F=\left(F_{1}, \ldots, F_{n}\right), F_{i} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.
Examples: all linear maps.
Notations:
Linear Polynomial
All $\quad M L_{n}(\mathbb{C}) \quad M A_{n}(\mathbb{C})$
Invertible $G L_{n}(\mathbb{C}) \quad G A_{n}(\mathbb{C})$

## BIG STUPID CLAIM:

## BIG STUPID CLAIM:

Polynomial Automorphisms Can Be Used Whenever Linear Maps Are Used.

## BIG STUPID CLAIM:

Polynomial Automorphisms Can Be Used Whenever Linear Maps Are Used.

Why this bold claim?

# BIG STUPID CLAIM: <br> Polynomial Automorphisms Can Be Used Whenever Linear Maps Are Used. 

Why this bold claim?Polynomial maps seem to have similar properties as linear maps (much more so than holomorphic maps for example).

# BIG STUPID CLAIM: <br> Polynomial Automorphisms Can Be Used Whenever Linear Maps Are Used. 

Why this bold claim?Polynomial maps seem to have similar properties as linear maps (much more so than holomorphic maps for example). Well. . . to be honest, most are conjectures...

# BIG STUPID CLAIM: <br> Polynomial Automorphisms Can Be Used Whenever Linear Maps Are Used. 

Why this bold claim?Polynomial maps seem to have similar properties as linear maps (much more so than holomorphic maps for example). Well. . . to be honest, most are conjectures... Let's look at a few of these conjectures!
$L=(a X+b Y, c X+d Y)$ in $M L_{2}(\mathbb{C})$
$L=(a X+b Y, c X+d Y)$ in $M L_{2}(\mathbb{C})$

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathbb{C}^{*} \Longleftrightarrow L \in G L_{2}(\mathbb{C})
$$

$$
\begin{aligned}
& L=(a X+b Y, c X+d Y) \text { in } M L_{2}(\mathbb{C}) \\
& \qquad \operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathbb{C}^{*} \Longleftrightarrow L \in G L_{2}(\mathbb{C}) \\
& F=\left(F_{1}, F_{2}\right) \in M A_{2}(\mathbb{C})
\end{aligned}
$$

$$
L=(a X+b Y, c X+d Y) \text { in } M L_{2}(\mathbb{C})
$$

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathbb{C}^{*} \Longleftrightarrow L \in G L_{2}(\mathbb{C})
$$

$$
F=\left(F_{1}, F_{2}\right) \in M A_{2}(\mathbb{C})
$$

$$
\operatorname{det}\left(\begin{array}{ll}
\frac{\partial F_{1}}{\partial X} & \frac{\partial F_{1}}{\partial Y} \\
\frac{\partial F_{2}}{\partial X} & \frac{\partial \partial_{2}}{\partial Y}
\end{array}\right) \in \mathbb{C}^{*} \stackrel{? ?}{\Longleftrightarrow} F \in G A_{2}(\mathbb{C})
$$

$$
\begin{aligned}
L= & (a X+b Y, c X+d Y) \text { in } M L_{2}(\mathbb{C}) \\
& \operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathbb{C}^{*} \Longleftrightarrow L \in G L_{2}(\mathbb{C}) \\
F= & \left(F_{1}, F_{2}\right) \in M A_{2}(\mathbb{C}) \\
& \operatorname{det}\left(\begin{array}{ll}
\frac{\partial F_{1}}{\partial X} & \frac{\partial F_{1}}{\partial Y} \\
\frac{\partial F_{2}}{\partial X} & \frac{\partial F_{2}}{\partial Y}
\end{array}\right) \in \mathbb{C}^{*} \stackrel{? ?}{\Longleftrightarrow} F \in G A_{2}(\mathbb{C})
\end{aligned}
$$

Jacobian Conjecture in dimension $n(\mathrm{JC}(\mathrm{n})$ ):
Let $F \in M A_{n}(\mathbb{C})$. Then

$$
\operatorname{det}(\operatorname{Jac}(F)) \in \mathbb{C}^{*} \Rightarrow F \text { is invertible. }
$$

Let $V$ be a vector space. Then

$$
V \times \mathbb{C} \cong \mathbb{C}^{n+1} \Longrightarrow V \cong \mathbb{C}^{n}
$$

Let $V$ be a vector space. Then

$$
V \times \mathbb{C} \cong \mathbb{C}^{n+1} \Longrightarrow V \cong \mathbb{C}^{n}
$$

Cancelation Problem:
Let $V$ be a variety. Then

$$
V \times \mathbb{C} \cong \mathbb{C}^{n+1} \Longrightarrow V \cong \mathbb{C}^{n}
$$

## $G L_{n}(\mathbb{C})$ is generated by

$G L_{n}(\mathbb{C})$ is generated by

- Permutations $X_{1} \longleftrightarrow X_{i}$
$G L_{n}(\mathbb{C})$ is generated by
- Permutations $X_{1} \longleftrightarrow X_{i}$
- $\operatorname{Map}\left(a X_{1}+b X_{j}, X_{2}, \ldots, X_{n}\right)\left(a \in \mathbb{C}^{*}, b \in \mathbb{C}\right)$
$G L_{n}(\mathbb{C})$ is generated by
- Permutations $X_{1} \longleftrightarrow X_{i}$
- $\operatorname{Map}\left(a X_{1}+b X_{j}, X_{2}, \ldots, X_{n}\right)\left(a \in \mathbb{C}^{*}, b \in \mathbb{C}\right)$
$G A_{n}(\mathbb{C})$ is generated by ???

Elementary map: $\left(X_{1}+f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$, invertible with inverse
$\left(X_{1}-f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$.

Elementary map: $\left(X_{1}+f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$, invertible with inverse
$\left(X_{1}-f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$.
Triangular map: $(X+f(Y, Z), Y+g(Z), Z+c)$

$$
=(X, Y, Z+c)(X, Y+g(Z), Z)(X+f(X, Y), Y, Z)
$$

Elementary map: $\left(X_{1}+f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$, invertible with inverse
$\left(X_{1}-f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$.
Triangular map: $(X+f(Y, Z), Y+g(Z), Z+c)$
$=(X, Y, Z+c)(X, Y+g(Z), Z)(X+f(X, Y), Y, Z)$
$J_{n}(\mathbb{C}):=$ set of triangular maps.

Elementary map: $\left(X_{1}+f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$, invertible with inverse
$\left(X_{1}-f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$.
Triangular map: $(X+f(Y, Z), Y+g(Z), Z+c)$
$=(X, Y, Z+c)(X, Y+g(Z), Z)(X+f(X, Y), Y, Z)$
$J_{n}(\mathbb{C}):=$ set of triangular maps.
$A f f_{n}(\mathbb{C}):=$ set of compositions of invertible linear maps and translations.

Elementary map: $\left(X_{1}+f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$, invertible with inverse
$\left(X_{1}-f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$.
Triangular map: $(X+f(Y, Z), Y+g(Z), Z+c)$
$=(X, Y, Z+c)(X, Y+g(Z), Z)(X+f(X, Y), Y, Z)$
$J_{n}(\mathbb{C}):=$ set of triangular maps.
$A f f_{n}(\mathbb{C}):=$ set of compositions of invertible linear maps and translations.
$T A_{n}(\mathbb{C}):=<J_{n}(\mathbb{C}), A f f_{n}(\mathbb{C})>$

Question: $T A_{n}(\mathbb{C})=G A_{n}(\mathbb{C})$ ?

Question: $T A_{n}(\mathbb{C})=G A_{n}(\mathbb{C})$ ?
$n=2$ : (Jung-v/d Kulk, 1942)
$T A_{n}(\mathbb{C})=G A_{n}(\mathbb{C})$

Question: $T A_{n}(\mathbb{C})=G A_{n}(\mathbb{C})$ ?
$n=2:($ Jung-v/d Kulk, 1942)
$T A_{n}(\mathbb{C})=G A_{n}(\mathbb{C})$
Nagata's map:

$$
F=\left(\begin{array}{c}
X-2\left(X Z+Y^{2}\right) Y-\left(X Z+Y^{2}\right)^{2} Z \\
Y+\left(X Z+Y^{2}\right) Z \\
Z
\end{array}\right)
$$

Question: $T A_{n}(\mathbb{C})=G A_{n}(\mathbb{C})$ ?
$n=2:($ Jung-v/d Kulk, 1942)
$T A_{n}(\mathbb{C})=G A_{n}(\mathbb{C})$
Nagata's map:

$$
F=\left(\begin{array}{c}
X-2\left(X Z+Y^{2}\right) Y-\left(X Z+Y^{2}\right)^{2} Z \\
Y+\left(X Z+Y^{2}\right) Z \\
Z
\end{array}\right)
$$

$n=3:(S h e s t a k o v-U m i r b a e v, 2004)$
Nagata's map not tame, i.e. $G A_{3}(\mathbb{C}) \neq T A_{3}(\mathbb{C})$

If we want to have any hope of applying polynomial maps to things in the Real World of Finance, Data Travel and Warfare, we need to understand them better - give them a better theoretical foundation!

If we want to have any hope of applying polynomial maps to things in the Real World of Finance, Data Travel and Warfare, we need to understand them better - give them a better theoretical foundation!

Now let's be ambitious. What is the strongest theorem in linear algebra. Tell me!

If we want to have any hope of applying polynomial maps to things in the Real World of Finance, Data Travel and Warfare, we need to understand them better - give them a better theoretical foundation!

Now let's be ambitious. What is the strongest theorem in linear algebra. Tell me!

Very good: the Cayley-Hamilton theorem (characteristic polynomials of linear maps etc.).

If we want to have any hope of applying polynomial maps to things in the Real World of Finance, Data Travel and Warfare, we need to understand them better - give them a better theoretical foundation!

Now let's be ambitious. What is the strongest theorem in linear algebra. Tell me!
Very good: the Cayley-Hamilton theorem (characteristic polynomials of linear maps etc.).
Now, let's try to make a Cayley-Hamilton theorem for polynomial maps!

If we want to have any hope of applying polynomial maps to things in the Real World of Finance, Data Travel and Warfare, we need to understand them better - give them a better theoretical foundation!

Now let's be ambitious. What is the strongest theorem in linear algebra. Tell me!
Very good: the Cayley-Hamilton theorem (characteristic polynomials of linear maps etc.).
Now, let's try to make a Cayley-Hamilton theorem for polynomial maps! (Perhaps the constant term can replace that stupid $\operatorname{det}(\operatorname{Jac}(F))=1$ requirement!)

## Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then $L$ is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L) .
$$

## Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then $L$ is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L)
$$

What about generalizing $M L_{n}(\mathbb{C}) \longrightarrow M A_{n}(\mathbb{C})$ ?

## Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then $L$ is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L)
$$

What about generalizing $M L_{n}(\mathbb{C}) \longrightarrow M A_{n}(\mathbb{C})$ ? EXAMPLE:
Let $F=\left(X^{2}, Y^{2}\right)$.

## Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then $L$ is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L)
$$

What about generalizing $M L_{n}(\mathbb{C}) \longrightarrow M A_{n}(\mathbb{C})$ ? EXAMPLE:
Let $F=\left(X^{2}, Y^{2}\right)$. Then $\operatorname{deg}\left(F^{n}\right)=2^{n}$.

## Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then $L$ is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L)
$$

What about generalizing $M L_{n}(\mathbb{C}) \longrightarrow M A_{n}(\mathbb{C})$ ?
EXAMPLE:
Let $F=\left(X^{2}, Y^{2}\right)$. Then $\operatorname{deg}\left(F^{n}\right)=2^{n}$.
There exists no relation
$F^{n}+a_{n-1} F^{n-1}+\ldots+a_{1} F+a_{0} I=0$.

## Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then $L$ is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L)
$$

What about generalizing $M L_{n}(\mathbb{C}) \longrightarrow M A_{n}(\mathbb{C})$ ?
EXAMPLE:
Let $F=\left(X^{2}, Y^{2}\right)$. Then $\operatorname{deg}\left(F^{n}\right)=2^{n}$.
There exists no relation
$F^{n}+a_{n-1} F^{n-1}+\ldots+a_{1} F+a_{0} I=0$. GR! It will not work!

## Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then $L$ is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L)
$$

What about generalizing $M L_{n}(\mathbb{C}) \longrightarrow M A_{n}(\mathbb{C})$ ?
EXAMPLE:
Let $F=\left(X^{2}, Y^{2}\right)$. Then $\operatorname{deg}\left(F^{n}\right)=2^{n}$.
There exists no relation
$F^{n}+a_{n-1} F^{n-1}+\ldots+a_{1} F+a_{0} I=0$. GR! It will not work!
But. . .

## Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then $L$ is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L)
$$

What about generalizing $M L_{n}(\mathbb{C}) \longrightarrow M A_{n}(\mathbb{C})$ ?
EXAMPLE:
Let $F=\left(X^{2}, Y^{2}\right)$. Then $\operatorname{deg}\left(F^{n}\right)=2^{n}$.
There exists no relation
$F^{n}+a_{n-1} F^{n-1}+\ldots+a_{1} F+a_{0} I=0$. GR! It will not work!
But. .. Definition: If $F$ is a zero of some $P(T) \in \mathbb{C}[T] \backslash\{0\}$, then we will call $F$ a Locally Finite Polynomial Endomorphism (short LFPE).

## Definition:

If $F$ is a zero of some $P(T) \in \mathbb{C}[T] \backslash\{0\}$, then we will call $F$ a Locally Finite Polynomial Endomorphism (short LFPE).

## Definition:

If $F$ is a zero of some $P(T) \in \mathbb{C}[T] \backslash\{0\}$, then we will call $F$ a Locally Finite Polynomial Endomorphism (short LFPE).
Let's be a little less ambitious and study this set.

## Definition:

If $F$ is a zero of some $P(T) \in \mathbb{C}[T] \backslash\{0\}$, then we will call $F$ a Locally Finite Polynomial Endomorphism (short LFPE). Let's be a little less ambitious and study this set. LFPE's should resemble linear maps more than general polynomial maps!

Some Remarks:

## Some Remarks:

$F$ is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.

## Some Remarks:

$F$ is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.
$\left(F^{n}=\sum_{i=0}^{n-1} a_{i} F^{i}\right.$ is equivalent to $\left\{I, F, F^{2}, \ldots\right\}$ generates a finite dimensional $\mathbb{C}$-vector space.)

## Some Remarks:

$F$ is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.
$\left(F^{n}=\sum_{i=0}^{n-1} a_{i} F^{i}\right.$ is equivalent to $\left\{I, F, F^{2}, \ldots\right\}$ generates a finite dimensional $\mathbb{C}$-vector space.)
$I_{F}:=\{P(T) \in \mathbb{C}[T] \mid P(F)=0\}$ is an ideal of $\mathbb{C}[T]$

## Some Remarks:

$F$ is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.
( $F^{n}=\sum_{i=0}^{n-1} a_{i} F^{i}$ is equivalent to $\left\{I, F, F^{2}, \ldots\right\}$ generates a finite dimensional $\mathbb{C}$-vector space.)
$I_{F}:=\{P(T) \in \mathbb{C}[T] \mid P(F)=0\}$ is an ideal of $\mathbb{C}[T]$
( not completely trivial, as $F(G+H) \neq F G+F H$.
)

## Some Remarks:

$F$ is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.
$\left(F^{n}=\sum_{i=0}^{n-1} a_{i} F^{i}\right.$ is equivalent to $\left\{I, F, F^{2}, \ldots\right\}$ generates a finite dimensional $\mathbb{C}$-vector space.)
$I_{F}:=\{P(T) \in \mathbb{C}[T] \mid P(F)=0\}$ is an ideal of $\mathbb{C}[T]$
(not completely trivial, as $F(G+H) \neq F G+F H$. But $I_{F}$ is obviously closed under " + " and closed under multiplication by
$T$. That's enough!)

## Some Remarks:

$F$ is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.
$\left(F^{n}=\sum_{i=0}^{n-1} a_{i} F^{i}\right.$ is equivalent to $\left\{I, F, F^{2}, \ldots\right\}$ generates a finite dimensional $\mathbb{C}$-vector space.)
$I_{F}:=\{P(T) \in \mathbb{C}[T] \mid P(F)=0\}$ is an ideal of $\mathbb{C}[T]$
(not completely trivial, as $F(G+H) \neq F G+F H$. But $I_{F}$ is obviously closed under "+" and closed under multiplication by
$T$. That's enough!)
$F$ is LFPE $\Longleftrightarrow G^{-1} F G$ is LFPE

## Some Remarks:

$F$ is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.
$\left(F^{n}=\sum_{i=0}^{n-1} a_{i} F^{i}\right.$ is equivalent to $\left\{I, F, F^{2}, \ldots\right\}$ generates a finite dimensional $\mathbb{C}$-vector space.)
$I_{F}:=\{P(T) \in \mathbb{C}[T] \mid P(F)=0\}$ is an ideal of $\mathbb{C}[T]$
(not completely trivial, as $F(G+H) \neq F G+F H$. But $I_{F}$ is obviously closed under " + " and closed under multiplication by
$T$. That's enough!)
$F$ is LFPE $\Longleftrightarrow G^{-1} F G$ is LFPE
Proof: due to the first remark.

## Some Remarks:

$F$ is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.
$\left(F^{n}=\sum_{i=0}^{n-1} a_{i} F^{i}\right.$ is equivalent to $\left\{I, F, F^{2}, \ldots\right\}$ generates a finite dimensional $\mathbb{C}$-vector space.)
$I_{F}:=\{P(T) \in \mathbb{C}[T] \mid P(F)=0\}$ is an ideal of $\mathbb{C}[T]$
(not completely trivial, as $F(G+H) \neq F G+F H$. But $I_{F}$ is obviously closed under " + " and closed under multiplication by
$T$. That's enough!)
$F$ is LFPE $\Longleftrightarrow G^{-1} F G$ is LFPE
Proof: due to the first remark.
But: the minimum polynomial may change if $G$ is not linear!

## Example:

$$
\left.F:=\left(3 X+Y^{2}, Y\right) . \quad \text { (Question: Define } F^{\sqrt{2}}\right)
$$

## Example:

$$
\begin{aligned}
& \left.F:=\left(3 X+Y^{2}, Y\right) . \quad \text { (Question: Define } F^{\sqrt{2}}\right) \\
& F^{2}=\left(9 X+4 Y^{2}, Y\right)
\end{aligned}
$$

## Example:

$$
\begin{aligned}
& \left.F:=\left(3 X+Y^{2}, Y\right) . \quad \text { (Question: Define } F^{\sqrt{2}}\right) \\
& F^{2}=\left(9 X+4 Y^{2}, Y\right),
\end{aligned}
$$

So $F^{2}-4 F+3 I=0, F$ zero of
$T^{2}-4 T+3=(T-1)(T-3)$.

## Example:

$F:=\left(3 X+Y^{2}, Y\right) . \quad$ (Question: Define $\left.F^{\sqrt{2}}\right)$
$F^{2}=\left(9 X+4 Y^{2}, Y\right)$,

So $F^{2}-4 F+3 I=0, F$ zero of
$T^{2}-4 T+3=(T-1)(T-3)$.
$(\operatorname{NOT}(F-I) \circ(F-3 I)=0$.)

## Example:

$$
\begin{aligned}
& \left.F:=\left(3 X+Y^{2}, Y\right) . \quad \text { (Question: Define } F^{\sqrt{2}}\right) \\
& F^{2}=\left(9 X+4 Y^{2}, Y\right),
\end{aligned}
$$

So $F^{2}-4 F+3 I=0, F$ zero of
$T^{2}-4 T+3=(T-1)(T-3)$.
$(\operatorname{NOT}(F-I) \circ(F-3 I)=0$.)
$F^{n}=\left(3^{n} X+\frac{1}{2}\left(3^{n}-1\right) Y^{2}, Y\right)$

$$
F^{n}=\left(3^{n} X+\frac{1}{2}\left(3^{n}-1\right) Y^{2}, Y\right), n \in \mathbb{N} .
$$

$F^{n}=\left(3^{n} X+\frac{1}{2}\left(3^{n}-1\right) Y^{2}, Y\right), n \in \mathbb{N}$.
We can define

$$
F_{t}=\left(3^{t} X+\frac{1}{2}\left(3^{t}-1\right) Y^{2}, Y\right), t \in \mathbb{C} .
$$

$F^{n}=\left(3^{n} X+\frac{1}{2}\left(3^{n}-1\right) Y^{2}, Y\right), n \in \mathbb{N}$.
We can define
$F_{t}=\left(3^{t} X+\frac{1}{2}\left(3^{t}-1\right) Y^{2}, Y\right), t \in \mathbb{C}$.
$F_{t} F_{u}=F_{t+u}$ so $F_{t} ; t \in \mathbb{C}$ is a flow.
(Means you can write $F_{t}=F^{t}$.)
$F^{n}=\left(3^{n} X+\frac{1}{2}\left(3^{n}-1\right) Y^{2}, Y\right), n \in \mathbb{N}$.
We can define
$F_{t}=\left(3^{t} X+\frac{1}{2}\left(3^{t}-1\right) Y^{2}, Y\right), t \in \mathbb{C}$.
$F_{t} F_{u}=F_{t+u}$ so $F_{t} ; t \in \mathbb{C}$ is a flow.
(Means you can write $F_{t}=F^{t}$.)

We'll get back on that. . .
$F^{n}=\left(3^{n} X+\frac{1}{2}\left(3^{n}-1\right) Y^{2}, Y\right), n \in \mathbb{N}$.
We can define
$F_{t}=\left(3^{t} X+\frac{1}{2}\left(3^{t}-1\right) Y^{2}, Y\right), t \in \mathbb{C}$.
$F_{t} F_{u}=F_{t+u}$ so $F_{t} ; t \in \mathbb{C}$ is a flow.
(Means you can write $F_{t}=F^{t}$.)

We'll get back on that. . . First some results!

## $n=2$ : Classification of LFPE

## $n=2$ : Classification of LFPE

Two essential cases:

## $n=2$ : Classification of LFPE

Two essential cases:

$$
F=(a X+P(Y), b Y)
$$

## $n=2$ : Classification of LFPE

Two essential cases:

$$
F=(a X+P(Y), b Y)
$$

$$
F=(a X+Y P(X, Y), 0)
$$

## $n=2$ : Classification of LFPE

Two essential cases:
$F=(a X+P(Y), b Y)$
$F=(a X+Y P(X, Y), 0)$
Zero of $T^{2}-a T$.

## $n=2$ : Classification of LFPE

Two essential cases:
$F=(a X+P(Y), b Y)$
Zero of $(T-b)(T-a)\left(T-a^{2}\right) \cdots\left(T-a^{d}\right), d=\operatorname{deg}(P)$
$F=(a X+Y P(X, Y), 0)$
Zero of $T^{2}-a T$.

## $n=2$ : Classification of LFPE

Two essential cases:
$F=(a X+P(Y), b Y) \quad(F$ invertible $)$
Zero of $(T-b)(T-a)\left(T-a^{2}\right) \cdots\left(T-a^{d}\right), d=\operatorname{deg}(P)$
$F=(a X+Y P(X, Y), 0) \quad(F$ not invertible $)$
Zero of $T^{2}-a T$.

## $n=2$ : Classification of LFPE

## $n=2$ : Classification of LFPE

$F$ is LFPE, $F(0)=0$.

## $n=2:$ Classification of LFPE

$F$ is LFPE, $F(0)=0$.
$F$ invertible
$\Longleftrightarrow F$ is conjugate of

$$
\begin{aligned}
& (a X+P(Y), b Y) \\
& a, b \in \mathbb{C}^{*}, P(Y) \in \mathbb{C}[Y] .
\end{aligned}
$$

## $n=2:$ Classification of LFPE

$F$ is LFPE, $F(0)=0$.
$F$ invertible
$\Longleftrightarrow F$ is conjugate of
$(a X+P(Y), b Y)$
$a, b \in \mathbb{C}^{*}, P(Y) \in \mathbb{C}[Y]$.
$F$ not invertible
$\Longleftrightarrow F$ is conjugate of

$$
\begin{aligned}
& (a X+Y P(X, Y), 0) \\
& a, \in \mathbb{C}, P(X, Y) \in \mathbb{C}[X, Y] .
\end{aligned}
$$

## $n=2:$ Cayley-Hamilton for LFPE

## $n=2:$ Cayley-Hamilton for LFPE

$F$ is LFPE, and $F(0)=0$.
Let $d=\operatorname{deg}(F)$.
Let $L$ be the linear part of $F$.

## $n=2:$ Cayley-Hamilton for LFPE

$F$ is LFPE, and $F(0)=0$.
Let $d=\operatorname{deg}(F)$.
Let $L$ be the linear part of $F$.
Then $F$ is a zero of

## $n=2:$ Cayley-Hamilton for LFPE

$F$ is LFPE, and $F(0)=0$.
Let $d=\operatorname{deg}(F)$.
Let $L$ be the linear part of $F$.
Then $F$ is a zero of

$$
P_{F}(T):=\prod_{\substack{0 \leq k \leq d-1 \\ 0 \leq m \leq d \\(k, m) \neq(0,0)}}\left(T^{2}-\left(\operatorname{det} L^{k}\right)\left(\operatorname{Tr} L^{m}\right) T+\operatorname{det}\left(L^{2 k+m}\right)\right) .
$$

Equivalent are:

## Equivalent are:

- $F$ is LFPE


## Equivalent are:

- $F$ is LFPE
- $\operatorname{deg}\left(F^{m}\right)$ is bounded


## Equivalent are:

- $F$ is LFPE
- $\operatorname{deg}\left(F^{m}\right)$ is bounded
- $n=2: \operatorname{deg}\left(F^{2}\right) \leq \operatorname{deg}(F)$


## Equivalent are:

- $F$ is LFPE
- $\operatorname{deg}\left(F^{m}\right)$ is bounded
- $n=2: \operatorname{deg}\left(F^{2}\right) \leq \operatorname{deg}(F)$

Conjecture: in dimension $n$, $F$ is LFPE $\Longleftrightarrow \operatorname{deg}\left(F^{m}\right) \leq \operatorname{deg}(F)^{n-1}$ for all $m \in \mathbb{N}$.

## "Cayley-Hamilton" in $n$ variables

## "Cayley-Hamilton" in $n$ variables

Let $D:=\max _{m \in \mathbb{N}}\left(\operatorname{deg}\left(F^{m}\right)\right.$ ). (note: conjecture $\left.D=d^{n-1}\right)$

## "Cayley-Hamilton" in $n$ variables

Let $D:=\max _{m \in \mathbb{N}}\left(\operatorname{deg}\left(F^{m}\right)\right.$ ). (note: conjecture $D=d^{n-1}$ )
Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of the linear part of $F$.

## "Cayley-Hamilton" in $n$ variables

Let $D:=\max _{m \in \mathbb{N}}\left(\operatorname{deg}\left(F^{m}\right)\right.$ ). (note: conjecture $D=d^{n-1}$ )
Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of the linear part of $F$.
Then $F$ is a zero of

## "Cayley-Hamilton" in $n$ variables

Let $D:=\max _{m \in \mathbb{N}}\left(\operatorname{deg}\left(F^{m}\right)\right.$ ). (note: conjecture $D=d^{n-1}$ )
Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of the linear part of $F$.
Then $F$ is a zero of
(where $\lambda^{\alpha}=\lambda_{1}^{\alpha_{1}} \cdots \lambda_{n}^{\alpha_{n}}$ )

## "Cayley-Hamilton" in $n$ variables

Let $D:=\max _{m \in \mathbb{N}}\left(\operatorname{deg}\left(F^{m}\right)\right.$ ). (note: conjecture $D=d^{n-1}$ )
Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of the linear part of $F$.
Then $F$ is a zero of

$$
\prod_{\alpha \in \mathbb{N}^{n}}\left(T-\lambda^{\alpha}\right)
$$

(where $\lambda^{\alpha}=\lambda_{1}^{\alpha_{1}} \cdots \lambda_{n}^{\alpha_{n}}$ )

## "Cayley-Hamilton" in $n$ variables

Let $D:=\max _{m \in \mathbb{N}}\left(\operatorname{deg}\left(F^{m}\right)\right.$ ). (note: conjecture $D=d^{n-1}$ )
Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of the linear part of $F$.
Then $F$ is a zero of

$$
\prod_{\substack{\alpha \in \mathbb{N}^{n}}}\left(T-\lambda^{\alpha}\right)
$$

(where $\lambda^{\alpha}=\lambda_{1}^{\alpha_{1}} \cdots \lambda_{n}^{\alpha_{n}}$ )
$\left(|\alpha|=\alpha_{1}+\ldots+\alpha_{n}\right)$

## How did we prove that?

## How did we prove that?

$$
\text { If } F^{i}=\left(F_{1}^{(i)}, \ldots, F_{n}^{(i)}\right) \text { and } F_{j}^{(i)}=\sum F_{j, \alpha}^{(i)} X^{\alpha} \text {, }
$$

## How did we prove that?

If $F^{i}=\left(F_{1}^{(i)}, \ldots, F_{n}^{(i)}\right)$ and $F_{j}^{(i)}=\sum F_{j, \alpha}^{(i)} X^{\alpha}$,
then $\sum a_{i} F^{i}=0 \Longleftrightarrow \sum a_{i} F_{j, \alpha}^{(i)}=0 \forall j, \alpha$.

## How did we prove that?

If $F^{i}=\left(F_{1}^{(i)}, \ldots, F_{n}^{(i)}\right)$ and $F_{j}^{(i)}=\sum F_{j, \alpha}^{(i)} X^{\alpha}$,
then $\sum a_{i} F^{i}=0 \Longleftrightarrow \sum a_{i} F_{j, \alpha}^{(i)}=0 \forall j, \alpha$.
If $\left\{F_{j, \alpha}^{(i)}\right\}_{i \in \mathbb{N}}$ is such a sequence, then it is a linear recurrent sequence belonging to $\sum a_{i} T^{i}$, etc....

Now some theory...

## Now some theory. . .

A derivation $D: \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] \longrightarrow \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$

## Now some theory...

A derivation $D: \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] \longrightarrow \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is a map satisfying
(1) $\mathbb{C}$-linear.

## Now some theory...

A derivation $D: \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] \longrightarrow \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is a map satisfying
(1) $\mathbb{C}$-linear.
(2) $D(f g)=D(f) g+f D(g)$ for all $f, g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.

## Now some theory...

A derivation $D: \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] \longrightarrow \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is a map satisfying
(1) $\mathbb{C}$-linear.
(2) $D(f g)=D(f) g+f D(g)$ for all $f, g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.

A derivation will have the form:

## Now some theory...

A derivation $D: \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] \longrightarrow \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is a map satisfying
(1) $\mathbb{C}$-linear.
(2) $D(f g)=D(f) g+f D(g)$ for all $f, g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.

A derivation will have the form:
$a_{1} \frac{\partial}{\partial X_{1}}+\ldots+a_{n} \frac{\partial}{\partial X_{n}}$ for some $a_{i} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.

## Now some theory...

A derivation $D: \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] \longrightarrow \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is a map satisfying
(1) $\mathbb{C}$-linear.
(2) $D(f g)=D(f) g+f D(g)$ for all $f, g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.

A derivation will have the form:
$a_{1} \frac{\partial}{\partial X_{1}}+\ldots+a_{n} \frac{\partial}{\partial X_{n}}$ for some $a_{i} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.
$D$ is called locally nilpotent if:

## Now some theory...

A derivation $D: \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] \longrightarrow \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is a map satisfying
(1) $\mathbb{C}$-linear.
(2) $D(f g)=D(f) g+f D(g)$ for all $f, g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.

A derivation will have the form:
$a_{1} \frac{\partial}{\partial X_{1}}+\ldots+a_{n} \frac{\partial}{\partial X_{n}}$ for some $a_{i} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.
$D$ is called locally nilpotent if:
For all $g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ there exists $m \in \mathbb{N}$ such that $D^{m}(g)=0$.

## Now some theory...

A derivation $D: \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] \longrightarrow \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is a map satisfying
(1) $\mathbb{C}$-linear.
(2) $D(f g)=D(f) g+f D(g)$ for all $f, g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.

A derivation will have the form:
$a_{1} \frac{\partial}{\partial X_{1}}+\ldots+a_{n} \frac{\partial}{\partial X_{n}}$ for some $a_{i} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.
$D$ is called locally nilpotent if:
For all $g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ there exists $m \in \mathbb{N}$ such that $D^{m}(g)=0$.
EXAMPLE: $D=\frac{\partial}{\partial X_{1}}$.
$D$ is called locally nilpotent if:
For all $g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ there exists $m \in \mathbb{N}$ such that $D^{m}(g)=0$.
EXAMPLE: $D=\frac{\partial}{\partial X_{1}}$.
$D$ is called locally nilpotent if:
For all $g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ there exists $m \in \mathbb{N}$ such that $D^{m}(g)=0$.
EXAMPLE: $D=\frac{\partial}{\partial X_{1}}$.
$D$ is called locally finite if:
$D$ is called locally nilpotent if:
For all $g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ there exists $m \in \mathbb{N}$ such that $D^{m}(g)=0$.
EXAMPLE: $D=\frac{\partial}{\partial X_{1}}$.
$D$ is called locally finite if:
For all $g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, the vector space
$\mathbb{C} g+\mathbb{C} D(g)+\mathbb{C} D^{2}(g)+\ldots$ is finite dimensional.
$D$ is called locally nilpotent if:
For all $g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ there exists $m \in \mathbb{N}$ such that $D^{m}(g)=0$.
EXAMPLE: $D=\frac{\partial}{\partial X_{1}}$.
$D$ is called locally finite if:
For all $g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, the vector space
$\mathbb{C} g+\mathbb{C} D(g)+\mathbb{C} D^{2}(g)+\ldots$ is finite dimensional.
EXAMPLE: $D=X_{1} \frac{\partial}{\partial X_{1}}$.
$D$ is called locally nilpotent if:
For all $g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ there exists $m \in \mathbb{N}$ such that $D^{m}(g)=0$.
EXAMPLE: $D=\frac{\partial}{\partial X_{1}}$.
$D$ is called locally finite if:
For all $g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, the vector space
$\mathbb{C} g+\mathbb{C} D(g)+\mathbb{C} D^{2}(g)+\ldots$ is finite dimensional.
EXAMPLE: $D=X_{1} \frac{\partial}{\partial X_{1}}$.
Locally nilpotent $\Rightarrow$ Locally finite

## Exponents of derivations

## Exponents of derivations

$D$ locally finite derivation, then
$\exp (D)(g):=g+D(g)+\frac{1}{2!} D^{2}(g)+\frac{1}{3!} D^{3}(g)+\ldots$ is well-defined.

## Exponents of derivations

$D$ locally finite derivation, then
$\exp (D)(g):=g+D(g)+\frac{1}{2!} D^{2}(g)+\frac{1}{3!} D^{3}(g)+\ldots$ is well-defined.
Inverse is $\exp (-D)$.

## Exponents of derivations

$D$ locally finite derivation, then
$\exp (D)(g):=g+D(g)+\frac{1}{2!} D^{2}(g)+\frac{1}{3!} D^{3}(g)+\ldots$ is well-defined.
Inverse is $\exp (-D)$.
EXAMPLE: $D=Y^{2} \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$ on $\mathbb{C}[X, Y, Z]$ :

## Exponents of derivations

$D$ locally finite derivation, then
$\exp (D)(g):=g+D(g)+\frac{1}{2!} D^{2}(g)+\frac{1}{3!} D^{3}(g)+\ldots$ is well-defined.
Inverse is $\exp (-D)$.
EXAMPLE: $D=Y^{2} \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$ on $\mathbb{C}[X, Y, Z]$ :

$$
\exp (D)=
$$

## Exponents of derivations

$D$ locally finite derivation, then
$\exp (D)(g):=g+D(g)+\frac{1}{2!} D^{2}(g)+\frac{1}{3!} D^{3}(g)+\ldots$ is well-defined.
Inverse is $\exp (-D)$.
EXAMPLE: $D=Y^{2} \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$ on $\mathbb{C}[X, Y, Z]$ :

$$
\exp (D)=(\exp (D)(X), \exp (D)(Y), \exp (D)(Z))
$$

## Exponents of derivations

$D$ locally finite derivation, then
$\exp (D)(g):=g+D(g)+\frac{1}{2!} D^{2}(g)+\frac{1}{3!} D^{3}(g)+\ldots$ is well-defined.
Inverse is $\exp (-D)$.
EXAMPLE: $D=Y^{2} \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$ on $\mathbb{C}[X, Y, Z]$ :

$$
\exp (D)=(\exp (D)(X), \exp (D)(Y), \exp (D)(Z))
$$

## Exponents of derivations

$D$ locally finite derivation, then
$\exp (D)(g):=g+D(g)+\frac{1}{2!} D^{2}(g)+\frac{1}{3!} D^{3}(g)+\ldots$ is well-defined.
Inverse is $\exp (-D)$.
EXAMPLE: $D=Y^{2} \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$ on $\mathbb{C}[X, Y, Z]$ :

$$
\begin{aligned}
\exp (D) & =(\exp (D)(X), \exp (D)(Y), \exp (D)(Z)) \\
& =\left(X+Y^{2}+Y Z+\frac{1}{6} Z^{2}, Y+Z, Z\right)
\end{aligned}
$$

$$
\exp (D)^{2}=\exp (D) \circ \exp (D)=\exp (2 D)
$$

$$
\begin{aligned}
& \exp (D)^{2}=\exp (D) \circ \exp (D)=\exp (2 D) \\
& F^{n}=\exp (n D)=\left(X+n Y^{2}+n^{2} Y Z+\frac{n^{3}}{6} Z^{2}, Y+n Z, Z\right)
\end{aligned}
$$

$$
\exp (D)^{2}=\exp (D) \circ \exp (D)=\exp (2 D)
$$

$$
F^{n}=\exp (n D)=\left(X+n Y^{2}+n^{2} Y Z+\frac{n^{3}}{6} Z^{2}, Y+n Z, Z\right)
$$

i.e. $\{\operatorname{deg}(\exp (n D))\}_{n \in \mathbb{N}}$ is bounded sequence
$\exp (D)^{2}=\exp (D) \circ \exp (D)=\exp (2 D)$
$F^{n}=\exp (n D)=\left(X+n Y^{2}+n^{2} Y Z+\frac{n^{3}}{6} Z^{2}, Y+n Z, Z\right)$
i.e. $\{\operatorname{deg}(\exp (n D))\}_{n \in \mathbb{N}}$ is bounded sequence
$\Rightarrow \exp (D)$ is LFPE.
$\exp (D)^{2}=\exp (D) \circ \exp (D)=\exp (2 D)$
$F^{n}=\exp (n D)=\left(X+n Y^{2}+n^{2} Y Z+\frac{n^{3}}{6} Z^{2}, Y+n Z, Z\right)$
i.e. $\{\operatorname{deg}(\exp (n D))\}_{n \in \mathbb{N}}$ is bounded sequence
$\Rightarrow \exp (D)$ is LFPE.

So: $F=\exp (D) \longrightarrow F$ is LFPE.
$\exp (D)^{2}=\exp (D) \circ \exp (D)=\exp (2 D)$
$F^{n}=\exp (n D)=\left(X+n Y^{2}+n^{2} Y Z+\frac{n^{3}}{6} Z^{2}, Y+n Z, Z\right)$
i.e. $\{\operatorname{deg}(\exp (n D))\}_{n \in \mathbb{N}}$ is bounded sequence
$\Rightarrow \exp (D)$ is LFPE.

So: $F=\exp (D) \longrightarrow F$ is LFPE.
Even: $F_{t}:=\exp (t D)$ is a flow.
$\exp (D)^{2}=\exp (D) \circ \exp (D)=\exp (2 D)$
$F^{n}=\exp (n D)=\left(X+n Y^{2}+n^{2} Y Z+\frac{n^{3}}{6} Z^{2}, Y+n Z, Z\right)$
i.e. $\{\operatorname{deg}(\exp (n D))\}_{n \in \mathbb{N}}$ is bounded sequence
$\Rightarrow \exp (D)$ is LFPE.

So: $F=\exp (D) \longrightarrow F$ is LFPE.
Even: $F_{t}:=\exp (t D)$ is a flow.
So: we can make many examples of LFPEs!

$$
F=\exp (D) \Longleftrightarrow F \text { has a flow }
$$

$F=\exp (D) \Longleftrightarrow F$ has a flow
(A flow of $F$ is:
$F_{t}$ for each $t \in \mathbb{C}$
$\left.F_{1}=F, F_{0}=I, F_{t} F_{u}=F_{t+u}.\right)$
$F=\exp (D) \Longleftrightarrow F$ has a flow
(A flow of $F$ is:
$F_{t}$ for each $t \in \mathbb{C}$
$\left.F_{1}=F, F_{0}=I, F_{t} F_{u}=F_{t+u}.\right)$
$F=\exp (D) \Rightarrow F$ is LFPE.
$F=\exp (D) \Longleftrightarrow F$ has a flow
(A flow of $F$ is:
$F_{t}$ for each $t \in \mathbb{C}$
$\left.F_{1}=F, F_{0}=I, F_{t} F_{u}=F_{t+u}.\right)$
$F=\exp (D) \Rightarrow F$ is LFPE.
$? \Leftarrow$ ?
$D$ locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$
$D$ locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where $D_{n}$ is locally nilpotent, $D_{s}$ is semisimple,
$D$ locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where $D_{n}$ is locally nilpotent, $D_{s}$ is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.
$D$ locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where $D_{n}$ is locally nilpotent, $D_{s}$ is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.

Given $F$ LFPE, then we find unique decomposition $F=F_{n} F_{s}=F_{s} F_{n}$
$D$ locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where $D_{n}$ is locally nilpotent, $D_{s}$ is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.

Given $F$ LFPE, then we find unique decomposition $F=F_{n} F_{s}=F_{s} F_{n}$ where $F_{n}=\exp \left(D_{n}\right)$ where $D_{n}$ is locally nilpotent. an example:
$D$ locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where $D_{n}$ is locally nilpotent, $D_{s}$ is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.

Given $F$ LFPE, then we find unique decomposition $F=F_{n} F_{s}=F_{s} F_{n}$ where $F_{n}=\exp \left(D_{n}\right)$ where $D_{n}$ is locally nilpotent.
an example:
$F=\left(2 X+2 Y^{2}, 3 Y\right)$
$D$ locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where $D_{n}$ is locally nilpotent, $D_{s}$ is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.

Given $F$ LFPE, then we find unique decomposition $F=F_{n} F_{s}=F_{s} F_{n}$ where $F_{n}=\exp \left(D_{n}\right)$ where $D_{n}$ is locally nilpotent.
an example:
$F=\left(2 X+2 Y^{2}, 3 Y\right)=(2 X, 3 Y) \circ\left(X+Y^{2}, Y\right)$
$D$ locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where $D_{n}$ is locally nilpotent, $D_{s}$ is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.

Given $F$ LFPE, then we find unique decomposition $F=F_{n} F_{s}=F_{s} F_{n}$ where $F_{n}=\exp \left(D_{n}\right)$ where $D_{n}$ is locally nilpotent. an example:
$F=\left(2 X+2 Y^{2}, 3 Y\right)=(2 X, 3 Y) \circ\left(X+Y^{2}, Y\right)$
$(2 X, 3 Y)=\exp \left(\lambda X \partial_{X}+\mu Y \partial_{Y}\right)$,
$D$ locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where $D_{n}$ is locally nilpotent, $D_{s}$ is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.

Given $F$ LFPE, then we find unique decomposition $F=F_{n} F_{s}=F_{s} F_{n}$ where $F_{n}=\exp \left(D_{n}\right)$ where $D_{n}$ is locally nilpotent.
an example:
$F=\left(2 X+2 Y^{2}, 3 Y\right)=(2 X, 3 Y) \circ\left(X+Y^{2}, Y\right)$
$(2 X, 3 Y)=\exp \left(\lambda X \partial_{X}+\mu Y \partial_{Y}\right)$, where
$\lambda=\log (2), \mu=\log (3)$.
$D$ locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where $D_{n}$ is locally nilpotent, $D_{s}$ is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.

Given $F$ LFPE, then we find unique decomposition $F=F_{n} F_{s}=F_{s} F_{n}$ where $F_{n}=\exp \left(D_{n}\right)$ where $D_{n}$ is locally nilpotent.
an example:
$F=\left(2 X+2 Y^{2}, 3 Y\right)=(2 X, 3 Y) \circ\left(X+Y^{2}, Y\right)$
$(2 X, 3 Y)=\exp \left(\lambda X \partial_{X}+\mu Y \partial_{Y}\right)$, where
$\lambda=\log (2), \mu=\log (3)$.
$\left(X+Y^{2}, Y\right)=\exp \left(Y^{2} \partial_{X}\right)$.
$D$ locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where $D_{n}$ is locally nilpotent, $D_{s}$ is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.

Given $F$ LFPE, then we find unique decomposition $F=F_{n} F_{s}=F_{s} F_{n}$ where $F_{n}=\exp \left(D_{n}\right)$ where $D_{n}$ is locally nilpotent.
an example:
$F=\left(2 X+2 Y^{2}, 3 Y\right)=(2 X, 3 Y) \circ\left(X+Y^{2}, Y\right)$
$(2 X, 3 Y)=\exp \left(\lambda X \partial_{X}+\mu Y \partial_{Y}\right)$, where
$\lambda=\log (2), \mu=\log (3)$.
$\left(X+Y^{2}, Y\right)=\exp \left(Y^{2} \partial_{X}\right)$.

Don't know how to make $D_{s}$, given $F_{s}$.

## Case $F=\exp \left(D_{n}\right), D_{n}$ loc.nilp.:

## Case $F=\exp \left(D_{n}\right), D_{n}$ loc.nilp.:

$$
F=\exp \left(D_{n}\right)
$$

## Case $F=\exp \left(D_{n}\right), D_{n}$ loc.nilp.:

$$
F=\exp \left(D_{n}\right)
$$

$F$ is zero of $(T-1)^{n}$ for some $n$

## Case $F=\exp \left(D_{n}\right), D_{n}$ loc.nilp.:

$$
F=\exp \left(D_{n}\right) \Longleftrightarrow
$$

$F$ is zero of $(T-1)^{n}$ for some $n$

## Case $F=\exp \left(D_{n}\right), D_{n}$ loc.nilp.:

$F=\exp \left(D_{n}\right) \Longleftrightarrow$
$F$ is zero of $(T-1)^{n}$ for some $n$

Example: $F=\exp \left(Y^{2} \partial_{X}\right)=\left(X+Y^{2}, Y\right)$

## Case $F=\exp \left(D_{n}\right), D_{n}$ loc.nilp.:

$F=\exp \left(D_{n}\right) \Longleftrightarrow$
$F$ is zero of $(T-1)^{n}$ for some $n$

Example: $F=\exp \left(Y^{2} \partial_{X}\right)=\left(X+Y^{2}, Y\right)$
$F^{2}+2 F+I=0$

## Case $F=\exp \left(D_{n}\right), D_{n}$ loc.nilp.:

$F=\exp \left(D_{n}\right) \Longleftrightarrow$
$F$ is zero of $(T-1)^{n}$ for some $n$

Example: $F=\exp \left(Y^{2} \partial_{X}\right)=\left(X+Y^{2}, Y\right)$
$F^{2}+2 F+I=0$ i.e. zero of $(T-1)^{2}$.

Why the problem with general case?

## Why the problem with general case?

In case $F$ zero of $(T-1)^{n}$, then $F$ has only eigenvalue 1 .

## Why the problem with general case?

In case $F$ zero of $(T-1)^{n}$, then $F$ has only eigenvalue 1 .
Then there is one natural choice for " $\log (F)=D$ ", only ONE of them is loc. NILPOTENT

## Why the problem with general case?

In case $F$ zero of $(T-1)^{n}$, then $F$ has only eigenvalue 1 .
Then there is one natural choice for " $\log (F)=D$ ", only ONE of them is loc. NILPOTENT Compare to: $\log (1)=0$.

## Why the problem with general case?

In case $F$ zero of $(T-1)^{n}$, then $F$ has only eigenvalue 1 .
Then there is one natural choice for " $\log (F)=D$ ", only ONE of them is loc. NILPOTENT Compare to: $\log (1)=0$. But could have been: $\log (1)=2 \pi i$. But 0 is natural choice.

## Why the problem with general case?

In case $F$ zero of $(T-1)^{n}$, then $F$ has only eigenvalue 1 .
Then there is one natural choice for " $\log (F)=D$ ", only ONE of them is loc. NILPOTENT Compare to: $\log (1)=0$. But could have been: $\log (1)=2 \pi i$. But 0 is natural choice.
if $c \in \mathbb{C}$, then no natural choice $\log (c)$.

Nevertheless. . .

## Nevertheless. . .

Example: $F^{2}=a F+b l, b \not \emptyset$ (for then $F$ invertible)

## Nevertheless. . .

Example: $F^{2}=a F+b l, b \not \emptyset$ (for then $F$ invertible)

$$
F^{2}=a F+b l=(a, b)\binom{F}{l}
$$

## Nevertheless. . .

Example: $F^{2}=a F+b l, b \not \emptyset$ (for then $F$ invertible)

$$
\begin{aligned}
& F^{2}=a F+b l=(a, b)\binom{F}{ı} \\
& F^{3}=a F^{2}+b F=a(a F+b l)+b F
\end{aligned}
$$

## Nevertheless. . .

Example: $F^{2}=a F+b l, b \not 0$ (for then $F$ invertible)

$$
\begin{aligned}
F^{2}=a F+b l & =(a, b)\binom{F}{l} \\
F^{3}=a F^{2}+b F & =a(a F+b l)+b F \\
& =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)\binom{F^{2}}{F}
\end{aligned}
$$

## Nevertheless. . .

Example: $F^{2}=a F+b l, b \not \emptyset$ (for then $F$ invertible)

$$
\begin{aligned}
F^{2}=a F+b l & =(a, b)(F) \\
F^{3}=a F^{2}+b F & =a(a F+b l)+b F \\
& =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)\binom{F^{2}}{F} \\
F^{n} & =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{n-2}\binom{F^{2}}{F}
\end{aligned}
$$

## Nevertheless. . .

Example: $F^{2}=a F+b l, b \emptyset$ (for then $F$ invertible)

$$
\begin{aligned}
F^{2}=a F+b l & =(a, b)\binom{F}{1} \\
F^{3}=a F^{2}+b F & =a(a F+b /)+b F \\
& =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)\binom{F^{2}}{F} \\
& =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{n-2} \quad\binom{F^{2}}{F} \\
F^{n} & =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{n}\binom{1}{F^{-1}}
\end{aligned}
$$

## Forcing. . .

$F^{2}=a F+b l$.

$$
\begin{aligned}
F^{2}=a F+b l & =(a, b)\binom{F}{1} \\
F^{n} & =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{n}\binom{1}{F-1}
\end{aligned}
$$

## Forcing. . .

$F^{2}=a F+b l$.

$$
\begin{array}{ll}
F^{2}=a F+b l & =(a, b)\binom{F}{1} \\
F^{n} & =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{n}\binom{1}{F^{-1}} \\
F_{t} & =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{t}\binom{1}{F^{-1}}
\end{array}
$$

where $t \in \mathbb{C}$.

## Forcing. . .

$F^{2}=a F+b l$.

$$
\begin{aligned}
F^{2}=a F+b l & =(a, b)\binom{F}{1} \\
F^{n} & =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{n}\binom{\prime}{F^{-1}} \\
F_{t} & =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{t}\binom{\prime}{F^{-1}}
\end{aligned}
$$

where $t \in \mathbb{C}$. One chooses

$$
\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{t}
$$

as exponential map.

## Forcing. . .

$F^{2}=a F+b l$.

$$
\begin{aligned}
F^{2}=a F+b l & =(a, b)\binom{F}{1} \\
F^{n} & =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{n}\binom{1}{F^{-1}} \\
F_{t} & =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{t}\binom{I}{F^{-1}}
\end{aligned}
$$

where $t \in \mathbb{C}$. One chooses

$$
\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{t}
$$

as exponential map. So: $F$ LFPE then you can make $F_{t}$.
$F^{2}=a F+b l$.

$$
\begin{aligned}
F^{2}=a F+b l & =(a, b)\binom{F}{1} \\
F^{n} & =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{n}\binom{1}{F^{-1}} \\
F_{t} & =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{t}\binom{\prime}{F^{-1}}
\end{aligned}
$$

where $t \in \mathbb{C}$.
$F^{2}=a F+b l$.

$$
\begin{aligned}
F^{2}=a F+b l & =(a, b)\binom{F}{1} \\
F^{n} & =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{n}\binom{1}{F^{-1}} \\
F_{t} & =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{t}\binom{1}{F^{-1}}
\end{aligned}
$$

where $t \in \mathbb{C}$. QUESTION: Does that work?? Is $F_{t}$ flow?
$F^{2}=a F+b l$.

$$
\begin{aligned}
F^{2}=a F+b l & =(a, b)\binom{F}{1} \\
& =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{n}\binom{\prime}{F^{-1}} \\
F_{t} & =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{t}\binom{\prime}{F^{-1}}
\end{aligned}
$$

where $t \in \mathbb{C}$. QUESTION: Does that work?? Is $F_{t}$ flow?
(Note: can prove that this work if eigenvalues are "generic", to be precise:
$\lambda_{1}^{d_{1}} \cdots \lambda_{n}^{d_{n}}=1$ then all $\left.d_{i}=0.\right)$
last slide ...

## Finally. .. last slide . . . phew. . .

## Finally... last slide . . . phew. . .

I.e. Big Question: $L F P E ? \longrightarrow$ ? exponent of LF derivation.

## Finally... last slide ... phew. . .

I.e. Big Question: $L F P E ? \longrightarrow$ ? exponent of LF derivation.

Does, given
$F^{n}=a_{n-1} F^{n-1}+\ldots+a_{1} F+a_{0} l$

## Finally... last slide ... phew. . .

I.e. Big Question: $L F P E ? \longrightarrow$ ? exponent of LF derivation.

Does, given
$F^{n}=a_{n-1} F^{n-1}+\ldots+a_{1} F+a_{0} l$
give a flow by
$F_{t}=\left(a_{n-1}, a_{n-2}, \ldots, a_{0}\right)\left(\begin{array}{ccccc}a_{n-1} & 1 & 0 & \ldots & 0 \\ a_{n-2} & 0 & 1 & \ldots & 0 \\ \vdots & & & \vdots & \\ a_{0} & 0 & 0 & \ldots & 0\end{array}\right)^{t}\left(\begin{array}{c}I \\ F^{-1} \\ \vdots \\ F^{-n+1}\end{array}\right)$

## Finally... last slide ... phew. . .

I.e. Big Question: $L F P E ? \longrightarrow$ ? exponent of LF derivation.

Does, given
$F^{n}=a_{n-1} F^{n-1}+\ldots+a_{1} F+a_{0} l$
give a flow by
$F_{t}=\left(a_{n-1}, a_{n-2}, \ldots, a_{0}\right)\left(\begin{array}{ccccc}a_{n-1} & 1 & 0 & \ldots & 0 \\ a_{n-2} & 0 & 1 & \ldots & 0 \\ \vdots & & & \vdots & \\ a_{0} & 0 & 0 & \ldots & 0\end{array}\right)^{t}\left(\begin{array}{c}I \\ F^{-1} \\ \vdots \\ F^{-n+1}\end{array}\right)$
Funny detail: true for linear $F$, but not trivial.

## Finally... last slide ... phew. . .

I.e. Big Question: $L F P E ? \longrightarrow$ ? exponent of LF derivation.

Does, given
$F^{n}=a_{n-1} F^{n-1}+\ldots+a_{1} F+a_{0} l$
give a flow by
$F_{t}=\left(a_{n-1}, a_{n-2}, \ldots, a_{0}\right)\left(\begin{array}{ccccc}a_{n-1} & 1 & 0 & \ldots & 0 \\ a_{n-2} & 0 & 1 & \ldots & 0 \\ \vdots & & & \vdots & \\ a_{0} & 0 & 0 & \ldots & 0\end{array}\right)^{t}\left(\begin{array}{c}I \\ F^{-1} \\ \vdots \\ F^{-n+1}\end{array}\right)$
Funny detail: true for linear $F$, but not trivial.

## THANK YOU

