Polynomial automorphisms, especially over finite fields

Stefan Maubach

October 2009

A short introduction: What is a polynomial map?

A short introduction: What is a polynomial map?
A map $F: k^{n} \longrightarrow k^{n}$ given by n polynomials:

$$
F=\left(F_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, F_{n}\left(X_{1}, \ldots, X_{n}\right)\right)
$$

A short introduction: What is a polynomial map?
A map $F: k^{n} \longrightarrow k^{n}$ given by n polynomials:

$$
F=\left(F_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, F_{n}\left(X_{1}, \ldots, X_{n}\right)\right) .
$$

Example: $F=\left(X+Y^{2}, Y\right)$.

A short introduction: What is a polynomial map?
A map $F: k^{n} \longrightarrow k^{n}$ given by n polynomials:

$$
F=\left(F_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, F_{n}\left(X_{1}, \ldots, X_{n}\right)\right) .
$$

Example: $F=\left(X+Y^{2}, Y\right)$.
Various ways of looking at polynomial maps:

A short introduction: What is a polynomial map?
A map $F: k^{n} \longrightarrow k^{n}$ given by n polynomials:

$$
F=\left(F_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, F_{n}\left(X_{1}, \ldots, X_{n}\right)\right) .
$$

Example: $F=\left(X+Y^{2}, Y\right)$.
Various ways of looking at polynomial maps:

- A map $k^{n} \longrightarrow k^{n}$.

A short introduction: What is a polynomial map?
A map $F: k^{n} \longrightarrow k^{n}$ given by n polynomials:

$$
F=\left(F_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, F_{n}\left(X_{1}, \ldots, X_{n}\right)\right) .
$$

Example: $F=\left(X+Y^{2}, Y\right)$.
Various ways of looking at polynomial maps:

- A map $k^{n} \longrightarrow k^{n}$.
- A list of n polynomials: $F \in\left(k\left[X_{1}, \ldots, X_{n}\right]\right)^{n}$.

A short introduction: What is a polynomial map?
A map $F: k^{n} \longrightarrow k^{n}$ given by n polynomials:

$$
F=\left(F_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, F_{n}\left(X_{1}, \ldots, X_{n}\right)\right) .
$$

Example: $F=\left(X+Y^{2}, Y\right)$.
Various ways of looking at polynomial maps:

- A map $k^{n} \longrightarrow k^{n}$.
- A list of n polynomials: $F \in\left(k\left[X_{1}, \ldots, X_{n}\right]\right)^{n}$.
- A ring automorphism of $k\left[X_{1}, \ldots, X_{n}\right]$ sending $g\left(X_{1}, \ldots, X_{n}\right)$ to $g\left(F_{1}, \ldots, F_{n}\right)$.

A short introduction: What is a polynomial map?
A map $F: k^{n} \longrightarrow k^{n}$ given by n polynomials:

$$
F=\left(F_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, F_{n}\left(X_{1}, \ldots, X_{n}\right)\right) .
$$

Example: $F=\left(X+Y^{2}, Y\right)$.
Various ways of looking at polynomial maps:

- A map $k^{n} \longrightarrow k^{n}$.
- A list of n polynomials: $F \in\left(k\left[X_{1}, \ldots, X_{n}\right]\right)^{n}$.
- A ring automorphism of $k\left[X_{1}, \ldots, X_{n}\right]$ sending

$$
g\left(X_{1}, \ldots, X_{n}\right) \text { to } g\left(F_{1}, \ldots, F_{n}\right) .
$$

A polynomial map F is invertible if there is a polynomial map
G such that $F(G)=\left(X_{1}, \ldots, X_{n}\right)$.

Notations:
Linear Polynomial
All $\quad M L_{n}(k) \quad M A_{n}(k)$
Invertible $\quad G L_{n}(k) \quad G A_{n}(k)$

BIG STUPID CLAIM:

BIG STUPID CLAIM:

Polynomial Automorphisms Can Be Used Whenever Linear Maps Are Used.

BIG STUPID CLAIM:

Polynomial Automorphisms Can Be Used Whenever Linear Maps Are Used.

Why this bold claim?

BIG STUPID CLAIM:
 Polynomial Automorphisms Can Be Used Whenever Linear Maps Are Used.

Why this bold claim? Polynomial maps seem to have similar properties as linear maps (much more so than holomorphic maps for example). Today I will not really go into these similarities, but they are there.

BIG STUPID CLAIM:

Polynomial Automorphisms Can Be Used Whenever Linear Maps Are Used.

Why this bold claim? Polynomial maps seem to have similar properties as linear maps (much more so than holomorphic maps for example). Today I will not really go into these similarities, but they are there. Today: I will talk about $G A_{n}(k)$, especially if k is a finite field.

MOTIVATION:

MOTIVATION: Why study polynomial maps over

 finite fields, and not be a normal person and do the " \mathbb{C} " thing?
MOTIVATION: Why study polynomial maps over

 finite fields, and not be a normal person and do the " \mathbb{C} " thing? REASON 1:
MOTIVATION: Why study polynomial maps over

 finite fields, and not be a normal person and do the " \mathbb{C} " thing? REASON 1: Reduction-mod- p techniques to solve problems over \mathbb{C}.
MOTIVATION: Why study polynomial maps over

 finite fields, and not be a normal person and do the " \mathbb{C} " thing? REASON 1: Reduction-mod- p techniques to solve problems over \mathbb{C}. Classical example: an injective polynomial map is surjective.
MOTIVATION: Why study polynomial maps over

 finite fields, and not be a normal person and do the " \mathbb{C} " thing? REASON 1: Reduction-mod- p techniques to solve problems over \mathbb{C}. Classical example: an injective polynomial map is surjective. Reason: an injective map on finite set is surjective.
MOTIVATION: Why study polynomial maps over

 finite fields, and not be a normal person and do the " \mathbb{C} " thing? REASON 1: Reduction-mod- p techniques to solve problems over \mathbb{C}. Classical example: an injective polynomial map is surjective. Reason: an injective map on finite set is surjective.Very recent: Belov-Kontsjevich proved equivalence of two already long-standing conjectures: the Dixmier Conjecture ('68) and the Jacobian Conjecture ('39).

MOTIVATION: Why study polynomial maps over

 finite fields, and not be a normal person and do the " \mathbb{C} " thing? REASON 1: Reduction-mod- p techniques to solve problems over \mathbb{C}. Classical example: an injective polynomial map is surjective. Reason: an injective map on finite set is surjective.Very recent: Belov-Kontsjevich proved equivalence of two already long-standing conjectures: the Dixmier Conjecture ('68) and the Jacobian Conjecture ('39). REASON 2: Polynomial maps over finite fields may have applications in discrete-mathematics like settings!

RE-MOTIVATION: Why NOT study polynomial

 maps over finite fields! In fact, why didn't anyone fill that gaping hole yet!REASON 1: Reduction-mod- p techniques to solve problems over \mathbb{C}. Classical example: an injective polynomial map is surjective. Reason: an injective map from a finite set to a finite. Very recent: Belov-Kontsjevich (yes, that guy) proved equivalence of two already long-standing conjectures: the Dixmier Conjecture ('68) and the Jacobian Conjecture ('39). REASON 2: Polynomial maps over finite fields may have applications in discrete-mathematics like settings! (In fact, one of the reasons for this talk is the hope that there may be one or two of you in the audience who may see such a possible application!)

The Automorphism Group

(This whole talk: $n \geq 2$)
$G L_{n}(k)$ is generated by

The Automorphism Group

(This whole talk: $n \geq 2$)
$G L_{n}(k)$ is generated by

- Permutations $X_{1} \longleftrightarrow X_{i}$

The Automorphism Group

(This whole talk: $n \geq 2$)
$G L_{n}(k)$ is generated by

- Permutations $X_{1} \longleftrightarrow X_{i}$
- Map $\left(a X_{1}+b X_{j}, X_{2}, \ldots, X_{n}\right)\left(a \in k^{*}, b \in k\right)$

The Automorphism Group

(This whole talk: $n \geq 2$)
$G L_{n}(k)$ is generated by

- Permutations $X_{1} \longleftrightarrow X_{i}$
- Map $\left(a X_{1}+b X_{j}, X_{2}, \ldots, X_{n}\right)\left(a \in k^{*}, b \in k\right)$
$G A_{n}(k)$ is generated by ???

Elementary map: $\left(X_{1}+f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$, invertible with inverse
$\left(X_{1}-f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$.

Elementary map: $\left(X_{1}+f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$, invertible with inverse
$\left(X_{1}-f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$.
Triangular map: $(X+f(Y, Z), Y+g(Z), Z+c)$
$=(X, Y, Z+c)(X, Y+g(Z), Z)(X+f(X, Y), Y, Z)$

Elementary map: $\left(X_{1}+f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$, invertible with inverse
$\left(X_{1}-f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$.
Triangular map: $(X+f(Y, Z), Y+g(Z), Z+c)$
$=(X, Y, Z+c)(X, Y+g(Z), Z)(X+f(X, Y), Y, Z)$
$J_{n}(k):=$ set of triangular maps.

Elementary map: $\left(X_{1}+f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$, invertible with inverse
$\left(X_{1}-f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$.
Triangular map: $(X+f(Y, Z), Y+g(Z), Z+c)$
$=(X, Y, Z+c)(X, Y+g(Z), Z)(X+f(X, Y), Y, Z)$
$J_{n}(k):=$ set of triangular maps.
$A f f_{n}(k):=$ set of compositions of invertible linear maps and translations.

Elementary map: $\left(X_{1}+f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$, invertible with inverse
$\left(X_{1}-f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$.
Triangular map: $(X+f(Y, Z), Y+g(Z), Z+c)$
$=(X, Y, Z+c)(X, Y+g(Z), Z)(X+f(X, Y), Y, Z)$
$J_{n}(k):=$ set of triangular maps.
$A f f_{n}(k)$:= set of compositions of invertible linear maps and translations.
$T A_{n}(k):=<J_{n}(k), A f f_{n}(k)>$

In dimension 1: we understand the automorphism group.
(They are linear.)

In dimension 1: we understand the automorphism group. (They are linear.)
In dimension 2: famous Jung-van der Kulk-theorem:

$$
\mathrm{GA}_{2}(\mathbb{K})=\mathrm{TA}_{2}(\mathbb{K})=A f f_{2}(\mathbb{K}) \times \mathrm{J}_{2}(\mathbb{K})
$$

Jung-van der Kulk is the reason that we can do a lot in dimension 2 !!!!

What about dimension 3?

What about dimension 3? Stupid idea: everything will be tame?

What about dimension 3? Stupid idea: everything will be tame?

1972: Nagata: "I cannot tame the following map:"
$N:=\left(X-Y \Delta-Z \Delta^{2}, Y+Z \Delta, Z\right)$ where $\Delta=X Z+Y^{2}$.

What about dimension 3? Stupid idea: everything will be tame?

1972: Nagata: "I cannot tame the following map:"
$N:=\left(X-Y \Delta-Z \Delta^{2}, Y+Z \Delta, Z\right)$ where $\Delta=X Z+Y^{2}$.
Nagata's map is the historically most important map for polynomial automorphisms! No one could "tame Nagata", it is a very elegant but complicated map! It eluded everyone!

What about dimension 3? Stupid idea: everything will be tame?

1972: Nagata: "I cannot tame the following map:"
$N:=\left(X-Y \Delta-Z \Delta^{2}, Y+Z \Delta, Z\right)$ where $\Delta=X Z+Y^{2}$.
Nagata's map is the historically most important map for polynomial automorphisms! No one could "tame Nagata", it is a very elegant but complicated map! It eluded everyone! AMAZING result: Umirbaev-Shestakov (2004)
N is not tame!!

What about dimension 3? Stupid idea: everything will be tame?
1972: Nagata: "I cannot tame the following map:"
$N:=\left(X-Y \Delta-Z \Delta^{2}, Y+Z \Delta, Z\right)$ where $\Delta=X Z+Y^{2}$.
Nagata's map is the historically most important map for polynomial automorphisms! No one could "tame Nagata", it is a very elegant but complicated map! It eluded everyone! AMAZING result: Umirbaev-Shestakov (2004)
N is not tame!!
(Difficult and technical proof.) (2007 AMS Moore paper award.)

How did Nagata make Nagata's map?

How did Nagata make Nagata's map?
Study maps over $k\left[z, z^{-1}\right]$:

How did Nagata make Nagata's map?
Study maps over $k\left[z, z^{-1}\right]$:

$$
\left(X, Y+z^{2} X\right)
$$

How did Nagata make Nagata's map?
Study maps over $k\left[z, z^{-1}\right]$:

$$
\left(X-z^{-1} Y^{2}, Y\right)\left(X, Y+z^{2} X\right)\left(X+z^{-1} Y^{2}, Y\right)
$$

How did Nagata make Nagata's map?
Study maps over $k\left[z, z^{-1}\right]$:

$$
\begin{gathered}
\left(X-z^{-1} Y^{2}, Y\right)\left(X, Y+z^{2} X\right)\left(X+z^{-1} Y^{2}, Y\right) \\
=\left(X-2\left(X z+Y^{2}\right) Y-\left(X z+Y^{2}\right)^{2} z, Y+\left(X z+Y^{2}\right) z\right)
\end{gathered}
$$

How did Nagata make Nagata's map?
Study maps over $k\left[z, z^{-1}\right]$:

$$
\begin{gathered}
\left(X-z^{-1} Y^{2}, Y\right)\left(X, Y+z^{2} X\right)\left(X+z^{-1} Y^{2}, Y\right) \\
=\left(X-2\left(X z+Y^{2}\right) Y-\left(X z+Y^{2}\right)^{2} z, Y+\left(X z+Y^{2}\right) z\right)
\end{gathered}
$$

Thus: N is tame over $k\left[z, z^{-1}\right]$, i.e. N in $\operatorname{TA}_{2}\left(k\left[z, z^{-1}\right]\right)$.

How did Nagata make Nagata's map?
Study maps over $k\left[z, z^{-1}\right]$:

$$
\begin{gathered}
\left(X-z^{-1} Y^{2}, Y\right)\left(X, Y+z^{2} X\right)\left(X+z^{-1} Y^{2}, Y\right) \\
=\left(X-2\left(X z+Y^{2}\right) Y-\left(X z+Y^{2}\right)^{2} z, Y+\left(X z+Y^{2}\right) z\right)
\end{gathered}
$$

Thus: N is tame over $k\left[z, z^{-1}\right]$, i.e. N in $\operatorname{TA}_{2}\left(k\left[z, z^{-1}\right]\right)$. Nagata proved: N is NOT tame over $k[z]$, i.e. N not in TA $\mathrm{A}_{2}(k[z])$.

$$
\begin{aligned}
& \left(X-z^{-1} Y^{2}, Y\right)\left(X, Y+z^{2} X\right),\left(X+z^{-1} Y^{2}, Y\right) \\
= & \left(X-2\left(X z+Y^{2}\right) Y-\left(X z+Y^{2}\right)^{2} z, Y+\left(X z+Y^{2}\right) z\right)
\end{aligned}
$$

"Modern" way of making Nagata's map:

$$
\begin{aligned}
& \left(X-z^{-1} Y^{2}, Y\right)\left(X, Y+z^{2} X\right),\left(X+z^{-1} Y^{2}, Y\right) \\
= & \left(X-2\left(X z+Y^{2}\right) Y-\left(X z+Y^{2}\right)^{2} z, Y+\left(X z+Y^{2}\right) z\right)
\end{aligned}
$$

"Modern" way of making Nagata's map:
Take $\delta:=-2 Y \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$, define $\Delta:=\left(X z+Y^{2}\right)$,

$$
\begin{gathered}
\left(X-z^{-1} Y^{2}, Y\right)\left(X, Y+z^{2} X\right),\left(X+z^{-1} Y^{2}, Y\right) \\
=\left(X-2 \Delta Y-\Delta^{2} z, Y+\Delta z\right)
\end{gathered}
$$

"Modern" way of making Nagata's map:
Take $\delta:=-2 Y \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$, define $\Delta:=\left(X z+Y^{2}\right)$,

$$
\begin{gathered}
\left(X-z^{-1} Y^{2}, Y\right)\left(X, Y+z^{2} X\right),\left(X+z^{-1} Y^{2}, Y\right) \\
=\left(X-2 \Delta Y-\Delta^{2} z, Y+\Delta z\right)
\end{gathered}
$$

"Modern" way of making Nagata's map:
Take $\delta:=-2 Y \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$, define $\Delta:=\left(X z+Y^{2}\right)$, and define $D:=\Delta \delta$.

$$
\begin{gathered}
\left(X-z^{-1} Y^{2}, Y\right)\left(X, Y+z^{2} X\right),\left(X+z^{-1} Y^{2}, Y\right) \\
=\left(X-2 \Delta Y-\Delta^{2} z, Y+\Delta z\right)
\end{gathered}
$$

"Modern" way of making Nagata's map:
Take $\delta:=-2 Y \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$, define $\Delta:=\left(X z+Y^{2}\right)$, and define $D:=\Delta \delta$. Then $\exp (D)$ is a ring automorphism of $k[X, Y, Z]$ having inverse $\exp (-D)$:

$$
\begin{gathered}
\left(X-z^{-1} Y^{2}, Y\right)\left(X, Y+z^{2} X\right),\left(X+z^{-1} Y^{2}, Y\right) \\
=\left(X-2 \Delta Y-\Delta^{2} z, Y+\Delta z\right)
\end{gathered}
$$

"Modern" way of making Nagata's map:
Take $\delta:=-2 Y \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$, define $\Delta:=\left(X z+Y^{2}\right)$, and define $D:=\Delta \delta$. Then $\exp (D)$ is a ring automorphism of $k[X, Y, Z]$ having inverse $\exp (-D)$:

$$
\exp (D)\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=
$$

$$
\begin{gathered}
\left(X-z^{-1} Y^{2}, Y\right)\left(X, Y+z^{2} X\right),\left(X+z^{-1} Y^{2}, Y\right) \\
=\left(X-2 \Delta Y-\Delta^{2} z, Y+\Delta z\right)
\end{gathered}
$$

"Modern" way of making Nagata's map:
Take $\delta:=-2 Y \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$, define $\Delta:=\left(X z+Y^{2}\right)$, and define $D:=\Delta \delta$. Then $\exp (D)$ is a ring automorphism of $k[X, Y, Z]$ having inverse $\exp (-D)$:

$$
\exp (D)\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)=\left(\begin{array}{c}
X+D(X)+\frac{1}{2} D^{2}(X) \\
Y+D(Y) \\
Z
\end{array}\right)
$$

$$
\begin{gathered}
\left(X-z^{-1} Y^{2}, Y\right)\left(X, Y+z^{2} X\right),\left(X+z^{-1} Y^{2}, Y\right) \\
=\left(X-2 \Delta Y-\Delta^{2} z, Y+\Delta z\right)
\end{gathered}
$$

"Modern" way of making Nagata's map:
Take $\delta:=-2 Y \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$, define $\Delta:=\left(X z+Y^{2}\right)$, and define $D:=\Delta \delta$. Then $\exp (D)$ is a ring automorphism of $k[X, Y, Z]$ having inverse $\exp (-D)$:

$$
\exp (D)\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)=\left(\begin{array}{c}
X+-2 Y \Delta+\frac{1}{2} D(-2 Y \Delta) \\
Y+D(Y) \\
Z
\end{array}\right)
$$

$$
\begin{gathered}
\left(X-z^{-1} Y^{2}, Y\right)\left(X, Y+z^{2} X\right),\left(X+z^{-1} Y^{2}, Y\right) \\
=\left(X-2 \Delta Y-\Delta^{2} z, Y+\Delta z\right)
\end{gathered}
$$

"Modern" way of making Nagata's map:
Take $\delta:=-2 Y \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$, define $\Delta:=\left(X z+Y^{2}\right)$, and define $D:=\Delta \delta$. Then $\exp (D)$ is a ring automorphism of $k[X, Y, Z]$ having inverse $\exp (-D)$:

$$
\exp (D)\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)=\left(\begin{array}{c}
X+-2 Y \Delta+\frac{1}{2} D(-2 Y \Delta) \\
Y+\Delta Z \\
Z
\end{array}\right)
$$

$$
\begin{gathered}
\left(X-z^{-1} Y^{2}, Y\right)\left(X, Y+z^{2} X\right),\left(X+z^{-1} Y^{2}, Y\right) \\
=\left(X-2 \Delta Y-\Delta^{2} z, Y+\Delta z\right)
\end{gathered}
$$

"Modern" way of making Nagata's map:
Take $\delta:=-2 Y \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$, define $\Delta:=\left(X z+Y^{2}\right)$, and define $D:=\Delta \delta$. Then $\exp (D)$ is a ring automorphism of $k[X, Y, Z]$ having inverse $\exp (-D)$:

$$
\exp (D)\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)=\left(\begin{array}{c}
X+-2 Y \Delta+\frac{1}{2}(-2) \Delta D(Y) \\
Y+\Delta Z \\
Z
\end{array}\right)
$$

$$
\begin{gathered}
\left(X-z^{-1} Y^{2}, Y\right)\left(X, Y+z^{2} X\right),\left(X+z^{-1} Y^{2}, Y\right) \\
=\left(X-2 \Delta Y-\Delta^{2} z, Y+\Delta z\right)
\end{gathered}
$$

"Modern" way of making Nagata's map:
Take $\delta:=-2 Y \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$, define $\Delta:=\left(X z+Y^{2}\right)$, and define $D:=\Delta \delta$. Then $\exp (D)$ is a ring automorphism of $k[X, Y, Z]$ having inverse $\exp (-D)$:

$$
\exp (D)\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=\left(\begin{array}{c}
X-2 Y \Delta-\Delta^{2} Z \\
Y+\Delta Z \\
Z
\end{array}\right)
$$

$\mathrm{GA}_{n}(k)$
$\mathrm{TA}_{n}(k)$
$\mathrm{GA}_{n}(k)$
\cup
$\mathrm{LF}_{n}(k) \quad:=<F \in \mathrm{GA}_{n}(k) \mid \operatorname{deg}\left(F^{m}\right)$ bounded $>$ \cup
$\operatorname{ELFD}_{n}(k) \quad:=<\exp (D) \mid D$ locally finite derivation $>$ U|
$\mathrm{TA}_{n}(k)$
$\mathrm{GA}_{n}(k)$
\cup
$\mathrm{LF}_{n}(k) \quad:=<F \in \mathrm{GA}_{n}(k) \mid \operatorname{deg}\left(F^{m}\right)$ bounded $>$
$\operatorname{ELFD}_{n}(k) \quad:=<\exp (D) \mid D$ locally finite derivation $>$ U|
$\operatorname{GLIN}_{n}(k) \quad:=$ normalization of $\mathrm{GL}_{\mathrm{n}}(\mathrm{k})$
? \cup ? not equal if $\operatorname{char}(k)=0$.
$\mathrm{TA}_{n}(k)$
$\mathrm{GA}_{n}(k)$
\cup
$\mathrm{LF}_{n}(k) \quad:=<F \in \mathrm{GA}_{n}(k) \mid \operatorname{deg}\left(F^{m}\right)$ bounded $>$
$\operatorname{ELFD}_{n}(k) \quad:=<\exp (D) \mid D$ locally finite derivation $>$
U|
$\operatorname{GTAM}_{n}(k):=$ normalization of $\operatorname{TA}_{n}(k)$
U|
$\operatorname{GLIN}_{n}(k) \quad:=$ normalization of $\mathrm{GL}_{\mathrm{n}}(\mathrm{k})$
? \cup |? not equal if $\operatorname{char}(k)=0$.
$\mathrm{TA}_{n}(k)$
$\mathrm{GA}_{n}(k)$
\cup
$\mathrm{LF}_{n}(k) \quad:=<F \in \mathrm{GA}_{n}(k) \mid \operatorname{deg}\left(F^{m}\right)$ bounded $>$
$E L F D_{n}(k) \quad:=<\exp (D) \mid D$ locally finite derivation $>$
\cup
$\operatorname{GTAM}_{n}(k) \quad:=$ normalization of $\operatorname{TA}_{n}(k)$
\cup
$\operatorname{GLIN}_{n}(k) \quad:=$ normalization of $\mathrm{GL}_{\mathrm{n}}(\mathrm{k})$
$? \cup \mid ?$ not equal if $\operatorname{char}(k)=0$.
TA ${ }_{n}(k)$

Where in these groups is Nagata?

Where in these groups is Nagata?
No conjugate of Nagata is in $\mathrm{GL}_{\mathrm{n}}(\mathrm{k})$ for any field k !

Where in these groups is Nagata?
No conjugate of Nagata is in $\mathrm{GL}_{\mathrm{n}}(\mathrm{k})$ for any field k !
But: recent result: Nagata is shifted linearizable:

Where in these groups is Nagata?
No conjugate of Nagata is in $\mathrm{GL}_{\mathrm{n}}(\mathrm{k})$ for any field k !
But: recent result: Nagata is shifted linearizable: choose $s \in k$ such that $s \neq 0,1,-1$.

Where in these groups is Nagata?
No conjugate of Nagata is in $\mathrm{GL}_{\mathrm{n}}(\mathrm{k})$ for any field k !
But: recent result: Nagata is shifted linearizable: choose $s \in k$ such that $s \neq 0,1,-1$.

$$
(s \exp (D))
$$

Where in these groups is Nagata?
No conjugate of Nagata is in $\mathrm{GL}_{\mathrm{n}}(\mathrm{k})$ for any field k !
But: recent result: Nagata is shifted linearizable: choose $s \in k$ such that $s \neq 0,1,-1$.

$$
\exp \left(\frac{-s^{2}}{1-s^{2}} D\right)(s \exp (D)) \exp \left(\frac{s^{2}}{1-s^{2}} D\right)
$$

Where in these groups is Nagata?
No conjugate of Nagata is in $\mathrm{GL}_{\mathrm{n}}(\mathrm{k})$ for any field k !
But: recent result: Nagata is shifted linearizable: choose $s \in k$ such that $s \neq 0,1,-1$.

$$
\exp \left(\frac{-s^{2}}{1-s^{2}} D\right)(s \exp (D)) \exp \left(\frac{s^{2}}{1-s^{2}} D\right)=s l
$$

Where in these groups is Nagata?
No conjugate of Nagata is in $\mathrm{GL}_{\mathrm{n}}(\mathrm{k})$ for any field k !
But: recent result: Nagata is shifted linearizable: choose $s \in k$ such that $s \neq 0,1,-1$.

$$
\exp \left(\frac{-s^{2}}{1-s^{2}} D\right)(s \exp (D)) \exp \left(\frac{s^{2}}{1-s^{2}} D\right)=s l
$$

Hence: Nagata map is in $\operatorname{GLIN}_{3}(k)$!

Where in these groups is Nagata?
No conjugate of Nagata is in $\mathrm{GL}_{\mathrm{n}}(\mathrm{k})$ for any field k !
But: recent result: Nagata is shifted linearizable: choose $s \in k$ such that $s \neq 0,1,-1$.

$$
\exp \left(\frac{-s^{2}}{1-s^{2}} D\right)(s \exp (D)) \exp \left(\frac{s^{2}}{1-s^{2}} D\right)=s l
$$

Hence: Nagata map is in $\operatorname{GLIN}_{3}(k)$! - If $k \neq \mathbb{F}_{2}, \mathbb{F}_{3}$, that is !!

How does $\operatorname{GLIN}_{n}(k)$ compare to $\mathrm{GTAM}_{n}(k)$?

How does $\operatorname{GLIN}_{n}(k)$ compare to GTAM $_{n}(k)$?
As soon as $\left(X_{1}+f\left(X_{2}\right), X_{2}, \ldots, X_{n}\right) \in \operatorname{GLIN}_{n}(k)$ for any $f \in k\left[X_{2}\right]$, then $\operatorname{GLIN}_{n}(k)=\operatorname{GTAM}_{n}(k)$.

How does $\operatorname{GLIN}_{n}(k)$ compare to GTAM $_{n}(k)$?
As soon as $\left(X_{1}+f\left(X_{2}\right), X_{2}, \ldots, X_{n}\right) \in \operatorname{GLIN}_{n}(k)$ for any $f \in k\left[X_{2}\right]$, then $\operatorname{GLIN}_{n}(k)=\operatorname{GTAM}_{n}(k)$. Choose some $a \neq 0$:

How does $\operatorname{GLIN}_{n}(k)$ compare to $\mathrm{GTAM}_{n}(k)$?
As soon as $\left(X_{1}+f\left(X_{2}\right), X_{2}, \ldots, X_{n}\right) \in \operatorname{GLIN}_{n}(k)$ for any $f \in k\left[X_{2}\right]$, then $\operatorname{GLIN}_{n}(k)=\operatorname{GTAM}_{n}(k)$. Choose some $a \neq 0$:
$(a X, Y)$

How does $\operatorname{GLIN}_{n}(k)$ compare to GTAM $_{n}(k)$?
As soon as $\left(X_{1}+f\left(X_{2}\right), X_{2}, \ldots, X_{n}\right) \in \operatorname{GLIN}_{n}(k)$ for any $f \in k\left[X_{2}\right]$, then $\operatorname{GLIN}_{n}(k)=\operatorname{GTAM}_{n}(k)$. Choose some $a \neq 0$:

$$
(X-b f(Y), Y)(a X, Y)(X+b f(Y), Y)
$$

How does $\operatorname{GLIN}_{n}(k)$ compare to $\mathrm{GTAM}_{n}(k)$?
As soon as $\left(X_{1}+f\left(X_{2}\right), X_{2}, \ldots, X_{n}\right) \in \operatorname{GLIN}_{n}(k)$ for any $f \in k\left[X_{2}\right]$, then $\operatorname{GLIN}_{n}(k)=\operatorname{GTAM}_{n}(k)$. Choose some $a \neq 0$:

$$
\left(a^{-1} X, Y\right)(X-b f(Y), Y)(a X, Y)(X+b f(Y), Y)
$$

How does $\operatorname{GLIN}_{n}(k)$ compare to $\operatorname{GTAM}_{n}(k)$?
As soon as $\left(X_{1}+f\left(X_{2}\right), X_{2}, \ldots, X_{n}\right) \in \operatorname{GLIN}_{n}(k)$ for any $f \in k\left[X_{2}\right]$, then $\operatorname{GLIN}_{n}(k)=\operatorname{GTAM}_{n}(k)$. Choose some $a \neq 0$:

$$
\left(a^{-1} X, Y\right)(X-b f(Y), Y)(a(X+b f(Y)), Y)
$$

How does $\operatorname{GLIN}_{n}(k)$ compare to $\operatorname{GTAM}_{n}(k)$?
As soon as $\left(X_{1}+f\left(X_{2}\right), X_{2}, \ldots, X_{n}\right) \in \operatorname{GLIN}_{n}(k)$ for any
$f \in k\left[X_{2}\right]$, then $\operatorname{GLIN}_{n}(k)=\operatorname{GTAM}_{n}(k)$. Choose some $a \neq 0$:

$$
\left(a^{-1} X, Y\right)(X-b f(Y), Y)(a X+a b f(Y), Y)
$$

How does $\operatorname{GLIN}_{n}(k)$ compare to $\operatorname{GTAM}_{n}(k)$?
As soon as $\left(X_{1}+f\left(X_{2}\right), X_{2}, \ldots, X_{n}\right) \in \operatorname{GLIN}_{n}(k)$ for any
$f \in k\left[X_{2}\right]$, then $\operatorname{GLIN}_{n}(k)=\operatorname{GTAM}_{n}(k)$. Choose some $a \neq 0$:

$$
\left(a^{-1} X, Y\right)(a X+a b f(Y)-b f(Y), Y)
$$

How does $\operatorname{GLIN}_{n}(k)$ compare to $\operatorname{GTAM}_{n}(k)$?
As soon as $\left(X_{1}+f\left(X_{2}\right), X_{2}, \ldots, X_{n}\right) \in \operatorname{GLIN}_{n}(k)$ for any $f \in k\left[X_{2}\right]$, then $\operatorname{GLIN}_{n}(k)=\operatorname{GTAM}_{n}(k)$. Choose some $a \neq 0$:

$$
\left(X+b f(Y)-a^{-1} b f(Y), Y\right)
$$

How does $\operatorname{GLIN}_{n}(k)$ compare to $\operatorname{GTAM}_{n}(k)$?
As soon as $\left(X_{1}+f\left(X_{2}\right), X_{2}, \ldots, X_{n}\right) \in \operatorname{GLIN}_{n}(k)$ for any
$f \in k\left[X_{2}\right]$, then $\operatorname{GLIN}_{n}(k)=\operatorname{GTAM}_{n}(k)$. Choose some $a \neq 0$:

$$
\left(X+b\left(1-a^{-1}\right) f(Y), Y\right)
$$

How does $\operatorname{GLIN}_{n}(k)$ compare to $\mathrm{GTAM}_{n}(k)$?
As soon as $\left(X_{1}+f\left(X_{2}\right), X_{2}, \ldots, X_{n}\right) \in \operatorname{GLIN}_{n}(k)$ for any
$f \in k\left[X_{2}\right]$, then $\operatorname{GLIN}_{n}(k)=\operatorname{GTAM}_{n}(k)$. Choose some $a \neq 0$

$$
\left(X+b\left(1-a^{-1}\right) f(Y), Y\right)
$$

Choose $b=\left(1-a^{-1}\right)^{-1}$.

How does $\operatorname{GLIN}_{n}(k)$ compare to $\mathrm{GTAM}_{n}(k)$?
As soon as $\left(X_{1}+f\left(X_{2}\right), X_{2}, \ldots, X_{n}\right) \in \operatorname{GLIN}_{n}(k)$ for any
$f \in k\left[X_{2}\right]$, then $\operatorname{GLIN}_{n}(k)=\operatorname{GTAM}_{n}(k)$. Choose some $a \neq 0$ $a \neq 1$:

$$
\left(X+b\left(1-a^{-1}\right) f(Y), Y\right)
$$

Choose $b=\left(1-a^{-1}\right)^{-1}$.

How does $\operatorname{GLIN}_{n}(k)$ compare to $\operatorname{GTAM}_{n}(k)$?
As soon as $\left(X_{1}+f\left(X_{2}\right), X_{2}, \ldots, X_{n}\right) \in \operatorname{GLIN}_{n}(k)$ for any $f \in k\left[X_{2}\right]$, then $\operatorname{GLIN}_{n}(k)=\operatorname{GTAM}_{n}(k)$. Choose some $a \neq 0$ $a \neq 1$:

$$
\left(X+b\left(1-a^{-1}\right) f(Y), Y\right)
$$

Choose $b=\left(1-a^{-1}\right)^{-1}$. Then $\left.(X+f(Y), Y)\right)$ in $\operatorname{GLIN}_{2}(k)$!

How does $\operatorname{GLIN}_{n}(k)$ compare to $\operatorname{GTAM}_{n}(k)$?
As soon as $\left(X_{1}+f\left(X_{2}\right), X_{2}, \ldots, X_{n}\right) \in \operatorname{GLIN}_{n}(k)$ for any $f \in k\left[X_{2}\right]$, then $\operatorname{GLIN}_{n}(k)=\operatorname{GTAM}_{n}(k)$. Choose some $a \neq 0$ $a \neq 1$:

$$
\left(X+b\left(1-a^{-1}\right) f(Y), Y\right)
$$

Choose $b=\left(1-a^{-1}\right)^{-1}$. Then $\left.(X+f(Y), Y)\right)$ in $\operatorname{GLIN}_{2}(k)$! \ldots if $k \neq \mathbb{F}_{2} \ldots$

How does $\operatorname{GLIN}_{n}(k)$ compare to $\operatorname{GTAM}_{n}(k)$?
As soon as $\left(X_{1}+f\left(X_{2}\right), X_{2}, \ldots, X_{n}\right) \in \operatorname{GLIN}_{n}(k)$ for any
$f \in k\left[X_{2}\right]$, then $\operatorname{GLIN}_{n}(k)=\operatorname{GTAM}_{n}(k)$. Choose some $a \neq 0$
$a \neq 1$:

$$
\left(X+b\left(1-a^{-1}\right) f(Y), Y\right)
$$

Choose $b=\left(1-a^{-1}\right)^{-1}$. Then $\left.(X+f(Y), Y)\right)$ in $\operatorname{GLIN}_{2}(k)$! \ldots if $k \neq \mathbb{F}_{2} \ldots$
Question: How does $\operatorname{GLIN}_{n}\left(\mathbb{F}_{2}\right)$ and $\operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right)$ relate?

How does $\operatorname{GLIN}_{n}(k)$ compare to GTAM $_{n}(k)$?
As soon as $\left(X_{1}+f\left(X_{2}\right), X_{2}, \ldots, X_{n}\right) \in \operatorname{GLIN}_{n}(k)$ for any
$f \in k\left[X_{2}\right]$, then $\operatorname{GLIN}_{n}(k)=\operatorname{GTAM}_{n}(k)$. Choose some $a \neq 0$
$a \neq 1$:

$$
\left(X+b\left(1-a^{-1}\right) f(Y), Y\right)
$$

Choose $b=\left(1-a^{-1}\right)^{-1}$. Then $\left.(X+f(Y), Y)\right)$ in $\operatorname{GLIN}_{2}(k)$! \ldots if $k \neq \mathbb{F}_{2} \ldots$
Question: How does $\operatorname{GLIN}_{n}\left(\mathbb{F}_{2}\right)$ and $\operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right)$ relate? We will Get Back To That. . .

What about $\mathrm{TA}_{n}(k) \subseteq \mathrm{GA}_{n}(k)$ if $k=\mathbb{F}_{q}$ is a finite field?

What about $\mathrm{TA}_{n}(k) \subseteq \mathrm{GA}_{n}(k)$ if $k=\mathbb{F}_{q}$ is a finite field?
Denote $\mathrm{Bij}_{n}\left(\mathbb{F}_{q}\right)$ as set of bijections on \mathbb{F}_{q}^{n}. We have a natural map
$\mathrm{GA}_{n}\left(\mathbb{F}_{q}\right) \xrightarrow{\pi} \mathrm{Bij}_{n}\left(\mathbb{F}_{q}\right)$.

What about $\mathrm{TA}_{n}(k) \subseteq \mathrm{GA}_{n}(k)$ if $k=\mathbb{F}_{q}$ is a finite field?
Denote $\mathrm{Bij}_{n}\left(\mathbb{F}_{q}\right)$ as set of bijections on \mathbb{F}_{q}^{n}. We have a natural map
$\mathrm{GA}_{n}\left(\mathbb{F}_{q}\right) \xrightarrow{\pi} \mathrm{Bij}_{n}\left(\mathbb{F}_{q}\right)$.
What is $\pi\left(\mathrm{GA}_{n}\left(\mathbb{F}_{q}\right)\right)$? Can we make every bijection on \mathbb{F}_{q}^{n} as an invertible polynomial map?

What about $\mathrm{TA}_{n}(k) \subseteq \mathrm{GA}_{n}(k)$ if $k=\mathbb{F}_{q}$ is a finite field?
Denote $\mathrm{Bij}_{n}\left(\mathbb{F}_{q}\right)$ as set of bijections on \mathbb{F}_{q}^{n}. We have a natural map
$\mathrm{GA}_{n}\left(\mathbb{F}_{q}\right) \xrightarrow{\pi} \mathrm{Bij}_{n}\left(\mathbb{F}_{q}\right)$.
What is $\pi\left(\mathrm{GA}_{n}\left(\mathbb{F}_{q}\right)\right)$? Can we make every bijection on \mathbb{F}_{q}^{n} as an invertible polynomial map?
Simpler question: what is $\pi\left(\mathrm{TA}_{n}\left(\mathbb{F}_{q}\right)\right)$?
Why simpler? Because we have a set of generators!

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
See $\mathrm{Bij}_{n}\left(\mathbb{F}_{q}\right)$ as $\operatorname{Sym}\left(q^{n}\right)$.

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
See $\mathrm{Bij}_{n}\left(\mathbb{F}_{q}\right)$ as $\operatorname{Sym}\left(q^{n}\right)$.
$T_{n}\left(\mathbb{F}_{q}\right)$ is generated by $\mathrm{GL}_{\mathrm{n}}\left(\mathbb{F}_{\mathrm{q}}\right)$ (for which we have a finite set of generators) and maps of the form

$$
\sigma_{f}:=\left(X_{1}+f, X_{2}, \ldots, X_{n}\right)
$$

where $f \in \mathbb{F}_{q}\left[X_{2}, \ldots, X_{n}\right]$.

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
See $\mathrm{Bij}_{n}\left(\mathbb{F}_{q}\right)$ as $\operatorname{Sym}\left(q^{n}\right)$.
$T_{n}\left(\mathbb{F}_{q}\right)$ is generated by $\mathrm{GL}_{\mathrm{n}}\left(\mathbb{F}_{\mathrm{q}}\right)$ (for which we have a finite set of generators) and maps of the form

$$
\sigma_{f}:=\left(X_{1}+f, X_{2}, \ldots, X_{n}\right)
$$

where $f \in \mathbb{F}_{q}\left[X_{2}, \ldots, X_{n}\right]$. Let $\alpha \in \mathbb{F}_{q}^{n-1}, f_{\alpha} \in \mathbb{F}_{q}\left[X_{2}, \ldots, X_{n}\right]$, be such that $f_{\alpha}(\alpha)=1$ and 0 otherwise.

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
See $\mathrm{Bij}_{n}\left(\mathbb{F}_{q}\right)$ as $\operatorname{Sym}\left(q^{n}\right)$.
$T_{n}\left(\mathbb{F}_{q}\right)$ is generated by $\mathrm{GL}_{\mathrm{n}}\left(\mathbb{F}_{\mathrm{q}}\right)$ (for which we have a finite set of generators) and maps of the form

$$
\sigma_{f}:=\left(X_{1}+f, X_{2}, \ldots, X_{n}\right)
$$

where $f \in \mathbb{F}_{q}\left[X_{2}, \ldots, X_{n}\right]$. Let $\alpha \in \mathbb{F}_{q}^{n-1}, f_{\alpha} \in \mathbb{F}_{q}\left[X_{2}, \ldots, X_{n}\right]$, be such that $f_{\alpha}(\alpha)=1$ and 0 otherwise. Then we can restrict to the

$$
\sigma_{\alpha}:=\sigma_{f_{\alpha}}
$$

which is a finite set.

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Hence, take the following set:

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Hence, take the following set:

$$
\sigma_{\alpha}:=\left(X_{1}+f_{\alpha}, X_{2}, \ldots, X_{n}\right)
$$

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Hence, take the following set:

$$
\begin{aligned}
& \sigma_{\alpha}:=\left(X_{1}+f_{\alpha}, X_{2}, \ldots, X_{n}\right) \\
& \sigma_{i}:=X_{1} \leftrightarrow X_{i}
\end{aligned}
$$

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Hence, take the following set:

$$
\begin{aligned}
\sigma_{\alpha} & :=\left(X_{1}+f_{\alpha}, X_{2}, \ldots, X_{n}\right) \\
\sigma_{i} & :=X_{1} \leftrightarrow X_{i} \\
\tau & :=\left(a X_{1}, X_{2}, \ldots, X_{n}\right)
\end{aligned}
$$

where $\langle a\rangle=\mathbb{F}_{q}^{*}$.

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
(1) $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$ is 2-transitive, hence primitive.

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
(1) $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$ is 2-transitive, hence primitive.

You might know: if $H<\operatorname{Sym}(m)$ is primitive + a 2 -cycle then $H=\operatorname{Sym}(m)$.

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
(1) $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$ is 2-transitive, hence primitive.

You might know: if $H<\operatorname{Sym}(m)$ is primitive + a 2 -cycle then $H=\operatorname{Sym}(m)$.
If $q=2$ or q odd, then indeed we find a 2-cycle! I will not do that here, but note that τ (if p is odd) or σ_{i} (if $q=2$) are odd permutations.

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
(1) $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$ is 2-transitive, hence primitive.

You might know: if $H<\operatorname{Sym}(m)$ is primitive + a 2 -cycle then $H=\operatorname{Sym}(m)$.
If $q=2$ or q odd, then indeed we find a 2-cycle! I will not do that here, but note that τ (if p is odd) or σ_{i} (if $q=2$) are odd permutations.
Hence if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
If $q=4,8,16, \ldots$ we don't succeed to find a 2 -cycle.

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
If $q=4,8,16, \ldots$ we don't succeed to find a 2 -cycle. But: there's another theorem:

Theorem: $H<\operatorname{Sym}(m)$ Primitive +3 -cycle $\longrightarrow H=\operatorname{Alt}(m)$ or $H=\operatorname{Sym}(m)$.

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
If $q=4,8,16, \ldots$ we don't succeed to find a 2 -cycle. But: there's another theorem:

Theorem: $H<\operatorname{Sym}(m)$ Primitive +3 -cycle $\longrightarrow H=\operatorname{Alt}(m)$
or $H=\operatorname{Sym}(m)$.
So let us look for a 3-cycle!

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
If $q=4,8,16, \ldots$ we don't succeed to find a 2 -cycle. But: there's another theorem:

Theorem: $H<\operatorname{Sym}(m)$ Primitive +3 -cycle $\longrightarrow H=\operatorname{Alt}(m)$ or $H=\operatorname{Sym}(m)$.
So let us look for a 3-cycle!
Take $\gamma:=\sigma_{\overrightarrow{0}}$, and $\delta:=\sigma_{2} \gamma \sigma_{2}$.

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
If $q=4,8,16, \ldots$ we don't succeed to find a 2 -cycle. But: there's another theorem:

Theorem: $H<\operatorname{Sym}(m)$ Primitive +3 -cycle $\longrightarrow H=\operatorname{Alt}(m)$
or $H=\operatorname{Sym}(m)$.
So let us look for a 3-cycle!
Take $\gamma:=\sigma_{\overrightarrow{0}}$, and $\delta:=\sigma_{2} \gamma \sigma_{2}$. Let's use a blackboard, and compute $\delta^{-1} \gamma^{-1} \delta \gamma \ldots$

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
If $q=4,8,16, \ldots$ we don't succeed to find a 2 -cycle. But: there's another theorem:

Theorem: $H<\operatorname{Sym}(m)$ Primitive +3 -cycle $\longrightarrow H=\operatorname{Alt}(m)$
or $H=\operatorname{Sym}(m)$.
So let us look for a 3-cycle!
Take $\gamma:=\sigma_{\overrightarrow{0}}$, and $\delta:=\sigma_{2} \gamma \sigma_{2}$. Let's use a blackboard, and compute $\delta^{-1} \gamma^{-1} \delta \gamma \ldots$. Hence, for all $q: \pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$ is either $\operatorname{Alt}(m)$ or $\operatorname{Sym}(m)$.

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
If $q=4,8,16, \ldots$ we don't succeed to find a 2 -cycle. But: there's another theorem:

Theorem: $H<\operatorname{Sym}(m)$ Primitive +3 -cycle $\longrightarrow H=\operatorname{Alt}(m)$
or $H=\operatorname{Sym}(m)$.
So let us look for a 3-cycle!
Take $\gamma:=\sigma_{\overrightarrow{0}}$, and $\delta:=\sigma_{2} \gamma \sigma_{2}$. Let's use a blackboard, and compute $\delta^{-1} \gamma^{-1} \delta \gamma \ldots$. Hence, for all $q: \pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$ is either $\operatorname{Alt}(m)$ or $\operatorname{Sym}(m)$.
An easy computation shows that if $q=4,8,16, \ldots$ then $\pi(\tau), \pi\left(\sigma_{\alpha}\right), \pi\left(\sigma_{i}\right)$ are all even.

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
If $q=4,8,16, \ldots$ we don't succeed to find a 2 -cycle. But: there's another theorem:

Theorem: $H<\operatorname{Sym}(m)$ Primitive +3 -cycle $\longrightarrow H=\operatorname{Alt}(m)$ or $H=\operatorname{Sym}(m)$.
So let us look for a 3-cycle!
Take $\gamma:=\sigma_{\overrightarrow{0}}$, and $\delta:=\sigma_{2} \gamma \sigma_{2}$. Let's use a blackboard, and compute $\delta^{-1} \gamma^{-1} \delta \gamma \ldots$. Hence, for all $q: \pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$ is either $\operatorname{Alt}(m)$ or $\operatorname{Sym}(m)$.
An easy computation shows that if $q=4,8,16, \ldots$ then $\pi(\tau), \pi\left(\sigma_{\alpha}\right), \pi\left(\sigma_{i}\right)$ are all even. Hence, if $q=4,8,16, \ldots$ then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}(m)!$

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
Answer: if $q=4,8,16,32, \ldots$ then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$.
Consequences of an odd polynomial automorphism over \mathbb{F}_{4} in dimension n :

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
Answer: if $q=4,8,16,32, \ldots$ then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$.
Consequences of an odd polynomial automorphism over \mathbb{F}_{4} in dimension n :
(1) $\mathrm{T}_{n}\left(\mathbb{F}_{4}\right) \neq \mathrm{GA}_{n}\left(\mathbb{F}_{4}\right)$.

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
Answer: if $q=4,8,16,32, \ldots$ then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$.
Consequences of an odd polynomial automorphism over \mathbb{F}_{4} in dimension n :
(1) $\mathrm{T}_{n}\left(\mathbb{F}_{4}\right) \neq \mathrm{GA}_{n}\left(\mathbb{F}_{4}\right)$.
(2) $\mathrm{GA}_{n}\left(\mathbb{F}_{4}\right) \neq<\operatorname{GTAM}_{n}\left(\mathbb{F}_{4}\right)>$.

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
Answer: if $q=4,8,16,32, \ldots$ then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$.
Consequences of an odd polynomial automorphism over \mathbb{F}_{4} in dimension n :
(1) $\mathrm{T}_{n}\left(\mathbb{F}_{4}\right) \neq \mathrm{GA}_{n}\left(\mathbb{F}_{4}\right)$.
(2) $\mathrm{GA}_{n}\left(\mathbb{F}_{4}\right) \neq<\operatorname{GTAM}_{n}\left(\mathbb{F}_{4}\right)>$.
(3) (if $n=3$:) $\mathrm{GA}_{3}\left(\mathbb{F}_{4}\right) \neq<\operatorname{Aff}_{3}\left(\mathbb{F}_{4}\right), \mathrm{GA}_{2}\left(\mathbb{F}_{4}[Z]\right)>$.

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
Answer: if $q=4,8,16,32, \ldots$ then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$.
Consequences of an odd polynomial automorphism over \mathbb{F}_{4} in dimension n :
(1) $\mathrm{T}_{n}\left(\mathbb{F}_{4}\right) \neq \mathrm{GA}_{n}\left(\mathbb{F}_{4}\right)$.
(2) $\mathrm{GA}_{n}\left(\mathbb{F}_{4}\right) \neq<\operatorname{GTAM}_{n}\left(\mathbb{F}_{4}\right)>$.
(3) (if $n=3:$) $\mathrm{GA}_{3}\left(\mathbb{F}_{4}\right) \neq<\operatorname{Aff}_{3}\left(\mathbb{F}_{4}\right), \mathrm{GA}_{2}\left(\mathbb{F}_{4}[Z]\right)>$.

So: Start looking for an odd automorphism!!! (Or prove they don't exist)

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
Answer: if $q=4,8,16,32, \ldots$ then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$.

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
Answer: if $q=4,8,16,32, \ldots$ then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$.
Problem: Do there exist "odd" polynomial automorphisms over \mathbb{F}_{4} ?

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
Answer: if $q=4,8,16,32, \ldots$ then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$.
Problem: Do there exist "odd" polynomial automorphisms over \mathbb{F}_{4} ? Exciting! Let's try Nagata!

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
Answer: if $q=4,8,16,32, \ldots$ then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$.
Problem: Do there exist "odd" polynomial automorphisms over \mathbb{F}_{4} ? Exciting! Let's try Nagata!

$$
N=\left(\begin{array}{c}
X-2\left(X Z+Y^{2}\right) Y-\left(X Z+Y^{2}\right)^{2} Z \\
Y+\left(X Z+Y^{2}\right) Z \\
Z
\end{array}\right)
$$

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
Answer: if $q=4,8,16,32, \ldots$ then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$.
Problem: Do there exist "odd" polynomial automorphisms over \mathbb{F}_{4} ? Exciting! Let's try Nagata!

$$
N=\left(\begin{array}{c}
X+X^{2} Z^{3}+Y^{4} Z, \\
Y+X Z^{2}+Y^{2} Z \\
Z
\end{array}\right)
$$

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
Answer: if $q=4,8,16,32, \ldots$ then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$.
Problem: Do there exist "odd" polynomial automorphisms over \mathbb{F}_{4} ? Exciting! Let's try Nagata!

$$
N=\left(\begin{array}{c}
X+X^{2} Z^{3}+Y^{4} Z \\
Y+X Z^{2}+Y^{2} Z \\
Z
\end{array}\right)
$$

$N^{2}=1$.

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
Answer: if $q=4,8,16,32, \ldots$ then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$.
Problem: Do there exist "odd" polynomial automorphisms over \mathbb{F}_{4} ? Exciting! Let's try Nagata!

$$
N=\left(\begin{array}{c}
X+X^{2} Z^{3}+Y^{4} Z, \\
Y+X Z^{2}+Y^{2} Z, \\
Z
\end{array}\right)
$$

$N^{2}=1 . N$ does not act on $\operatorname{Fix}(N)$. This set is
$\left\{(x, y, z) \mid x^{2} z^{3}+y^{4} z=x z^{2}+y^{2} z=0\right\}$.

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
Answer: if $q=4,8,16,32, \ldots$ then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$.
Problem: Do there exist "odd" polynomial automorphisms over \mathbb{F}_{4} ? Exciting! Let's try Nagata!

$$
N=\left(\begin{array}{c}
X+X^{2} Z^{3}+Y^{4} Z, \\
Y+X Z^{2}+Y^{2} Z, \\
Z
\end{array}\right)
$$

$N^{2}=1 . N$ does not act on $\operatorname{Fix}(N)$. This set is

$$
\left\{(x, y, z) \mid z=0 \text { or } x^{2} z^{2}+y^{4}=x z+y^{2}=0\right\} .
$$

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
Answer: if $q=4,8,16,32, \ldots$ then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$.
Problem: Do there exist "odd" polynomial automorphisms over \mathbb{F}_{4} ? Exciting! Let's try Nagata!

$$
N=\left(\begin{array}{c}
X+X^{2} Z^{3}+Y^{4} Z \\
Y+X Z^{2}+Y^{2} Z \\
Z
\end{array}\right)
$$

$N^{2}=I . N$ does not act on $\operatorname{Fix}(N)$. This set is

$$
\left\{(x, y, z) \mid z=0 \text { or } x=z^{-1} y^{2}\right\}
$$

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
Answer: if $q=4,8,16,32, \ldots$ then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$.
Problem: Do there exist "odd" polynomial automorphisms over \mathbb{F}_{4} ? Exciting! Let's try Nagata!

$$
N=\left(\begin{array}{c}
X+X^{2} Z^{3}+Y^{4} Z \\
Y+X Z^{2}+Y^{2} Z \\
Z
\end{array}\right)
$$

$N^{2}=I . N$ does not act on $\operatorname{Fix}(N)$. This set is $\#\left\{(x, y, z) \mid z=0\right.$ or $\left.x=z^{-1} y^{2}\right\}$

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
Answer: if $q=4,8,16,32, \ldots$ then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$.
Problem: Do there exist "odd" polynomial automorphisms over \mathbb{F}_{4} ? Exciting! Let's try Nagata!

$$
N=\left(\begin{array}{c}
X+X^{2} Z^{3}+Y^{4} Z \\
Y+X Z^{2}+Y^{2} Z \\
Z
\end{array}\right)
$$

$N^{2}=I . N$ does not act on $\operatorname{Fix}(N)$. This set is $\#\left\{(x, y, z) \mid z=0\right.$ or $\left.x=z^{-1} y^{2}\right\}=q^{2}+(q-1) q$

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
Answer: if $q=4,8,16,32, \ldots$ then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$.
Problem: Do there exist "odd" polynomial automorphisms over \mathbb{F}_{4} ? Exciting! Let's try Nagata!

$$
N=\left(\begin{array}{c}
X+X^{2} Z^{3}+Y^{4} Z \\
Y+X Z^{2}+Y^{2} Z \\
Z
\end{array}\right)
$$

$N^{2}=I . N$ does not act on $\operatorname{Fix}(N)$. This set is
$\#\left\{(x, y, z) \mid z=0\right.$ or $\left.x=z^{-1} y^{2}\right\}=q^{2}+(q-1) q$
$=q(2 q-1)$.

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
Answer: if $q=4,8,16,32, \ldots$ then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$.
Problem: Do there exist "odd" polynomial automorphisms over \mathbb{F}_{4} ? Exciting! Let's try Nagata!

$$
N=\left(\begin{array}{c}
X+X^{2} Z^{3}+Y^{4} Z \\
Y+X Z^{2}+Y^{2} Z \\
Z
\end{array}\right)
$$

$N^{2}=I . N$ does not act on $\operatorname{Fix}(N)$. This set is
$\#\left\{(x, y, z) \mid z=0\right.$ or $\left.x=z^{-1} y^{2}\right\}=q^{2}+(q-1) q$
$=q(2 q-1)$. Hence, N exchanges $q^{3}-q(2 q-1)$ elements that means $\frac{q^{3}-q(2 q-1)}{2} 2$-cycles.

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
Answer: if $q=4,8,16,32, \ldots$ then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$.
Problem: Do there exist "odd" polynomial automorphisms over \mathbb{F}_{4} ? Exciting! Let's try Nagata!

$$
N=\left(\begin{array}{c}
X+X^{2} Z^{3}+Y^{4} Z \\
Y+X Z^{2}+Y^{2} Z \\
Z
\end{array}\right)
$$

$N^{2}=I . N$ does not act on $\operatorname{Fix}(N)$. This set is
$\#\left\{(x, y, z) \mid z=0\right.$ or $\left.x=z^{-1} y^{2}\right\}=q^{2}+(q-1) q$
$=q(2 q-1)$. Hence, N exchanges $q^{3}-q(2 q-1)$ elements that means $\frac{q^{3}-q(2 q-1)}{2} 2$-cycles. Which is an even number as $q=4,8,16, \ldots$

Question: what is $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
Answer: if $q=4,8,16,32, \ldots$ then $\pi\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$.
Problem: Do there exist "odd" polynomial automorphisms over \mathbb{F}_{4} ? Exciting! Let's try Nagata!

$$
N=\left(\begin{array}{c}
X+X^{2} Z^{3}+Y^{4} Z, \\
Y+X Z^{2}+Y^{2} Z \\
Z
\end{array}\right)
$$

$N^{2}=I . N$ does not act on $\operatorname{Fix}(N)$. This set is
$\#\left\{(x, y, z) \mid z=0\right.$ or $\left.x=z^{-1} y^{2}\right\}=q^{2}+(q-1) q$
$=q(2 q-1)$. Hence, N exchanges $q^{3}-q(2 q-1)$ elements that means $\frac{q^{3}-q(2 q-1)}{2} 2$-cycles. Which is an even number as $q=4,8,16, \ldots$ Hence, N is even!

So far: we did not find an odd automorphism. Perhaps we didn't look hard enough! Perhaps all polynomial automorphisms are even - but why?

Another idea: study the bijections of \mathbb{F}_{9}^{n} given by elements of $G A_{n}\left(\mathbb{F}_{3}\right)$.

Another idea: study the bijections of \mathbb{F}_{9}^{n} given by elements of $G A_{n}\left(\mathbb{F}_{3}\right)$.

$$
\mathrm{GA}_{n}\left(\mathbb{F}_{3}\right)
$$

$\mathrm{Bij}_{n}\left(\mathbb{F}_{9}\right)$

Another idea: study the bijections of \mathbb{F}_{9}^{n} given by elements of $G A_{n}\left(\mathbb{F}_{3}\right)$.

$$
\pi_{9}: \quad \mathrm{GA}_{n}\left(\mathbb{F}_{3}\right)
$$

$\mathrm{Bij}_{n}\left(\mathbb{F}_{9}\right)$

Another idea: study the bijections of \mathbb{F}_{9}^{n} given by elements of $G A_{n}\left(\mathbb{F}_{3}\right)$.
$\pi_{9}: \quad \mathrm{GA}_{n}\left(\mathbb{F}_{3}\right) \quad \longrightarrow \quad \pi_{9}\left(\mathrm{GA}_{n}\left(\mathbb{F}_{3}\right)\right) \quad \varsubsetneqq \quad \mathrm{Bij}_{n}\left(\mathbb{F}_{9}\right)$

Another idea: study the bijections of \mathbb{F}_{9}^{n} given by elements of $\mathrm{GA}_{n}\left(\mathbb{F}_{3}\right)$.
$\pi_{9}: \underset{\substack{ \\\mathrm{GA}_{n}\left(\mathbb{F}_{3}\right)}}{\substack{\mathrm{UA} \\ \mathrm{TA}_{n}\left(\mathbb{F}_{3}\right)}} \pi_{9}\left(\mathrm{GA}_{n}\left(\mathbb{F}_{3}\right)\right) \varsubsetneqq \mathrm{Bij}_{n}\left(\mathbb{F}_{9}\right)$

Another idea: study the bijections of \mathbb{F}_{9}^{n} given by elements of $G A_{n}\left(\mathbb{F}_{3}\right)$.

$$
\left.\begin{array}{ccccc}
\pi_{9}: & \mathrm{GA}_{n}\left(\mathbb{F}_{3}\right) & \longrightarrow & \pi_{9}\left(\mathrm{GA}_{n}\left(\mathbb{F}_{3}\right)\right) & \varsubsetneqq
\end{array} \mathrm{Bij}_{n}\left(\mathbb{F}_{9}\right)\right]
$$

Another idea: study the bijections of \mathbb{F}_{9}^{n} given by elements of $G A_{n}\left(\mathbb{F}_{3}\right)$.

$$
\left.\begin{array}{ccccc}
\pi_{9}: & \mathrm{GA}_{n}\left(\mathbb{F}_{3}\right) & \longrightarrow & \pi_{9}\left(\mathrm{GA}_{n}\left(\mathbb{F}_{3}\right)\right) & \varsubsetneqq
\end{array} \mathrm{Bij}_{n}\left(\mathbb{F}_{9}\right)\right]
$$

Then study the bijection of \mathbb{F}_{9}^{3} given by Nagata - is this bijection in the group $\pi_{9}\left(\mathrm{TA}_{3}\left(\mathbb{F}_{3}\right)\right)$?

Another idea: study the bijections of \mathbb{F}_{9}^{n} given by elements of $G A_{n}\left(\mathbb{F}_{3}\right)$.

$$
\begin{aligned}
& \pi_{9}: \quad \mathrm{GA}_{n}\left(\mathbb{F}_{3}\right) \quad \longrightarrow \pi_{9}\left(\mathrm{GA}_{n}\left(\mathbb{F}_{3}\right)\right) \quad \varsubsetneqq \quad \mathrm{Bij}_{n}\left(\mathbb{F}_{9}\right) \\
& \cup|~ U| \\
& \pi_{9}: \mathrm{TA}_{n}\left(\mathbb{F}_{3}\right) \longrightarrow \pi_{9}\left(\mathrm{TA}_{n}\left(\mathbb{F}_{3}\right)\right) \Leftarrow \text { computable! }
\end{aligned}
$$

Then study the bijection of \mathbb{F}_{9}^{3} given by Nagata - is this bijection in the group $\pi_{9}\left(\mathrm{TA}_{3}\left(\mathbb{F}_{3}\right)\right)$? We put it all in the computer (joint work with R. Willems):. . .

Another idea: study the bijections of \mathbb{F}_{9}^{n} given by elements of $G A_{n}\left(\mathbb{F}_{3}\right)$.

$$
\begin{aligned}
& \pi_{9}: \quad \mathrm{GA}_{n}\left(\mathbb{F}_{3}\right) \quad \longrightarrow \quad \pi_{9}\left(\mathrm{GA}_{n}\left(\mathbb{F}_{3}\right)\right) \quad \varsubsetneqq \quad \mathrm{Bij}_{n}\left(\mathbb{F}_{9}\right) \\
& \cup|~ U| \\
& \pi_{9}: \mathrm{TA}_{n}\left(\mathbb{F}_{3}\right) \longrightarrow \pi_{9}\left(\mathrm{TA}_{n}\left(\mathbb{F}_{3}\right)\right) \Leftarrow \text { computable! }
\end{aligned}
$$

Then study the bijection of \mathbb{F}_{9}^{3} given by Nagata - is this bijection in the group $\pi_{9}\left(\mathrm{TA}_{3}\left(\mathbb{F}_{3}\right)\right)$? We put it all in the computer (joint work with R. Willems):. . . (drums)...

Another idea: study the bijections of \mathbb{F}_{9}^{n} given by elements of $G A_{n}\left(\mathbb{F}_{3}\right)$.

$$
\left.\left.\begin{array}{ccccc}
\pi_{9}: & \mathrm{GA}_{n}\left(\mathbb{F}_{3}\right) & \longrightarrow & \pi_{9}\left(\mathrm{GA}_{n}\left(\mathbb{F}_{3}\right)\right) & \varsubsetneqq
\end{array}\right) \mathrm{Bij}_{n}\left(\mathbb{F}_{9}\right)\right]
$$

Then study the bijection of \mathbb{F}_{9}^{3} given by Nagata - is this bijection in the group $\pi_{9}\left(\mathrm{TA}_{3}\left(\mathbb{F}_{3}\right)\right)$? We put it all in the computer (joint work with R. Willems):. . . (drums)... unfortunately, yes $\pi_{9}(N)$ is in $\pi_{9}\left(\mathrm{TA}_{3}\left(\mathbb{F}_{3}\right)\right)$.

Another idea: study the bijections of \mathbb{F}_{9}^{n} given by elements of $\mathrm{GA}_{n}\left(\mathbb{F}_{3}\right)$.

Then study the bijection of \mathbb{F}_{9}^{3} given by Nagata - is this bijection in the group $\pi_{9}\left(\mathrm{TA}_{3}\left(\mathbb{F}_{3}\right)\right)$? We put it all in the computer (joint work with R. Willems):. . . (drums)... unfortunately, yes $\pi_{9}(N)$ is in $\pi_{9}\left(\mathrm{TA}_{3}\left(\mathbb{F}_{3}\right)\right)$. In fact:

Corollary

(of some theorem I proved) Let $F \in \mathrm{GA}_{2}\left(\mathbb{F}_{q}[Z]\right)$. Then F is tamely mimickable.

Nagata can be mimicked by a tame map for every $q=p^{m}$ i.e. exists $F \in T A_{3}\left(\mathbb{F}_{p}\right)$ such that $\pi_{q} N=\pi_{q} F$.

Nagata can be mimicked by a tame map for every $q=p^{m}$ i.e. exists $F \in T A_{3}\left(\mathbb{F}_{p}\right)$ such that $\pi_{q} N=\pi_{q} F$. Proof is easy once you realize where to look. . Remember Nagata's way of making Nagata map?

Nagata can be mimicked by a tame map for every $q=p^{m}$ i.e. exists $F \in T A_{3}\left(\mathbb{F}_{p}\right)$ such that $\pi_{q} N=\pi_{q} F$. Proof is easy once you realize where to look... Remember Nagata's way of making Nagata map?

$$
\begin{gathered}
\left(X-z^{-1} Y^{2}, Y\right)\left(X, Y+z^{2} X\right),\left(X+z^{-1} Y^{2}, Y\right) \\
=\left(X-2 \Delta Y-\Delta^{2} z, Y+\Delta z\right)
\end{gathered}
$$

Nagata can be mimicked by a tame map for every $q=p^{m}$ i.e. exists $F \in T A_{3}\left(\mathbb{F}_{p}\right)$ such that $\pi_{q} N=\pi_{q} F$. Proof is easy once you realize where to look... Remember Nagata's way of making Nagata map?

$$
\begin{gathered}
\left(X-z^{-1} Y^{2}, Y\right)\left(X, Y+z^{2} X\right),\left(X+z^{-1} Y^{2}, Y\right) \\
=\left(X-2 \Delta Y-\Delta^{2} z, Y+\Delta z\right)
\end{gathered}
$$

Do the Big Trick, since for $z \in \mathbb{F}_{q}$ we have $z^{q}=z$:

Nagata can be mimicked by a tame map for every $q=p^{m}$ i.e. exists $F \in T A_{3}\left(\mathbb{F}_{q}\right)$ such that $\pi_{q} N=\pi_{q} F$. Proof is easy once you realize where to look. . . Remember Nagata's way of making Nagata map?

$$
\begin{gathered}
\left(X-z^{q-2} Y^{2}, Y\right)\left(X, Y+z^{2} X\right),\left(X+z^{q-2} Y^{2}, Y\right) \\
=\left(X-2 \Delta Y-\Delta^{2} z, Y+\Delta z\right)
\end{gathered}
$$

Do the Big Trick, since for $z \in \mathbb{F}_{q}$ we have $z^{q}=z$:

Nagata can be mimicked by a tame map for every $q=p^{m}$ i.e. exists $F \in T A_{3}\left(\mathbb{F}_{q}\right)$ such that $\pi_{q} N=\pi_{q} F$. Proof is easy once you realize where to look. . . Remember Nagata's way of making Nagata map?

$$
\begin{gathered}
\left(X-z^{q-2} Y^{2}, Y\right)\left(X, Y+z^{2} X\right),\left(X+z^{q-2} Y^{2}, Y\right) \\
=\left(X-2 \Delta Y-\Delta^{2} z, Y+\Delta z\right)
\end{gathered}
$$

Do the Big Trick, since for $z \in \mathbb{F}_{q}$ we have $z^{q}=z$:
This almost works - a bit more wiggling necessary (And for the general case, even more work.)

However - hope of showing that Nagata is not tame over \mathbb{Z} (and \mathbb{C}) by proving something like:

However - hope of showing that Nagata is not tame over \mathbb{Z} (and \mathbb{C}) by proving something like:
Fix a tame map F.

However - hope of showing that Nagata is not tame over \mathbb{Z} (and \mathbb{C}) by proving something like:
Fix a tame map F. Consider it modulo all p, where p are big primes.

However - hope of showing that Nagata is not tame over \mathbb{Z} (and \mathbb{C}) by proving something like:
Fix a tame map F. Consider it modulo all p, where p are big primes. Then F does not behave like Nagata modulo p.

Another "characteristic 2" anomaly: compare
$\operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right):=$ normalizer of $\operatorname{TA}_{n}\left(\mathbb{F}_{2}\right)$
\cup
$\operatorname{GLIN}_{n}\left(\mathbb{F}_{2}\right):=$ normalizer of $\mathrm{GL}_{\mathrm{n}}\left(\mathbb{F}_{2}\right)$
Is $\operatorname{GLIN}_{2}\left(\mathbb{F}_{2}\right) \varsubsetneqq \operatorname{GTAM}_{2}\left(\mathbb{F}_{2}\right)$?
Which maps of the form $(X+f(Y), Y)$ can we find in $\operatorname{GLIN}_{2}\left(\mathbb{F}_{2}\right)$?

Another "characteristic 2" anomaly: compare
$\operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right):=$ normalizer of $\operatorname{TA}_{n}\left(\mathbb{F}_{2}\right)$
\cup
$\operatorname{GLIN}_{n}\left(\mathbb{F}_{2}\right):=$ normalizer of $\mathrm{GL}_{\mathrm{n}}\left(\mathbb{F}_{2}\right)$
Is $\operatorname{GLIN}_{2}\left(\mathbb{F}_{2}\right) \varsubsetneqq \operatorname{GTAM}_{2}\left(\mathbb{F}_{2}\right)$?
Which maps of the form $(X+f(Y), Y)$ can we find in $\operatorname{GLIN}_{2}\left(\mathbb{F}_{2}\right)$?
After some trial-and-error: $f(Y) \in \mathbb{F}_{2}\left[Y^{2}+Y\right]+\mathbb{F}_{2} Y+\mathbb{F}_{2}$.

Another "characteristic 2" anomaly: compare
$\operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right):=$ normalizer of $\operatorname{TA}_{n}\left(\mathbb{F}_{2}\right)$
\cup
$\operatorname{GLIN}_{n}\left(\mathbb{F}_{2}\right):=$ normalizer of $\mathrm{GL}_{\mathrm{n}}\left(\mathbb{F}_{2}\right)$
Is $\operatorname{GLIN}_{2}\left(\mathbb{F}_{2}\right) \varsubsetneqq \operatorname{GTAM}_{2}\left(\mathbb{F}_{2}\right)$?
Which maps of the form $(X+f(Y), Y)$ can we find in $\operatorname{GLIN}_{2}\left(\mathbb{F}_{2}\right)$?
After some trial-and-error: $f(Y) \in \mathbb{F}_{2}\left[Y^{2}+Y\right]+\mathbb{F}_{2} Y+\mathbb{F}_{2}$.
In particular - we couldn't make $\left(X+Y^{3}, Y\right)$.

Is $\operatorname{GLIN}_{n}\left(\mathbb{F}_{2}\right) \not \equiv \operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right)$?
Can we make $\left(X+Y^{3}, Y, Z\right)$ in dimension 3 over \mathbb{F}_{2} ?

Is $\operatorname{GLIN}_{n}\left(\mathbb{F}_{2}\right) \not \equiv \operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right)$?
Can we make $\left(X+Y^{3}, Y, Z\right)$ in dimension 3 over \mathbb{F}_{2} ? YES!

Is $\operatorname{GLIN}_{n}\left(\mathbb{F}_{2}\right) \neq \operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right)$?
Can we make $\left(X+Y^{3}, Y, Z\right)$ in dimension 3 over \mathbb{F}_{2} ?
YES! We can make all affine ones (not that hard).

Is $\operatorname{GLIN}_{n}\left(\mathbb{F}_{2}\right) \nexists \operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right)$?
Can we make $\left(X+Y^{3}, Y, Z\right)$ in dimension 3 over \mathbb{F}_{2} ?
YES! We can make all affine ones (not that hard).
Now $\left(X+Y^{i} Z, Y, Z\right)(X, Y, Z+1)\left(X+Y^{i} Z, Y, Z\right)=$ $\left(X+Y^{i}, Y, Z\right)$.
So: $\operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right) \subset \operatorname{GLIN}_{n+1}\left(\mathbb{F}_{2}\right)$.

Is $\operatorname{GLIN}_{n}\left(\mathbb{F}_{2}\right) \nexists \operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right)$?
Can we make $\left(X+Y^{3}, Y, Z\right)$ in dimension 3 over \mathbb{F}_{2} ?
YES! We can make all affine ones (not that hard).
Now $\left(X+Y^{i} Z, Y, Z\right)(X, Y, Z+1)\left(X+Y^{i} Z, Y, Z\right)=$ $\left(X+Y^{i}, Y, Z\right)$.
So: $\operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right) \subset \operatorname{GLIN}_{n+1}\left(\mathbb{F}_{2}\right)$.
But - we run into other monomials that we cannot make:
$(X+Y Z, Y, Z)$

Theorem: $\operatorname{GLIN}_{n}\left(\mathbb{F}_{2}\right) \nsubseteq \operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right)$.

Theorem: $\operatorname{GLIN}_{n}\left(\mathbb{F}_{2}\right) \nsubseteq \operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right)$.
Proof.

Theorem: $\operatorname{GLIN}_{n}\left(\mathbb{F}_{2}\right) \neq \operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right)$.
Proof. Remember, $\pi_{2}\left(T A_{n}\left(\mathbb{F}_{2}\right)\right)=\operatorname{Sym}\left(2^{n}\right)$, as \mathbb{F}_{2} was the exception to the exception.

Theorem: $\operatorname{GLIN}_{n}\left(\mathbb{F}_{2}\right) \neq \operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right)$.
Proof. Remember, $\pi_{2}\left(T A_{n}\left(\mathbb{F}_{2}\right)\right)=\operatorname{Sym}\left(2^{n}\right)$, as \mathbb{F}_{2} was the exception to the exception.
Now, notice that if $n \geq 3$, then any element of $\mathrm{GL}_{\mathrm{n}}\left(\mathbb{F}_{2}\right)$ is even.

Theorem: $\operatorname{GLIN}_{n}\left(\mathbb{F}_{2}\right) \varsubsetneqq \operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right)$.
Proof. Remember, $\pi_{2}\left(T A_{n}\left(\mathbb{F}_{2}\right)\right)=\operatorname{Sym}\left(2^{n}\right)$, as \mathbb{F}_{2} was the exception to the exception.
Now, notice that if $n \geq 3$, then any element of $\operatorname{GL}_{\mathrm{n}}\left(\mathbb{F}_{2}\right)$ is even. Hence $\pi_{2}\left(\operatorname{GLIN}_{n}\left(\mathbb{F}_{2}\right)\right) \subseteq \operatorname{Alt}\left(2^{n}\right)$. If $n=2$, then $(X+Y, Y)$ is odd, unfortunately.

Theorem: $\operatorname{GLIN}_{n}\left(\mathbb{F}_{2}\right) \varsubsetneqq \operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right)$.
Proof. Remember, $\pi_{2}\left(T A_{n}\left(\mathbb{F}_{2}\right)\right)=\operatorname{Sym}\left(2^{n}\right)$, as \mathbb{F}_{2} was the exception to the exception.
Now, notice that if $n \geq 3$, then any element of $\operatorname{GL}_{\mathrm{n}}\left(\mathbb{F}_{2}\right)$ is even. Hence $\pi_{2}\left(\operatorname{GLIN}_{n}\left(\mathbb{F}_{2}\right)\right) \subseteq \operatorname{Alt}\left(2^{n}\right)$. If $n=2$, then $(X+Y, Y)$ is odd, unfortunately. However, in dimension 2 we understand the automorphism group, and can do a computer calculation

Theorem: $\operatorname{GLIN}_{n}\left(\mathbb{F}_{2}\right) \neq \operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right)$.
Proof. Remember, $\pi_{2}\left(T A_{n}\left(\mathbb{F}_{2}\right)\right)=\operatorname{Sym}\left(2^{n}\right)$, as \mathbb{F}_{2} was the exception to the exception.
Now, notice that if $n \geq 3$, then any element of $\operatorname{GL}_{\mathrm{n}}\left(\mathbb{F}_{2}\right)$ is even. Hence $\pi_{2}\left(\operatorname{GLIN}_{n}\left(\mathbb{F}_{2}\right)\right) \subseteq \operatorname{Alt}\left(2^{n}\right)$. If $n=2$, then $(X+Y, Y)$ is odd, unfortunately. However, in dimension 2 we understand the automorphism group, and can do a computer calculation to see that

$$
\frac{\# \pi_{4}\left(\operatorname{GLIN}_{2}\left(\mathbb{F}_{2}\right)\right)}{\# \pi_{4}\left(\operatorname{GTAM}_{2}\left(\mathbb{F}_{2}\right)\right)}=2
$$

End proof.

Conclusions

Conclusions

$$
\begin{aligned}
& \pi_{q}\left(\mathrm{TA}_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right) \text { if } q \text { odd, } q=2 \\
& \pi_{q}\left(\mathrm{TA}_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right) \text { if } q=2^{m}, m \geq 2
\end{aligned}
$$

Conclusions

- $\pi_{q}\left(\operatorname{TA}_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$ if q odd, $q=2$.
$\pi_{q}\left(\operatorname{TA}_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$ if $q=2^{m}, m \geq 2$.
- $\operatorname{GLIN}_{n}\left(\mathbb{F}_{q}\right)=\operatorname{GTAM}_{n}\left(\mathbb{F}_{q}\right)$ if $q \neq 2$.
$\operatorname{GLIN}_{n}\left(\mathbb{F}_{2}\right) \nexists \operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right) \ldots$ but $\operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right) \subseteq \operatorname{GLIN}_{n+1}\left(\mathbb{F}_{2}\right)$

Conclusions

- $\pi_{q}\left(\operatorname{TA}_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$ if q odd, $q=2$. $\pi_{q}\left(\operatorname{TA}_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$ if $q=2^{m}, m \geq 2$.
- $\operatorname{GLIN}_{n}\left(\mathbb{F}_{q}\right)=\operatorname{GTAM}_{n}\left(\mathbb{F}_{q}\right)$ if $q \neq 2$. $\operatorname{GLIN}_{n}\left(\mathbb{F}_{2}\right) \varsubsetneqq \operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right) \ldots$ but $\operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right) \subseteq \operatorname{GLIN}_{n+1}\left(\mathbb{F}_{2}\right)$
- Nagata in $\operatorname{GTAM}_{n}(k)$ if $k \neq \mathbb{F}_{2}$. If $k=\mathbb{F}_{2}$ we don't know. Yet.

Conclusions

- $\pi_{q}\left(\operatorname{TA}_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$ if q odd, $q=2$.
$\pi_{q}\left(\operatorname{TA}_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$ if $q=2^{m}, m \geq 2$.
- $\operatorname{GLIN}_{n}\left(\mathbb{F}_{q}\right)=\operatorname{GTAM}_{n}\left(\mathbb{F}_{q}\right)$ if $q \neq 2$. $\operatorname{GLIN}_{n}\left(\mathbb{F}_{2}\right) \neq \operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right) \ldots$ but $\operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right) \subseteq \operatorname{GLIN}_{n+1}\left(\mathbb{F}_{2}\right)$
- Nagata in $\operatorname{GTAM}_{n}(k)$ if $k \neq \mathbb{F}_{2}$. If $k=\mathbb{F}_{2}$ we don't know. Yet.
- More research is needed in $\operatorname{char}(k)=p$, which is a very unexplored topic for polynomial automorphisms - but apparently very powerful! (Belov-Kontsjevich)

Conclusions

- $\pi_{q}\left(\operatorname{TA}_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$ if q odd, $q=2$.
$\pi_{q}\left(\operatorname{TA}_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$ if $q=2^{m}, m \geq 2$.
- $\operatorname{GLIN}_{n}\left(\mathbb{F}_{q}\right)=\operatorname{GTAM}_{n}\left(\mathbb{F}_{q}\right)$ if $q \neq 2$. $\operatorname{GLIN}_{n}\left(\mathbb{F}_{2}\right) \neq \operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right) \ldots$ but $\operatorname{GTAM}_{n}\left(\mathbb{F}_{2}\right) \subseteq \operatorname{GLIN}_{n+1}\left(\mathbb{F}_{2}\right)$
- Nagata in $\operatorname{GTAM}_{n}(k)$ if $k \neq \mathbb{F}_{2}$. If $k=\mathbb{F}_{2}$ we don't know. Yet.
- More research is needed in $\operatorname{char}(k)=p$, which is a very unexplored topic for polynomial automorphisms - but apparently very powerful! (Belov-Kontsjevich)
*** THANK YOU ***
(for watching 175 slides. . .)

