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A short introduction: What is a polynomial map?

A map F : kn −→ kn given by n polynomials:

F = (F1(X1, . . . , Xn), . . . , Fn(X1, . . . , Xn)).

Example: F = (X + Y 2, Y ).

Various ways of looking at polynomial maps:

I A map kn −→ kn.

I A list of n polynomials: F ∈ (k[X1, . . . , Xn])
n.

I A ring automorphism of k[X1, . . . , Xn] sending

g(X1, . . . , Xn) to g(F1, . . . , Fn).

A polynomial map F is invertible if there is a polynomial map

G such that F (G ) = (X1, . . . , Xn).
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Notations:
Linear Polynomial

All MLn(k) MAn(k)

Invertible GLn(k) GAn(k)



BIG STUPID CLAIM:

Polynomial Automorphisms Can Be Used Whenever Linear

Maps Are Used.

Why this bold claim? Polynomial maps seem to have similar

properties as linear maps (much more so than holomorphic

maps for example). Today I will not really go into these

similarities, but they are there. Today: I will talk about

GAn(k), especially if k is a finite field.
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MOTIVATION:

Why study polynomial maps over

finite fields, and not be a normal person and do the “C” thing?

REASON 1: Reduction-mod-p techniques to solve problems

over C. Classical example: an injective polynomial map is

surjective. Reason: an injective map on finite set is surjective.

Very recent: Belov-Kontsjevich proved equivalence of two

already long-standing conjectures: the Dixmier Conjecture

(’68) and the Jacobian Conjecture (’39).

REASON 2: Polynomial maps over finite fields may have

applications in discrete-mathematics like settings!
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RE-MOTIVATION: Why NOT study polynomial

maps over finite fields! In fact, why didn’t anyone fill that

gaping hole yet!

REASON 1: Reduction-mod-p techniques to solve problems

over C. Classical example: an injective polynomial map is

surjective. Reason: an injective map from a finite set to a

finite. Very recent: Belov-Kontsjevich (yes, that guy) proved

equivalence of two already long-standing conjectures: the

Dixmier Conjecture (’68) and the Jacobian Conjecture (’39).

REASON 2: Polynomial maps over finite fields may have

applications in discrete-mathematics like settings! (In fact, one

of the reasons for this talk is the hope that there may be one

or two of you in the audience who may see such a possible

application!)



The Automorphism Group
(This whole talk: n ≥ 2)

GLn(k) is generated by

I Permutations X1 ←→ Xi

I Map (aX1 + bXj , X2, . . . , Xn) (a ∈ k∗, b ∈ k)

GAn(k) is generated by ???
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Elementary map: (X1 + f (X2, . . . , Xn), X2, . . . , Xn),

invertible with inverse

(X1 − f (X2, . . . , Xn), X2, . . . , Xn).

Triangular map: (X + f (Y , Z ), Y + g(Z ), Z + c)

= (X , Y , Z + c)(X , Y + g(Z ), Z )(X + f (X , Y ), Y , Z )

Jn(k):= set of triangular maps.

Affn(k):= set of compositions of invertible linear maps and

translations.

TAn(k) :=< Jn(k), Affn(k) >
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In dimension 1: we understand the automorphism group.

(They are linear.)

In dimension 2: famous Jung-van der Kulk-theorem:

GA2(K) = TA2(K) = Aff 2(K)|× J2(K)

Jung-van der Kulk is the reason that we can do a lot in

dimension 2 !!!!
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What about dimension 3?

Stupid idea: everything will be

tame?

1972: Nagata: “I cannot tame the following map:”

N := (X − Y ∆− Z∆2, Y + Z∆, Z ) where ∆ = XZ + Y 2.

Nagata’s map is the historically most important map for

polynomial automorphisms! No one could “tame Nagata”, it is

a very elegant but complicated map! It eluded everyone!

AMAZING result: Umirbaev-Shestakov (2004)

N is not tame!!

(Difficult and technical proof. ) (2007 AMS Moore paper

award.)
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How did Nagata make Nagata’s map?

Study maps over k[z , z−1]:

(X − z−1Y 2, Y )(X , Y + z2X )(X + z−1Y 2, Y )

= (X − 2(Xz + Y 2)Y − (Xz + Y 2)2z , Y + (Xz + Y 2)z)

Thus: N is tame over k[z , z−1], i.e. N in TA2(k[z , z−1]).

Nagata proved: N is NOT tame over k[z ], i.e. N not in

TA2(k[z ]).
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= (X − 2(Xz + Y 2)Y − (Xz + Y 2)2z , Y + (Xz + Y 2)z)
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Where in these groups is Nagata?

No conjugate of Nagata is in GLn(k) for any field k !

But: recent result: Nagata is shifted linearizable: choose s ∈ k

such that s 6= 0, 1,−1.

exp(
−s2

1− s2
D)(s exp(D)) exp(

s2

1− s2
D) = sI

Hence: Nagata map is in GLIN3(k) ! - If k 6= F2, F3, that is !!
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How does GLINn(k) compare to GTAMn(k)?

As soon as (X1 + f (X2), X2, . . . , Xn) ∈ GLINn(k) for any

f ∈ k[X2], then GLINn(k) = GTAMn(k). Choose some a 6= 0:

(a−1X , Y )(X − bf (Y ), Y )(aX , Y )(X + bf (Y ), Y )
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. . . if k 6= F2. . .

Question: How does GLINn(F2) and GTAMn(F2) relate? We

will Get Back To That. . .
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What about TAn(k) ⊆ GAn(k) if k = Fq is a finite field?

Denote Bijn(Fq) as set of bijections on Fn
q. We have a natural

map

GAn(Fq)
π−→ Bijn(Fq).

What is π(GAn(Fq))? Can we make every bijection on Fn
q as

an invertible polynomial map?

Simpler question: what is π(TAn(Fq))?

Why simpler? Because we have a set of generators!
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Question: what is π(Tn(Fq))?

See Bijn(Fq) as Sym(qn).

Tn(Fq) is generated by GLn(Fq) (for which we have a finite

set of generators) and maps of the form

σf := (X1 + f , X2, . . . , Xn)

where f ∈ Fq[X2, . . . , Xn]. Let α ∈ Fn−1
q , fα ∈ Fq[X2, . . . , Xn],

be such that fα(α) = 1 and 0 otherwise. Then we can restrict

to the

σα := σfα .

which is a finite set.
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Question: what is π(Tn(Fq))?

Hence, take the following set:

σα := (X1 + fα, X2, . . . , Xn)

σi := X1 ↔ Xi

τ := (aX1, X2, . . . , Xn)

where < a >= F∗q.
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Question: what is π(Tn(Fq))?

(1) π(Tn(Fq)) is 2-transitive, hence primitive.

You might know: if H < Sym(m) is primitive + a 2-cycle then

H = Sym(m).

If q = 2 or q odd, then indeed we find a 2-cycle! I will not do

that here, but note that τ (if p is odd) or σi (if q = 2) are odd

permutations.

Hence if q = 2 or q = odd, then π(Tn(Fq)) = Sym(qn).
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Question: what is π(Tn(Fq))?

Answer: if q = 2 or q = odd, then π(Tn(Fq)) = Sym(qn).

If q = 4, 8, 16, . . . we don’t succeed to find a 2-cycle. But:

there’s another theorem:

Theorem: H < Sym(m) Primitive + 3-cycle −→ H = Alt(m)

or H = Sym(m).

So let us look for a 3-cycle!

Take γ := σ~0, and δ := σ2γσ2. Let’s use a blackboard, and

compute δ−1γ−1δγ. . . Hence, for all q: π(Tn(Fq)) is either

Alt(m) or Sym(m).

An easy computation shows that if q = 4, 8, 16, . . . then

π(τ), π(σα), π(σi) are all even. Hence, if q = 4, 8, 16, . . . then

π(Tn(Fq)) = Alt(m)!
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So far: we did not find an odd automorphism. Perhaps we

didn’t look hard enough! Perhaps all polynomial

automorphisms are even - but why?
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Nagata can be mimicked by a tame map for every q = pm -

i.e. exists F ∈ TA3(Fp) such that πqN = πqF .

Proof is easy

once you realize where to look. . . Remember Nagata’s way of

making Nagata map?

(X − z−1Y 2, Y )(X , Y + z2X ), (X + z−1Y 2, Y )

= (X − 2∆Y −∆2z , Y + ∆z)

Do the Big Trick, since for z ∈ Fq we have zq = z :
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However - hope of showing that Nagata is not tame over Z
(and C) by proving something like:

Fix a tame map F . Consider it modulo all p, where p are big

primes. Then F does not behave like Nagata modulo p.
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Another “characteristic 2” anomaly: compare

GTAMn(F2) := normalizer of TAn(F2)

∪|
GLINn(F2) := normalizer of GLn(F2)

Is GLIN2(F2)&GTAM2(F2)?

Which maps of the form (X + f (Y ), Y ) can we find in

GLIN2(F2)?

After some trial-and-error: f (Y ) ∈ F2[Y
2 + Y ] + F2Y + F2.

In particular - we couldn’t make (X + Y 3, Y ).
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Is GLINn(F2)&GTAMn(F2)?

Can we make (X + Y 3, Y , Z ) in dimension 3 over F2?

YES! We can make all affine ones (not that hard).

Now (X + Y iZ , Y , Z )(X , Y , Z + 1)(X + Y iZ , Y , Z ) =

(X + Y i , Y , Z ).

So: GTAMn(F2) ⊂ GLINn+1(F2).

But - we run into other monomials that we cannot make:

(X + YZ , Y , Z )
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Theorem: GLINn(F2)&GTAMn(F2).

Proof. Remember, π2(TAn(F2)) = Sym(2n), as F2 was the

exception to the exception.

Now, notice that if n ≥ 3, then any element of GLn(F2) is

even. Hence π2(GLINn(F2)) ⊆ Alt(2n). If n = 2, then

(X + Y , Y ) is odd, unfortunately. However, in dimension 2 we

understand the automorphism group, and can do a computer

calculation to see that

#π4(GLIN2(F2))

#π4(GTAM2(F2))
= 2.

End proof.
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Conclusions

I πq(TAn(Fq)) = Sym(qn) if q odd, q = 2.

πq(TAn(Fq)) = Alt(qn) if q = 2m, m ≥ 2.

I GLINn(Fq) = GTAMn(Fq) if q 6= 2.

GLINn(F2)&GTAMn(F2). . . but

GTAMn(F2) ⊆ GLINn+1(F2)

I Nagata in GTAMn(k) if k 6= F2. If k = F2 we don’t

know. Yet.

I More research is needed in char(k) = p, which is a very

unexplored topic for polynomial automorphisms - but

apparently very powerful! (Belov-Kontsjevich)
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(for watching 175 slides. . . )
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