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Nagata’s automorphism:

N := (X − 2Y ∆ − Z∆2, Y + Z∆, Z ) where ∆ = XZ + Y 2.

In fact:

N = exp(∆∂) where ∂ = −2Y ∂
∂X

+ Z ∂
∂Y

.

Let’s define:

Nλ = exp(λ∆∂) where λ ∈ C.



Well, Umirbaev-Shestakov tell us that Nagata is not tame.



Well, Umirbaev-Shestakov tell us that Nagata is not tame.

But, it can still be linearizable. Is it linearizable?



Well, Umirbaev-Shestakov tell us that Nagata is not tame.

But, it can still be linearizable. Is it linearizable?

If it is linearizable, then it is triangularizable.



Well, Umirbaev-Shestakov tell us that Nagata is not tame.

But, it can still be linearizable. Is it linearizable?

If it is linearizable, then it is triangularizable.

It is not triangularizable (Bass 1984). We will show this too,

today (a bit more general).



Well, Umirbaev-Shestakov tell us that Nagata is not tame.

But, it can still be linearizable. Is it linearizable?

If it is linearizable, then it is triangularizable.

It is not triangularizable (Bass 1984). We will show this too,

today (a bit more general).

Question: (Dubouloz) Is Nagata tamizable?



Well, Umirbaev-Shestakov tell us that Nagata is not tame.

But, it can still be linearizable. Is it linearizable?

If it is linearizable, then it is triangularizable.

It is not triangularizable (Bass 1984). We will show this too,

today (a bit more general).

Question: (Dubouloz) Is Nagata tamizable? Can Nagata be

tamed?



Well, Umirbaev-Shestakov tell us that Nagata is not tame.

But, it can still be linearizable. Is it linearizable?

If it is linearizable, then it is triangularizable.

It is not triangularizable (Bass 1984). We will show this too,

today (a bit more general).

Question: (Dubouloz) Is Nagata tamizable? Can Nagata be

tamed? (= is it a conjugate of a tame one)
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So, Nagata is not triangularizable, let alone linearizable. Now I

want to show you something that at first amazed me:

Let us define

sN := (sX , sY , sZ )◦N = (sX − s2Y ∆− sZ∆2, sY + sZ∆, sZ )

Now compute: N
4
3 (2N)N−

4
3 = (2X , 2Y , 2Z )!!!

Nagata is shifted linearizable!

but, −N is not linearizable. Then again, iN is linearizable!

What is going on?
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Corollary 2:

D, E ∈ LFDn(C), [D, E ] = D. Then for any β, λ ∈ C,

exp(βE ) exp(λD) is conjugate to exp(βE ) as long as

β 6∈ 2πiZ. In particular,

exp(−µD)(exp(βE ) exp(λD)) exp(µD) = exp(βE )

where µ = λ(e−β − 1)−1.

We are going to apply this to the situation that D is a

homogeneous locally finite(nilpotent) derivation (like Nagata’s

derivation). We will make a semisimple derivation E using the

fact that D is homogeneous.
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deg on C
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C
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D homogeneous of degree k ∈ Z: D(Ad) ⊆ Ad+k .
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derivation.)

Theorem: If D ∈ LFDn(C) is homogeneous of degree k 6= 0

w.r.t. a monomial grading, then exp(D) is shifted linearizable.
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Write E := Edeg , β = 1, α = k , λ = 1.

Lemma: Let D be a homogeneous derivation of degree k with

respect to a monomial grading deg . Then [Edeg , D] = kD.

Corollary 2: D, E ∈ LFDn(C), [D, E ] = kD, k 6= 0. Then

exp(E ) exp(D) is conjugate to exp(E ).

Theorem: If D ∈ LFDn(C) is homogeneous of degree k 6= 0

w.r.t. a monomial grading, then exp(D) is shifted linearizable.

Proof.
Follows from Lemma and Corollary 2: exp(E ) is a linear map:

the diagonal map (ew1X1, . . . , e
wnXn).



Applying this to Nagata

Goal: find linear maps L for which LN is linearizable, and

determine for which L LN is not linearizable. We will do this

for some particular linear maps, that behave nice w.r.t.

Nagata.
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Applying this to Nagata

∂ = −2Y ∂X + Z∂Y , ∆ = XZ + Y 2, D := ∆δ.

D homogeneous w.r.t deg , then

deg(X , Y , Z ) = s(1, 0,−1) + t(0, 1, 2), s, t ∈ C.

E := sX∂X + tY ∂Y + (−s + 2t)Z∂Z , D of degree s + 3t.

If s = −3t, then D of degree 0.

We thus are considering

exp(E ) exp(D) = (aX , bY , cZ ) ◦ N

Define L(a,b,c) := (aX , bY , cZ ). where ac = b2, abc 6= 0. As

long as bc 6= 1 then we can linearize!



ac = b2, abc 6= 0, bc 6= 1. Then

L(a,b,c)N

is linearizable to L(a,b,c), for applying the formula we get

N−
bc

1−bc (L(a,b,c)N)N
bc

1−bc .



ac = b2, abc 6= 0, bc 6= 1. Then
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is linearizable to L(a,b,c), for applying the formula we get
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What is the case that L(a,b,c) = sI = (sX , sY , sZ )?
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s 6= 0, s 6= 1,−1. Then

sN

is linearizable to sI . Applying the formula we get

N
−

s2

1−s2 (sN)N
s2

1−s2 .

So, s = 2:

N
4
3 (2N)N

−4
3 .

We also give a (new) proof that if bc = 1 then one cannot

linearize L(b3,b,b−1)N . So indeed. N ,−N not linearizable. And

2N , iN are linearizable.
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Define Linn(k) := {F ∈ GAn(k) |F linearizable }.

Define GLINn(k) :=< Linn(k) >. Since N ∈ GLINn(k) (*),

tempting to ask: Conjecture: GLINn(k) = GAn(k).

Well, is TAn(k) ⊂ GLINn(k)? YES if k 6= F2. NO if k = F2.

Is N ∈ GLINn(k)?Well,

N
−

s2

1−s2 (sN)N
s2

1−s2 .

so as long as you can find some s ∈ k∗ such that

(1 − s2) 6= 0. I.e. s 6= 0, 1,−1. I.e. k 6= F2, F3.



Define Linn(k) := {F ∈ GAn(k) |F linearizable }.

Define GLINn(k) :=< Linn(k) >. Since N ∈ GLINn(k) (*),

tempting to ask: Conjecture: GLINn(k) = GAn(k).

Well, is TAn(k) ⊂ GLINn(k)? YES if k 6= F2. NO if k = F2.

N ∈ GLINn(k) except if k = F2, F3.

In case k = F2, F3 we don’t know. . .
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Meister’s Linearization Problem:

For which F ∈ GAn(C) does there exist some s ∈ C
∗ such

that sF is linearizable?

***** THANK YOU *****


