The Nagata Automorphism is Shifted Linearizable

Stefan Maubach, Pierre-Marie Poloni

Kalamazoo, October 2008

Let \mathbb{K} be a field. An old conjecture:

Let \mathbb{K} be a field. An old conjecture:
Conjecture: $\mathrm{T}_{n}(\mathbb{K})=\mathrm{GA}_{n}(\mathbb{K})$

Let \mathbb{K} be a field. An old conjecture:
Conjecture: $\mathrm{T}_{n}(\mathbb{K})=\mathrm{GA}_{n}(\mathbb{K})$

Now found to be wrong.

Let \mathbb{K} be a field. An old conjecture:
Conjecture: $\mathrm{T}_{n}(\mathbb{K})=\mathrm{GA}_{n}(\mathbb{K})$

Now found to be wrong.

Still open conjectures:
$\mathrm{GA}_{n}(k)$
$\mathrm{TA}_{n}(k)$
$\mathrm{GA}_{n}(k)$
\cup
$\operatorname{GLF}_{n}(k) \quad:=<F \in \mathrm{GA}_{n}(k) \mid \operatorname{deg}\left(F^{m}\right)$ bounded $>$
$E L F D_{n}(k) \quad:=<\exp (D) \mid D$ locally finite derivation $>$ \cup
$\mathrm{TA}_{n}(k)$
$\mathrm{GA}_{n}(k)$
\cup
$\operatorname{GLF}_{n}(k) \quad:=<F \in \mathrm{GA}_{n}(k) \mid \operatorname{deg}\left(F^{m}\right)$ bounded $>$
U|
$\operatorname{ELFD}_{n}(k) \quad:=<\exp (D) \mid D$ locally finite derivation $>$ \cup
$\operatorname{GLIN}_{n}(k) \quad:=$ normalization of $\mathrm{GL}_{n}(k)$
U|
$\mathrm{TA}_{n}(k)$
$\mathrm{GA}_{n}(k)$
\cup
$\mathrm{GLF}_{n}(k) \quad:=<F \in \mathrm{GA}_{n}(k) \mid \operatorname{deg}\left(F^{m}\right)$ bounded $>$
U|
$E L F D_{n}(k) \quad:=<\exp (D) \mid D$ locally finite derivation $>$
U|
$\operatorname{GTAM}_{n}(k):=$ normalization of $\operatorname{TA}_{n}(k)$
U|
$\operatorname{GLIN}_{n}(k) \quad:=$ normalization of $\mathrm{GL}_{n}(k)$
\cup
$\mathrm{TA}_{n}(k)$

Nagata's automorphism:
$N:=\left(X-2 Y \Delta-Z \Delta^{2}, Y+Z \Delta, Z\right)$ where $\Delta=X Z+Y^{2}$.
In fact:
$N=\exp (\Delta \partial)$ where $\partial=-2 Y \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$.
Let's define:
$N^{\lambda}=\exp (\lambda \Delta \partial)$ where $\lambda \in \mathbb{C}$.

Well, Umirbaev-Shestakov tell us that Nagata is not tame.

Well, Umirbaev-Shestakov tell us that Nagata is not tame.
But, it can still be linearizable. Is it linearizable?

Well, Umirbaev-Shestakov tell us that Nagata is not tame.
But, it can still be linearizable. Is it linearizable?
If it is linearizable, then it is triangularizable.

Well, Umirbaev-Shestakov tell us that Nagata is not tame.
But, it can still be linearizable. Is it linearizable?
If it is linearizable, then it is triangularizable.
It is not triangularizable (Bass 1984). We will show this too, today (a bit more general).

Well, Umirbaev-Shestakov tell us that Nagata is not tame.
But, it can still be linearizable. Is it linearizable?
If it is linearizable, then it is triangularizable.
It is not triangularizable (Bass 1984). We will show this too, today (a bit more general).
Question: (Dubouloz) Is Nagata tamizable?

Well, Umirbaev-Shestakov tell us that Nagata is not tame.
But, it can still be linearizable. Is it linearizable?
If it is linearizable, then it is triangularizable.
It is not triangularizable (Bass 1984). We will show this too, today (a bit more general).
Question: (Dubouloz) Is Nagata tamizable? Can Nagata be tamed?

Well, Umirbaev-Shestakov tell us that Nagata is not tame.
But, it can still be linearizable. Is it linearizable?
If it is linearizable, then it is triangularizable.
It is not triangularizable (Bass 1984). We will show this too, today (a bit more general).
Question: (Dubouloz) Is Nagata tamizable? Can Nagata be
tamed? ($=$ is it a conjugate of a tame one)

So, Nagata is not triangularizable, let alone linearizable.

So, Nagata is not triangularizable, let alone linearizable. Now I want to show you something that at first amazed me:

So, Nagata is not triangularizable, let alone linearizable. Now I want to show you something that at first amazed me:
Let us define
$s N:=(s X, s Y, s Z) \circ N=\left(s X-s 2 Y \Delta-s Z \Delta^{2}, s Y+s Z \Delta, s Z\right)$

So, Nagata is not triangularizable, let alone linearizable. Now I want to show you something that at first amazed me:
Let us define
$s N:=(s X, s Y, s Z) \circ N=\left(s X-s 2 Y \Delta-s Z \Delta^{2}, s Y+s Z \Delta, s Z\right)$
Now compute: $\quad(2 N)$

So, Nagata is not triangularizable, let alone linearizable. Now I want to show you something that at first amazed me:
Let us define
$s N:=(s X, s Y, s Z) \circ N=\left(s X-s 2 Y \Delta-s Z \Delta^{2}, s Y+s Z \Delta, s Z\right)$
Now compute: $N^{\frac{4}{3}}(2 N) N^{-\frac{4}{3}}$

So, Nagata is not triangularizable, let alone linearizable. Now I want to show you something that at first amazed me:
Let us define
$s N:=(s X, s Y, s Z) \circ N=\left(s X-s 2 Y \Delta-s Z \Delta^{2}, s Y+s Z \Delta, s Z\right)$
Now compute: $N^{\frac{4}{3}}(2 N) N^{-\frac{4}{3}}=(2 X, 2 Y, 2 Z)!!!$

So, Nagata is not triangularizable, let alone linearizable. Now I want to show you something that at first amazed me:
Let us define
$s N:=(s X, s Y, s Z) \circ N=\left(s X-s 2 Y \Delta-s Z \Delta^{2}, s Y+s Z \Delta, s Z\right)$
Now compute: $N^{\frac{4}{3}}(2 N) N^{-\frac{4}{3}}=(2 X, 2 Y, 2 Z)!!!$
Nagata is shifted linearizable!

So, Nagata is not triangularizable, let alone linearizable. Now I want to show you something that at first amazed me:
Let us define
$s N:=(s X, s Y, s Z) \circ N=\left(s X-s 2 Y \Delta-s Z \Delta^{2}, s Y+s Z \Delta, s Z\right)$
Now compute: $N^{\frac{4}{3}}(2 N) N^{-\frac{4}{3}}=(2 X, 2 Y, 2 Z)!!!$
Nagata is shifted linearizable!
but, $-N$ is not linearizable.

So, Nagata is not triangularizable, let alone linearizable. Now I want to show you something that at first amazed me:
Let us define
$s N:=(s X, s Y, s Z) \circ N=\left(s X-s 2 Y \Delta-s Z \Delta^{2}, s Y+s Z \Delta, s Z\right)$
Now compute: $N^{\frac{4}{3}}(2 N) N^{-\frac{4}{3}}=(2 X, 2 Y, 2 Z)!!!$
Nagata is shifted linearizable!
but, $-N$ is not linearizable. Then again, $i N$ is linearizable!

So, Nagata is not triangularizable, let alone linearizable. Now I want to show you something that at first amazed me:
Let us define
$s N:=(s X, s Y, s Z) \circ N=\left(s X-s 2 Y \Delta-s Z \Delta^{2}, s Y+s Z \Delta, s Z\right)$
Now compute: $N^{\frac{4}{3}}(2 N) N^{-\frac{4}{3}}=(2 X, 2 Y, 2 Z)!!!$
Nagata is shifted linearizable!
but, $-N$ is not linearizable. Then again, $i N$ is linearizable!
What is going on?

After generalizing, generalizing and generalizing it all came down to the following: two noncommuting locally finite derivations D, E forming a Lie algebra.
Lemma 1: Let D, E be derivations, $E \in \operatorname{LFD}_{n}(\mathbb{C})$, such that $[E, D]=D$.

After generalizing, generalizing and generalizing it all came down to the following: two noncommuting locally finite derivations D, E forming a Lie algebra.
Lemma 1: Let D, E be derivations, $E \in \operatorname{LFD}_{n}(\mathbb{C})$, such that $[E, D]=D$. Then

$$
\exp (\beta E) D=e^{\beta} D \exp (\beta E)
$$

for any $\beta \in \mathbb{C}$.

Lemma 1:

Let D, E be derivations, $E \in \mathrm{LFD}_{n}(\mathbb{C})$, such that $[E, D]=D$.
Then

$$
\exp (\beta E) D=e^{\beta} D \exp (\beta E)
$$

for any $\beta \in \mathbb{C}$.
Proof.

Lemma 1:

Let D, E be derivations, $E \in \operatorname{LFD}_{n}(\mathbb{C})$, such that $[E, D]=D$.
Then

$$
\exp (\beta E) D=e^{\beta} D \exp (\beta E)
$$

for any $\beta \in \mathbb{C}$.
Proof.
Use the well-known formulae

$$
\exp (A) B \exp (-A)=\exp ([A,-]) \circ B
$$

where A, B are elements of a Lie algebra. Put in
$A=\beta E, B=D$ you get

$$
(\exp [\beta E,-]) \circ D=e^{\beta} D
$$

Lemma 1: Let D, E be derivations, $E \in \operatorname{LFD}_{n}(\mathbb{C})$, such that $[E, D]=D$. Then

$$
\exp (\beta E) D=e^{\beta} D \exp (\beta E)
$$

for any $\beta \in \mathbb{C}$.

Lemma 1: Let D, E be derivations, $E \in \operatorname{LFD}_{n}(\mathbb{C})$, such that $[E, D]=D$. Then

$$
\exp (\beta E) D=e^{\beta} D \exp (\beta E)
$$

for any $\beta \in \mathbb{C}$.
Corollary 1: Let $D, E \in \operatorname{LFD}_{n}(\mathbb{C})$ and suppose $[D, E]=D$.

Lemma 1: Let D, E be derivations, $E \in \operatorname{LFD}_{n}(\mathbb{C})$, such that $[E, D]=D$. Then

$$
\exp (\beta E) D=e^{\beta} D \exp (\beta E)
$$

for any $\beta \in \mathbb{C}$.
Corollary 1: Let $D, E \in \operatorname{LFD}_{n}(\mathbb{C})$ and suppose $[D, E]=D$.
Then for any $\beta, \lambda \in \mathbb{C}$ we have

$$
\exp (\beta E) \exp (\lambda D)=\exp \left(e^{\beta} \lambda D\right) \exp (\beta E)
$$

Lemma 1: Let D, E be derivations, $E \in \operatorname{LFD}_{n}(\mathbb{C})$, such that $[E, D]=D$. Then

$$
\exp (\beta E) D=e^{\beta} D \exp (\beta E)
$$

for any $\beta \in \mathbb{C}$.
Corollary 1: Let $D, E \in \operatorname{LFD}_{n}(\mathbb{C})$ and suppose $[D, E]=D$.
Then for any $\beta, \lambda \in \mathbb{C}$ we have

$$
\exp (\beta E) \exp (\lambda D)=\exp \left(e^{\beta} \lambda D\right) \exp (\beta E)
$$

In particular, if $\beta \in 2 \pi i \mathbb{Z}$ then $\exp (\beta E)$ and $\exp (\lambda D)$ commute for each $\lambda \in \mathbb{C}$.

Lemma 1: Let D, E be derivations, $E \in \operatorname{LFD}_{n}(\mathbb{C})$, such that $[E, D]=D$. Then

$$
\exp (\beta E) D=e^{\beta} D \exp (\beta E)
$$

for any $\beta \in \mathbb{C}$.
Corollary 1: Let $D, E \in \operatorname{LFD}_{n}(\mathbb{C})$ and suppose $[D, E]=D$.
Then for any $\beta, \lambda \in \mathbb{C}$ we have

$$
\exp (\beta E) \exp (\lambda D)=\exp \left(e^{\beta} \lambda D\right) \exp (\beta E)
$$

In particular, if $\beta \in 2 \pi i \mathbb{Z}$ then $\exp (\beta E)$ and $\exp (\lambda D)$ commute for each $\lambda \in \mathbb{C}$.

Proof.

Use lemma 1 to show that

$$
\exp (\beta E) D^{i}=\left(e^{\beta}\right)^{i} D^{i} \exp (\beta E)
$$

Corollary 1: Let $D, E \in \operatorname{LFD}_{n}(\mathbb{C})$ and suppose $[D, E]=D$.
Then for any $\beta, \lambda \in \mathbb{C}$ we have

$$
\exp (\beta E) \exp (\lambda D)=\exp \left(e^{\beta} \lambda D\right) \exp (\beta E) .
$$

In particular, if $\beta \in 2 \pi i \mathbb{Z}$ then $\exp (\beta E)$ and $\exp (\lambda D)$ commute for each $\lambda \in \mathbb{C}$.

Corollary 1: Let $D, E \in \operatorname{LFD}_{n}(\mathbb{C})$ and suppose $[D, E]=D$.
Then for any $\beta, \lambda \in \mathbb{C}$ we have

$$
\exp (\beta E) \exp (\lambda D)=\exp \left(e^{\beta} \lambda D\right) \exp (\beta E) .
$$

In particular, if $\beta \in 2 \pi i \mathbb{Z}$ then $\exp (\beta E)$ and $\exp (\lambda D)$ commute for each $\lambda \in \mathbb{C}$.
Corollary 2: Let $D, E \in \operatorname{LFD}_{n}(\mathbb{C})$ and suppose $[D, E]=D$.

Corollary 1: Let $D, E \in \operatorname{LFD}_{n}(\mathbb{C})$ and suppose $[D, E]=D$.
Then for any $\beta, \lambda \in \mathbb{C}$ we have

$$
\exp (\beta E) \exp (\lambda D)=\exp \left(e^{\beta} \lambda D\right) \exp (\beta E) .
$$

In particular, if $\beta \in 2 \pi i \mathbb{Z}$ then $\exp (\beta E)$ and $\exp (\lambda D)$ commute for each $\lambda \in \mathbb{C}$.
Corollary 2: Let $D, E \in \operatorname{LFD}_{n}(\mathbb{C})$ and suppose $[D, E]=D$.
Then for any $\beta, \lambda \in \mathbb{C}, \exp (\beta E) \exp (\lambda D)$ is conjugate to $\exp (\beta E)$ as long as $\beta \notin 2 \pi i \mathbb{Z}$.

Corollary 1: Let $D, E \in \operatorname{LFD}_{n}(\mathbb{C})$ and suppose $[D, E]=D$.
Then for any $\beta, \lambda \in \mathbb{C}$ we have

$$
\exp (\beta E) \exp (\lambda D)=\exp \left(e^{\beta} \lambda D\right) \exp (\beta E) .
$$

In particular, if $\beta \in 2 \pi i \mathbb{Z}$ then $\exp (\beta E)$ and $\exp (\lambda D)$ commute for each $\lambda \in \mathbb{C}$.
Corollary 2: Let $D, E \in \operatorname{LFD}_{n}(\mathbb{C})$ and suppose $[D, E]=D$. Then for any $\beta, \lambda \in \mathbb{C}, \exp (\beta E) \exp (\lambda D)$ is conjugate to $\exp (\beta E)$ as long as $\beta \notin 2 \pi i \mathbb{Z}$. In particular,

$$
\exp (-\mu D)(\exp (\beta E) \exp (\lambda D)) \exp (\mu D)=\exp (\beta E)
$$

where $\mu=\lambda\left(e^{-\beta}-1\right)^{-1}$.

Corollary 2:

$D, E \in \mathrm{LFD}_{n}(\mathbb{C}),[D, E]=D$. Then for any $\beta, \lambda \in \mathbb{C}$, $\exp (\beta E) \exp (\lambda D)$ is conjugate to $\exp (\beta E)$ as long as $\beta \notin 2 \pi i \mathbb{Z}$. In particular,

$$
\exp (-\mu D)(\exp (\beta E) \exp (\lambda D)) \exp (\mu D)=\exp (\beta E)
$$

where $\mu=\lambda\left(e^{-\beta}-1\right)^{-1}$.
We are going to apply this to the situation that D is a homogeneous locally finite(nilpotent) derivation (like Nagata's derivation). We will make a semisimple derivation E using the fact that D is homogeneous.

Shift-linearizing exponents of homogeneous derivations

Shift-linearizing exponents of

 homogeneous derivationsA grading deg on $\mathbb{C}^{[n]}$ is called monomial if each monomial (or equivalently, each variable X_{i}) is homogeneous.

Shift-linearizing exponents of

homogeneous derivations

A grading deg on $\mathbb{C}^{[n]}$ is called monomial if each monomial (or equivalently, each variable X_{i}) is homogeneous. Let us state

$$
w_{i}:=\operatorname{deg}\left(X_{i}\right)
$$

$\mathbb{C}^{[n]}=: A=\oplus_{d \in \mathbb{Z}} A_{d}$.

Shift-linearizing exponents of

homogeneous derivations

A grading deg on $\mathbb{C}^{[n]}$ is called monomial if each monomial (or equivalently, each variable X_{i}) is homogeneous. Let us state

$$
w_{i}:=\operatorname{deg}\left(X_{i}\right)
$$

$\mathbb{C}^{[n]}=: A=\oplus_{d \in \mathbb{Z}} A_{d}$.
D homogeneous means: D (homogeneous) =homogeneous. D homogeneous then exists $k \in \mathbb{Z}: D\left(A_{d}\right) \subseteq A_{d+k}$. We say that D is homogeneous of degree k.

Shift-linearizing exponents of

homogeneous derivations

deg on $\mathbb{C}^{[n]}$ monomial.

$$
w_{i}:=\operatorname{deg}\left(X_{i}\right)
$$

$\mathbb{C}^{[n]}=: A=\oplus_{d \in \mathbb{Z}} A_{d}$.
D homogeneous of degree $k \in \mathbb{Z}: D\left(A_{d}\right) \subseteq A_{d+k}$.

Shift-linearizing exponents of

homogeneous derivations

deg on $\mathbb{C}^{[n]}$ monomial.

$$
w_{i}:=\operatorname{deg}\left(X_{i}\right)
$$

$\mathbb{C}^{[n]}=: A=\oplus_{d \in \mathbb{Z}} A_{d}$.
D homogeneous of degree $k \in \mathbb{Z}: D\left(A_{d}\right) \subseteq A_{d+k}$.
Define $E:=E_{\text {deg }}:=\sum_{i=1}^{n} w_{i} X_{i} \partial_{X_{i}} .(E$ stands for Euler derivation.)

Shift-linearizing exponents of

homogeneous derivations

deg on $\mathbb{C}^{[n]}$ monomial.

$$
w_{i}:=\operatorname{deg}\left(X_{i}\right)
$$

$\mathbb{C}^{[n]}=: A=\oplus_{d \in \mathbb{Z}} A_{d}$.
D homogeneous of degree $k \in \mathbb{Z}: D\left(A_{d}\right) \subseteq A_{d+k}$.
Define $E:=E_{\text {deg }}:=\sum_{i=1}^{n} w_{i} X_{i} \partial_{X_{i}}$. (E stands for Euler derivation.)
Theorem: If $D \in \operatorname{LFD}_{n}(\mathbb{C})$ is homogeneous of degree $k \neq 0$ w.r.t. a monomial grading, then $\exp (D)$ is shifted linearizable.

Write $E:=E_{\text {deg }}$.

Write $E:=E_{\text {deg }}$.
Lemma: Let D be a homogeneous derivation of degree k with respect to a monomial grading deg. Then $[E, D]=k D$. In particular, if $k=0$, then D and E commute.

Write $E:=E_{\text {deg }}$.
Lemma: Let D be a homogeneous derivation of degree k with respect to a monomial grading deg. Then $[E, D]=k D$. In particular, if $k=0$, then D and E commute.
Corollary 2: $D, E \in \operatorname{LFD}_{n}(\mathbb{C}),[D, E]=\alpha D$ where $\alpha \in \mathbb{C}$. Then for any $\beta, \lambda \in \mathbb{C}, \exp (\beta E) \exp (\lambda D)$ is conjugate to $\exp (\beta E)$ as long as $\alpha \beta \notin 2 \pi i \mathbb{Z}$. In particular,

$$
\exp (-\mu D)(\exp (\beta E) \exp (\lambda D)) \exp (\mu D)=\exp (\beta E)
$$

where $\mu=\lambda\left(e^{-\alpha \beta}-1\right)^{-1}$.

Write $E:=E_{\text {deg }}$.
Lemma: Let D be a homogeneous derivation of degree k with respect to a monomial grading deg. Then $[E, D]=k D$. In particular, if $k=0$, then D and E commute.
Corollary 2: $D, E \in \operatorname{LFD}_{n}(\mathbb{C}),[D, E]=\alpha D$ where $\alpha \in \mathbb{C}$. Then for any $\beta, \lambda \in \mathbb{C}, \exp (\beta E) \exp (\lambda D)$ is conjugate to $\exp (\beta E)$ as long as $\alpha \beta \notin 2 \pi i \mathbb{Z}$. In particular,

$$
\exp (-\mu D)(\exp (\beta E) \exp (\lambda D)) \exp (\mu D)=\exp (\beta E)
$$

where $\mu=\lambda\left(e^{-\alpha \beta}-1\right)^{-1}$.
Theorem: If $D \in \operatorname{LFD}_{n}(\mathbb{C})$ is homogeneous of degree $k \neq 0$ w.r.t. a monomial grading, then $\exp (D)$ is shifted linearizable.

Write $E:=E_{\text {deg }}, \beta=1, \alpha=k, \lambda=1$.
Lemma: Let D be a homogeneous derivation of degree k with respect to a monomial grading deg. Then $\left[E_{\text {deg }}, D\right]=k D$.
Corollary 2: $D, E \in \operatorname{LFD}_{n}(\mathbb{C}),[D, E]=k D, k \neq 0$. Then $\exp (E) \exp (D)$ is conjugate to $\exp (E)$.
Theorem: If $D \in \operatorname{LFD}_{n}(\mathbb{C})$ is homogeneous of degree $k \neq 0$ w.r.t. a monomial grading, then $\exp (D)$ is shifted linearizable.

Proof.

Follows from Lemma and Corollary 2: $\exp (E)$ is a linear map: the diagonal map $\left(e^{w_{1}} X_{1}, \ldots, e^{w_{n}} X_{n}\right)$.

Applying this to Nagata

Goal: find linear maps L for which $L N$ is linearizable, and determine for which $L L N$ is not linearizable. We will do this for some particular linear maps, that behave nice w.r.t.

Nagata.

Applying this to Nagata

$$
\partial=-2 Y \partial_{X}+Z \partial_{Y}, \Delta=X Z+Y^{2}, D:=\Delta \delta, N:=\exp (D)
$$

Applying this to Nagata

$\partial=-2 Y \partial_{X}+Z \partial_{Y}, \Delta=X Z+Y^{2}, D:=\Delta \delta, N:=\exp (D)$.
Nagata derivation is homogeneous to many gradings. D homogeneous w.r.t. $\operatorname{deg}_{1}(X, Y, Z)=(1,0,-1)$ and $\operatorname{deg}_{2}(X, Y, Z)=(0,1,2)$.

Applying this to Nagata

$\partial=-2 Y \partial_{X}+Z \partial_{Y}, \Delta=X Z+Y^{2}, D:=\Delta \delta, N:=\exp (D)$.
Nagata derivation is homogeneous to many gradings. D homogeneous w.r.t. $\operatorname{deg}_{1}(X, Y, Z)=(1,0,-1)$ and $\operatorname{deg}_{2}(X, Y, Z)=(0,1,2)$.
In fact: D homogeneous w.r.t deg, then $\operatorname{deg}(X, Y, Z)=s(1,0,-1)+t(0,1,2), s, t \in \mathbb{C}$.

Applying this to Nagata

$\partial=-2 Y \partial_{X}+Z \partial_{Y}, \Delta=X Z+Y^{2}, D:=\Delta \delta, N:=\exp (D)$.
Nagata derivation is homogeneous to many gradings. D homogeneous w.r.t. $\operatorname{deg}_{1}(X, Y, Z)=(1,0,-1)$ and $\operatorname{deg}_{2}(X, Y, Z)=(0,1,2)$.
In fact: D homogeneous w.r.t deg, then $\operatorname{deg}(X, Y, Z)=s(1,0,-1)+t(0,1,2), s, t \in \mathbb{C}$. For deg_{1} : $E_{1}:=X \partial_{X}-Z \partial_{Z},, D$ of degree 1.

Applying this to Nagata

$\partial=-2 Y \partial_{X}+Z \partial_{Y}, \Delta=X Z+Y^{2}, D:=\Delta \delta, N:=\exp (D)$.
Nagata derivation is homogeneous to many gradings. D homogeneous w.r.t. $\operatorname{deg}_{1}(X, Y, Z)=(1,0,-1)$ and $\operatorname{deg}_{2}(X, Y, Z)=(0,1,2)$.
In fact: D homogeneous w.r.t deg, then $\operatorname{deg}(X, Y, Z)=s(1,0,-1)+t(0,1,2), s, t \in \mathbb{C}$. For deg_{1} : $E_{1}:=X \partial_{X}-Z \partial_{Z},, D$ of degree 1 . for $\operatorname{deg}_{2}: E_{2}:=Y \partial_{Y}+2 Z \partial_{Z}, D$ of degree 3.

Applying this to Nagata

$\partial=-2 Y \partial_{X}+Z \partial_{Y}, \Delta=X Z+Y^{2}, D:=\Delta \delta, N:=\exp (D)$.
Nagata derivation is homogeneous to many gradings. D homogeneous w.r.t. $\operatorname{deg}_{1}(X, Y, Z)=(1,0,-1)$ and
$\operatorname{deg}_{2}(X, Y, Z)=(0,1,2)$.
In fact: D homogeneous w.r.t deg, then $\operatorname{deg}(X, Y, Z)=s(1,0,-1)+t(0,1,2), s, t \in \mathbb{C}$. For deg_{1} : $E_{1}:=X \partial_{X}-Z \partial_{Z},, D$ of degree 1 . for $\operatorname{deg}_{2}: E_{2}:=Y \partial_{Y}+2 Z \partial_{Z}, D$ of degree 3.
For deg: $E:=s X \partial_{X}+t Y \partial_{Y}+(-s+2 t) Z \partial_{Z}, D$ of degree $s+3 t$.

Applying this to Nagata

$\partial=-2 Y \partial_{X}+Z \partial_{Y}, \Delta=X Z+Y^{2}, D:=\Delta \delta, N:=\exp (D)$.
Nagata derivation is homogeneous to many gradings. D homogeneous w.r.t. $\operatorname{deg}_{1}(X, Y, Z)=(1,0,-1)$ and
$\operatorname{deg}_{2}(X, Y, Z)=(0,1,2)$.
In fact: D homogeneous w.r.t deg, then $\operatorname{deg}(X, Y, Z)=s(1,0,-1)+t(0,1,2), s, t \in \mathbb{C}$. For deg_{1} : $E_{1}:=X \partial_{X}-Z \partial_{Z},, D$ of degree 1 . for $\operatorname{deg}_{2}: E_{2}:=Y \partial_{Y}+2 Z \partial_{Z}, D$ of degree 3.
For deg: $E:=s X \partial_{X}+t Y \partial_{Y}+(-s+2 t) Z \partial_{Z}, D$ of degree $s+3 t$.
If $s=-3 t$, then D of degree 0 .

Applying this to Nagata

$\partial=-2 Y \partial_{X}+Z \partial_{Y}, \Delta=X Z+Y^{2}, D:=\Delta \delta$.
D homogeneous w.r.t deg, then
$\operatorname{deg}(X, Y, Z)=s(1,0,-1)+t(0,1,2), s, t \in \mathbb{C}$.
$E:=s X \partial_{X}+t Y \partial_{Y}+(-s+2 t) Z \partial_{Z}, D$ of degree $s+3 t$.
If $s=-3 t$, then D of degree 0 .

Applying this to Nagata

$\partial=-2 Y \partial_{X}+Z \partial_{Y}, \Delta=X Z+Y^{2}, D:=\Delta \delta$.
D homogeneous w.r.t deg, then $\operatorname{deg}(X, Y, Z)=s(1,0,-1)+t(0,1,2), s, t \in \mathbb{C}$. $E:=s X \partial_{X}+t Y \partial_{Y}+(-s+2 t) Z \partial_{Z}, D$ of degree $s+3 t$.
If $s=-3 t$, then D of degree 0 .
We thus are considering

$$
\exp (E) \exp (\lambda D)=\left(e^{s} X, e^{t} Y, e^{-s+2 t} Z\right) \circ N^{\lambda}
$$

Applying this to Nagata

$\partial=-2 Y \partial_{X}+Z \partial_{Y}, \Delta=X Z+Y^{2}, D:=\Delta \delta$.
D homogeneous w.r.t deg, then
$\operatorname{deg}(X, Y, Z)=s(1,0,-1)+t(0,1,2), s, t \in \mathbb{C}$.
$E:=s X \partial_{X}+t Y \partial_{Y}+(-s+2 t) Z \partial_{Z}, D$ of degree $s+3 t$.
If $s=-3 t$, then D of degree 0 .
We thus are considering

$$
\exp (E) \exp (\lambda D)=\left(e^{s} X, e^{t} Y, e^{-s+2 t} Z\right) \circ N^{\lambda}
$$

i.e.

$$
\exp (E) \exp (D)=(a X, b Y, c Z) \circ N
$$

where $a c=b^{2}, a b c \neq 0$.

Applying this to Nagata

$\partial=-2 Y \partial_{X}+Z \partial_{Y}, \Delta=X Z+Y^{2}, D:=\Delta \delta$.
D homogeneous w.r.t deg, then
$\operatorname{deg}(X, Y, Z)=s(1,0,-1)+t(0,1,2), s, t \in \mathbb{C}$.
$E:=s X \partial_{X}+t Y \partial_{Y}+(-s+2 t) Z \partial_{Z}, D$ of degree $s+3 t$.
If $s=-3 t$, then D of degree 0 .
We thus are considering

$$
\exp (E) \exp (\lambda D)=\left(e^{s} X, e^{t} Y, e^{-s+2 t} Z\right) \circ N^{\lambda}
$$

i.e.

$$
\exp (E) \exp (D)=(a X, b Y, c Z) \circ N
$$

where $a c=b^{2}, a b c \neq 0$. Requirement $s=-3 t$ translates to $b c=1$.

Applying this to Nagata

$\partial=-2 Y \partial_{X}+Z \partial_{Y}, \Delta=X Z+Y^{2}, D:=\Delta \delta$.
D homogeneous w.r.t deg, then
$\operatorname{deg}(X, Y, Z)=s(1,0,-1)+t(0,1,2), s, t \in \mathbb{C}$.
$E:=s X \partial_{X}+t Y \partial_{Y}+(-s+2 t) Z \partial_{Z}, D$ of degree $s+3 t$.
If $s=-3 t$, then D of degree 0 .
We thus are considering

$$
\exp (E) \exp (D)=(a X, b Y, c Z) \circ N
$$

Define $L_{(a, b, c)}:=(a X, b Y, c Z)$. where $a c=b^{2}, a b c \neq 0$. As long as $b c \neq 1$ then we can linearize!
$a c=b^{2}, a b c \neq 0, b c \neq 1$. Then

$$
L_{(a, b, c)} N
$$

is linearizable to $L_{(a, b, c)}$, for applying the formula we get

$$
N^{-\frac{b c}{1-b c}}\left(L_{(a, b, c)} N\right) N^{\frac{b c}{1-b c}} .
$$

$a c=b^{2}, a b c \neq 0, b c \neq 1$. Then

$$
L_{(a, b, c)} N
$$

is linearizable to $L_{(a, b, c)}$, for applying the formula we get

$$
N^{-\frac{b c}{1-b c}}\left(L_{(a, b, c)} N\right) N^{\frac{b c}{1-b c}} .
$$

What is the case that $L_{(a, b, c)}=s l=(s X, s Y, s Z)$?
$s s=s^{2}, s s s \neq 0, s s \neq 1$. Then

$$
L_{(s, s, s)} N
$$

is linearizable to $L_{(s, s, s)}$. Applying the formula we get

$$
N^{-\frac{s s}{1-s s}}\left(L_{(s, s, s)} N\right) N^{\frac{s s}{1-s s}} .
$$

$s \neq 0, s \neq 1,-1$. Then

$$
s N
$$

is linearizable to $s l$. Applying the formula we get

$$
N^{-\frac{s^{2}}{1-s^{2}}}(s N) N^{\frac{s^{2}}{1-s^{2}}}
$$

$s \neq 0, s \neq 1,-1$. Then

$$
s N
$$

is linearizable to $s l$. Applying the formula we get

$$
N^{-\frac{s^{2}}{1-s^{2}}}(s N) N^{\frac{s^{2}}{1-s^{2}}}
$$

So, $s=2$:

$$
N^{\frac{4}{3}}(2 N) N^{\frac{-4}{3}}
$$

$s \neq 0, s \neq 1,-1$. Then

$$
s N
$$

is linearizable to $s l$. Applying the formula we get

$$
N^{-\frac{s^{2}}{1-s^{2}}}(s N) N^{\frac{s^{2}}{1-s^{2}}}
$$

So, $s=2$:

$$
N^{\frac{4}{3}}(2 N) N^{\frac{-4}{3}}
$$

We also give a (new) proof that if $b c=1$ then one cannot linearize $L_{\left(b^{3}, b, b^{-1}\right)} N$.
$s \neq 0, s \neq 1,-1$. Then

$$
s N
$$

is linearizable to $s l$. Applying the formula we get

$$
N^{-\frac{s^{2}}{1-s^{2}}}(s N) N^{\frac{s^{2}}{1-s^{2}}}
$$

So, $s=2$:

$$
N^{\frac{4}{3}}(2 N) N^{\frac{-4}{3}}
$$

We also give a (new) proof that if $b c=1$ then one cannot linearize $L_{\left(b^{3}, b, b^{-1}\right)} N$. So indeed. $N,-N$ not linearizable. And $2 N$, iN are linearizable.

Define $\operatorname{Lin}_{n}(k):=\left\{F \in \mathrm{GA}_{n}(k) \mid F\right.$ linearizable $\}$.

Define $\operatorname{Lin}_{n}(k):=\left\{F \in \mathrm{GA}_{n}(k) \mid F\right.$ linearizable $\}$.
Define $\operatorname{GLIN}_{n}(k):=<\operatorname{Lin}_{n}(k)>$.

Define $\operatorname{Lin}_{n}(k):=\left\{F \in \mathrm{GA}_{n}(k) \mid F\right.$ linearizable $\}$.
Define $\operatorname{GLIN}_{n}(k):=<\operatorname{Lin}_{n}(k)>$. Since $N \in \operatorname{GLIN}_{n}(k)\left(^{*}\right)$,
tempting to ask: Conjecture: $\operatorname{GLIN}_{n}(k)=\mathrm{GA}_{n}(k)$.

Define $\operatorname{Lin}_{n}(k):=\left\{F \in \mathrm{GA}_{n}(k) \mid F\right.$ linearizable $\}$.
Define $\operatorname{GLIN}_{n}(k):=<\operatorname{Lin}_{n}(k)>$. Since $N \in \operatorname{GLIN}_{n}(k)\left(^{*}\right)$,
tempting to ask: Conjecture: $\operatorname{GLIN}_{n}(k)=\mathrm{GA}_{n}(k)$.
Well, is $\mathrm{TA}_{n}(k) \subset \operatorname{GLIN}_{n}(k)$? YES if $k \neq \mathbb{F}_{2}$. NO if $k=\mathbb{F}_{2}$.

Define $\operatorname{Lin}_{n}(k):=\left\{F \in \mathrm{GA}_{n}(k) \mid F\right.$ linearizable $\}$.
Define $\operatorname{GLIN}_{n}(k):=<\operatorname{Lin}_{n}(k)>$. Since $N \in \operatorname{GLIN}_{n}(k)\left(^{*}\right)$,
tempting to ask: Conjecture: $\operatorname{GLIN}_{n}(k)=\mathrm{GA}_{n}(k)$. Well, is $\operatorname{TA}_{n}(k) \subset \operatorname{GLIN}_{n}(k)$? YES if $k \neq \mathbb{F}_{2}$. NO if $k=\mathbb{F}_{2}$. Is $N \in \operatorname{GLIN}_{n}(k)$?

Define $\operatorname{Lin}_{n}(k):=\left\{F \in \mathrm{GA}_{n}(k) \mid F\right.$ linearizable $\}$.
Define $\operatorname{GLIN}_{n}(k):=<\operatorname{Lin}_{n}(k)>$. Since $N \in \operatorname{GLIN}_{n}(k)\left(^{*}\right)$, tempting to ask: Conjecture: $\operatorname{GLIN}_{n}(k)=\mathrm{GA}_{n}(k)$. Well, is $\operatorname{TA}_{n}(k) \subset \operatorname{GLIN}_{n}(k)$? YES if $k \neq \mathbb{F}_{2}$. NO if $k=\mathbb{F}_{2}$. Is $N \in \operatorname{GLIN}_{n}(k) ?$ Well,

$$
N^{-\frac{s^{2}}{1-s^{2}}}(s N) N^{\frac{s^{2}}{1-s^{2}}}
$$

Define $\operatorname{Lin}_{n}(k):=\left\{F \in \mathrm{GA}_{n}(k) \mid F\right.$ linearizable $\}$.
Define $\operatorname{GLIN}_{n}(k):=<\operatorname{Lin}_{n}(k)>$. Since $N \in \operatorname{GLIN}_{n}(k)(*)$,
tempting to ask: Conjecture: $\operatorname{GLIN}_{n}(k)=\mathrm{GA}_{n}(k)$.
Well, is $\operatorname{TA}_{n}(k) \subset \operatorname{GLIN}_{n}(k)$? YES if $k \neq \mathbb{F}_{2}$. NO if $k=\mathbb{F}_{2}$. Is $N \in \operatorname{GLIN}_{n}(k) ?$ Well,

$$
N^{-\frac{s^{2}}{1-s^{2}}}(s N) N^{\frac{s^{2}}{1-s^{2}}}
$$

so as long as you can find some $s \in k^{*}$ such that $\left(1-s^{2}\right) \neq 0$.

Define $\operatorname{Lin}_{n}(k):=\left\{F \in \mathrm{GA}_{n}(k) \mid F\right.$ linearizable $\}$.
Define $\operatorname{GLIN}_{n}(k):=<\operatorname{Lin}_{n}(k)>$. Since $N \in \operatorname{GLIN}_{n}(k)(*)$,
tempting to ask: Conjecture: $\operatorname{GLIN}_{n}(k)=\mathrm{GA}_{n}(k)$.
Well, is $\operatorname{TA}_{n}(k) \subset \operatorname{GLIN}_{n}(k)$? YES if $k \neq \mathbb{F}_{2}$. NO if $k=\mathbb{F}_{2}$. Is $N \in \operatorname{GLIN}_{n}(k) ?$ Well,

$$
N^{-\frac{s^{2}}{1-s^{2}}}(s N) N^{\frac{s^{2}}{1-s^{2}}}
$$

so as long as you can find some $s \in k^{*}$ such that $\left(1-s^{2}\right) \neq 0$. I.e. $s \neq 0,1,-1$. I.e. $k \neq \mathbb{F}_{2}, \mathbb{F}_{3}$.

Define $\operatorname{Lin}_{n}(k):=\left\{F \in \mathrm{GA}_{n}(k) \mid F\right.$ linearizable $\}$.
Define $\operatorname{GLIN}_{n}(k):=<\operatorname{Lin}_{n}(k)>$. Since $N \in \operatorname{GLIN}_{n}(k)\left(^{*}\right)$,
tempting to ask: Conjecture: $\operatorname{GLIN}_{n}(k)=\mathrm{GA}_{n}(k)$.
Well, is $\mathrm{TA}_{n}(k) \subset \operatorname{GLIN}_{n}(k)$? YES if $k \neq \mathbb{F}_{2}$. NO if $k=\mathbb{F}_{2}$.
$N \in \operatorname{GLIN}_{n}(k)$ except if $k=\mathbb{F}_{2}, \mathbb{F}_{3}$.
In case $k=\mathbb{F}_{2}, \mathbb{F}_{3}$ we don't know...

Meister's Linearization Problem:

For which $F \in \mathrm{GA}_{n}(\mathbb{C})$ does there exist some $s \in \mathbb{C}^{*}$ such that $s F$ is linearizable?

Meister's Linearization Problem:

For which $F \in \mathrm{GA}_{n}(\mathbb{C})$ does there exist some $s \in \mathbb{C}^{*}$ such that $s F$ is linearizable?
***** THANK YOU *****

