
Polynomial automorphisms over

finite fields

and Locally Finite Polynomial Maps

Stefan Maubach

Arpil 2008



F : Cn −→ Cn is a polynomial map if

F = (F1, . . . , Fn), Fi ∈ C[X1, . . . , Xn].

Examples: all linear maps.
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Linear Polynomial

All MLn(C) MAn(C)

Invertible GLn(C) GAn(C)
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BIG STUPID CLAIM:

Polynomial Automorphisms Can Be Used Whenever Linear

Maps Are Used.

Why this bold claim?Polynomial maps seem to have similar

properties as linear maps (much more so than holomorphic

maps for example). Well. . . to be honest, most are

conjectures. . . Let’s look at a few of these conjectures!
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det(Jac(F )) ∈ C∗ ⇒ F is invertible.
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Let V be a vector space. Then

V × C ∼= Cn+1 =⇒ V ∼= Cn.

Cancelation Problem:

Let V be a variety. Then

V × C ∼= Cn+1 =⇒ V ∼= Cn.



Let V be a vector space. Then

V × C ∼= Cn+1 =⇒ V ∼= Cn.

Cancelation Problem:

Let V be a variety. Then

V × C ∼= Cn+1 =⇒ V ∼= Cn.



GLn(C) is generated by

I Permutations X1 ←→ Xi

I Map (aX1 + bXj , X2, . . . , Xn) (a ∈ C∗, b ∈ C)

GAn(C) is generated by ???
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Elementary map: (X1 + f (X2, . . . , Xn), X2, . . . , Xn),

invertible with inverse

(X1 − f (X2, . . . , Xn), X2, . . . , Xn).

Triangular map: (X + f (Y , Z ), Y + g(Z ), Z + c)

= (X , Y , Z + c)(X , Y + g(Z ), Z )(X + f (X , Y ), Y , Z )

Jn(C):= set of triangular maps.

Affn(C):= set of compositions of invertible linear maps and

translations.

TAn(C) :=< Jn(C), Affn(C) >
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Question: TAn(C) = GAn(C)?

n = 2 : (Jung-v/d Kulk, 1942)

TAn(C) = GAn(C)

Nagata’s map:

F =

 X − 2(XZ + Y 2)Y − (XZ + Y 2)2Z ,

Y + (XZ + Y 2)Z ,

Z


n = 3:(Shestakov-Umirbaev, 2004)

Nagata’s map not tame, i.e. GA3(C) 6= TA3(C)
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First subject: Polynomial maps over finite

fields

Consider ϕ ∈ GAn(Fq). Induces bijection E(ϕ) : Fn
q −→ Fn

q,

i.e. E(ϕ) ∈ Sym(qn).

Question: what is E(Tn(Fq))?
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Let α ∈ Fn−1
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fα be such that f (α)(α) = 1 and 0 otherwise. Then we can
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σα := σfα .

which is a finite set.
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where < a >= F∗q.
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Question: what is E(Tn(Fq))?

(1) E(Tn(Fq)) is transitive - even stronger, it is primitive.

You might know: if H < Sym(m) is transitive + has a 2-cycle

then H = Sym(m).

If q = 2 or q odd, then indeed we find a 2-cycle! (τ , or σi).

Hence if q = 2 or q = odd, then E(Tn(Fq)) = Sym(qn).
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Question: what is E(Tn(Fq))?

Answer: if q = 2 or q = odd, then E(Tn(Fq)) = Sym(qn).

If q = 4, 8, 16, . . . then we can only find a 3-cycle. But:

there’s another theorem:

Theorem: H < Sym(m) Primitive + 3-cycle −→ H = Alt(m)

or H = Sym(m).

Hence if q = 4, 8, 16, . . . then E(Tn(Fq)) is either Alt(m) or

Sym(m).

But - E(σα, E(σi), E(τ) are all even ! Hence

E(Tn(Fq)) = Alt(m) !
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Problem: Do there exist “odd” polynomial automorphisms

over F4?
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dimension n:

(1) Tn(F4) 6= GAn(F4).

(2) GAn(F4) 6=< GLINn(F4) >.

(3) (if n = 3:) GA3(K) 6=< Aff3(K), GA2(K[Z ]) >.

So: Start looking for an odd automorphism!!! (Or prove they

don’t exist)
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Second part: Locally finite polynomial

endomorphisms
If we want to have any hope of applying polynomial maps to

the same things we apply linear maps to - then we need to

understand them better - give them a better theoretical

foundation!

Now let’s be ambitious. What is the strongest theorem in

linear algebra. Tell me!

Very good: the Cayley-Hamilton theorem (characteristic

polynomials of linear maps etc.).

Now, let’s try to make a Cayley-Hamilton theorem for

polynomial maps! (Perhaps the constant term can replace that

stupid det(Jac(F )) = 1 requirement!)
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Example: F := (3X + Y 2, 2Y ).

1 (27X+ 37Y 2 , 8Y ) = F 3

− 9 (9X+ 7Y 2 , 4Y ) = F 2

26 (3X+ Y 2 , 2Y ) = F

− 24 (X , Y ) = I

0 (0 , 0)

F zero of T 3 − 9T 2 + 26T − 24 = (T − 2)(T − 3)(T − 4)

.
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Cayley-Hamilton:

Let L : Cn −→ Cn be a linear map. Then L is a zero of

PL(T ) := det(TI − L).

What about generalizing MLn(C) −→ MAn(C)?

EXAMPLE:

Let F = (X 2, Y 2). Then deg(F n) = 2n.

There exists no relation

F n + an−1F
n−1 + . . . + a1F + a0I = 0. GR! It will not work!

But. . . Definition: If F is a zero of some P(T ) ∈ C[T ]\{0},
then we will call F a Locally Finite Polynomial Endomorphism

(short LFPE).
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Definition:

If F is a zero of some P(T ) ∈ C[T ]\{0}, then we will call F a

Locally Finite Polynomial Endomorphism (short LFPE).

Let’s be a little less ambitious and study this set. LFPE’s

should resemble linear maps more than general polynomial

maps!
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Some Remarks (1/3):

IF := {P(T ) ∈ C[T ] | P(F ) = 0} is an ideal of C[T ]

This is very general - if you have functions f , g , . . . on

something, and they form a module over a commutative ring

R , then the set

If := {P(T ) ∈ R[T ] | P(F ) = 0} is an ideal of R[T ].

Proof:

r2f
2 + r1f + r0 = 0 and r4f + r5 = 0 (i.e.

r2T
2 + r1T + r0, r4T + r5 ∈ If ) then

0 = 0(f ) = (r2f
2 + r1f + r0)(f ) = (r2f

3 + r1f
2 + r0f ), hence

(r2T
2 + r1T + r0)(T ) ∈ If ,

0 = r2f
2 + r1f + r0 + r4f + r5, hence

r2T
2 + r1T + r0 + r4T + r5 ∈ If .

Corollary: if R is a field, there is a unique minimum polynomial

mF (T ), namely the monic polynomial such that (mF ) = IF .
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Some Remarks (2/3):

An example:

the permutation σ = (012) of F3 is a zero of

T 3 − 1, as σ3 − I = 0. But even σ2 + σ + I = 0, just look:

(σ2 + σ + I )

 0

1

2

 =

 2

0

1

+

 1

2

0

+

 0

1

2

 = 0

Note: T 2 + T + 1 divides T 3 − 1. Here, mσ = T 2 + T + 1.
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Some Remarks (3/3):

IF := {P(T ) ∈ C[T ] | P(F ) = 0} is an ideal of C[T ]

Specific for polynomial maps:

F is LFPE ⇐⇒ {deg(F n)}n∈N is bounded.

(F n =
∑n−1

i=0 aiF
i is equivalent to {I , F , F 2, . . .} generates a

finite dimensional C-vector space.)

F is LFPE ⇐⇒ G−1FG is LFPE

Proof: due to the second remark.

But: the minimum polynomial may change if G is not linear!



Some Remarks (3/3):

IF := {P(T ) ∈ C[T ] | P(F ) = 0} is an ideal of C[T ]

Specific for polynomial maps:

F is LFPE ⇐⇒ {deg(F n)}n∈N is bounded.

(F n =
∑n−1

i=0 aiF
i is equivalent to {I , F , F 2, . . .} generates a

finite dimensional C-vector space.)

F is LFPE ⇐⇒ G−1FG is LFPE

Proof: due to the second remark.

But: the minimum polynomial may change if G is not linear!



Some Remarks (3/3):

IF := {P(T ) ∈ C[T ] | P(F ) = 0} is an ideal of C[T ]

Specific for polynomial maps:

F is LFPE ⇐⇒ {deg(F n)}n∈N is bounded.

(F n =
∑n−1

i=0 aiF
i is equivalent to {I , F , F 2, . . .} generates a

finite dimensional C-vector space.)

F is LFPE ⇐⇒ G−1FG is LFPE

Proof: due to the second remark.

But: the minimum polynomial may change if G is not linear!



Some Remarks (3/3):

IF := {P(T ) ∈ C[T ] | P(F ) = 0} is an ideal of C[T ]

Specific for polynomial maps:

F is LFPE ⇐⇒ {deg(F n)}n∈N is bounded.

(F n =
∑n−1

i=0 aiF
i is equivalent to {I , F , F 2, . . .} generates a

finite dimensional C-vector space.)

F is LFPE ⇐⇒ G−1FG is LFPE

Proof: due to the second remark.

But: the minimum polynomial may change if G is not linear!



Some Remarks (3/3):

IF := {P(T ) ∈ C[T ] | P(F ) = 0} is an ideal of C[T ]

Specific for polynomial maps:

F is LFPE ⇐⇒ {deg(F n)}n∈N is bounded.

(F n =
∑n−1

i=0 aiF
i is equivalent to {I , F , F 2, . . .} generates a

finite dimensional C-vector space.)

F is LFPE ⇐⇒ G−1FG is LFPE

Proof: due to the second remark.

But: the minimum polynomial may change if G is not linear!



Some Remarks (3/3):

IF := {P(T ) ∈ C[T ] | P(F ) = 0} is an ideal of C[T ]

Specific for polynomial maps:

F is LFPE ⇐⇒ {deg(F n)}n∈N is bounded.

(F n =
∑n−1

i=0 aiF
i is equivalent to {I , F , F 2, . . .} generates a

finite dimensional C-vector space.)

F is LFPE ⇐⇒ G−1FG is LFPE

Proof: due to the second remark.

But: the minimum polynomial may change if G is not linear!



Some Remarks (3/3):

IF := {P(T ) ∈ C[T ] | P(F ) = 0} is an ideal of C[T ]

Specific for polynomial maps:

F is LFPE ⇐⇒ {deg(F n)}n∈N is bounded.

(F n =
∑n−1

i=0 aiF
i is equivalent to {I , F , F 2, . . .} generates a

finite dimensional C-vector space.)

F is LFPE ⇐⇒ G−1FG is LFPE

Proof: due to the second remark.

But: the minimum polynomial may change if G is not linear!



Some Remarks (3/3):

IF := {P(T ) ∈ C[T ] | P(F ) = 0} is an ideal of C[T ]

Specific for polynomial maps:

F is LFPE ⇐⇒ {deg(F n)}n∈N is bounded.

(F n =
∑n−1

i=0 aiF
i is equivalent to {I , F , F 2, . . .} generates a

finite dimensional C-vector space.)

F is LFPE ⇐⇒ G−1FG is LFPE

Proof: due to the second remark.

But: the minimum polynomial may change if G is not linear!



Example:

F := (3X + Y 2, Y ). (Question: Define F
√

2)

F 2 = (9X + 4Y 2, Y ),

So F 2 − 4F + 3I = 0, F zero of

T 2 − 4T + 3 = (T − 1)(T − 3).

(NOT (F − I ) ◦ (F − 3I ) = 0.)

. . .

F n = (3nX + 1
2
(3n − 1)Y 2, Y )
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F n = (3nX + 1
2
(3n − 1)Y 2, Y ), n ∈ N.

We can define

Ft = (3tX + 1
2
(3t − 1)Y 2, Y ), t ∈ C.

FtFu = Ft+u so Ft ; t ∈ C is a flow.

(Means you can write Ft = F t .)

We (may) get back on that. . . First some results!
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n = 2: Classification of LFPE

Two essential cases:

F = (aX + P(Y ), bY ) (F invertible)

Zero of (T − b)(T − a)(T − a2) · · · (T − ad), d = deg(P)

F = (aX + YP(X , Y ), 0) (F not invertible)

Zero of T 2 − aT

.
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n = 2: Classification of LFPE

F is LFPE, F (0) = 0 .

F invertible ⇐⇒ F is conjugate of

(aX + P(Y ), bY )

a, b ∈ C∗, P(Y ) ∈ C[Y ].

F not invertible ⇐⇒ F is conjugate of

(aX + YP(X , Y ), 0)

a,∈ C, P(X , Y ) ∈ C[X , Y ].
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n = 2: Cayley-Hamilton for LFPE

F is LFPE, and F (0) = 0.

Let d = deg(F ).

Let L be the linear part of F .

Then F is a zero of

PF (T ) :=
∏

0 ≤ k ≤ d − 1

0 ≤ m ≤ d

(k , m) 6= (0, 0)

(T 2−(detLk)(TrLm)T+det(L2k+m)).
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Equivalent are:

I F is LFPE

I deg(Fm) is bounded

I n = 2: deg(F 2) ≤ deg(F )

Conjecture: in dimension n,

F is LFPE ⇐⇒ deg(Fm) ≤ deg(F )n−1 for all m ∈ N.
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“Cayley-Hamilton” in n variables

Let D := maxm∈N(deg(Fm)). (note: conjecture D = dn−1)

Let λ1, . . . , λn be the eigenvalues of the linear part of F .

Then F is a zero of ∏

α ∈ Nn

0 < |α| ≤ D

(T − λα)

(where λα = λα1
1 · · ·λαn

n )

(|α| = α1 + . . . + αn)
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How did we prove that?

If F i = (F
(i)
1 , . . . , F

(i)
n ) and F

(i)
j =

∑
F

(i)
j ,αXα,

then
∑

aiF
i = 0 ⇐⇒

∑
aiF

(i)
j ,α = 0∀j , α.

If {F (i)
j ,α}i∈N is such a sequence, then it is a linear recurrent

sequence belonging to
∑

aiT
i , etc.. . .
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Now some theory. . .

A derivation D : C[X1, . . . , Xn] −→ C[X1, . . . , Xn] is a map

satisfying

(1) C-linear.

(2) D(fg) = D(f )g + fD(g) for all f , g ∈ C[X1, . . . , Xn].

A derivation will have the form:

a1
∂

∂X1
+ . . . + an

∂
∂Xn

for some ai ∈ C[X1, . . . , Xn].

D is called locally nilpotent if:

For all g ∈ C[X1, . . . , Xn] there exists m ∈ N such that

Dm(g) = 0.

EXAMPLE: D = ∂
∂X1

.
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Exponents of derivations

D locally finite derivation, then

exp(D)(g) := g + D(g) + 1
2!

D2(g) + 1
3!

D3(g) + . . . is

well-defined.

Inverse is exp(−D).

EXAMPLE: D = Y 2 ∂
∂X

+ Z ∂
∂Y

on C[X , Y , Z ]:

exp(D) =

(exp(D)(X ), exp(D)(Y ), exp(D)(Z ))

= (X + Y 2 + YZ + 1
6
Z 2, Y + Z , Z )
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6
Z 2, Y + nZ , Z )

i.e. {deg(exp(nD))}n∈N is bounded sequence

⇒ exp(D) is LFPE.

So: F = exp(D) −→ F is LFPE.

Even: Ft := exp(tD) is a flow.

So: we can make many examples of LFPEs!
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D locally finite automorphism, then unique decomposition

D = Dn + Ds

where Dn is locally nilpotent, Ds is semisimple,

and DnDs = DsDn.

Given F LFPE, then we find unique decomposition

F = FnFs = FsFn where Fn = exp(Dn) where Dn is locally

nilpotent.

an example:

F = (2X + 2Y 2, 3Y ) = (2X , 3Y ) ◦ (X + Y 2, Y )

(2X , 3Y ) = exp(λX∂X + µY ∂Y )

,

where

λ = log(2), µ = log(3).

(X + Y 2, Y ) = exp(Y 2∂X ).

Don’t know how to make Ds , given Fs .
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Case F = exp(Dn), Dn loc.nilp.:

F = exp(Dn) ⇐⇒
F is zero of (T − 1)n for some n

Example: F = exp(Y 2∂X ) = (X + Y 2, Y )

F 2 − 2F + I = 0 i.e. zero of (T − 1)2.
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Why the problem with general case?

In case F zero of (T − 1)n, then F has only eigenvalue 1.

Then there is one natural choice for “log(F ) = D”, only ONE

of them is loc. NILPOTENT Compare to: log(1) = 0. But

could have been: log(1) = 2πi . But 0 is natural choice.

if c ∈ C, then no natural choice log(c).
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Recently conjectured: F is LFPE and has no fixed point ⇒
(T − 1)2 divides mF (T ), the minimum polynomial of F .

Would imply: F n = I then F has fixed point.

Only solved so far for n a prime!

So there’s some funny stuff you might be able to read off mF !
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GLINn(C) is group generated by linearizable polynomial

automorphisms.

GLNDn(C) is group generated by exponents of LNDs AND

linear maps.

GLFDn(C) is group generated by exponents of LFDs.

GLFn(C) is group generated by locally finite maps.

TAn(C)

(∗)(∗∗)

⊆

GLINn(C)

(∗)(∗∗)

⊆ GLNDn(C) ⊆ GLFDn(C) ⊆ GLFn(C)

(∗)

⊆

GAn(C).

(*) makes sense for finite fields. (**) killed as generators for

GAn(F2m) for finite fields, if you find an odd polynomial

automorphism over F2m!

*** THANK YOU ***



GLINn(C) is group generated by linearizable polynomial

automorphisms.

GLNDn(C) is group generated by exponents of LNDs AND

linear maps.

GLFDn(C) is group generated by exponents of LFDs.

GLFn(C) is group generated by locally finite maps.

TAn(C)

(∗)(∗∗)

⊆

GLINn(C)

(∗)(∗∗)

⊆ GLNDn(C) ⊆ GLFDn(C) ⊆ GLFn(C)

(∗)

⊆

GAn(C).

(*) makes sense for finite fields. (**) killed as generators for

GAn(F2m) for finite fields, if you find an odd polynomial

automorphism over F2m!

*** THANK YOU ***



GLINn(C) is group generated by linearizable polynomial

automorphisms.

GLNDn(C) is group generated by exponents of LNDs AND

linear maps.

GLFDn(C) is group generated by exponents of LFDs.

GLFn(C) is group generated by locally finite maps.

TAn(C)

(∗)(∗∗)

⊆ GLINn(C)

(∗)(∗∗)

⊆

GLNDn(C) ⊆ GLFDn(C) ⊆ GLFn(C)

(∗)

⊆

GAn(C).

(*) makes sense for finite fields. (**) killed as generators for

GAn(F2m) for finite fields, if you find an odd polynomial

automorphism over F2m!

*** THANK YOU ***



GLINn(C) is group generated by linearizable polynomial

automorphisms.

GLNDn(C) is group generated by exponents of LNDs AND

linear maps.

GLFDn(C) is group generated by exponents of LFDs.

GLFn(C) is group generated by locally finite maps.

TAn(C)

(∗)(∗∗)

⊆ GLINn(C)

(∗)(∗∗)

⊆

GLNDn(C) ⊆ GLFDn(C) ⊆ GLFn(C)

(∗)

⊆

GAn(C).

(*) makes sense for finite fields. (**) killed as generators for

GAn(F2m) for finite fields, if you find an odd polynomial

automorphism over F2m!

*** THANK YOU ***



GLINn(C) is group generated by linearizable polynomial

automorphisms.

GLNDn(C) is group generated by exponents of LNDs AND

linear maps.

GLFDn(C) is group generated by exponents of LFDs.

GLFn(C) is group generated by locally finite maps.

TAn(C)

(∗)(∗∗)

⊆ GLINn(C)

(∗)(∗∗)

⊆ GLNDn(C) ⊆

GLFDn(C) ⊆ GLFn(C)

(∗)

⊆

GAn(C).

(*) makes sense for finite fields. (**) killed as generators for

GAn(F2m) for finite fields, if you find an odd polynomial

automorphism over F2m!

*** THANK YOU ***



GLINn(C) is group generated by linearizable polynomial

automorphisms.

GLNDn(C) is group generated by exponents of LNDs AND

linear maps.

GLFDn(C) is group generated by exponents of LFDs.

GLFn(C) is group generated by locally finite maps.

TAn(C)

(∗)(∗∗)

⊆ GLINn(C)

(∗)(∗∗)

⊆ GLNDn(C) ⊆

GLFDn(C) ⊆ GLFn(C)

(∗)

⊆

GAn(C).

(*) makes sense for finite fields. (**) killed as generators for

GAn(F2m) for finite fields, if you find an odd polynomial

automorphism over F2m!

*** THANK YOU ***



GLINn(C) is group generated by linearizable polynomial

automorphisms.

GLNDn(C) is group generated by exponents of LNDs AND

linear maps.

GLFDn(C) is group generated by exponents of LFDs.

GLFn(C) is group generated by locally finite maps.

TAn(C)

(∗)(∗∗)

⊆ GLINn(C)

(∗)(∗∗)

⊆ GLNDn(C) ⊆ GLFDn(C) ⊆

GLFn(C)

(∗)

⊆

GAn(C).

(*) makes sense for finite fields. (**) killed as generators for

GAn(F2m) for finite fields, if you find an odd polynomial

automorphism over F2m!

*** THANK YOU ***



GLINn(C) is group generated by linearizable polynomial

automorphisms.

GLNDn(C) is group generated by exponents of LNDs AND

linear maps.

GLFDn(C) is group generated by exponents of LFDs.

GLFn(C) is group generated by locally finite maps.

TAn(C)

(∗)(∗∗)

⊆ GLINn(C)

(∗)(∗∗)

⊆ GLNDn(C) ⊆ GLFDn(C) ⊆

GLFn(C)

(∗)

⊆

GAn(C).

(*) makes sense for finite fields. (**) killed as generators for

GAn(F2m) for finite fields, if you find an odd polynomial

automorphism over F2m!

*** THANK YOU ***



GLINn(C) is group generated by linearizable polynomial

automorphisms.

GLNDn(C) is group generated by exponents of LNDs AND

linear maps.

GLFDn(C) is group generated by exponents of LFDs.

GLFn(C) is group generated by locally finite maps.

TAn(C)

(∗)(∗∗)

⊆ GLINn(C)

(∗)(∗∗)

⊆ GLNDn(C) ⊆ GLFDn(C) ⊆ GLFn(C)

(∗)

⊆ GAn(C).

(*) makes sense for finite fields. (**) killed as generators for

GAn(F2m) for finite fields, if you find an odd polynomial

automorphism over F2m!

*** THANK YOU ***



GLINn(C) is group generated by linearizable polynomial

automorphisms.

GLNDn(C) is group generated by exponents of LNDs AND

linear maps.

GLFDn(C) is group generated by exponents of LFDs.

GLFn(C) is group generated by locally finite maps.

TAn(C)(∗)

(∗∗)

⊆ GLINn(C)(∗)

(∗∗)

⊆ GLNDn(C) ⊆ GLFDn(C) ⊆ GLFn(C)(∗) ⊆ GAn(C).

(*) makes sense for finite fields.

(**) killed as generators for

GAn(F2m) for finite fields, if you find an odd polynomial

automorphism over F2m!

*** THANK YOU ***



GLINn(C) is group generated by linearizable polynomial

automorphisms.

GLNDn(C) is group generated by exponents of LNDs AND

linear maps.

GLFDn(C) is group generated by exponents of LFDs.

GLFn(C) is group generated by locally finite maps.

TAn(C)(∗)(∗∗) ⊆ GLINn(C)(∗)(∗∗)
⊆ GLNDn(C) ⊆ GLFDn(C) ⊆ GLFn(C)(∗) ⊆ GAn(C).

(*) makes sense for finite fields. (**) killed as generators for

GAn(F2m) for finite fields, if you find an odd polynomial

automorphism over F2m!

*** THANK YOU ***



GLINn(C) is group generated by linearizable polynomial

automorphisms.

GLNDn(C) is group generated by exponents of LNDs AND

linear maps.

GLFDn(C) is group generated by exponents of LFDs.

GLFn(C) is group generated by locally finite maps.

TAn(C)(∗)(∗∗) ⊆ GLINn(C)(∗)(∗∗)
⊆ GLNDn(C) ⊆ GLFDn(C) ⊆ GLFn(C)(∗) ⊆ GAn(C).

(*) makes sense for finite fields. (**) killed as generators for

GAn(F2m) for finite fields, if you find an odd polynomial

automorphism over F2m!

*** THANK YOU ***


