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1. Affine algebraic geometry (characteristic 0)
2. Characteristic p / finite fields

3. lterations (efficient)
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Polynomial automorphisms

k a field,
F: k" — k"

polynomial map if F = (Fy,..., F,), Fi € k[X1,..., Xy].
Example: F = (X + Y?2,Y) is polynomial map C? — C2,
FoG=(F(Gi,...,Gp),...,Fy(Gy,..., G,)) composition,
unit element (X, ..., X,) unit element.

Set of polynomial automorphisms of k”:

Aut,(k), also denoted by GA,(k) - similarly to GL,(k) .
(This whole talk: n > 2, as

GA;(k) = Affy(k) ={ax+ b | ac k*, b€ k}.)



Triangular polynomial maps

(Also called Jonquiere.)
F=(F,...,F,) € GA,(k)

where F; € k[x;, Xi11,...,Xn]. i.€.

F; = aix; + fi(Xi41, ..., X,). Forms a group:

BA, (k)



Triangular polynomial maps

(Also called Jonquiere.)

F=(F,...,F,) € GA,(k)

where F; € k[x;, Xi11,...,Xn]. i.€.
F; = aix; + fi(Xi41, ..., X,). Forms a group:
BA,(K)

Subgroup: those having linear part identity

BAY(K) ={(x1 + fi,...,Xa + £,) | i € k[Xis1,...

(strictly triangular group)



Strictly triangular maps trivial?

Consider
o 3 3 3 2
Fi= (x4 Xx5,% + X5, X3 + X7, X + (X5X6X7)“, X5, X6, X7)

a very simple triangular map.



Strictly triangular maps trivial?

Consider
Fi=(x+x3,%+x3,x3+x,x + (XX6x7)%, X5, X6, X7)
a very simple triangular map. Then
inv(F)={P | F(P) =P}

is an infinitely generated subring of C[xy, xo, X3, X4, Xs, X5, X7].
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lterating in characteristic 0

Let F be polynomial map. 2 cases:
» degF" is unbounded sequence. Hard case
» degF" is bounded sequence. Slightly less hard case

deg F" bounded: F is called LF map (= locally finite map).
Triangular polynomial maps: are LF maps.
Example: (x + y?,y), then F2 —2F + [ =0.
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LF maps: semisimple, unipotent

Theorem (M-, Furter): F is LF, then F = F,F; = F,F, for
some semisimple Fg, unipotent F,.

Example:

F=(x+12y)=(x+1y)(x,2y) = (x,2y)(x + 1, y).
Example: F = (x + y,2y) is already semisimple.

Example: BA?(k) is set of unipotents in BA,(k).

Unipotents are easy to iterate in char. 0: (next slide)
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Algebraic subgroups of GA,(k) isomorphic to (k,+)
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satisfying Fro F, = Fipy.
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Additive group action on k" (char(k) = 0)

Algebraic subgroups of GA,(k) isomorphic to (k,+)
Example: t x (x,y) — (x + ty?,y) i.e. formula

F. € GAL(k[t])

satisfying Fr o F, = Fyy.

= F; = exp(tD), D locally nilpotent derivation on

k[x1, ..., Xd]-

(x +ty? y) = exp(tD), D = y*5

(x —2tyA — t2zA% y + tzA\, z) = exp(tD),

D = _2)’3% + Za%'

F unipotent LF map <= exist additive group action F; such
that F; = F.



Strictly triangular polynomial maps

Characteristic 0: F € BA?(k) then F = exp(D) for some
triangular derivation D; F" = exp(nD) i.e. iterations of F are

triviall



Additive group actions in char. p

F. = exp(tD)

where D is a locally finite iterative higher derivation.



Additive group actions char. p: problems

Characteristic 2: (k,+)-action on k"

Example:
t2

2

t
tx (x,y,z) — (x+ ty + z,y+tz,z)
is NOT a (k,+) action! In particular,
(x+y+zy+2z2)

is not the exponent of a locally finite iterative higher

derivation. Any k-action has order p !
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Additive group actions char. p: solution

2

2
Do not consider F5-actions but consider Z-actions!

Theorem: If f(x) € Q[x] such that f(Z) C Z then

ez|(3)nen]

Theorem: If f(x) € Q[x] such that f(Z,) C Z, then

rez|(})inen].

Corollary: If f(x) € Q[x] such that f mod p makes sense,

then
erKX) ; nEN}.
pn

t t
tx (x,y,z) — (x+ ty + z,y+tz,z)



Additive group actions char. p: solution
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Additive group actions char. p: solution

Char=0: (x + ty + &tz y + tz, z) € K[t][x, y, 2]
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Additive group actions char. p: solution

Char=0: (x + ty + %z,y + tz,z) € k[t][x,y, 2]
Char=2: (x +ty + (1 + t)z,y + tz, z) € k[t, Q1][x, y, Z]
where Q; = (;)
Define

R = k[Q;; € N] where Q; = (t)

1

Then if F € GA,(F,) unipotent LF map, there exists
F: € GA,(R) such that F" = F.(t = n).
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Some other subgroups:

Tame automorphisms:
TA,(k) =< BA,(k), Aff,(k) >
Jung v/d Kulk theorem:
GAz(k) = TAx(k)
Another group: GLF,(k) = group generated by LF maps.

GA, (k) 2 GLF,(k) 2 TA,(k)

Conjecture: bounded iterative degree generates all
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Non-tame maps

Nagata's automorphism:
N:=(x—2yA —zA% y + zA,z), A =xz+y?

N € GAs(k).

Conjecture (1974) by Nagata: N & TA3(k)

Result (2004) Umirbaev-Shestakov: Indeed, not in there!
...if char(k) = 0.



Polynomial automorphisms

Each F € GA,(k) induces a map k" — k™
GA,(k) — perm(k"™)

Injective, UNLESS k is finite.
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Polynomial automorphisms

GA,(Fq) = perm((F,)") = sym((FF,)")
Surjective?

Theorem
Tq(TAR(Fq)) = sym((F,)") if g = odd or g = 2,
7q(TAL(Fy)) = alt((Fy)") if g =2, m > 1.
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Obvious question: m4(GA,(F4)) = Alt(Fj;) or Sym(F})?
(open since 2000).

Finding F € GA,(F4) such that m4(F) & Alt(F}) gives a 1-line
proof of GA,(Fs) # TA,(F4).

Let's try Nagata's automorphism!!!
N:=(x—2yA —zA% y+ zA,z), A =xz+y?

AND. .. m4(N) even, darn. Computation: mom(N) is always
even, grrrr! All candidate wild examples so far are even over

Fom,m>1 ...



But perhaps. ..

mp(N) € mp(TAA(Fq)),
but perhaps
Tp2(N) & mpe(TAL(Fq)).









The profinite polynomial automorphism

group

3

{

(I'm wqm(TAn(IFq))> — TA,(F,)

me

qu(GAn(Fq))) = GA,(F,)

m
Z

Z



The profinite polynomial automorphism

group



The profinite polynomial automorphism

group

im 7 (TANE,)) | <> GAL(F,)
meN
Theorem (M.):
N:=(X—-2YA—-ZA% Y +ZA,Z), A=XZ+ Y?
N (and all maps we currently know in GA,(FF,)) are in
im g (TAR(F)).

meN
In particular: wpm(N) € mpm(TAL(F,)) for all m, p.



mp: TA(F,) — perm(Fg)
T, : BAYF,) — perm(IF7)

Define B,(F,) = m,(BAY(F,)).
B.(F,) is Sylow-p-group of perm(p”) !



Strictly upper triangular group

BA?,(k) ={(xq+h,..., Xn+Fo i fi € k[Xip1, .-, x|} < GA, (k).

B"(]FP) = 7TP(BA?r(]Fp))

Bn(Fp) < sym(IFy)
B,(F,) is p-sylow subgroup of sym(IF})



Strictly upper triangular group

BA?,(k) ={(a+h,. .., Xo+f; i € k[Xiy1, ..., %]} < GA,(k).

B"(]FP) = 7TP(BAS(]FP))

Bn(Fp) < sym(IFy)
B,(F,) is p-sylow subgroup of sym(IF})

(X1+f;l)"'7xn+f;7) Elgn(}FP)

f;- c k[XH_]_, . ,Xn]/(X,'Iirl — Xig1,- - 7Xr‘7) - Xn)
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Conjugacy classes of triangular maps

Hard in general! (BA?(k) where kar(k) = 0). Doable if you
consider certain triangular maps.For example: f € BA?(k)
where kar(k) = p and f order p”, or o € B,(F,) where order
ois p".

Interest in these latter maps for some reason - | want to

efficiently iterate them.
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Maps having one orbit only
Theorem 1. (Ostafe)

o=+, X0+ 1)

has one orbit if and only if for each 1 </ < n: the coefficient
of (Xi11--x,)P ! of f; is nonzero.

Proofsketch. By induction: case n =1 is clear. So,

o= (xx+f,5). Consider (c,a) € F}.

o(c,a) = (c+ fi(a),o(a)). So:

To prove: 327" £(5a) = 0 if and only if coefficient of

(Xi41 -+ X,)P~L of f is nonzero.



Maps having one orbit only
Theorem 1.
o=+, X0+ 1)
has one orbit if and only if for each 1 </ < n: the coefficient
of (Xi11--x,)P! of f; is nonzero.
Proofsketch.



Maps having one orbit only

Theorem 1.
o=+, X0+ 1)

has one orbit if and only if for each 1 </ < n: the coefficient

of (Xi11--x,)P! of f; is nonzero.

Proofsketch.
pn—l
0" (c,a) = (c+Y_A(5a),a)
i=1
Lemma
Let M(x1,...,xn) = x7'x3% - - - x2" where 0 < a; < p — 1 for

eachl1 <i<n. Then) .z M(a) =0 unless

aa=a=...=a,=p—1, whenitis(—1)".



Conjugacy classes in B,(IF))

Theorem 2. Let
o=+, xat+ 1)

have only one orbit. Then representants of the conjugacy

classes are the (p — 1)" maps where f; = X\i(xj41 -+ x,)P L.

Proof is very elegant but too long to elaborate on in this talk.
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Conjugacy classes in B,(IF))

Theorem 2. Let
o=+, xat+ 1)

have only one orbit. Then representants of the conjugacy
classes are the (p — 1)" maps where f; = X\i(xj41 -+ x,)P L.
Theorem 3. After that, conjugating by a diagonal linear map
D € GL,(F,) one can get all of them equivalent!

Hence, any o € B,(IF,,) having only one orbit can be written as
D't 'ATD

where 7 € B,(F,), D linear diagonal, and A is one particular

map you choose in B,(F,).
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What is an easy map A?

A=(01+81, X+ &n)
where gi(p—1,...,p—1) =1 and gi(a)) = 0 for any other
o€ IF;’,*".
Then A is very simple:
Let ¢ : F} — Z/p"Z be defined as

C(ar,a0,...,83,) —> a1 +paz + ...+ p" a,
Then
(ACYNa)=a+1,acZ/p"Z
i.e. A™(v) is just as easy to compute!
Conclusion: ¢ € B,(F,) of max. order: o(v) just as

computationallv intensive as computing o™(v)!
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THANK YOU

(for enduring 88 .pdf slides. . .)



