Multivariate polynomial automorphisms over finite fields

Stefan Maubach

May 2013

The Art of

doing stuff with

Multivariate polynomial automorphisms over finite fields

Stefan Maubach

May 2013

- 1. Affine algebraic geometry (characteristic 0)
- 2. Characteristic p / finite fields
- 3. Iterations (efficient)

k a field,

$$F: k^n \longrightarrow k^n$$

polynomial map if $F = (F_1, \ldots, F_n)$, $F_i \in k[X_1, \ldots, X_n]$.

k a field,

$$F: k^n \longrightarrow k^n$$

polynomial map if $F = (F_1, ..., F_n)$, $F_i \in k[X_1, ..., X_n]$. Example: $F = (X + Y^2, Y)$ is polynomial map $\mathbb{C}^2 \longrightarrow \mathbb{C}^2$.

k a field,

$$F: k^n \longrightarrow k^n$$

polynomial map if $F = (F_1, \ldots, F_n)$, $F_i \in k[X_1, \ldots, X_n]$. Example: $F = (X + Y^2, Y)$ is polynomial map $\mathbb{C}^2 \longrightarrow \mathbb{C}^2$. $F \circ G = (F_1(G_1, \ldots, G_n), \ldots, F_n(G_1, \ldots, G_n))$ composition, unit element (X_1, \ldots, X_n) unit element.

k a field,

$$F: k^n \longrightarrow k^n$$

polynomial map if $F = (F_1, \ldots, F_n)$, $F_i \in k[X_1, \ldots, X_n]$. Example: $F = (X + Y^2, Y)$ is polynomial map $\mathbb{C}^2 \longrightarrow \mathbb{C}^2$. $F \circ G = (F_1(G_1, \ldots, G_n), \ldots, F_n(G_1, \ldots, G_n))$ composition, unit element (X_1, \ldots, X_n) unit element. Set of polynomial automorphisms of k^n : $Aut_n(k)$, also denoted by $GA_n(k)$ - similarly to $GL_n(k)$.

k a field,

$$F: k^n \longrightarrow k^n$$

polynomial map if $F = (F_1, \ldots, F_n), F_i \in k[X_1, \ldots, X_n]$. Example: $F = (X + Y^2, Y)$ is polynomial map $\mathbb{C}^2 \longrightarrow \mathbb{C}^2$. $F \circ G = (F_1(G_1, \ldots, G_n), \ldots, F_n(G_1, \ldots, G_n))$ composition, unit element (X_1, \ldots, X_n) unit element. Set of polynomial automorphisms of k^n : $Aut_n(k)$, also denoted by $GA_n(k)$ - similarly to $GL_n(k)$. (This whole talk: n > 2, as $GA_1(k) = Aff_1(k) = \{ax + b \mid a \in k^*, b \in k\}.$

Triangular polynomial maps

(Also called Jonquière.)

$$F = (F_1, \ldots, F_n) \in \mathsf{GA}_n(k)$$

where $F_i \in k[x_i, x_{i+1}, \dots, x_n]$. i.e. $F_i = a_i x_i + f_i(x_{i+1}, \dots, x_n)$. Forms a group:

 $BA_n(k)$

Triangular polynomial maps

(Also called Jonquière.)

$$F = (F_1, \ldots, F_n) \in \mathsf{GA}_n(k)$$

where $F_i \in k[x_i, x_{i+1}, \dots, x_n]$. i.e. $F_i = a_i x_i + f_i(x_{i+1}, \dots, x_n)$. Forms a group:

 $BA_n(k)$

Subgroup: those having linear part identity

$$\mathsf{BA}_n^0(k) = \{(x_1 + f_1, \dots, x_n + f_n) \mid f_i \in k[x_{i+1}, \dots, x_n]$$

(strictly triangular group)

Strictly triangular maps trivial?

Consider

$${\mathcal F}:=(x_1+x_5^3,x_2+x_6^3,x_3+x_7^3,x_4+(x_5x_6x_7)^2,x_5,x_6,x_7)$$

a very simple triangular map.

Strictly triangular maps trivial?

Consider

$$F := (x_1 + x_5^3, x_2 + x_6^3, x_3 + x_7^3, x_4 + (x_5 x_6 x_7)^2, x_5, x_6, x_7)$$

a very simple triangular map. Then

$$\mathsf{inv}(F) = \{P \mid F(P) = P\}$$

is an infinitely generated subring of $\mathbb{C}[x_1, x_2, x_3, x_4, x_5, x_6, x_7]$.

Let F be polynomial map. 2 cases:

Let F be polynomial map. 2 cases:

deg Fⁿ is unbounded sequence. Hard case

Let F be polynomial map. 2 cases:

- ► *deg F*^{*n*} is unbounded sequence. Hard case
- $deg F^n$ is bounded sequence. Slightly less hard case

Let F be polynomial map. 2 cases:

► *deg F*^{*n*} is unbounded sequence. Hard case

► deg Fⁿ is bounded sequence. Slightly less hard case

 $deg F^n$ bounded: F is called LF map (= locally finite map). Triangular polynomial maps: are LF maps.

Let F be polynomial map. 2 cases:

deg Fⁿ is unbounded sequence. Hard case

deg Fⁿ is bounded sequence. Slightly less hard case

deg F^n bounded: F is called LF map (= locally finite map). Triangular polynomial maps: are LF maps. Example: $(x + y^2, y)$, then $F^2 - 2F + I = 0$.

Theorem (M-, Furter): F is LF, then $F = F_u F_s = F_s F_u$ for some semisimple F_s , unipotent F_u .

Theorem (M-, Furter): F is LF, then $F = F_u F_s = F_s F_u$ for some semisimple F_s , unipotent F_u . Example:

$$F = (x + 1, 2y) = (x + 1, y)(x, 2y) = (x, 2y)(x + 1, y).$$

Theorem (M-, Furter): F is LF, then $F = F_u F_s = F_s F_u$ for some semisimple F_s , unipotent F_u . Example:

$$F = (x + 1, 2y) = (x + 1, y)(x, 2y) = (x, 2y)(x + 1, y).$$

Example: $F = (x + y, 2y)$ is already semisimple.

Theorem (M-, Furter): F is LF, then $F = F_u F_s = F_s F_u$ for some semisimple F_s , unipotent F_u . Example:

F = (x + 1, 2y) = (x + 1, y)(x, 2y) = (x, 2y)(x + 1, y).Example: F = (x + y, 2y) is already semisimple. Example: $BA_n^0(k)$ is set of unipotents in $BA_n(k)$.

Theorem (M-, Furter): F is LF, then $F = F_u F_s = F_s F_u$ for some semisimple F_s , unipotent F_u . Example:

F = (x + 1, 2y) = (x + 1, y)(x, 2y) = (x, 2y)(x + 1, y).Example: F = (x + y, 2y) is already semisimple. Example: $BA_n^0(k)$ is set of unipotents in $BA_n(k)$. Unipotents are easy to iterate in char. 0: (next slide)

Algebraic subgroups of $GA_n(k)$ isomorphic to (k, +)

Algebraic subgroups of $GA_n(k)$ isomorphic to (k, +)Example: $t \times (x, y) \longrightarrow (x + ty^2, y)$

Algebraic subgroups of $GA_n(k)$ isomorphic to (k, +)Example: $t \times (x, y) \longrightarrow (x + ty^2, y)$ i.e. formula

 $F_t \in \mathsf{GA}_n(k[t])$

satisfying $F_t \circ F_u = F_{t+u}$.

Algebraic subgroups of $GA_n(k)$ isomorphic to (k, +)Example: $t \times (x, y) \longrightarrow (x + ty^2, y)$ i.e. formula

 $F_t \in \mathsf{GA}_n(k[t])$

satisfying $F_t \circ F_u = F_{t+u}$. $\Rightarrow F_t = \exp(tD)$, *D* locally nilpotent derivation on $k[x_1, \dots, x_n]$. $(x + ty^2, y) = \exp(tD)$, $D = y^2 \frac{\partial}{\partial x}$,

Algebraic subgroups of $GA_n(k)$ isomorphic to (k, +)Example: $t \times (x, y) \longrightarrow (x + ty^2, y)$ i.e. formula

 $F_t \in \mathsf{GA}_n(k[t])$

satisfying $F_t \circ F_u = F_{t+u}$. $\Rightarrow F_t = \exp(tD)$, *D* locally nilpotent derivation on $k[x_1, \dots, x_n]$. $(x + ty^2, y) = \exp(tD)$, $D = y^2 \frac{\partial}{\partial x}$, $(x - 2ty\Delta - t^2 z\Delta^2, y + tz\Delta, z) = \exp(tD)$, $D = -2y \frac{\partial}{\partial x} + z \frac{\partial}{\partial y}$.

Algebraic subgroups of $GA_n(k)$ isomorphic to (k, +)Example: $t \times (x, y) \longrightarrow (x + ty^2, y)$ i.e. formula

 $F_t \in \mathsf{GA}_n(k[t])$

satisfying $F_t \circ F_{\mu} = F_{t+\mu}$. \Rightarrow $F_t = \exp(tD)$, D locally nilpotent derivation on $k[x_1,\ldots,x_n].$ $(x + ty^2, y) = \exp(tD), D = y^2 \frac{\partial}{\partial x},$ $(x - 2ty\Delta - t^2 z\Delta^2, y + tz\Delta, z) = \exp(tD),$ $D = -2y\frac{\partial}{\partial y} + z\frac{\partial}{\partial y}$. F unipotent LF map \iff exist additive group action F_t such that $F_1 = F$.

Strictly triangular polynomial maps

Characteristic 0: $F \in BA_n^0(k)$ then $F = \exp(D)$ for some triangular derivation D; $F^n = \exp(nD)$ i.e. iterations of F are trivial!

Additive group actions in char. p

$F_t = \exp(tD)$

where D is a locally finite iterative higher derivation.

Additive group actions char. p: problems

Characteristic 2: (k, +)-action on k^n Example:

$$t \times (x, y, z) \longrightarrow (x + ty + \frac{t^2 + t}{2}z, y + tz, z)$$

is NOT a (k, +) action! In particular,

$$(x+y+z,y+z,z)$$

is not the exponent of a locally finite iterative higher derivation. Any k-action has order p !

$$t \times (x, y, z) \longrightarrow (x + ty + \frac{t^2 + t}{2}z, y + tz, z)$$

$$t \times (x, y, z) \longrightarrow (x + ty + \frac{t^2 + t}{2}z, y + tz, z)$$

Do not consider $\mathbb{F}_2\text{-actions}$ but consider $\mathbb{Z}\text{-actions!}$

$$t \times (x, y, z) \longrightarrow (x + ty + \frac{t^2 + t}{2}z, y + tz, z)$$

Do not consider \mathbb{F}_2 -actions but consider \mathbb{Z} -actions!

Theorem: If $f(x) \in \mathbb{Q}[x]$ such that $f(\mathbb{Z}) \subseteq \mathbb{Z}$ then

$$f \in \mathbb{Z}\left[\binom{x}{n} ; n \in \mathbb{N}\right].$$

$$t imes (x, y, z) \longrightarrow (x + ty + rac{t^2 + t}{2}z, y + tz, z)$$

Do not consider \mathbb{F}_2 -actions but consider \mathbb{Z} -actions!

Theorem: If $f(x) \in \mathbb{Q}[x]$ such that $f(\mathbb{Z}) \subseteq \mathbb{Z}$ then

$$f \in \mathbb{Z}\left[\binom{x}{n}; n \in \mathbb{N}\right].$$

Theorem: If $f(x) \in \mathbb{Q}[x]$ such that $f(\mathbb{Z}_p) \subseteq \mathbb{Z}_p$ then

$$f \in \mathbb{Z}\left[\begin{pmatrix} x\\p^n \end{pmatrix}; n \in \mathbb{N}\right].$$

$$t \times (x, y, z) \longrightarrow (x + ty + \frac{t^2 + t}{2}z, y + tz, z)$$

Do not consider \mathbb{F}_2 -actions but consider \mathbb{Z} -actions!

Theorem: If $f(x) \in \mathbb{Q}[x]$ such that $f(\mathbb{Z}) \subseteq \mathbb{Z}$ then

$$f \in \mathbb{Z}\left[\binom{x}{n} ; n \in \mathbb{N}\right].$$

Theorem: If $f(x) \in \mathbb{Q}[x]$ such that $f(\mathbb{Z}_p) \subseteq \mathbb{Z}_p$ then

$$f \in \mathbb{Z}\left[\begin{pmatrix} x\\p^n \end{pmatrix}; n \in \mathbb{N}\right].$$

Corollary: If $f(x) \in \mathbb{Q}[x]$ such that $f \mod p$ makes sense, then

$$f \in \mathbb{Z}\left[\begin{pmatrix} x\\p^n \end{pmatrix}; n \in \mathbb{N}\right].$$
Additive group actions char. p: solution

Char= 0: $(x + ty + \frac{t^2+t}{2}z, y + tz, z) \in k[t][x, y, z]$

Additive group actions char. p: solution

Char= 0:
$$(x + ty + \frac{t^2+t}{2}z, y + tz, z) \in k[t][x, y, z]$$

Char= 2: $(x + ty + (Q_1 + t)z, y + tz, z) \in k[t, Q_1][x, y, z]$
where $Q_1 := {t \choose 2}$.

Additive group actions char. p: solution

Char= 0:
$$(x + ty + \frac{t^2+t}{2}z, y + tz, z) \in k[t][x, y, z]$$

Char= 2: $(x + ty + (Q_1 + t)z, y + tz, z) \in k[t, Q_1][x, y, z]$
where $Q_1 := {t \choose 2}$.
Define

$${\sf R}:=k[{\sf Q}_i;i\in\mathbb{N}]$$
 where ${\sf Q}_i:=inom{t}{p^i}.$

Then if $F \in GA_n(\mathbb{F}_p)$ unipotent LF map, there exists $F_t \in GA_n(R)$ such that $F^n = F_t(t = n)$.

Tame automorphisms:

$$\mathsf{TA}_n(k) = < \mathsf{BA}_n(k), \mathsf{Aff}_n(k) >$$

Tame automorphisms:

$$\mathsf{TA}_n(k) = < \mathsf{BA}_n(k), \mathsf{Aff}_n(k) >$$

Jung v/d Kulk theorem:

$$GA_2(k) = TA_2(k)$$

Tame automorphisms:

$$\mathsf{TA}_n(k) = < \mathsf{BA}_n(k), \mathsf{Aff}_n(k) >$$

Jung v/d Kulk theorem:

$$\mathsf{GA}_2(k) = \mathsf{TA}_2(k)$$

Another group: $GLF_n(k) =$ group generated by LF maps.

$$GA_n(k) \supseteq GLF_n(k) \supseteq TA_n(k)$$

Tame automorphisms:

$$\mathsf{TA}_n(k) = < \mathsf{BA}_n(k), \mathsf{Aff}_n(k) >$$

Jung v/d Kulk theorem:

$$\mathsf{GA}_2(k) = \mathsf{TA}_2(k)$$

Another group: $GLF_n(k) =$ group generated by LF maps.

 $GA_n(k) \supseteq GLF_n(k) \supseteq TA_n(k)$

Conjecture: bounded iterative degree generates all

Nagata's automorphism:

$$N := (x - 2y\Delta - z\Delta^2, y + z\Delta, z), \quad \Delta = xz + y^2$$

 $N \in GA_3(k).$

Non-tame maps

Nagata's automorphism:

$$N := (x - 2y\Delta - z\Delta^2, y + z\Delta, z), \quad \Delta = xz + y^2$$

 $N \in GA_3(k)$. Conjecture (1974) by Nagata: $N \not\in TA_3(k)$

Non-tame maps

Nagata's automorphism:

$$N := (x - 2y\Delta - z\Delta^2, y + z\Delta, z), \quad \Delta = xz + y^2$$

 $N \in GA_3(k)$. Conjecture (1974) by Nagata: $N \not\in TA_3(k)$ Result (2004) Umirbaev-Shestakov: Indeed, not in there!

Non-tame maps

Nagata's automorphism:

$$N := (x - 2y\Delta - z\Delta^2, y + z\Delta, z), \quad \Delta = xz + y^2$$

 $N \in GA_3(k)$. Conjecture (1974) by Nagata: $N \notin TA_3(k)$ Result (2004) Umirbaev-Shestakov: Indeed, not in there! ...if char(k) = 0.

Polynomial automorphisms

Each $F \in GA_n(k)$ induces a map $k^n \longrightarrow k^n$:

$$GA_n(k) \longrightarrow perm(k^n)$$

Injective, UNLESS k is finite.

Polynomial automorphisms

$$\mathsf{GA}_n(\mathbb{F}_q) \stackrel{\pi_q}{\longrightarrow} \mathsf{perm}((\mathbb{F}_q)^n) = \mathsf{sym}((\mathbb{F}_q)^n)$$

Surjective?

Polynomial automorphisms

$$\mathsf{GA}_n(\mathbb{F}_q) \stackrel{\pi_q}{\longrightarrow} \mathsf{perm}((\mathbb{F}_q)^n) = \mathsf{sym}((\mathbb{F}_q)^n)$$

Surjective?

Theorem $\pi_q(\operatorname{TA}_n(\mathbb{F}_q)) = \operatorname{sym}((\mathbb{F}_q)^n) \text{ if } q = odd \text{ or } q = 2,$ $\pi_q(\operatorname{TA}_n(\mathbb{F}_q)) = \operatorname{alt}((\mathbb{F}_q)^n) \text{ if } q = 2^m, m > 1.$

Obvious question: $\pi_4(GA_n(\mathbb{F}_4)) = Alt(\mathbb{F}_4^n)$ or $Sym(\mathbb{F}_4^n)$? (open since 2000).

$$N := (x - 2y\Delta - z\Delta^2, y + z\Delta, z), \quad \Delta = xz + y^2$$

$$N := (x - 2y\Delta - z\Delta^2, y + z\Delta, z), \quad \Delta = xz + y^2$$

AND...

$$N := (x - 2y\Delta - z\Delta^2, y + z\Delta, z), \quad \Delta = xz + y^2$$

AND... $\pi_4(N)$ even, darn.

$$N := (x - 2y\Delta - z\Delta^2, y + z\Delta, z), \quad \Delta = xz + y^2$$

AND... $\pi_4(N)$ even, darn. Computation: $\pi_{2^m}(N)$ is always even, grrrr!

$$N := (x - 2y\Delta - z\Delta^2, y + z\Delta, z), \quad \Delta = xz + y^2$$

AND... $\pi_4(N)$ even, darn. Computation: $\pi_{2^m}(N)$ is always even, grrrr! All candidate wild examples so far are even over $\mathbb{F}_{2^m}, m > 1 \dots$

But perhaps...

$$\pi_p(N) \in \pi_p(\mathsf{TA}_n(\mathbb{F}_q)),$$

but perhaps
 $\pi_{p^2}(N) \notin \pi_{p^2}(\mathsf{TA}_n(\mathbb{F}_q)).$

The profinite polynomial automorphism group

$$\begin{pmatrix} \lim_{m \in \mathbb{N}} & \pi_{q^m}(\mathsf{GA}_n(\mathbb{F}_q)) \end{pmatrix} \hookrightarrow \mathsf{GA}_n(\mathbb{F}_q) \\ \begin{pmatrix} \lim_{m \in \mathbb{N}} & \pi_{q^m}(\mathsf{TA}_n(\mathbb{F}_q)) \end{pmatrix} \leftrightarrow \mathsf{TA}_n(\mathbb{F}_q) \end{cases}$$

The profinite polynomial automorphism group

$$\begin{pmatrix} \lim_{m \in \mathbb{N}} & \pi_{q^m}(\mathrm{GA}_n(\mathbb{F}_q)) \end{pmatrix} \hookrightarrow \mathrm{GA}_n(\mathbb{F}_q) \\ \begin{pmatrix} \lim_{m \in \mathbb{N}} & \pi_{q^m}(\mathrm{TA}_n(\mathbb{F}_q)) \end{pmatrix} \stackrel{?}{\leftarrow} \mathrm{GA}_n(\mathbb{F}_q) \end{cases}$$

The profinite polynomial automorphism group

$$\left(\varprojlim_{m\in\mathbb{N}} \pi_{q^m}(\mathsf{TA}_n(\mathbb{F}_q))\right) \stackrel{?}{\leftarrow} \mathsf{GA}_n(\mathbb{F}_q)$$

Theorem (M.):

$$N := (X - 2Y\Delta - Z\Delta^2, Y + Z\Delta, Z), \quad \Delta = XZ + Y^2$$

N (and all maps we currently know in $GA_n(\mathbb{F}_q)$) are in $\varprojlim_{m \in \mathbb{N}} \pi_{q^m}(TA_n(\mathbb{F}_q))$. In particular: $\pi_{p^m}(N) \in \pi_{p^m}(TA_n(\mathbb{F}_p))$ for all m, p. $\pi_{p} : \mathsf{TA}_{n}(\mathbb{F}_{p}) \longrightarrow \mathsf{perm}(\mathbb{F}_{p}^{n})$ $\pi_{p} : \mathsf{BA}_{n}^{0}(\mathbb{F}_{p}) \longrightarrow \mathsf{perm}(\mathbb{F}_{p}^{n})$ $\mathsf{Define} \ \mathcal{B}_{n}(\mathbb{F}_{p}) = \pi_{p}(\mathsf{BA}_{n}^{0}(\mathbb{F}_{p})).$ $\mathcal{B}_{n}(\mathbb{F}_{p}) \text{ is Sylow-}p\text{-group of } \mathsf{perm}(p^{n}) !$

Strictly upper triangular group

$$\mathsf{BA}_n^0(k) := \{ (x_1 + f_1, \dots, x_n + f_n ; f_i \in k[x_{i+1}, \dots, x_n] \} < GA_n(k).$$

$$\mathcal{B}_n(\mathbb{F}_p) := \pi_p(\mathsf{BA}_n^0(\mathbb{F}_p))$$

 $\mathcal{B}_n(\mathbb{F}_p) < \operatorname{sym}(\mathbb{F}_p^n)$ $\mathcal{B}_n(\mathbb{F}_p)$ is *p*-sylow subgroup of $\operatorname{sym}(\mathbb{F}_p^n)$

Strictly upper triangular group

$$\mathsf{BA}_n^0(k) := \{ (x_1 + f_1, \dots, x_n + f_n ; f_i \in k[x_{i+1}, \dots, x_n] \} < GA_n(k).$$

$$\mathcal{B}_n(\mathbb{F}_p) := \pi_p(\mathsf{BA}_n^0(\mathbb{F}_p))$$

 $\mathcal{B}_n(\mathbb{F}_p) < \operatorname{sym}(\mathbb{F}_p^n)$ $\mathcal{B}_n(\mathbb{F}_p)$ is *p*-sylow subgroup of $\operatorname{sym}(\mathbb{F}_p^n)$

$$(x_1+f_1,\ldots,x_n+f_n)\in\mathcal{B}_n(\mathbb{F}_p)$$

$$f_i \in k[x_{i+1}, \ldots, x_n]/(x_{i+1}^p - x_{i+1}, \ldots, x_n^p - x_n)$$

Hard in general! $(BA_n^0(k) \text{ where } kar(k) = 0)$.

Hard in general! $(BA_n^0(k) \text{ where } kar(k) = 0)$. Doable if you consider *certain* triangular maps.

Hard in general! $(BA_n^0(k) \text{ where } kar(k) = 0)$. Doable if you consider *certain* triangular maps. For example: $f \in BA_n^0(k)$ where kar(k) = p and f order p^n , or $\sigma \in \mathcal{B}_n(\mathbb{F}_p)$ where order σ is p^n .

Hard in general! $(BA_n^0(k) \text{ where } kar(k) = 0)$. Doable if you consider *certain* triangular maps. For example: $f \in BA_n^0(k)$ where kar(k) = p and f order p^n , or $\sigma \in \mathcal{B}_n(\mathbb{F}_p)$ where order σ is p^n .

Interest in these latter maps for some reason - I want to efficiently *iterate* them.

Maps having one orbit only

Theorem 1. (Ostafe)

$$\sigma := (x_1 + f_1, \ldots, x_n + f_n)$$

has one orbit if and only if for each $1 \le i \le n$: the coefficient of $(x_{i+1} \cdots x_n)^{p-1}$ of f_i is nonzero.

Maps having one orbit only

Theorem 1. (Ostafe)

$$\sigma := (x_1 + f_1, \ldots, x_n + f_n)$$

has one orbit if and only if for each $1 \le i \le n$: the coefficient of $(x_{i+1} \cdots x_n)^{p-1}$ of f_i is nonzero.

Proofsketch. By induction: case n = 1 is clear.
Theorem 1. (Ostafe)

$$\sigma := (x_1 + f_1, \ldots, x_n + f_n)$$

has one orbit if and only if for each $1 \le i \le n$: the coefficient of $(x_{i+1} \cdots x_n)^{p-1}$ of f_i is nonzero.

Proofsketch. By induction: case n = 1 is clear. So,

$$\sigma = (x_1 + f_1, \tilde{\sigma}).$$

Theorem 1. (Ostafe)

$$\sigma := (x_1 + f_1, \ldots, x_n + f_n)$$

has one orbit if and only if for each $1 \le i \le n$: the coefficient of $(x_{i+1} \cdots x_n)^{p-1}$ of f_i is nonzero.

Proofsketch. By induction: case n = 1 is clear. So,

$$\sigma = (x_1 + f_1, \tilde{\sigma}). \quad \text{Consider } (c, \alpha) \in \mathbb{F}_p^n.$$

$$\sigma(c, \alpha) = (c + f_1(\alpha), \sigma(\alpha)).$$

Theorem 1. (Ostafe)

$$\sigma := (x_1 + f_1, \ldots, x_n + f_n)$$

has one orbit if and only if for each $1 \le i \le n$: the coefficient of $(x_{i+1} \cdots x_n)^{p-1}$ of f_i is nonzero.

Proofsketch. By induction: case n = 1 is clear. So,

$$\sigma = (x_1 + f_1, \tilde{\sigma}). \quad \text{Consider } (c, \alpha) \in \mathbb{F}_p^n.$$

$$\sigma(c, \alpha) = (c + f_1(\alpha), \sigma(\alpha)). \text{ So:}$$

$$\sigma^{p^{n-1}}(\boldsymbol{c}, lpha) = (\boldsymbol{c} + \sum_{i=1}^{p^{n-1}} f_1(\tilde{\sigma}^i lpha), lpha)$$

Theorem 1. (Ostafe)

$$\sigma := (x_1 + f_1, \ldots, x_n + f_n)$$

has one orbit if and only if for each $1 \le i \le n$: the coefficient of $(x_{i+1} \cdots x_n)^{p-1}$ of f_i is nonzero.

Proofsketch. By induction: case n = 1 is clear. So,

$$\sigma = (x_1 + f_1, \tilde{\sigma}). \quad \text{Consider } (c, \alpha) \in \mathbb{F}_p^n.$$

$$\sigma(c, \alpha) = (c + f_1(\alpha), \sigma(\alpha)). \text{ So:}$$

$$\sigma^{p^{n-1}}(\boldsymbol{c},\alpha) = (\boldsymbol{c} + \sum_{i=1}^{p^{n-1}} f_1(\tilde{\sigma}^i \alpha), \alpha)$$

To prove: $\sum_{i=1}^{p^{n-1}} f(\tilde{\sigma}^i \alpha) = 0$ if and only if coefficient of $(x_{i+1} \cdots x_n)^{p-1}$ of f_1 is nonzero.

Theorem 1.

$$\sigma := (x_1 + f_1, \ldots, x_n + f_n)$$

has one orbit if and only if for each $1 \le i \le n$: the coefficient of $(x_{i+1} \cdots x_n)^{p-1}$ of f_i is nonzero. **Proofsketch.**

$$\sigma^{p^{n-1}}(\boldsymbol{c},\alpha) = (\boldsymbol{c} + \sum_{i=1}^{p^{n-1}} f_1(\tilde{\sigma}^i \alpha), \alpha)$$

Theorem 1.

$$\sigma := (x_1 + f_1, \ldots, x_n + f_n)$$

has one orbit if and only if for each $1 \le i \le n$: the coefficient of $(x_{i+1} \cdots x_n)^{p-1}$ of f_i is nonzero. **Proofsketch.**

$$\sigma^{p^{n-1}}(\boldsymbol{c},\alpha) = (\boldsymbol{c} + \sum_{i=1}^{p^{n-1}} f_1(\tilde{\sigma}^i \alpha), \alpha)$$

Lemma

Let $M(x_1, \ldots, x_n) = x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$ where $0 \le a_i \le p-1$ for each $1 \le i \le n$. Then $\sum_{\alpha \in \mathbb{F}_p^n} M(\alpha) = 0$ unless $a_1 = a_2 = \ldots = a_n = p-1$, when it is $(-1)^n$. Conjugacy classes in $\mathcal{B}_n(\mathbb{F}_p)$

Theorem 2. Let

$$\sigma := (x_1 + f_1, \ldots, x_n + f_n)$$

have only one orbit. Then representants of the conjugacy classes are the $(p-1)^n$ maps where $f_i = \lambda_i (x_{i+1} \cdots x_n)^{p-1}$.

Proof is very elegant but too long to elaborate on in this talk.

Conjugacy classes in $\mathcal{B}_n(\mathbb{F}_p)$ Theorem 2. Let

$$\sigma := (x_1 + f_1, \ldots, x_n + f_n)$$

have only one orbit. Then representants of the conjugacy classes are the $(p-1)^n$ maps where $f_i = \lambda_i (x_{i+1} \cdots x_n)^{p-1}$.

Conjugacy classes in $\mathcal{B}_n(\mathbb{F}_p)$ Theorem 2. Let

$$\sigma := (x_1 + f_1, \ldots, x_n + f_n)$$

have only one orbit. Then representants of the conjugacy classes are the $(p-1)^n$ maps where $f_i = \lambda_i (x_{i+1} \cdots x_n)^{p-1}$. **Theorem 3.** After that, conjugating by a diagonal linear map $D \in GL_n(\mathbb{F}_p)$ one can get all of them equivalent! Hence, any $\sigma \in \mathcal{B}_n(\mathbb{F}_p)$ having only one orbit can be written as

$$D^{-1}\tau^{-1}\Delta\tau D$$

where $\tau \in \mathcal{B}_n(\mathbb{F}_p)$, *D* linear diagonal, and Δ is one particular map you choose in $\mathcal{B}_n(\mathbb{F}_p)$.

$$\Delta := (x_1 + g_1, \dots, x_n + g_n)$$

where $g_i(p - 1, \dots, p - 1) = 1$ and $g_i(\alpha) = 0$ for any other $lpha \in \mathbb{F}_p^{n-i}$.

$$\Delta := (x_1 + g_1, \ldots, x_n + g_n)$$

where $g_i(p-1,...,p-1) = 1$ and $g_i(\alpha) = 0$ for any other $\alpha \in \mathbb{F}_p^{n-i}$. Then Δ is very simple:

$$\Delta := (x_1 + g_1, \ldots, x_n + g_n)$$

where $g_i(p-1,...,p-1) = 1$ and $g_i(\alpha) = 0$ for any other $\alpha \in \mathbb{F}_p^{n-i}$.

Then Δ is very simple:

Let
$$\zeta : \mathbb{F}_p^n \longrightarrow \mathbb{Z}/p^n\mathbb{Z}$$
 be defined as
 $\zeta(a_1, a_2, \dots, a_n) \longrightarrow a_1 + pa_2 + \dots + p^{n-1}a_n$

$$\Delta := (x_1 + g_1, \ldots, x_n + g_n)$$

where $g_i(p-1,...,p-1) = 1$ and $g_i(\alpha) = 0$ for any other $\alpha \in \mathbb{F}_p^{n-i}$.

Then Δ is very simple:

Let
$$\zeta : \mathbb{F}_p^n \longrightarrow \mathbb{Z}/p^n\mathbb{Z}$$
 be defined as
 $\zeta(a_1, a_2, \dots, a_n) \longrightarrow a_1 + pa_2 + \dots + p^{n-1}a_n$

Then

$$\zeta\Delta\zeta^{-1}(\mathsf{a})=\mathsf{a}+1,\mathsf{a}\in\mathbb{Z}/p^n\mathbb{Z}$$

i.e. $\Delta^m(v)$ is just as easy to compute!

$$\Delta := (x_1 + g_1, \ldots, x_n + g_n)$$

where $g_i(p-1,...,p-1) = 1$ and $g_i(\alpha) = 0$ for any other $\alpha \in \mathbb{F}_p^{n-i}$.

Then Δ is very simple:

Let
$$\zeta : \mathbb{F}_p^n \longrightarrow \mathbb{Z}/p^n\mathbb{Z}$$
 be defined as
 $\zeta(a_1, a_2, \dots, a_n) \longrightarrow a_1 + pa_2 + \dots + p^{n-1}a_n$

Then

$$\zeta\Delta\zeta^{-1}(a)=a+1, a\in\mathbb{Z}/p^n\mathbb{Z}$$

i.e. $\Delta^m(v)$ is just as easy to compute! Conclusion: $\sigma \in \mathcal{B}_n(\mathbb{F}_p)$ of max. order: $\sigma(v)$ just as computationally intensive as computing $\sigma^m(v)$!

Just one more slide/ conclusions:

Just one more slide/ conclusions:

THANK YOU

(for enduring 88 .pdf slides...)