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1. Affine algebraic geometry (characteristic 0)

2. Characteristic p / finite fields

3. Iterations (efficient)



Polynomial automorphisms

k a field,

F : kn −→ kn

polynomial map if F = (F1, . . . ,Fn), Fi ∈ k[X1, . . . ,Xn].

Example: F = (X + Y 2,Y ) is polynomial map C2 −→ C2.

F ◦ G = (F1(G1, . . . ,Gn), . . . ,Fn(G1, . . . ,Gn)) composition,

unit element (X1, . . . ,Xn) unit element.

Set of polynomial automorphisms of kn:

Autn(k), also denoted by GAn(k) - similarly to GLn(k) .

(This whole talk: n ≥ 2, as

GA1(k) = Aff1(k) = {ax + b | a ∈ k∗, b ∈ k}.)
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Triangular polynomial maps

(Also called Jonquière.)

F = (F1, . . . ,Fn) ∈ GAn(k)

where Fi ∈ k[xi , xi+1, . . . , xn]. i.e.

Fi = aixi + fi(xi+1, . . . , xn). Forms a group:

BAn(k)

Subgroup: those having linear part identity

BA0
n(k) = {(x1 + f1, . . . , xn + fn) | fi ∈ k[xi+1, . . . , xn]

(strictly triangular group)
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Strictly triangular maps trivial?

Consider

F := (x1 + x3
5 , x2 + x3

6 , x3 + x3
7 , x4 + (x5x6x7)2, x5, x6, x7)

a very simple triangular map.

Then

inv(F ) = {P | F (P) = P}

is an infinitely generated subring of C[x1, x2, x3, x4, x5, x6, x7].
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Iterating in characteristic 0

Let F be polynomial map. 2 cases:

I degF n is unbounded sequence. Hard case

I degF n is bounded sequence. Slightly less hard case

degF n bounded: F is called LF map (= locally finite map).

Triangular polynomial maps: are LF maps.

Example: (x + y 2, y), then F 2 − 2F + I = 0.
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LF maps: semisimple, unipotent

Theorem (M-, Furter): F is LF, then F = FuFs = FsFu for

some semisimple Fs , unipotent Fu.

Example:

F = (x + 1, 2y) = (x + 1, y)(x , 2y) = (x , 2y)(x + 1, y).

Example: F = (x + y , 2y) is already semisimple.

Example: BA0
n(k) is set of unipotents in BAn(k).

Unipotents are easy to iterate in char. 0: (next slide)
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Additive group action on kn (char(k) = 0)
Algebraic subgroups of GAn(k) isomorphic to (k ,+)

Example: t × (x , y) −→ (x + ty 2, y) i.e. formula

Ft ∈ GAn(k[t])

satisfying Ft ◦ Fu = Ft+u.

⇒ Ft = exp(tD), D locally nilpotent derivation on

k[x1, . . . , xn].

(x + ty 2, y) = exp(tD), D = y 2 ∂
∂x

,

(x − 2ty∆− t2z∆2, y + tz∆, z) = exp(tD),

D = −2y ∂
∂x

+ z ∂
∂y

.

F unipotent LF map ⇐⇒ exist additive group action Ft such

that F1 = F .
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Strictly triangular polynomial maps

Characteristic 0: F ∈ BA0
n(k) then F = exp(D) for some

triangular derivation D; F n = exp(nD) i.e. iterations of F are

trivial!



Additive group actions in char. p

Ft = exp(tD)

where D is a locally finite iterative higher derivation.



Additive group actions char. p: problems

Characteristic 2: (k ,+)-action on kn

Example:

t × (x , y , z) −→ (x + ty +
t2 + t

2
z , y + tz , z)

is NOT a (k ,+) action! In particular,

(x + y + z , y + z , z)

is not the exponent of a locally finite iterative higher

derivation. Any k-action has order p !



Additive group actions char. p: solution

t × (x , y , z) −→ (x + ty +
t2 + t

2
z , y + tz , z)

Do not consider F2-actions but consider Z-actions!

Theorem: If f (x) ∈ Q[x ] such that f (Z) ⊆ Z then

f ∈ Z
[(

x

n

)
; n ∈ N

]
.

Theorem: If f (x) ∈ Q[x ] such that f (Zp) ⊆ Zp then

f ∈ Z
[(

x

pn

)
; n ∈ N

]
.

Corollary: If f (x) ∈ Q[x ] such that f mod p makes sense,

then

f ∈ Z
[(

x

pn

)
; n ∈ N

]
.
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Additive group actions char. p: solution

Char= 0: (x + ty + t2+t
2

z , y + tz , z) ∈ k[t][x , y , z ]

Char= 2: (x + ty + (Q1 + t)z , y + tz , z) ∈ k[t,Q1][x , y , z ]

where Q1 :=
(
t
2

)
.

Define

R := k[Qi ; i ∈ N] where Qi :=

(
t

pi

)
.

Then if F ∈ GAn(Fp) unipotent LF map, there exists

Ft ∈ GAn(R) such that F n = Ft(t = n).
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Some other subgroups:

Tame automorphisms:

TAn(k) =< BAn(k),Affn(k) >

Jung v/d Kulk theorem:

GA2(k) = TA2(k)

Another group: GLFn(k) = group generated by LF maps.

GAn(k) ⊇ GLFn(k) ⊇ TAn(k)
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Some other subgroups:

Tame automorphisms:

TAn(k) =< BAn(k),Affn(k) >

Jung v/d Kulk theorem:

GA2(k) = TA2(k)

Another group: GLFn(k) = group generated by LF maps.

GAn(k) ⊇ GLFn(k) ⊇ TAn(k)

Conjecture: bounded iterative degree generates all



Non-tame maps

Nagata’s automorphism:

N := (x − 2y∆− z∆2, y + z∆, z), ∆ = xz + y 2

N ∈ GA3(k).

Conjecture (1974) by Nagata: N 6∈ TA3(k)

Result (2004) Umirbaev-Shestakov: Indeed, not in there!

. . . if char(k) = 0.



Non-tame maps

Nagata’s automorphism:

N := (x − 2y∆− z∆2, y + z∆, z), ∆ = xz + y 2

N ∈ GA3(k).

Conjecture (1974) by Nagata: N 6∈ TA3(k)

Result (2004) Umirbaev-Shestakov: Indeed, not in there!

. . . if char(k) = 0.



Non-tame maps

Nagata’s automorphism:

N := (x − 2y∆− z∆2, y + z∆, z), ∆ = xz + y 2

N ∈ GA3(k).

Conjecture (1974) by Nagata: N 6∈ TA3(k)

Result (2004) Umirbaev-Shestakov: Indeed, not in there!

. . . if char(k) = 0.



Non-tame maps

Nagata’s automorphism:

N := (x − 2y∆− z∆2, y + z∆, z), ∆ = xz + y 2

N ∈ GA3(k).

Conjecture (1974) by Nagata: N 6∈ TA3(k)

Result (2004) Umirbaev-Shestakov: Indeed, not in there!

. . . if char(k) = 0.



Polynomial automorphisms

Each F ∈ GAn(k) induces a map kn −→ kn:

GAn(k) −→ perm(kn)

Injective, UNLESS k is finite.



Polynomial automorphisms

GAn(Fq)
πq−→ perm((Fq)n) = sym((Fq)n)

Surjective?

Theorem
πq(TAn(Fq)) = sym((Fq)n) if q = odd or q = 2,

πq(TAn(Fq)) = alt((Fq)n) if q = 2m, m > 1.



Polynomial automorphisms

GAn(Fq)
πq−→ perm((Fq)n) = sym((Fq)n)

Surjective?

Theorem
πq(TAn(Fq)) = sym((Fq)n) if q = odd or q = 2,

πq(TAn(Fq)) = alt((Fq)n) if q = 2m, m > 1.



Obvious question: π4(GAn(F4)) = Alt(Fn
4) or Sym(Fn

4)?

(open since 2000).

Finding F ∈ GAn(F4) such that π4(F ) 6∈ Alt(Fn
4) gives a 1-line

proof of GAn(F4) 6= TAn(F4).

Let’s try Nagata’s automorphism!!!

N := (x − 2y∆− z∆2, y + z∆, z), ∆ = xz + y 2

AND. . . π4(N) even, darn. Computation: π2m(N) is always

even, grrrr! All candidate wild examples so far are even over

F2m ,m > 1 . . .
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even, grrrr! All candidate wild examples so far are even over

F2m ,m > 1 . . .
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But perhaps. . .

πp(N) ∈ πp(TAn(Fq)),

but perhaps

πp2(N) 6∈ πp2(TAn(Fq)).
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The profinite polynomial automorphism

group

(
lim←−
m∈N

πqm(TAn(Fq))

)
?←↩ GAn(Fq)

Theorem (M.):

N := (X − 2Y ∆− Z ∆2,Y + Z ∆,Z ), ∆ = XZ + Y 2

N (and all maps we currently know in GAn(Fq)) are in

lim←−
m∈N

πqm(TAn(Fq)).

In particular: πpm(N) ∈ πpm(TAn(Fp)) for all m, p.



πp : TAn(Fp) −→ perm(Fn
p)

πp : BA0
n(Fp) −→ perm(Fn

p)

Define Bn(Fp) = πp(BA0
n(Fp)).

Bn(Fp) is Sylow-p-group of perm(pn) !



Strictly upper triangular group

BA0
n(k) := {(x1+f1, . . . , xn+fn ; fi ∈ k[xi+1, . . . , xn]} < GAn(k).

Bn(Fp) := πp(BA0
n(Fp))

Bn(Fp) < sym(Fn
p)

Bn(Fp) is p-sylow subgroup of sym(Fn
p)

(x1 + f1, . . . , xn + fn) ∈ Bn(Fp)

fi ∈ k[xi+1, . . . , xn]/(xp
i+1 − xi+1, . . . , x

p
n − xn)
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Conjugacy classes of triangular maps

Hard in general! (BA0
n(k) where kar(k) = 0).

Doable if you

consider certain triangular maps.For example: f ∈ BA0
n(k)

where kar(k) = p and f order pn, or σ ∈ Bn(Fp) where order

σ is pn.

Interest in these latter maps for some reason - I want to

efficiently iterate them.
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Maps having one orbit only
Theorem 1. (Ostafe)

σ := (x1 + f1, . . . , xn + fn)

has one orbit if and only if for each 1 ≤ i ≤ n: the coefficient

of (xi+1 · · · xn)p−1 of fi is nonzero.

Proofsketch. By induction: case n = 1 is clear. So,

σ = (x1 + f1, σ̃). Consider (c , α) ∈ Fn
p.

σ(c , α) = (c + f1(α), σ(α)). So:

σpn−1

(c , α) = (c +

pn−1∑
i=1

f1(σ̃iα), α)

To prove:
∑pn−1

i=1 f (σ̃iα) = 0 if and only if coefficient of

(xi+1 · · · xn)p−1 of f1 is nonzero.
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Maps having one orbit only
Theorem 1.

σ := (x1 + f1, . . . , xn + fn)

has one orbit if and only if for each 1 ≤ i ≤ n: the coefficient

of (xi+1 · · · xn)p−1 of fi is nonzero.

Proofsketch.

σpn−1

(c , α) = (c +

pn−1∑
i=1

f1(σ̃iα), α)

Lemma
Let M(x1, . . . , xn) = xa1

1 xa2
2 · · · xan

n where 0 ≤ ai ≤ p − 1 for

each 1 ≤ i ≤ n. Then
∑

α∈Fn
p

M(α) = 0 unless

a1 = a2 = . . . = an = p − 1, when it is (−1)n.
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Conjugacy classes in Bn(Fp)

Theorem 2. Let

σ := (x1 + f1, . . . , xn + fn)

have only one orbit. Then representants of the conjugacy

classes are the (p − 1)n maps where fi = λi(xi+1 · · · xn)p−1.

Proof is very elegant but too long to elaborate on in this talk.
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classes are the (p − 1)n maps where fi = λi(xi+1 · · · xn)p−1.

Theorem 3. After that, conjugating by a diagonal linear map

D ∈ GLn(Fp) one can get all of them equivalent!

Hence, any σ ∈ Bn(Fp) having only one orbit can be written as

D−1τ−1∆τD

where τ ∈ Bn(Fp), D linear diagonal, and ∆ is one particular

map you choose in Bn(Fp).
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What is an easy map ∆?

∆ := (x1 + g1, . . . , xn + gn)

where gi(p − 1, . . . , p − 1) = 1 and gi(α) = 0 for any other

α ∈ Fn−i
p .

Then ∆ is very simple:

Let ζ : Fn
p −→ Z/pnZ be defined as

ζ(a1, a2, . . . , an) −→ a1 + pa2 + . . . + pn−1an

Then

ζ∆ζ−1(a) = a + 1, a ∈ Z/pnZ

i.e. ∆m(v) is just as easy to compute!

Conclusion: σ ∈ Bn(Fp) of max. order: σ(v) just as

computationally intensive as computing σm(v)!
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