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gcd(X 3 + X 2 − X − 1, X 3 + 3X 2 + 3X + 1) =
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g have different zeroes”.
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What’s the story about l , m, n ∈ N large enough and

x l + ym = zn ? If x , y , z ∈ Z then Wiles only gave a proof for

l = m = n !
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If a + b = c , a, b, c ∈ N, gcd(a, b, c) = 1, then c cannot be

too big, compared to rad(abc):

for every ǫ > 0 there exists some Kǫ such that

c < Kǫrad(abc)1+ǫ.

Version for C[X ]:

Let f , g , h ∈ C[X ] satisfy f + g = h, gcd(f , g , h) = 1, then

deg(f ) < N(fgh)

where N(fgh) is the number of zeroes of fgh.



If ABC conjecture true, then Fermat is an immediate

consequence. And more stuff (x l + ym = zn). I’ll not prove

this today, but - I’ll prove the ABC conjecture for

polynomials!!
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deg(f ) < N(fgh).

Proof:
deg(h) ≤
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Proof: Suppose (X − c)n divides f = (X − c)n f̃ . Then

(X − c)n−1 divides f ′ = (X − c)n f̃ ′ + n(X − c)n−1f̃ .

. . . (krijtbord?) Using the lemma we get Mason’s!



Theorem:

Let 1

p
+ 1

q
+ 1

r
≤ 1. If F , G , H ∈ C[X ] satisfying

gcd(F , G , H) = 1 and F p + G q = H r then F , G , H ∈ C.
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Proof:

We may assume that deg(F p) ≥ deg(G q), deg(H r). Thus

qdeg(G ) ≤ pdeg(F ),

rdeg(H) ≤ pdeg(F ).

Using Mason’s:

pdeg(F ) < N(F pG qH r )

= N(FGH)

≤ deg(F ) + deg(G ) + deg(H)

≤ deg(F ) + p

q
deg(F ) + p

r
deg(F )

Divide by pdeg(F ):

1 < 1

p
+ 1

q
+ 1

r
. Contradiction!



Notice: p = q = r gives 1

n
+ 1

n
+ 1

n
≤ 1 so n ≥ 3.
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It’s even worse- There’s a variant of the Riemann hypothesis

for polynomials (over Fp) that one can prove !

Why can we prove all these things for C[X ] and is it so hard

for Z?

Remember the proof. . .

f f ′ +g f ′ = h f ′ maal f ′

- f ′ f +g ′ f = h′ f maal f

f ′g − fg ′ = f ′h − fh′

What is wrong in these lines if f , g , h ∈ Z? Exactly! In C[X ]

one can take derivatives!
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C[X ] has a derivation: a map δ satisfying

δ(fg) = f δ(g) + gδ(f ) all f , g . (Leibniz rule.)

Well, let’s make one on Z, so we can prove stuff!

Copyying C[X ]: “primes” (X − c) go to 1.

So: on Z: send 2, 3, 5, 7, 11, . . . to 1. For anything else: use

Leibniz rule:

D(57) = 7 · 56, D(2352) = 3 · 2252 + 2 · 235.

Fun!! Can we now solve Fermat with this??

Bummer. D(a + b) 6= D(a) + D(b).

Als: δ is locally nilpotent. Which means: for every f ∈ C[X ]

there exists some n such that δn(f ) = 0.

On Z: D(22) = 2 · 2. And

D(22a) = 22D(a) + 2 · 2a = 22(D(a) + a) so that one

increases and increases if a > 1 !
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Lifting a tip of the veil of my

research. . . V := {(x , y , z) ∈ C
3 | x2 + y 3 + z7 = 0}. We

want to understand this set - do there exist “nice” group

actions of C, + on this set?

Comes down to finding a locally nilpotent derivation D on the

ring C[X , Y , Z ]/(X 2 + Y 3 + Z 7).
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Locally nilpotent derivations D on the ring

C[X , Y , Z ]/(X 2 + Y 3 + Z 7). D = 0 is one, are there more?.
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Suppose D 6= 0. Then it is possible to extend D on something

bigger - C[X , Y , Z ]/(X 2 + Y 3 + Z 7) ⊂ K[S ] where K is some

field. And on K[S ] the map D behaves like ∂

∂S
. So elements

x , y , z can be seen as elements in K[S ]:

x = f (S), y = g(S), z = h(S). For sure: x2 + y 3 + z7 = 0, so

f 2 + g 3 + h7 = 0. I can assume for some reason that

gcd(f , g , h) = 1, and now Mason’s yields that f , g , h ∈ K.

But D is zero on elements of K - so

D(x) = D(y) = D(z) = 0 and that implies that D is zero on

the whole ring C[X , Y , Z ]/(X 2 + Y 3 + Z 7) ! Contradiction, so

the only locally nilpotent derivation on

C[X , Y , Z ]/(X 2 + Y 3 + Z 7) is D = 0.
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**** THANK YOU ****


