\mathbb{Z} is difficult, polynomials are easy.

Stefan Maubach

Saginaw, October 2008
\mathbb{Z} has prime numbers: $2,3,5,7, \ldots$ and unique prime factorisation. If I sit in a room and factor the number 1776 , and you sit in a different room and factor this same number, we end up with the same prime factorisation: $37^{*} 17^{*} 3$.
\mathbb{Z} has prime numbers: $2,3,5,7, \ldots$ and unique prime factorisation. If I sit in a room and factor the number 1776 , and you sit in a different room and factor this same number, we end up with the same prime factorisation: $37^{*} 17^{*} 3$.
Actually: 2 and -2 are seen as "the same prime number".
They differ exactly a unit:

$$
-2=(-1) \cdot 2
$$

Or, equivalently: $2 \mathbb{Z}$ and $-2 \mathbb{Z}$ are the same set.
\mathbb{Z} has prime numbers: $2,3,5,7, \ldots$ and unique prime factorisation. If I sit in a room and factor the number 1776 , and you sit in a different room and factor this same number, we end up with the same prime factorisation: $37^{*} 17^{*} 3$.
Actually: 2 and -2 are seen as "the same prime number".
They differ exactly a unit:

$$
-2=(-1) \cdot 2
$$

Or, equivalently: $2 \mathbb{Z}$ and $-2 \mathbb{Z}$ are the same set.
So, we could say that a prime number N is an element which is not invertible, and if it is divisible by some element x, then either x is a unit, or $N=u x$ where u is a unit.
\mathbb{Z} has prime numbers: $2,3,5,7, \ldots$ and unique prime factorisation. If I sit in a room and factor the number 1776 , and you sit in a different room and factor this same number, we end up with the same prime factorisation: $37^{*} 17^{*} 3$.
Actually: 2 and -2 are seen as "the same prime number".
They differ exactly a unit:

$$
-2=(-1) \cdot 2
$$

Or, equivalently: $2 \mathbb{Z}$ and $-2 \mathbb{Z}$ are the same set.
So, we could say that a prime number N is an element which is not invertible, and if it is divisible by some element x, then either x is a unit, or $N=u x$ where u is a unit.
Are there any other sets with something like "prime numbers"?

In \mathbb{Z} one can add, substract, and multiply. You cannot divide by everything - that's the point, if you could divide by everything, then you don't have prime numbers!

In \mathbb{Z} one can add, substract, and multiply. You cannot divide by everything - that's the point, if you could divide by everything, then you don't have prime numbers!
\mathbb{Z} is a ring. If you can also divide by everything (except zero) then you have a field.

In \mathbb{Z} one can add, substract, and multiply. You cannot divide by everything - that's the point, if you could divide by everything, then you don't have prime numbers!
\mathbb{Z} is a ring. If you can also divide by everything (except zero) then you have a field.

Are there any other "things" having prime numbers?

Are there any other Rings having prime numbers?

Are there any other Rings having prime numbers? $\mathbb{R}[X]$ is the collection of polynomials, i.e.

$$
\mathbb{R}[X]:=\left\{a_{0}+a_{1} X+a_{2} X^{2}+\ldots+a_{n} X^{n} \mid n \in \mathbb{N}, a_{i} \in \mathbb{R}\right\} .
$$

Are there any other Rings having prime numbers?
$\mathbb{R}[X]$ is the collection of polynomials, i.e.

$$
\mathbb{R}[X]:=\left\{a_{0}+a_{1} X+a_{2} X^{2}+\ldots+a_{n} X^{n} \mid n \in \mathbb{N}, a_{i} \in \mathbb{R}\right\} .
$$

Same way:

$$
\mathbb{C}[X]:=\left\{a_{0}+a_{1} X+a_{2} X^{2}+\ldots+a_{n} X^{n} \mid n \in \mathbb{N}, a_{i} \in \mathbb{C}\right\} .
$$

Just check it out: any polynomial $p(X)$ decomposes int a product of polynomials: $p(X)=p_{1}(X) \cdots p_{n}(X)$.

Just check it out: any polynomial $p(X)$ decomposes int a product of polynomials: $p(X)=p_{1}(X) \cdots p_{n}(X)$. If you
cannot decompose further, then you have irreducible polynomials. Those you can call "prime".

	\mathbb{Z}	$\mathbb{R}[X]$
Invertible elements:	$1,-1$	$\mathbb{R} \backslash\{0\}$
Prime numbers	$2,3,5, \ldots$	polynomials $X+37, X^{2}+1$

cannot decompose further, then you have irreducible polynomials. Those you can call "prime".
Notice: $X+1$ and $-37 X-37$ are "the same prime number"! Just as 2 and -2 they only differ a unit: the latter -1 which is a unit in \mathbb{Z}, the former -37 , which is a unit in $\mathbb{R}[X]$.

	\mathbb{Z}	$\mathbb{R}[X]$
Invertible elements:	$1,-1$	$\mathbb{R} \backslash\{0\}$
Prime numbers	$2,3,5, \ldots$	polynomials $X+37, X^{2}+1$

cannot decompose further, then you have irreducible polynomials. Those you can call "prime".
Notice: $X+1$ and $-37 X-37$ are "the same prime number"! Just as 2 and -2 they only differ a unit: the latter -1 which is a unit in \mathbb{Z}, the former -37 , which is a unit in $\mathbb{R}[X]$.
Furthermore: $X^{2}+1$ is also irreducible. . .

	\mathbb{Z}	$\mathbb{R}[X]$
Invertible elements:	$1,-1$	$\mathbb{R} \backslash\{0\}$
Prime numbers	$2,3,5, \ldots$	polynomials $X+37, X^{2}+1$

cannot decompose further, then you have irreducible polynomials. Those you can call "prime".
Notice: $X+1$ and $-37 X-37$ are "the same prime number"! Just as 2 and -2 they only differ a unit: the latter -1 which is a unit in \mathbb{Z}, the former -37 , which is a unit in $\mathbb{R}[X]$.
Furthermore: $X^{2}+1$ is also irreducible... but. . .

	\mathbb{Z}	$\mathbb{R}[X]$
Invertible elements:	$1,-1$	$\mathbb{R} \backslash\{0\}$
Prime numbers	$2,3,5, \ldots$	polynomials $X+37, X^{2}+1$

cannot decompose further, then you have irreducible polynomials. Those you can call "prime".
Notice: $X+1$ and $-37 X-37$ are "the same prime number"! Just as 2 and -2 they only differ a unit: the latter -1 which is a unit in \mathbb{Z}, the former -37 , which is a unit in $\mathbb{R}[X]$.
Furthermore: $X^{2}+1$ is also irreducible. . . but. . . over \mathbb{C} all prime polynomials are of degree $1!X^{2}+1=(X+i)(X-i)$.

	\mathbb{Z}	$\mathbb{R}[X]$
Invertible elements:	$1,-1$	$\mathbb{R} \backslash\{0\}$
Prime numbers	$2,3,5, \ldots$	polynomials $X+37, X^{2}+1$

cannot decompose further, then you have irreducible polynomials. Those you can call "prime".
Notice: $X+1$ and $-37 X-37$ are "the same prime number"! Just as 2 and -2 they only differ a unit: the latter -1 which is a unit in \mathbb{Z}, the former -37 , which is a unit in $\mathbb{R}[X]$.
Furthermore: $X^{2}+1$ is also irreducible. . . but. . . over \mathbb{C} all prime polynomials are of degree $1!X^{2}+1=(X+i)(X-i)$. Which means: if $p(X)$ of degree 37 , then p is a product of exactly 37 "prime" polynomials.

	\mathbb{Z}	$\mathbb{R}[X]$
Invertible elements:	$1,-1$	$\mathbb{R} \backslash\{0\}$
Prime numbers	$2,3,5, \ldots$	polynomials $X+37, X^{2}+1$

cannot decompose further, then you have irreducible polynomials. Those you can call "prime".
Notice: $X+1$ and $-37 X-37$ are "the same prime number"! Just as 2 and -2 they only differ a unit: the latter -1 which is a unit in \mathbb{Z}, the former -37 , which is a unit in $\mathbb{R}[X]$.
Furthermore: $X^{2}+1$ is also irreducible. . . but. . . over \mathbb{C} all prime polynomials are of degree $1!X^{2}+1=(X+i)(X-i)$.
Which means: if $p(X)$ of degree 37 , then p is a product of exactly 37 "prime" polynomials. Let's agree on $1 \cdot X+\alpha$ being the 'standard primes" in $\mathbb{C}[X]$.
$\operatorname{gcd}(12,8)=\operatorname{gcd}\left(2^{2} \cdot 3,2^{3}\right)=2^{2}=4$.
$\operatorname{gcd}(12,8)=\operatorname{gcd}\left(2^{2} \cdot 3,2^{3}\right)=2^{2}=4$.
$\operatorname{gcd}\left(X^{3}+X^{2}-X-1, X^{3}+3 X^{2}+3 X+1\right)=$ $\operatorname{gcd}\left((X+1)^{2}(X-1),(X+1)^{3}\right)=(X+1)^{2}$.

$$
\operatorname{gcd}(12,8)=\operatorname{gcd}\left(2^{2} \cdot 3,2^{3}\right)=2^{2}=4
$$

$$
\operatorname{gcd}\left(X^{3}+X^{2}-X-1, X^{3}+3 X^{2}+3 X+1\right)=
$$

$$
\operatorname{gcd}\left((X+1)^{2}(X-1),(X+1)^{3}\right)=(X+1)^{2} .
$$

In $\mathbb{C}[X]$ one may describe $" \operatorname{gcd}(f, g)=1$ " by saying: " f and g have different zeroes".

Fermat's Last Theorem:

Fermat's Last Theorem:

$a, b, c \in \mathbb{Z}$ such that $\operatorname{gcd}(a, b, c)=1$ and $n \geq 3$
Then $a^{n}+b^{n}=c^{n}$ is not possible.

Fermat's Last Theorem:

$a, b, c \in \mathbb{Z}$ such that $\operatorname{gcd}(a, b, c)=1$ and $n \geq 3$
Then $a^{n}+b^{n}=c^{n}$ is not possible.

Fermat's Last Theorem:

$a, b, c \in \mathbb{Z}$ such that $\operatorname{gcd}(a, b, c)=1$ and $n \geq 3$
Then $a^{n}+b^{n}=c^{n}$ is not possible.
Proof of Wiles is very difficult! My guess is: no one present in this room has read and understood the proof. . .!

Fermat's Last Theorem for $\mathbb{C}[X]$

$a, b, c \in \mathbb{Z}$ such that
$\operatorname{gcd}(a, b, c)=1$ and $n \geq 3$
Then $a^{n}+b^{n}=c^{n}$ is not possible.

Fermat's Last Theorem for $\mathbb{C}[X]$

$a, b, c \in \mathbb{Z}$ such that
$\operatorname{gcd}(a, b, c)=1$ and $n \geq 3$
Then $a^{n}+b^{n}=c^{n}$ is not possible.
Let $f, g, h \in \mathbb{C}[X]$ be such that $\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ is only possible if $f, g, h \in \mathbb{C}$.

Let $f, g, h \in \mathbb{C}[X]$ such that $\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ is only possible if $f, g, h \in \mathbb{C}$.

Let $f, g, h \in \mathbb{C}[X]$ such that $\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ is only possible if $f, g, h \in \mathbb{C}$. Proof:

Let $f, g, h \in \mathbb{C}[X]$ such that $\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ is only possible if $f, g, h \in \mathbb{C}$.
Proof:

$$
f^{n} \quad+g^{n} \quad=h^{n}
$$

Let $f, g, h \in \mathbb{C}[X]$ such that $\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ is only possible if $f, g, h \in \mathbb{C}$.
Proof:

$$
\begin{array}{lll}
f^{n} & +g^{n} & =h^{n} \\
f^{\prime} f^{n-1} & +g^{\prime} g^{n-1} & =h^{\prime} h^{n-1}
\end{array}
$$

Let $f, g, h \in \mathbb{C}[X]$ such that $\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ is only possible if $f, g, h \in \mathbb{C}$.
Proof:

$$
\begin{array}{llll}
f^{n} & +g^{n} & =h^{n} & \text { times } f^{\prime} \\
f^{\prime} f^{n-1} & +g^{\prime} g^{n-1} & =h^{\prime} h^{n-1} & \\
\text { times } f
\end{array}
$$

Let $f, g, h \in \mathbb{C}[X]$ such that $\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ is only possible if $f, g, h \in \mathbb{C}$.
Proof:

$$
\begin{array}{llll}
f^{n} f^{\prime} & +g^{n} f^{\prime} & =h^{n} f^{\prime} & \\
f^{\prime} f^{n-1} f & +g^{\prime} g^{n-1} f & =h^{\prime} h^{n-1} f & \\
\text { times } f^{\prime} \\
\text { times } f
\end{array}
$$

Let $f, g, h \in \mathbb{C}[X]$ such that $\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ is only possible if $f, g, h \in \mathbb{C}$.
Proof:

$$
\begin{array}{rlll}
f^{n} f^{\prime} & +g^{n} f^{\prime} & =h^{n} f^{\prime} & \\
-\quad & f^{\prime} f^{n-1} f & +g^{\prime} g^{n-1} f & =h^{\prime} h^{n-1} f
\end{array}
$$

Let $f, g, h \in \mathbb{C}[X]$ such that $\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ is only possible if $f, g, h \in \mathbb{C}$.
Proof:

$f^{n} f^{\prime}$	$+g^{n} f^{\prime}$	$=h^{n} f^{\prime}$	times f^{\prime}
$-\quad f^{\prime} f^{n-1} f$	$+g^{\prime} g^{n-1} f$	$=h^{\prime} h^{n-1} f$	times f
	$f^{\prime} g^{n}-f g^{\prime} g^{n-1}$	$=f^{\prime} h^{n}-f h^{\prime} h^{n-1}$	

Let $f, g, h \in \mathbb{C}[X]$ such that $\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ is only possible if $f, g, h \in \mathbb{C}$.
Proof:

Let $f, g, h \in \mathbb{C}[X]$ be such that
$\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ is only possible if $f, g, h \in \mathbb{C}$.
Proof: So $g^{n-1}\left(f^{\prime} g-f g^{\prime}\right)=h^{n-1}\left(f^{\prime} h-f h^{\prime}\right)$.

Let $f, g, h \in \mathbb{C}[X]$ be such that
$\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ is only possible if $f, g, h \in \mathbb{C}$.
Proof: So $g^{n-1}\left(f^{\prime} g-f g^{\prime}\right)=h^{n-1}\left(f^{\prime} h-f h^{\prime}\right)$.
Suppose $f^{\prime} g-f g^{\prime}=0$.

Let $f, g, h \in \mathbb{C}[X]$ be such that
$\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ is only possible if $f, g, h \in \mathbb{C}$.
Proof: So $g^{n-1}\left(f^{\prime} g-f g^{\prime}\right)=h^{n-1}\left(f^{\prime} h-f h^{\prime}\right)$.
Suppose $f^{\prime} g-f g^{\prime}=0$.

So we can assume that $f^{\prime} g-f g^{\prime}, f^{\prime} h-f^{\prime} h$, and $g^{\prime} h-g h^{\prime}$ are unequal to 0 .

Let $f, g, h \in \mathbb{C}[X]$ be such that $\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ is only possible if $f, g, h \in \mathbb{C}$.
Proof: So $g^{n-1}\left(f^{\prime} g-f g^{\prime}\right)=h^{n-1}\left(f^{\prime} h-f h^{\prime}\right)$.
Suppose $f^{\prime} g-f g^{\prime}=0$. Hence $f^{\prime} g=f g^{\prime}$.

So we can assume that $f^{\prime} g-f g^{\prime}, f^{\prime} h-f^{\prime} h$, and $g^{\prime} h-g h^{\prime}$ are unequal to 0 .

Let $f, g, h \in \mathbb{C}[X]$ be such that
$\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ is only possible if $f, g, h \in \mathbb{C}$.
Proof: So $g^{n-1}\left(f^{\prime} g-f g^{\prime}\right)=h^{n-1}\left(f^{\prime} h-f h^{\prime}\right)$.
Suppose $f^{\prime} g-f g^{\prime}=0$. Hence $f^{\prime} g=f g^{\prime}$. Since $\operatorname{gcd}(g, f)=1$ g divides g^{\prime}, and f divides f^{\prime}

So we can assume that $f^{\prime} g-f g^{\prime}, f^{\prime} h-f^{\prime} h$, and $g^{\prime} h-g h^{\prime}$ are unequal to 0.

Let $f, g, h \in \mathbb{C}[X]$ be such that $\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ is only possible if $f, g, h \in \mathbb{C}$.
Proof: So $g^{n-1}\left(f^{\prime} g-f g^{\prime}\right)=h^{n-1}\left(f^{\prime} h-f h^{\prime}\right)$.
Suppose $f^{\prime} g-f g^{\prime}=0$. Hence $f^{\prime} g=f g^{\prime}$. Since $\operatorname{gcd}(g, f)=1$ g divides g^{\prime}, and f divides f^{\prime} - That is only possible if f, g are constant

So we can assume that $f^{\prime} g-f g^{\prime}, f^{\prime} h-f^{\prime} h$, and $g^{\prime} h-g h^{\prime}$ are unequal to 0 .

Let $f, g, h \in \mathbb{C}[X]$ be such that $\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ is only possible if $f, g, h \in \mathbb{C}$.
Proof: So $g^{n-1}\left(f^{\prime} g-f g^{\prime}\right)=h^{n-1}\left(f^{\prime} h-f h^{\prime}\right)$.
Suppose $f^{\prime} g-f g^{\prime}=0$. Hence $f^{\prime} g=f g^{\prime}$. Since $\operatorname{gcd}(g, f)=1$ g divides g^{\prime}, and f divides f^{\prime} - That is only possible if f, g are constant and then h is automatically constant! So this case is done. So we can assume that $f^{\prime} g-f g^{\prime}, f^{\prime} h-f^{\prime} h$, and $g^{\prime} h-g h^{\prime}$ are unequal to 0 .

Let $f, g, h \in \mathbb{C}[X]$ such that $\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ only possible if $f, g, h \in \mathbb{C}$.
Proof: So $g^{n-1}\left(f^{\prime} g-f g^{\prime}\right)=h^{n-1}\left(f^{\prime} h-f h^{\prime}\right)$,
and all of $f^{\prime} g-f g^{\prime}, f^{\prime} h-f^{\prime} h$, and $g^{\prime} h-g h^{\prime}$ are nonequal to zero.

Let $f, g, h \in \mathbb{C}[X]$ such that $\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ only possible if $f, g, h \in \mathbb{C}$.
Proof: So $g^{n-1}\left(f^{\prime} g-f g^{\prime}\right)=h^{n-1}\left(f^{\prime} h-f h^{\prime}\right)$, So g^{n-1} divides $f^{\prime} h-f h^{\prime}$,
and all of $f^{\prime} g-f g^{\prime}, f^{\prime} h-f^{\prime} h$, and $g^{\prime} h-g h^{\prime}$ are nonequal to zero.

Let $f, g, h \in \mathbb{C}[X]$ such that $\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ only possible if $f, g, h \in \mathbb{C}$.
Proof: So $g^{n-1}\left(f^{\prime} g-f g^{\prime}\right)=h^{n-1}\left(f^{\prime} h-f h^{\prime}\right)$,
So g^{n-1} divides $f^{\prime} h-f h^{\prime}$,
and h^{n-1} divides $f^{\prime} g-f g^{\prime}$,
and f^{n-1} divides $g^{\prime} h-g h^{\prime}$,
and all of $f^{\prime} g-f g^{\prime}, f^{\prime} h-f^{\prime} h$, and $g^{\prime} h-g h^{\prime}$ are nonequal to zero.

Let $f, g, h \in \mathbb{C}[X]$ such that $\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ only possible if $f, g, h \in \mathbb{C}$.
Proof: So $g^{n-1}\left(f^{\prime} g-f g^{\prime}\right)=h^{n-1}\left(f^{\prime} h-f h^{\prime}\right)$,
So g^{n-1} divides $f^{\prime} h-f h^{\prime}, \quad \operatorname{deg}\left(g^{n-1}\right) \leq \operatorname{deg}\left(f^{\prime} h-f h^{\prime}\right)$ and h^{n-1} divides $f^{\prime} g-f g^{\prime}, \quad \operatorname{deg}\left(h^{n-1}\right) \leq \operatorname{deg}\left(f^{\prime} g-f g^{\prime}\right)$ and f^{n-1} divides $g^{\prime} h-g h^{\prime}, \quad \operatorname{deg}\left(f^{n-1}\right) \leq \operatorname{deg}\left(g^{\prime} h-g h^{\prime}\right)$ and all of $f^{\prime} g-f g^{\prime}, f^{\prime} h-f^{\prime} h$, and $g^{\prime} h-g h^{\prime}$ are nonequal to zero.

Let $f, g, h \in \mathbb{C}[X]$ such that $\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ only possible if $f, g, h \in \mathbb{C}$.
Proof: So $g^{n-1}\left(f^{\prime} g-f g^{\prime}\right)=h^{n-1}\left(f^{\prime} h-f h^{\prime}\right)$,
So g^{n-1} divides $f^{\prime} h-f h^{\prime}, \quad \operatorname{deg}\left(g^{n-1}\right) \leq \operatorname{deg}(f)+\operatorname{deg}(h)-1$ and h^{n-1} divides $f^{\prime} g-f g^{\prime}, \quad \operatorname{deg}\left(h^{n-1}\right) \leq \operatorname{deg}(f)+\operatorname{deg}(g)-1$ and f^{n-1} divides $g^{\prime} h-g h^{\prime}, \quad \operatorname{deg}\left(f^{n-1}\right) \leq \operatorname{deg}(g)+\operatorname{deg}(h)-1$ and all of $f^{\prime} g-f g^{\prime}, f^{\prime} h-f^{\prime} h$, and $g^{\prime} h-g h^{\prime}$ are nonequal to zero.

Let $f, g, h \in \mathbb{C}[X]$ such that
$\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ is only possible if $f, g, h \in \mathbb{C}$.
Proof: So $g^{n-1}\left(f^{\prime} g-f g^{\prime}\right)=h^{n-1}\left(f^{\prime} h-f h^{\prime}\right)$,
$\operatorname{deg}\left(g^{n-1}\right) \leq \operatorname{deg}(f)+\operatorname{deg}(h)-1$
$\operatorname{deg}\left(h^{n-1}\right) \leq \operatorname{deg}(f)+\operatorname{deg}(g)-1$
$\operatorname{deg}\left(f^{n-1}\right) \leq \operatorname{deg}(g)+\operatorname{deg}(h)-1$

Let $f, g, h \in \mathbb{C}[X]$ such that
$\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ is only possible if $f, g, h \in \mathbb{C}$.
Proof: So $g^{n-1}\left(f^{\prime} g-f g^{\prime}\right)=h^{n-1}\left(f^{\prime} h-f h^{\prime}\right)$,
$n \operatorname{deg}(g) \leq \operatorname{deg}(f)+\operatorname{deg}(h)-1+\operatorname{deg}(g)$
$\operatorname{deg}\left(h^{n-1}\right) \leq \operatorname{deg}(f)+\operatorname{deg}(g)-1$
$\operatorname{deg}\left(f^{n-1}\right) \leq \operatorname{deg}(g)+\operatorname{deg}(h)-1$

Let $f, g, h \in \mathbb{C}[X]$ such that $\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ is only possible if $f, g, h \in \mathbb{C}$.
Proof: So $g^{n-1}\left(f^{\prime} g-f g^{\prime}\right)=h^{n-1}\left(f^{\prime} h-f h^{\prime}\right)$,
$n \operatorname{deg}(g) \leq \operatorname{deg}(f)+\operatorname{deg}(h)-1+\operatorname{deg}(g)$
$n \operatorname{deg}(h) \leq \operatorname{deg}(f)+\operatorname{deg}(g)-1+\operatorname{deg}(h)$
$\operatorname{deg}\left(f^{n-1}\right) \leq \operatorname{deg}(g)+\operatorname{deg}(h)-1$

Let $f, g, h \in \mathbb{C}[X]$ such that
$\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ is only possible if $f, g, h \in \mathbb{C}$.
Proof: So $g^{n-1}\left(f^{\prime} g-f g^{\prime}\right)=h^{n-1}\left(f^{\prime} h-f h^{\prime}\right)$,
$n \operatorname{deg}(g) \leq \operatorname{deg}(f)+\operatorname{deg}(h)-1+\operatorname{deg}(g)$
$n \operatorname{deg}(h) \leq \operatorname{deg}(f)+\operatorname{deg}(g)-1+\operatorname{deg}(h)$
$n \operatorname{deg}(f) \leq \operatorname{deg}(g)+\operatorname{deg}(h)-1+\operatorname{deg}(f)$

Let $f, g, h \in \mathbb{C}[X]$ such that $\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ is only possible if $f, g, h \in \mathbb{C}$.
Proof: So $g^{n-1}\left(f^{\prime} g-f g^{\prime}\right)=h^{n-1}\left(f^{\prime} h-f h^{\prime}\right)$,
$n \operatorname{deg}(g) \leq \operatorname{deg}(f)+\operatorname{deg}(h)-1+\operatorname{deg}(g)$
$n \operatorname{deg}(h) \leq \operatorname{deg}(f)+\operatorname{deg}(g)-1+\operatorname{deg}(h)$
$n \operatorname{deg}(f) \leq \operatorname{deg}(g)+\operatorname{deg}(h)-1+\operatorname{deg}(f)$

Let $f, g, h \in \mathbb{C}[X]$ such that
$\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ is only possible if $f, g, h \in \mathbb{C}$.
Proof: So $g^{n-1}\left(f^{\prime} g-f g^{\prime}\right)=h^{n-1}\left(f^{\prime} h-f h^{\prime}\right)$,

$$
n \operatorname{deg}(g) \leq \operatorname{deg}(f)+\operatorname{deg}(h)-1+\operatorname{deg}(g)
$$

$$
n \operatorname{deg}(h) \leq \operatorname{deg}(f)+\operatorname{deg}(g)-1+\operatorname{deg}(h)
$$

$$
n \operatorname{deg}(f) \leq \operatorname{deg}(g)+\operatorname{deg}(h)-1+\operatorname{deg}(f)
$$

$$
n(\operatorname{deg}(f)+\operatorname{deg}(g)+\operatorname{deg}(h))
$$

$$
\leq 3(\operatorname{deg}(f)+\operatorname{deg}(g)+\operatorname{deg}(h))-3
$$

Let $f, g, h \in \mathbb{C}[X]$ such that
$\operatorname{gcd}(f, g, h)=1$ and $n \geq 3$.
Then $f^{n}+g^{n}=h^{n}$ is only possible if $f, g, h \in \mathbb{C}$.
Proof: So $g^{n-1}\left(f^{\prime} g-f g^{\prime}\right)=h^{n-1}\left(f^{\prime} h-f h^{\prime}\right)$,

$$
n \operatorname{deg}(g) \leq \operatorname{deg}(f)+\operatorname{deg}(h)-1+\operatorname{deg}(g)
$$

$n \operatorname{deg}(h) \leq \operatorname{deg}(f)+\operatorname{deg}(g)-1+\operatorname{deg}(h)$
$n \operatorname{deg}(f) \leq \operatorname{deg}(g)+\operatorname{deg}(h)-1+\operatorname{deg}(f)$
$n(\operatorname{deg}(f)+\operatorname{deg}(g)+\operatorname{deg}(h))$
$\leq 3(\operatorname{deg}(f)+\operatorname{deg}(g)+\operatorname{deg}(h))-3$
$(n-3)(\operatorname{deg}(f)+\operatorname{deg}(g)+\operatorname{deg}(h)) \leq-3$, contradiction!!

What's the story about $I, m, n \in \mathbb{N}$ large enough and $x^{\prime}+y^{m}=z^{n}$? If $x, y, z \in \mathbb{Z}$ then Wiles only gave a proof for $I=m=n!$

Let's take it a little further...

Let's take it a little further... $\mathbb{C}[X]: \quad 3$ is zero of $(X-3)(X+1)^{2}$

Let's take it a little further...
$\mathbb{C}[X]: \quad 3$ is zero of $(X-3)(X+1)^{2}$
\mathbb{Z} : $\quad 3$ is a divisor of $3^{2} 57^{3}$.

Let's take it a little further...
$\mathbb{C}[X]: \quad 3$ is zero of $(X-3)(X+1)^{2}$
\mathbb{Z} : $\quad 3$ is a divisor of $3^{2} 57^{3}$.
$\mathbb{C}[X]: \quad$ The zeroes of $(X-3)(X+1)^{2}$ are 3,1

Let's take it a little further...
$\mathbb{C}[X]: \quad 3$ is zero of $(X-3)(X+1)^{2}$
\mathbb{Z} : $\quad 3$ is a divisor of $3^{2} 57^{3}$.
$\mathbb{C}[X]: \quad$ The zeroes of $(X-3)(X+1)^{2}$ are 3,1
\mathbb{Z} : \quad The divisors of $3^{2} 57^{3}$ are $3,5,7$.

Let's take it a little further...
$\mathbb{C}[X]: \quad 3$ is zero of $(X-3)(X+1)^{2}$
\mathbb{Z} : $\quad 3$ is a divisor of $3^{2} 57^{3}$.
Define:
$\mathbb{C}[X]: \quad$ The zeroes of $(X-3)(X+1)^{2}$ are 3,1
\mathbb{Z} : \quad The divisors of $3^{2} 57^{3}$ are $3,5,7$.
$\operatorname{rad}\left(3^{2} 57^{3}\right)=3 \cdot 5 \cdot 7$.

Let's take it a little further...
$\mathbb{C}[X]: \quad 3$ is zero of $(X-3)(X+1)^{2}$
\mathbb{Z} : $\quad 3$ is a divisor of $3^{2} 57^{3}$.
Define:
$\mathbb{C}[X]: \quad$ The zeroes of $(X-3)(X+1)^{2}$ are 3,1
\mathbb{Z} : \quad The divisors of $3^{2} 57^{3}$ are $3,5,7$.
$\operatorname{rad}\left(3^{2} 57^{3}\right)=3 \cdot 5 \cdot 7$.
ABC-conjecture:

Let's take it a little further...
$\mathbb{C}[X]: \quad 3$ is zero of $(X-3)(X+1)^{2}$
\mathbb{Z} : $\quad 3$ is a divisor of $3^{2} 57^{3}$.
Define:
$\mathbb{C}[X]: \quad$ The zeroes of $(X-3)(X+1)^{2}$ are 3,1
\mathbb{Z} : \quad The divisors of $3^{2} 57^{3}$ are $3,5,7$.
$\operatorname{rad}\left(3^{2} 57^{3}\right)=3 \cdot 5 \cdot 7$.
ABC-conjecture: If $a+b=c, a, b, c \in \mathbb{N}, \operatorname{gcd}(a, b, c)=1$, then c cannot be too big, compared to $\operatorname{rad}(a b c)$:
for every $\epsilon>0$ there exists some K_{ϵ} such that

$$
c<K_{\epsilon} \operatorname{rad}(a b c)^{1+\epsilon}
$$

ABC-conjecture:

If $a+b=c, a, b, c \in \mathbb{N}, \operatorname{gcd}(a, b, c)=1$, then c cannot be too big, compared to $\operatorname{rad}(a b c)$:
for every $\epsilon>0$ there exists some K_{ϵ} such that

$$
c<K_{\epsilon} \operatorname{rad}(a b c)^{1+\epsilon}
$$

ABC-conjecture:

If $a+b=c, a, b, c \in \mathbb{N}, \operatorname{gcd}(a, b, c)=1$, then c cannot be too big, compared to $\operatorname{rad}(a b c)$:
for every $\epsilon>0$ there exists some K_{ϵ} such that

$$
c<K_{\epsilon} \operatorname{rad}(a b c)^{1+\epsilon}
$$

Version for $\mathbb{C}[X]$:

ABC-conjecture:

If $a+b=c, a, b, c \in \mathbb{N}, \operatorname{gcd}(a, b, c)=1$, then c cannot be too big, compared to $\operatorname{rad}(a b c)$:
for every $\epsilon>0$ there exists some K_{ϵ} such that

$$
c<K_{\epsilon} \operatorname{rad}(a b c)^{1+\epsilon}
$$

Version for $\mathbb{C}[X]$:
Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

$$
\operatorname{deg}(f)<N(f g h)
$$

where $N(\mathrm{fgh})$ is the number of zeroes of fgh .

If $A B C$ conjecture true, then Fermat is an immediate consequence. And more stuff $\left(x^{\prime}+y^{m}=z^{n}\right)$. I'll not prove this today, but - I'll prove the $A B C$ conjecture for polynomials!!

Mason's Theorem:

Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

$$
\operatorname{deg}(f)<N(f g h)
$$

Mason's Theorem:

Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

$$
\operatorname{deg}(f)<N(f g h)
$$

Proof:

Mason's Theorem:

Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

$$
\begin{aligned}
\operatorname{deg}(f)< & N(f g h) . \\
f \quad+g \quad & =h
\end{aligned}
$$

Proof:

Mason's Theorem:

Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

$$
\operatorname{deg}(f)<N(f g h)
$$

$$
\begin{array}{llll}
& f & +g & =h \\
\text { Proof: } & f^{\prime} & +g^{\prime} & =h^{\prime} \\
\hline
\end{array}
$$

Mason's Theorem:

Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

$\operatorname{deg}(f)<$			
	$N(f g h)$.		
Proof:	$f \quad+g$	$=h$	times f^{\prime}
f^{\prime}	$+g^{\prime}$	$=h^{\prime}$	times f

Mason's Theorem:

Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

\[

\]

Mason's Theorem:

Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

\[

\]

Mason's Theorem:

Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

\[

\]

Mason's Theorem:

Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

$$
\operatorname{deg}(f)<N(f g h)
$$

Proof: So $f^{\prime} g-f g^{\prime}=f^{\prime} h-f h^{\prime}$.

Mason's Theorem:

Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

$$
\operatorname{deg}(f)<N(f g h)
$$

Proof: So $f^{\prime} g-f g^{\prime}=f^{\prime} h-f h^{\prime}$. Now we have: $\operatorname{gcd}\left(f, f^{\prime}\right) \mid f^{\prime} g$ and $\mid f g^{\prime}$.

Mason's Theorem:

Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

$$
\operatorname{deg}(f)<N(f g h)
$$

Proof: So $f^{\prime} g-f g^{\prime}=f^{\prime} h-f h^{\prime}$. Now we have: $\operatorname{gcd}\left(f, f^{\prime}\right) \mid f^{\prime} g$ and $\mid f g^{\prime}$. So
$\operatorname{gcd}\left(f, f^{\prime}\right) \mid f^{\prime} g-f g^{\prime}$

Mason's Theorem:

Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

$$
\operatorname{deg}(f)<N(f g h)
$$

Proof: So $f^{\prime} g-f g^{\prime}=f^{\prime} h-f h^{\prime}$. Now we have: $\operatorname{gcd}\left(f, f^{\prime}\right) \mid f^{\prime} g$ and $\mid f g^{\prime}$. So
$\operatorname{gcd}\left(f, f^{\prime}\right) \mid f^{\prime} g-f g^{\prime}$
$\operatorname{gcd}\left(g, g^{\prime}\right) \mid f^{\prime} g-f g^{\prime}$

Mason's Theorem:

Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

$$
\operatorname{deg}(f)<N(f g h)
$$

Proof: So $f^{\prime} g-f g^{\prime}=f^{\prime} h-f h^{\prime}$. Now we have: $\operatorname{gcd}\left(f, f^{\prime}\right) \mid f^{\prime} g$ and $\mid f g^{\prime}$. So

```
gcd}(f,\mp@subsup{f}{}{\prime})|\mp@subsup{f}{}{\prime}g-f\mp@subsup{g}{}{\prime
gcd}(g,\mp@subsup{g}{}{\prime})|\mp@subsup{f}{}{\prime}g-f\mp@subsup{g}{}{\prime
gcd}(h,\mp@subsup{h}{}{\prime})|\mp@subsup{f}{}{\prime}h-f\mp@subsup{h}{}{\prime
```


Mason's Theorem:

Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

$$
\operatorname{deg}(f)<N(f g h)
$$

Proof: So $f^{\prime} g-f g^{\prime}=f^{\prime} h-f h^{\prime}$. Now we have: $\operatorname{gcd}\left(f, f^{\prime}\right) \mid f^{\prime} g$ and $\mid f g^{\prime}$. So
$\operatorname{gcd}\left(f, f^{\prime}\right) \mid f^{\prime} g-f g^{\prime}$
$\operatorname{gcd}\left(g, g^{\prime}\right) \mid f^{\prime} g-f g^{\prime}$
$\operatorname{gcd}\left(h, h^{\prime}\right) \mid f^{\prime} h-f h^{\prime}=f^{\prime} g-f g^{\prime}$.

Mason's Theorem:

Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

$$
\operatorname{deg}(f)<N(f g h)
$$

Proof: So $f^{\prime} g-f g^{\prime}=f^{\prime} h-f h^{\prime}$. Now we have: $\operatorname{gcd}\left(f, f^{\prime}\right) \mid f^{\prime} g$ and $\mid f g^{\prime}$. So
$\operatorname{gcd}\left(f, f^{\prime}\right) \mid f^{\prime} g-f g^{\prime}$
$\operatorname{gcd}\left(g, g^{\prime}\right) \mid f^{\prime} g-f g^{\prime}$
$\operatorname{gcd}\left(h, h^{\prime}\right) \mid f^{\prime} h-f h^{\prime}=f^{\prime} g-f g^{\prime}$.
So $\operatorname{gcd}\left(f, f^{\prime}\right) \operatorname{gcd}\left(g, g^{\prime}\right) \operatorname{gcd}\left(h, h^{\prime}\right) \mid f^{\prime} g-f g^{\prime}$.

Mason's Theorem:

Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

$$
\operatorname{deg}(f)<N(f g h)
$$

Proof: So $f^{\prime} g-f g^{\prime}=f^{\prime} h-f h^{\prime}$. Now we have: $\operatorname{gcd}\left(f, f^{\prime}\right) \mid f^{\prime} g$ and $\mid f g^{\prime}$. So
$\operatorname{gcd}\left(f, f^{\prime}\right) \mid f^{\prime} g-f g^{\prime}$
$\operatorname{gcd}\left(g, g^{\prime}\right) \mid f^{\prime} g-f g^{\prime}$
$\operatorname{gcd}\left(h, h^{\prime}\right) \mid f^{\prime} h-f h^{\prime}=f^{\prime} g-f g^{\prime}$.
So $\operatorname{gcd}\left(f, f^{\prime}\right) \operatorname{gcd}\left(g, g^{\prime}\right) \operatorname{gcd}\left(h, h^{\prime}\right) \mid f^{\prime} g-f g^{\prime}$.
So

$$
\begin{array}{r}
\operatorname{deg}\left(\operatorname{gcd}\left(f, f^{\prime}\right)\right)+\operatorname{deg}\left(\operatorname{gcd}\left(g, g^{\prime}\right)\right)+\operatorname{deg}\left(\operatorname{gcd}\left(h, h^{\prime}\right)\right) \\
\leq \operatorname{deg}(f)+\operatorname{deg}(g)-1
\end{array}
$$

Mason's Theorem:

Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

$$
\operatorname{deg}(f)<N(f g h)
$$

Proof: So

$$
\begin{array}{r}
\operatorname{deg}\left(\operatorname{gcd}\left(f, f^{\prime}\right)\right)+\operatorname{deg}\left(\operatorname{gcd}\left(g, g^{\prime}\right)\right)+\operatorname{deg}\left(\operatorname{gcd}\left(h, h^{\prime}\right)\right) \\
\leq \operatorname{deg}(f)+\operatorname{deg}(g)-1
\end{array}
$$

Mason's Theorem:

Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

$$
\operatorname{deg}(f)<N(f g h)
$$

Proof: So

$$
\begin{aligned}
& \operatorname{deg}\left(\operatorname{gcd}\left(f, f^{\prime}\right)\right)+\operatorname{deg}(\operatorname{gcd}(\left.\left.g, g^{\prime}\right)\right)+\operatorname{deg}\left(\operatorname{gcd}\left(h, h^{\prime}\right)\right) \\
& \leq \operatorname{deg}(f)+\operatorname{deg}(g)-1
\end{aligned}
$$

Everything to the right, and then $+\operatorname{deg}(h)$:

Mason's Theorem:

Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

$$
\operatorname{deg}(f)<N(f g h)
$$

Proof: So

$$
\begin{aligned}
& \operatorname{deg}\left(\operatorname{gcd}\left(f, f^{\prime}\right)\right)+\operatorname{deg}(\operatorname{gcd}(\left.\left.g, g^{\prime}\right)\right)+\operatorname{deg}\left(\operatorname{gcd}\left(h, h^{\prime}\right)\right) \\
& \leq \operatorname{deg}(f)+\operatorname{deg}(g)-1
\end{aligned}
$$

Everything to the right, and then $+\operatorname{deg}(h)$:

$$
\begin{aligned}
& \operatorname{deg}(h) \leq \\
& \operatorname{deg}(f)-\operatorname{deg}\left(\operatorname{gcd}\left(f, f^{\prime}\right)\right)+ \\
& \operatorname{deg}(g)-\operatorname{deg}\left(\operatorname{gcd}\left(g, g^{\prime}\right)\right)+ \\
& \operatorname{deg}(h)-\operatorname{deg}\left(\operatorname{gcd}\left(h, h^{\prime}\right)\right)
\end{aligned}
$$

Mason's Theorem:

Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

$$
\operatorname{deg}(f)<N(f g h)
$$

Proof:

$$
\begin{aligned}
& \operatorname{deg}(h) \leq \\
& \operatorname{deg}(f)-\operatorname{deg}\left(\operatorname{gcd}\left(f, f^{\prime}\right)\right)+ \\
& \operatorname{deg}(g)-\operatorname{deg}\left(\operatorname{gcd}\left(g, g^{\prime}\right)\right)+ \\
& \operatorname{deg}(h)-\operatorname{deg}\left(\operatorname{gcd}\left(h, h^{\prime}\right)\right)
\end{aligned}
$$

Mason's Theorem:

Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

$$
\operatorname{deg}(f)<N(f g h)
$$

Proof:

$$
\begin{aligned}
& \operatorname{deg}(h) \leq \\
& \operatorname{deg}(f)-\operatorname{deg}\left(\operatorname{gcd}\left(f, f^{\prime}\right)\right)+ \\
& \operatorname{deg}(g)-\operatorname{deg}\left(\operatorname{gcd}\left(g, g^{\prime}\right)\right)+ \\
& \operatorname{deg}(h)-\operatorname{deg}\left(\operatorname{gcd}\left(h, h^{\prime}\right)\right)
\end{aligned}
$$

Lemma: $\operatorname{deg}(f) \leq \operatorname{deg}\left(\operatorname{gcd}\left(f, f^{\prime}\right)\right)+N(f)$.

Mason's Theorem:

Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

$$
\operatorname{deg}(f)<N(f g h)
$$

Proof:

$$
\begin{aligned}
& \operatorname{deg}(h) \leq \\
& \operatorname{deg}(f)-\operatorname{deg}\left(\operatorname{gcd}\left(f, f^{\prime}\right)\right)+ \\
& \operatorname{deg}(g)-\operatorname{deg}\left(\operatorname{gcd}\left(g, g^{\prime}\right)\right)+ \\
& \operatorname{deg}(h)-\operatorname{deg}\left(\operatorname{gcd}\left(h, h^{\prime}\right)\right)
\end{aligned}
$$

Lemma: $\operatorname{deg}(f) \leq \operatorname{deg}\left(\operatorname{gcd}\left(f, f^{\prime}\right)\right)+N(f)$.
Proof: Suppose $(X-c)^{n}$ divides f

Mason's Theorem:

Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

$$
\operatorname{deg}(f)<N(f g h)
$$

Proof:

$$
\begin{aligned}
& \operatorname{deg}(h) \leq \\
& \operatorname{deg}(f)-\operatorname{deg}\left(\operatorname{gcd}\left(f, f^{\prime}\right)\right)+ \\
& \operatorname{deg}(g)-\operatorname{deg}\left(\operatorname{gcd}\left(g, g^{\prime}\right)\right)+ \\
& \operatorname{deg}(h)-\operatorname{deg}\left(\operatorname{gcd}\left(h, h^{\prime}\right)\right)
\end{aligned}
$$

Lemma: $\operatorname{deg}(f) \leq \operatorname{deg}\left(\operatorname{gcd}\left(f, f^{\prime}\right)\right)+N(f)$.
Proof: Suppose $(X-c)^{n}$ divides $f=(X-c)^{n} \tilde{f}$.

Mason's Theorem:

Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

$$
\operatorname{deg}(f)<N(f g h)
$$

Proof:

$$
\begin{aligned}
& \operatorname{deg}(h) \leq \\
& \operatorname{deg}(f)-\operatorname{deg}\left(\operatorname{gcd}\left(f, f^{\prime}\right)\right)+ \\
& \operatorname{deg}(g)-\operatorname{deg}\left(\operatorname{gcd}\left(g, g^{\prime}\right)\right)+ \\
& \operatorname{deg}(h)-\operatorname{deg}\left(\operatorname{gcd}\left(h, h^{\prime}\right)\right)
\end{aligned}
$$

Lemma: $\operatorname{deg}(f) \leq \operatorname{deg}\left(\operatorname{gcd}\left(f, f^{\prime}\right)\right)+N(f)$.
Proof: Suppose $(X-c)^{n}$ divides $f=(X-c)^{n} \tilde{f}$. Then
$(X-c)^{n-1}$ divides $f^{\prime}=(X-c)^{n} \tilde{f}^{\prime}+n(X-c)^{n-1} \tilde{f}$.

Mason's Theorem:

Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

$$
\operatorname{deg}(f)<N(f g h)
$$

Proof:

$$
\begin{aligned}
& \operatorname{deg}(h) \leq \\
& \operatorname{deg}(f)-\operatorname{deg}\left(\operatorname{gcd}\left(f, f^{\prime}\right)\right)+ \\
& \operatorname{deg}(g)-\operatorname{deg}\left(\operatorname{gcd}\left(g, g^{\prime}\right)\right)+ \\
& \operatorname{deg}(h)-\operatorname{deg}\left(\operatorname{gcd}\left(h, h^{\prime}\right)\right)
\end{aligned}
$$

Lemma: $\operatorname{deg}(f) \leq \operatorname{deg}\left(\operatorname{gcd}\left(f, f^{\prime}\right)\right)+N(f)$.
Proof: Suppose $(X-c)^{n}$ divides $f=(X-c)^{n} \tilde{f}$. Then
$(X-c)^{n-1}$ divides $f^{\prime}=(X-c)^{n} \tilde{f}^{\prime}+n(X-c)^{n-1} \tilde{f}$.
... (krijtbord?)

Mason's Theorem:

Let $f, g, h \in \mathbb{C}[X]$ satisfy $f+g=h, \operatorname{gcd}(f, g, h)=1$, then

$$
\operatorname{deg}(f)<N(f g h)
$$

Proof:

$$
\begin{aligned}
& \operatorname{deg}(h) \leq \\
& \operatorname{deg}(f)-\operatorname{deg}\left(\operatorname{gcd}\left(f, f^{\prime}\right)\right)+ \\
& \operatorname{deg}(g)-\operatorname{deg}\left(\operatorname{gcd}\left(g, g^{\prime}\right)\right)+ \\
& \operatorname{deg}(h)-\operatorname{deg}\left(\operatorname{gcd}\left(h, h^{\prime}\right)\right)
\end{aligned}
$$

Lemma: $\operatorname{deg}(f) \leq \operatorname{deg}\left(\operatorname{gcd}\left(f, f^{\prime}\right)\right)+N(f)$.
Proof: Suppose $(X-c)^{n}$ divides $f=(X-c)^{n} \tilde{f}$. Then
$(X-c)^{n-1}$ divides $f^{\prime}=(X-c)^{n} \tilde{f}^{\prime}+n(X-c)^{n-1} \tilde{f}$.
... (krijtbord?) Using the lemma we get Mason's!

Theorem:

Let $\frac{1}{p}+\frac{1}{q}+\frac{1}{r} \leq 1$. If $F, G, H \in \mathbb{C}[X]$ satisfying $\operatorname{gcd}(F, G, H)=1$ and $F^{p}+G^{q}=H^{r}$ then $F, G, H \in \mathbb{C}$.

Proof:

We may assume that $\operatorname{deg}\left(F^{p}\right) \geq \operatorname{deg}\left(G^{q}\right), \operatorname{deg}\left(H^{r}\right)$.

Proof:

We may assume that $\operatorname{deg}\left(F^{p}\right) \geq \operatorname{deg}\left(G^{q}\right), \operatorname{deg}\left(H^{r}\right)$. Thus $q \operatorname{deg}(G) \leq p \operatorname{deg}(F)$,
$r \operatorname{deg}(H) \leq p \operatorname{deg}(F)$.

Proof:

We may assume that $\operatorname{deg}\left(F^{p}\right) \geq \operatorname{deg}\left(G^{q}\right), \operatorname{deg}\left(H^{r}\right)$. Thus $q \operatorname{deg}(G) \leq p \operatorname{deg}(F)$,
$r \operatorname{deg}(H) \leq p \operatorname{deg}(F)$.
Using Mason's:

Proof:

We may assume that $\operatorname{deg}\left(F^{p}\right) \geq \operatorname{deg}\left(G^{q}\right), \operatorname{deg}\left(H^{r}\right)$. Thus $q \operatorname{deg}(G) \leq p \operatorname{deg}(F)$,
$r \operatorname{deg}(H) \leq p \operatorname{deg}(F)$.
Using Mason's:

$$
p d e g(F)<N\left(F^{p} G^{q} H^{r}\right)
$$

Proof:

We may assume that $\operatorname{deg}\left(F^{p}\right) \geq \operatorname{deg}\left(G^{q}\right), \operatorname{deg}\left(H^{r}\right)$. Thus $q \operatorname{deg}(G) \leq p \operatorname{deg}(F)$,
$r \operatorname{deg}(H) \leq p \operatorname{deg}(F)$.
Using Mason's:

$$
\begin{array}{ll}
\operatorname{pdeg}(F)< & N\left(F^{p} G^{q} H^{r}\right) \\
= & N(F G H)
\end{array}
$$

Proof:

We may assume that $\operatorname{deg}\left(F^{p}\right) \geq \operatorname{deg}\left(G^{q}\right), \operatorname{deg}\left(H^{r}\right)$. Thus $q \operatorname{deg}(G) \leq p \operatorname{deg}(F)$,
$r \operatorname{deg}(H) \leq p \operatorname{deg}(F)$.
Using Mason's:

$$
\begin{array}{ll}
\operatorname{pdeg}(F)< & N\left(F^{p} G^{q} H^{r}\right) \\
= & N(F G H) \\
\leq & \operatorname{deg}(F)+\operatorname{deg}(G)+\operatorname{deg}(H)
\end{array}
$$

Proof:

We may assume that $\operatorname{deg}\left(F^{p}\right) \geq \operatorname{deg}\left(G^{q}\right), \operatorname{deg}\left(H^{r}\right)$. Thus $q \operatorname{deg}(G) \leq p \operatorname{deg}(F)$,
$r \operatorname{deg}(H) \leq p \operatorname{deg}(F)$.
Using Mason's:

$$
\begin{array}{ll}
p \operatorname{deg}(F)< & N\left(F^{p} G^{q} H^{r}\right) \\
= & N(F G H) \\
\leq & \operatorname{deg}(F)+\operatorname{deg}(G)+\operatorname{deg}(H) \\
\leq & \operatorname{deg}(F)+\frac{p}{q} \operatorname{deg}(F)+\frac{p}{r} \operatorname{deg}(F)
\end{array}
$$

Proof:

We may assume that $\operatorname{deg}\left(F^{p}\right) \geq \operatorname{deg}\left(G^{q}\right), \operatorname{deg}\left(H^{r}\right)$. Thus $q \operatorname{deg}(G) \leq p \operatorname{deg}(F)$,
$r \operatorname{deg}(H) \leq p \operatorname{deg}(F)$.
Using Mason's:

$$
\begin{array}{ll}
p \operatorname{deg}(F)< & N\left(F^{p} G^{q} H^{r}\right) \\
= & N(F G H) \\
\leq & \operatorname{deg}(F)+\operatorname{deg}(G)+\operatorname{deg}(H) \\
\leq & \operatorname{deg}(F)+\frac{p}{q} \operatorname{deg}(F)+\frac{p}{r} \operatorname{deg}(F)
\end{array}
$$

Divide by $p \operatorname{deg}(F)$:

Proof:

We may assume that $\operatorname{deg}\left(F^{p}\right) \geq \operatorname{deg}\left(G^{q}\right), \operatorname{deg}\left(H^{r}\right)$. Thus $q \operatorname{deg}(G) \leq p \operatorname{deg}(F)$,
$r \operatorname{deg}(H) \leq p \operatorname{deg}(F)$.
Using Mason's:

$$
\begin{array}{ll}
p \operatorname{deg}(F)< & N\left(F^{p} G^{q} H^{r}\right) \\
= & N(F G H) \\
\leq & \operatorname{deg}(F)+\operatorname{deg}(G)+\operatorname{deg}(H) \\
\leq & \operatorname{deg}(F)+\frac{p}{q} \operatorname{deg}(F)+\frac{p}{r} \operatorname{deg}(F)
\end{array}
$$

Divide by $p \operatorname{deg}(F)$:
$1<\frac{1}{p}+\frac{1}{q}+\frac{1}{r}$.

Proof:

We may assume that $\operatorname{deg}\left(F^{p}\right) \geq \operatorname{deg}\left(G^{q}\right), \operatorname{deg}\left(H^{r}\right)$. Thus $q \operatorname{deg}(G) \leq p \operatorname{deg}(F)$,
$r \operatorname{deg}(H) \leq p \operatorname{deg}(F)$.
Using Mason's:

$$
\begin{array}{ll}
p \operatorname{deg}(F)< & N\left(F^{p} G^{q} H^{r}\right) \\
= & N(F G H) \\
\leq & \operatorname{deg}(F)+\operatorname{deg}(G)+\operatorname{deg}(H) \\
\leq & \operatorname{deg}(F)+\frac{p}{q} \operatorname{deg}(F)+\frac{p}{r} \operatorname{deg}(F)
\end{array}
$$

Divide by $p \operatorname{deg}(F)$:
$1<\frac{1}{p}+\frac{1}{q}+\frac{1}{r}$. Contradiction!

Notice: $p=q=r$ gives $\frac{1}{n}+\frac{1}{n}+\frac{1}{n} \leq 1$ so $n \geq 3$.

It's even worse- There's a variant of the Riemann hypothesis for polynomials (over \mathbb{F}_{p}) that one can prove!

It's even worse- There's a variant of the Riemann hypothesis for polynomials (over \mathbb{F}_{p}) that one can prove!
Why can we prove all these things for $\mathbb{C}[X]$ and is it so hard for \mathbb{Z} ?

It's even worse- There's a variant of the Riemann hypothesis for polynomials (over \mathbb{F}_{p}) that one can prove!
Why can we prove all these things for $\mathbb{C}[X]$ and is it so hard for \mathbb{Z} ?

Remember the proof. . .

It's even worse- There's a variant of the Riemann hypothesis for polynomials (over \mathbb{F}_{p}) that one can prove!
Why can we prove all these things for $\mathbb{C}[X]$ and is it so hard for \mathbb{Z} ?

Remember the proof...

$f f^{\prime}+g f^{\prime}$	$=h f^{\prime} \quad$ maal f^{\prime}	
$-\quad f^{\prime} f+g^{\prime} f$	$=h^{\prime} f \quad$ maal f	
$f^{\prime} g-f g^{\prime}$	$=f^{\prime} h-f h^{\prime}$	

It's even worse- There's a variant of the Riemann hypothesis for polynomials (over \mathbb{F}_{p}) that one can prove!
Why can we prove all these things for $\mathbb{C}[X]$ and is it so hard for \mathbb{Z} ?
Remember the proof...

\[

\]

What is wrong in these lines if $f, g, h \in \mathbb{Z}$?

It's even worse- There's a variant of the Riemann hypothesis for polynomials (over \mathbb{F}_{p}) that one can prove!
Why can we prove all these things for $\mathbb{C}[X]$ and is it so hard for \mathbb{Z} ?
Remember the proof...

\[

\]

What is wrong in these lines if $f, g, h \in \mathbb{Z}$? Exactly! In $\mathbb{C}[X]$ one can take derivatives!
$\mathbb{C}[X]$ has a derivation: a map δ satisfying $\delta(f g)=f \delta(g)+g \delta(f)$ all f, g. (Leibniz rule.)
$\mathbb{C}[X]$ has a derivation: a map δ satisfying
$\delta(f g)=f \delta(g)+g \delta(f)$ all f, g. (Leibniz rule.)
Well, let's make one on \mathbb{Z}, so we can prove stuff!
$\mathbb{C}[X]$ has a derivation: a map δ satisfying
$\delta(f g)=f \delta(g)+g \delta(f)$ all f, g. (Leibniz rule.)
Well, let's make one on \mathbb{Z}, so we can prove stuff!
Copyying $\mathbb{C}[X]$: "primes" $(X-c)$ go to 1 .
$\mathbb{C}[X]$ has a derivation: a map δ satisfying $\delta(f g)=f \delta(g)+g \delta(f)$ all f, g. (Leibniz rule.)
Well, let's make one on \mathbb{Z}, so we can prove stuff!
Copyying $\mathbb{C}[X]$: "primes" $(X-c)$ go to 1 .
So: on \mathbb{Z} : send $2,3,5,7,11, \ldots$ to 1 .
$\mathbb{C}[X]$ has a derivation: a map δ satisfying $\delta(f g)=f \delta(g)+g \delta(f)$ all f, g. (Leibniz rule.)
Well, let's make one on \mathbb{Z}, so we can prove stuff!
Copyying $\mathbb{C}[X]$: "primes" $(X-c)$ go to 1 .
So: on \mathbb{Z} : send $2,3,5,7,11, \ldots$ to 1 . For anything else: use Leibniz rule:

$$
D\left(5^{7}\right)=7 \cdot 5^{6}, D\left(2^{3} 5^{2}\right)=3 \cdot 2^{2} 5^{2}+2 \cdot 2^{3} 5 .
$$

$\mathbb{C}[X]$ has a derivation: a map δ satisfying $\delta(f g)=f \delta(g)+g \delta(f)$ all f, g. (Leibniz rule.)
Well, let's make one on \mathbb{Z}, so we can prove stuff!
Copyying $\mathbb{C}[X]$: "primes" $(X-c)$ go to 1 .
So: on \mathbb{Z} : send $2,3,5,7,11, \ldots$ to 1 . For anything else: use Leibniz rule:

$$
D\left(5^{7}\right)=7 \cdot 5^{6}, D\left(2^{3} 5^{2}\right)=3 \cdot 2^{2} 5^{2}+2 \cdot 2^{3} 5 .
$$

Fun!! Can we now solve Fermat with this??
$\mathbb{C}[X]$ has a derivation: a map δ satisfying $\delta(f g)=f \delta(g)+g \delta(f)$ all f, g. (Leibniz rule.)
Well, let's make one on \mathbb{Z}, so we can prove stuff!
Copyying $\mathbb{C}[X]$: "primes" $(X-c)$ go to 1 .
So: on \mathbb{Z} : send $2,3,5,7,11, \ldots$ to 1 . For anything else: use Leibniz rule:

$$
D\left(5^{7}\right)=7 \cdot 5^{6}, D\left(2^{3} 5^{2}\right)=3 \cdot 2^{2} 5^{2}+2 \cdot 2^{3} 5 .
$$

Fun!! Can we now solve Fermat with this??
Bummer.
$\mathbb{C}[X]$ has a derivation: a map δ satisfying $\delta(f g)=f \delta(g)+g \delta(f)$ all f, g. (Leibniz rule.)
Well, let's make one on \mathbb{Z}, so we can prove stuff!
Copyying $\mathbb{C}[X]$: "primes" $(X-c)$ go to 1 .
So: on \mathbb{Z} : send $2,3,5,7,11, \ldots$ to 1 . For anything else: use Leibniz rule:

$$
D\left(5^{7}\right)=7 \cdot 5^{6}, D\left(2^{3} 5^{2}\right)=3 \cdot 2^{2} 5^{2}+2 \cdot 2^{3} 5 .
$$

Fun!! Can we now solve Fermat with this??
Bummer. $D(a+b) \neq D(a)+D(b)$.
$\mathbb{C}[X]$ has a derivation: a map δ satisfying $\delta(f g)=f \delta(g)+g \delta(f)$ all f, g. (Leibniz rule.)
Well, let's make one on \mathbb{Z}, so we can prove stuff!
Copyying $\mathbb{C}[X]$: "primes" $(X-c)$ go to 1 .
So: on \mathbb{Z} : send $2,3,5,7,11, \ldots$ to 1 . For anything else: use Leibniz rule:

$$
D\left(5^{7}\right)=7 \cdot 5^{6}, D\left(2^{3} 5^{2}\right)=3 \cdot 2^{2} 5^{2}+2 \cdot 2^{3} 5 .
$$

Fun!! Can we now solve Fermat with this??
Bummer. $D(a+b) \neq D(a)+D(b)$.
Als: δ is locally nilpotent. Which means: for every $f \in \mathbb{C}[X]$ there exists some n such that $\delta^{n}(f)=0$.
$\mathbb{C}[X]$ has a derivation: a map δ satisfying $\delta(f g)=f \delta(g)+g \delta(f)$ all f, g. (Leibniz rule.)
Well, let's make one on \mathbb{Z}, so we can prove stuff!
Copyying $\mathbb{C}[X]$: "primes" $(X-c)$ go to 1 .
So: on \mathbb{Z} : send $2,3,5,7,11, \ldots$ to 1 . For anything else: use Leibniz rule:

$$
D\left(5^{7}\right)=7 \cdot 5^{6}, D\left(2^{3} 5^{2}\right)=3 \cdot 2^{2} 5^{2}+2 \cdot 2^{3} 5 .
$$

Fun!! Can we now solve Fermat with this??
Bummer. $D(a+b) \neq D(a)+D(b)$.
Als: δ is locally nilpotent. Which means: for every $f \in \mathbb{C}[X]$ there exists some n such that $\delta^{n}(f)=0$.
On $\mathbb{Z}: D\left(2^{2}\right)=2 \cdot 2$.
$\mathbb{C}[X]$ has a derivation: a map δ satisfying $\delta(f g)=f \delta(g)+g \delta(f)$ all f, g. (Leibniz rule.)
Well, let's make one on \mathbb{Z}, so we can prove stuff!
Copyying $\mathbb{C}[X]$: "primes" $(X-c)$ go to 1 .
So: on \mathbb{Z} : send $2,3,5,7,11, \ldots$ to 1 . For anything else: use Leibniz rule:

$$
D\left(5^{7}\right)=7 \cdot 5^{6}, D\left(2^{3} 5^{2}\right)=3 \cdot 2^{2} 5^{2}+2 \cdot 2^{3} 5 .
$$

Fun!! Can we now solve Fermat with this??
Bummer. $D(a+b) \neq D(a)+D(b)$.
Als: δ is locally nilpotent. Which means: for every $f \in \mathbb{C}[X]$ there exists some n such that $\delta^{n}(f)=0$.
On $\mathbb{Z}: D\left(2^{2}\right)=2 \cdot 2$. And
$D\left(2^{2} a\right)=2^{2} D(a)+2 \cdot 2 a=2^{2}(D(a)+a)$ so that one increases and increases if $a>1$!

Lifting a tip of the veil of my research...

Lifting a tip of the veil of my
research. $. . V:=\left\{(x, y, z) \in \mathbb{C}^{3} \mid x^{2}+y^{3}+z^{7}=0\right\}$.

Lifting a tip of the veil of my
research. $\ldots V:=\left\{(x, y, z) \in \mathbb{C}^{3} \mid x^{2}+y^{3}+z^{7}=0\right\}$. We want to understand this set - do there exist "nice" group actions of $\mathbb{C},+$ on this set?

Lifting a tip of the veil of my
research. $\ldots V:=\left\{(x, y, z) \in \mathbb{C}^{3} \mid x^{2}+y^{3}+z^{7}=0\right\}$. We want to understand this set - do there exist "nice" group actions of $\mathbb{C},+$ on this set?
Comes down to finding a locally nilpotent derivation D on the ring $\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{3}+Z^{7}\right)$.

Locally nilpotent derivations D on the ring
$\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{3}+Z^{7}\right) . D=0$ is one, are there more?.

Locally nilpotent derivations D on the ring
$\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{3}+Z^{7}\right) . D=0$ is one, are there more?.
Suppose $D \neq 0$.

Locally nilpotent derivations D on the ring
$\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{3}+Z^{7}\right) . D=0$ is one, are there more?.
Suppose $D \neq 0$. Then it is possible to extend D on something bigger

Locally nilpotent derivations D on the ring
$\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{3}+Z^{7}\right) . D=0$ is one, are there more?.
Suppose $D \neq 0$. Then it is possible to extend D on something bigger - $\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{3}+Z^{7}\right) \subset \mathbb{K}[S]$ where K is some field.

Locally nilpotent derivations D on the ring
$\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{3}+Z^{7}\right) . D=0$ is one, are there more?.
Suppose $D \neq 0$. Then it is possible to extend D on something bigger - $\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{3}+Z^{7}\right) \subset \mathbb{K}[S]$ where K is some field. And on $\mathbb{K}[S]$ the map D behaves like $\frac{\partial}{\partial S}$.

Locally nilpotent derivations D on the ring
$\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{3}+Z^{7}\right) . D=0$ is one, are there more?.
Suppose $D \neq 0$. Then it is possible to extend D on something bigger - $\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{3}+Z^{7}\right) \subset \mathbb{K}[S]$ where K is some field. And on $\mathbb{K}[S]$ the map D behaves like $\frac{\partial}{\partial S}$. So elements x, y, z can be seen as elements in $\mathbb{K}[S]$:
$x=f(S), y=g(S), z=h(S)$.

Locally nilpotent derivations D on the ring
$\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{3}+Z^{7}\right) . D=0$ is one, are there more?.
Suppose $D \neq 0$. Then it is possible to extend D on something bigger - $\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{3}+Z^{7}\right) \subset \mathbb{K}[S]$ where K is some field. And on $\mathbb{K}[S]$ the map D behaves like $\frac{\partial}{\partial S}$. So elements x, y, z can be seen as elements in $\mathbb{K}[S]:$
$x=f(S), y=g(S), z=h(S)$. For sure: $x^{2}+y^{3}+z^{7}=0$, so
$f^{2}+g^{3}+h^{7}=0$. I can assume for some reason that
$\operatorname{gcd}(f, g, h)=1$,

Locally nilpotent derivations D on the ring
$\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{3}+Z^{7}\right) . D=0$ is one, are there more?.
Suppose $D \neq 0$. Then it is possible to extend D on something bigger - $\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{3}+Z^{7}\right) \subset \mathbb{K}[S]$ where K is some field. And on $\mathbb{K}[S]$ the map D behaves like $\frac{\partial}{\partial S}$. So elements x, y, z can be seen as elements in $\mathbb{K}[S]:$
$x=f(S), y=g(S), z=h(S)$. For sure: $x^{2}+y^{3}+z^{7}=0$, so $f^{2}+g^{3}+h^{7}=0$. I can assume for some reason that $\operatorname{gcd}(f, g, h)=1$, and now Mason's yields that $f, g, h \in \mathbb{K}$.

Locally nilpotent derivations D on the ring
$\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{3}+Z^{7}\right) . D=0$ is one, are there more?.
Suppose $D \neq 0$. Then it is possible to extend D on something bigger - $\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{3}+Z^{7}\right) \subset \mathbb{K}[S]$ where K is some field. And on $\mathbb{K}[S]$ the map D behaves like $\frac{\partial}{\partial S}$. So elements x, y, z can be seen as elements in $\mathbb{K}[S]:$
$x=f(S), y=g(S), z=h(S)$. For sure: $x^{2}+y^{3}+z^{7}=0$, so $f^{2}+g^{3}+h^{7}=0$. I can assume for some reason that $\operatorname{gcd}(f, g, h)=1$, and now Mason's yields that $f, g, h \in \mathbb{K}$.
But D is zero on elements of \mathbb{K}

Locally nilpotent derivations D on the ring
$\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{3}+Z^{7}\right) . D=0$ is one, are there more?.
Suppose $D \neq 0$. Then it is possible to extend D on something bigger - $\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{3}+Z^{7}\right) \subset \mathbb{K}[S]$ where K is some field. And on $\mathbb{K}[S]$ the map D behaves like $\frac{\partial}{\partial S}$. So elements x, y, z can be seen as elements in $\mathbb{K}[S]:$
$x=f(S), y=g(S), z=h(S)$. For sure: $x^{2}+y^{3}+z^{7}=0$, so $f^{2}+g^{3}+h^{7}=0$. I can assume for some reason that $\operatorname{gcd}(f, g, h)=1$, and now Mason's yields that $f, g, h \in \mathbb{K}$.
But D is zero on elements of \mathbb{K} - so
$D(x)=D(y)=D(z)=0$

Locally nilpotent derivations D on the ring
$\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{3}+Z^{7}\right) . D=0$ is one, are there more?.
Suppose $D \neq 0$. Then it is possible to extend D on something bigger - $\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{3}+Z^{7}\right) \subset \mathbb{K}[S]$ where K is some field. And on $\mathbb{K}[S]$ the map D behaves like $\frac{\partial}{\partial S}$. So elements x, y, z can be seen as elements in $\mathbb{K}[S]:$
$x=f(S), y=g(S), z=h(S)$. For sure: $x^{2}+y^{3}+z^{7}=0$, so $f^{2}+g^{3}+h^{7}=0$. I can assume for some reason that $\operatorname{gcd}(f, g, h)=1$, and now Mason's yields that $f, g, h \in \mathbb{K}$.
But D is zero on elements of \mathbb{K} - so
$D(x)=D(y)=D(z)=0$ and that implies that D is zero on the whole ring $\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{3}+Z^{7}\right)$!

Locally nilpotent derivations D on the ring
$\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{3}+Z^{7}\right) . D=0$ is one, are there more?.
Suppose $D \neq 0$. Then it is possible to extend D on something bigger - $\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{3}+Z^{7}\right) \subset \mathbb{K}[S]$ where K is some field. And on $\mathbb{K}[S]$ the map D behaves like $\frac{\partial}{\partial S}$. So elements x, y, z can be seen as elements in $\mathbb{K}[S]$:
$x=f(S), y=g(S), z=h(S)$. For sure: $x^{2}+y^{3}+z^{7}=0$, so $f^{2}+g^{3}+h^{7}=0$. I can assume for some reason that $\operatorname{gcd}(f, g, h)=1$, and now Mason's yields that $f, g, h \in \mathbb{K}$. But D is zero on elements of \mathbb{K} - so $D(x)=D(y)=D(z)=0$ and that implies that D is zero on the whole ring $\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{3}+Z^{7}\right)$! Contradiction, so the only locally nilpotent derivation on
$\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{3}+Z^{7}\right)$ is $D=0$.

Conclusions

Conclusions

Why is \mathbb{Z} so much more difficult as $\mathbb{C}[X]$?

Conclusions

Why is \mathbb{Z} so much more difficult as $\mathbb{C}[X]$? (Or why can't we do things with \mathbb{Z} and why can we with $\mathbb{C}[X]$?)

Conclusions

Why is \mathbb{Z} so much more difficult as $\mathbb{C}[X]$? (Or why can't we do things with \mathbb{Z} and why can we with $\mathbb{C}[X]$?)
There's no "derivative" on elements of \mathbb{Z} ! (At least, no tasty one...)

Conclusions

Why is \mathbb{Z} so much more difficult as $\mathbb{C}[X]$? (Or why can't we do things with \mathbb{Z} and why can we with $\mathbb{C}[X]$?)
There's no "derivative" on elements of \mathbb{Z} ! (At least, no tasty one...)
MORAL OF THIS STORY:

Conclusions

Why is \mathbb{Z} so much more difficult as $\mathbb{C}[X]$? (Or why can't we do things with \mathbb{Z} and why can we with $\mathbb{C}[X]$?)
There's no "derivative" on elements of \mathbb{Z} ! (At least, no tasty one...)
MORAL OF THIS STORY: Be Happy If You Find A Locally Nilpotent Derivation on your ring...

Conclusions

Why is \mathbb{Z} so much more difficult as $\mathbb{C}[X]$? (Or why can't we do things with \mathbb{Z} and why can we with $\mathbb{C}[X]$?)
There's no "derivative" on elements of \mathbb{Z} ! (At least, no tasty one...)
MORAL OF THIS STORY: Be Happy If You Find A Locally Nilpotent Derivation on your ring...

