$\ensuremath{\mathbb{Z}}$ is difficult, polynomials are easy.

Stefan Maubach

Saginaw, October 2008

 \mathbb{Z} has prime numbers: 2, 3, 5, 7, ... and unique prime factorisation. If I sit in a room and factor the number 1776, and you sit in a different room and factor this same number, we end up with the same prime factorisation: 37*17*3.

 \mathbb{Z} has prime numbers: 2, 3, 5, 7, ... and unique prime factorisation. If I sit in a room and factor the number 1776, and you sit in a different room and factor this same number, we end up with the same prime factorisation: 37*17*3. Actually: 2 and -2 are seen as "the same prime number". They differ exactly a unit:

$$-2=(-1)\cdot 2.$$

Or, equivalently: $2\mathbb{Z}$ and $-2\mathbb{Z}$ are the same set.

 \mathbb{Z} has prime numbers: 2, 3, 5, 7, ... and unique prime factorisation. If I sit in a room and factor the number 1776, and you sit in a different room and factor this same number, we end up with the same prime factorisation: 37*17*3. Actually: 2 and -2 are seen as "the same prime number". They differ exactly a unit:

$$-2 = (-1) \cdot 2.$$

Or, equivalently: $2\mathbb{Z}$ and $-2\mathbb{Z}$ are the same set.

So, we could say that a prime number N is an element which is not invertible, and if it is divisible by some element x, then either x is a unit, or N = ux where u is a unit. \mathbb{Z} has prime numbers: 2, 3, 5, 7, ... and unique prime factorisation. If I sit in a room and factor the number 1776, and you sit in a different room and factor this same number, we end up with the same prime factorisation: 37*17*3. Actually: 2 and -2 are seen as "the same prime number". They differ exactly a unit:

$$-2 = (-1) \cdot 2.$$

Or, equivalently: $2\mathbb{Z}$ and $-2\mathbb{Z}$ are the same set.

So, we could say that a prime number N is an element which is not invertible, and if it is divisible by some element x, then either x is a unit, or N = ux where u is a unit.

Are there any other sets with something like "prime numbers"?

In \mathbb{Z} one can add, substract, and multiply. You *cannot* divide by everything - that's the point, if you could divide by everything, then you don't have prime numbers!

In \mathbb{Z} one can add, substract, and multiply. You *cannot* divide by everything - that's the point, if you could divide by everything, then you don't have prime numbers! \mathbb{Z} is a *ring*. If you can also divide by everything (except zero) then you have a *field*. In \mathbb{Z} one can add, substract, and multiply. You *cannot* divide by everything - that's the point, if you could divide by everything, then you don't have prime numbers! \mathbb{Z} is a *ring*. If you can also divide by everything (except zero) then you have a *field*.

Are there any other "things" having prime numbers?

Are there any other Rings having prime numbers?

Are there any other Rings having prime numbers? $\mathbb{R}[X]$ is the collection of polynomials, i.e.

$$\mathbb{R}[X] := \{a_0 + a_1 X + a_2 X^2 + \ldots + a_n X^n \mid n \in \mathbb{N}, a_i \in \mathbb{R}\}.$$

Are there any other Rings having prime numbers? $\mathbb{R}[X]$ is the collection of polynomials, i.e.

$$\mathbb{R}[X] := \{a_0 + a_1 X + a_2 X^2 + \ldots + a_n X^n \mid n \in \mathbb{N}, a_i \in \mathbb{R}\}.$$

Same way:

$$\mathbb{C}[X] := \{a_0 + a_1 X + a_2 X^2 + \ldots + a_n X^n \mid n \in \mathbb{N}, a_i \in \mathbb{C}\}.$$

_	\mathbb{Z}	$\mathbb{R}[X]$
_		

	\mathbb{Z}	$\mathbb{R}[X]$
Invertible elements:		

	\mathbb{Z}	$\mathbb{R}[X]$
Invertible elements:	1,-1	$\mathbb{R} \setminus \{0\}$

	\mathbb{Z}	$\mathbb{R}[X]$
Invertible elements:	1, -1	$\mathbb{R} \setminus \{0\}$
Prime numbers		

	\mathbb{Z}	$\mathbb{R}[X]$
Invertible elements:	1, -1	$\mathbb{R} \setminus \{0\}$
Prime numbers	$2,3,5,\ldots$	polynomials $X + 37, X^2 + 1$

	\mathbb{Z}	$\mathbb{R}[X]$	
Invertible elements:		$\mathbb{R} \setminus \{0\}$	
Prime numbers	$2,3,5,\ldots$	polynomials $X + 37, X^2 + 1$	
Just check it out: any polynomial $p(X)$ decomposes int a			
product of polynomials: $p(X) = p_1(X) \cdots p_n(X)$.			

 \mathbb{Z} $\mathbb{R}[X]$ Invertible elements:1, -1 $\mathbb{R}\setminus\{0\}$ Prime numbers $2, 3, 5, \ldots$ polynomials $X + 37, X^2 + 1$ Just check it out: any polynomial p(X) decomposes int aproduct of polynomials: $p(X) = p_1(X) \cdots p_n(X)$. If youcannot decompose further, then you have irreduciblepolynomials.Those you can call "prime".

 \mathbb{Z} $\mathbb{R}[X]$ $\begin{vmatrix} 1, -1 \\ 2, 3, 5, \ldots \end{vmatrix} \mathbb{R} \setminus \{0\}$ polynomials $X + 37, X^2 + 1$ Invertible elements: Prime numbers Just check it out: any polynomial p(X) decomposes int a product of polynomials: $p(X) = p_1(X) \cdots p_n(X)$. If you cannot decompose further, then you have irreducible polynomials. Those you can call "prime". Notice: X + 1 and -37X - 37 are "the same prime number"! Just as 2 and -2 they only differ a unit: the latter -1 which is a unit in \mathbb{Z} , the former -37, which is a unit in $\mathbb{R}|X|$.

 \mathbb{Z} $\mathbb{R}[X]$ $\begin{array}{|c|c|c|} 1,-1 & \mathbb{R} \setminus \{0\} \\ 2,3,5,\ldots & \text{polynomials } X+37, X^2+1 \end{array}$ Invertible elements: Prime numbers Just check it out: any polynomial p(X) decomposes int a product of polynomials: $p(X) = p_1(X) \cdots p_n(X)$. If you cannot decompose further, then you have irreducible polynomials. Those you can call "prime". Notice: X + 1 and -37X - 37 are "the same prime number"! Just as 2 and -2 they only differ a unit: the latter -1 which is a unit in \mathbb{Z} , the former -37, which is a unit in $\mathbb{R}|X|$. Furthermore: $X^2 + 1$ is also irreducible...

 \mathbb{Z} $\mathbb{R}[X]$ $\begin{vmatrix} 1, -1 \\ 2, 3, 5, \ldots \end{vmatrix} \mathbb{R} \setminus \{0\}$ polynomials $X + 37, X^2 + 1$ Invertible elements: Prime numbers Just check it out: any polynomial p(X) decomposes int a product of polynomials: $p(X) = p_1(X) \cdots p_n(X)$. If you cannot decompose further, then you have irreducible polynomials. Those you can call "prime". Notice: X + 1 and -37X - 37 are "the same prime number"! Just as 2 and -2 they only differ a unit: the latter -1 which is a unit in \mathbb{Z} , the former -37, which is a unit in $\mathbb{R}[X]$. Furthermore: $X^2 + 1$ is also irreducible... but...

 \mathbb{Z} $\mathbb{R}[X]$ $\begin{vmatrix} 1, -1 \\ 2, 3, 5, \ldots \end{vmatrix} \mathbb{R} \setminus \{0\}$ polynomials $X + 37, X^2 + 1$ Invertible elements: Prime numbers Just check it out: any polynomial p(X) decomposes int a product of polynomials: $p(X) = p_1(X) \cdots p_n(X)$. If you cannot decompose further, then you have irreducible polynomials. Those you can call "prime". Notice: X + 1 and -37X - 37 are "the same prime number"! Just as 2 and -2 they only differ a unit: the latter -1 which is a unit in \mathbb{Z} , the former -37, which is a unit in $\mathbb{R}[X]$. Furthermore: $X^2 + 1$ is also irreducible... but... over \mathbb{C} all prime polynomials are of degree 1 ! $X^2 + 1 = (X + i)(X - i)$.

 \mathbb{Z} $\mathbb{R}[X]$ $\begin{vmatrix} 1, -1 \\ 2, 3, 5, \ldots \end{vmatrix} \mathbb{R} \setminus \{0\}$ polynomials $X + 37, X^2 + 1$ Invertible elements: Prime numbers Just check it out: any polynomial p(X) decomposes int a product of polynomials: $p(X) = p_1(X) \cdots p_n(X)$. If you cannot decompose further, then you have irreducible polynomials. Those you can call "prime". Notice: X + 1 and -37X - 37 are "the same prime number"! Just as 2 and -2 they only differ a unit: the latter -1 which is a unit in \mathbb{Z} , the former -37, which is a unit in $\mathbb{R}[X]$. Furthermore: $X^2 + 1$ is also irreducible... but... over \mathbb{C} all prime polynomials are of degree 1 ! $X^2 + 1 = (X + i)(X - i)$. Which means: if p(X) of degree 37, then p is a product of exactly 37 "prime" polynomials.

 \mathbb{Z} $\mathbb{R}[X]$ $\begin{array}{|c|c|c|} 1,-1 & \mathbb{R} \setminus \{0\} \\ 2,3,5,\ldots & \text{polynomials } X+37, X^2+1 \end{array}$ Invertible elements: Prime numbers Just check it out: any polynomial p(X) decomposes int a product of polynomials: $p(X) = p_1(X) \cdots p_n(X)$. If you cannot decompose further, then you have irreducible polynomials. Those you can call "prime". Notice: X + 1 and -37X - 37 are "the same prime number"! Just as 2 and -2 they only differ a unit: the latter -1 which is a unit in \mathbb{Z} , the former -37, which is a unit in $\mathbb{R}|X|$. Furthermore: $X^2 + 1$ is also irreducible... but... over \mathbb{C} all prime polynomials are of degree 1 ! $X^2 + 1 = (X + i)(X - i)$. Which means: if p(X) of degree 37, then p is a product of exactly 37 "prime" polynomials. Let's agree on $1 \cdot X + \alpha$ being the 'standard primes' in $\mathbb{C}[X]$.

$$gcd(12, 8) = gcd(2^2 \cdot 3, 2^3) = 2^2 = 4.$$

$$gcd(12, 8) = gcd(2^2 \cdot 3, 2^3) = 2^2 = 4.$$

 $gcd(X^3 + X^2 - X - 1, X^3 + 3X^2 + 3X + 1) =$
 $gcd((X + 1)^2(X - 1), (X + 1)^3) = (X + 1)^2.$

 $gcd(12,8) = gcd(2^2 \cdot 3, 2^3) = 2^2 = 4.$ $gcd(X^3 + X^2 - X - 1, X^3 + 3X^2 + 3X + 1) =$ $gcd((X + 1)^2(X - 1), (X + 1)^3) = (X + 1)^2.$ In $\mathbb{C}[X]$ one may describe "gcd(f,g) = 1" by saying: "f and g have different zeroes".

 $a,b,c\in\mathbb{Z}$ such that $\gcd(a,b,c)=1$ and $n\geq 3$ Then $a^n+b^n=c^n$ is not possible.

gcd(a, b, c) = 1 and $n \ge 3$ Then $a^n + b^n = c^n$ is not possible.

 $a, b, c \in \mathbb{Z}$ such that

gcd(a, b, c) = 1 and $n \ge 3$

Then $a^n + b^n = c^n$ is not possible.

Proof of Wiles is very difficult! My guess is: no one present in this room has read and understood the proof...!

Fermat's Last Theorem for $\mathbb{C}[X]$

 $a, b, c \in \mathbb{Z}$ such that gcd(a, b, c) = 1 and $n \ge 3$ Then $a^n + b^n = c^n$ is not possible.

Fermat's Last Theorem for $\mathbb{C}[X]$

 $a, b, c \in \mathbb{Z}$ such that gcd(a, b, c) = 1 and $n \ge 3$ Then $a^n + b^n = c^n$ is not possible. Let $f, g, h \in \mathbb{C}[X]$ be such that gcd(f, g, h) = 1 and $n \ge 3$. Then $f^n + g^n = h^n$ is only possible if $f, g, h \in \mathbb{C}$. Let $f, g, h \in \mathbb{C}[X]$ such that gcd(f, g, h) = 1 and $n \ge 3$. Then $f^n + g^n = h^n$ is only possible if $f, g, h \in \mathbb{C}$. Let $f, g, h \in \mathbb{C}[X]$ such that gcd(f, g, h) = 1 and $n \ge 3$. Then $f^n + g^n = h^n$ is only possible if $f, g, h \in \mathbb{C}$. **Proof:** Let $f, g, h \in \mathbb{C}[X]$ such that gcd(f, g, h) = 1 and $n \ge 3$. Then $f^n + g^n = h^n$ is only possible if $f, g, h \in \mathbb{C}$. **Proof:** $f^n + g^n = h^n$ Let $f, g, h \in \mathbb{C}[X]$ such that gcd(f, g, h) = 1 and $n \ge 3$. Then $f^n + g^n = h^n$ is only possible if $f, g, h \in \mathbb{C}$. **Proof:** $f^n + g^n = h^n$ $f'f^{n-1} + g'g^{n-1} = h'h^{n-1}$ Let $f, g, h \in \mathbb{C}[X]$ such that gcd(f, g, h) = 1 and $n \ge 3$. Then $f^n + g^n = h^n$ is only possible if $f, g, h \in \mathbb{C}$. **Proof:** $f^n + g^n = h^n$ times f'

$$f'f^{n-1}$$
 $+g'g^{n-1}$ $=h'h^{n-1}$ times f

Let $f, g, h \in \mathbb{C}[X]$ such that gcd(f, g, h) = 1 and $n \ge 3$. Then $f^n + g^n = h^n$ is only possible if $f, g, h \in \mathbb{C}$. **Proof:** $f^n f' + g^n f' = h^n f'$ times f'

$$f'f^{n-1} f + g'g^{n-1} f = h'h^{n-1} f$$
 times f

Let $f, g, h \in \mathbb{C}[X]$ such that gcd(f, g, h) = 1 and $n \ge 3$. Then $f^n + g^n = h^n$ is only possible if $f, g, h \in \mathbb{C}$. **Proof:** $f^n f' + g^n f' = h^n f'$ times f'

-
$$f'f^{n-1}f + g'g^{n-1}f = h'h^{n-1}f$$
 times f

Let $f, g, h \in \mathbb{C}[X]$ such that gcd(f, g, h) = 1 and $n \ge 3$. Then $f^n + g^n = h^n$ is only possible if $f, g, h \in \mathbb{C}$. **Proof:** $f^n f' + g^n f' = h^n f'$ times f' $- f'f^{n-1} f + g'g^{n-1} f = h'h^{n-1} f$ times f $f'g^n - fg'g^{n-1} = f'h^n - fh'h^{n-1}$ Let $f, g, h \in \mathbb{C}[X]$ such that gcd(f, g, h) = 1 and $n \ge 3$. Then $f^n + g^n = h^n$ is only possible if $f, g, h \in \mathbb{C}$. **Proof:** $f^n f' + g^n f' = h^n f'$ times f' $- f'f^{n-1} f + g'g^{n-1} f = h'h^{n-1} f$ times f $f'g^n - fg'g^{n-1} = f'h^n - fh'h^{n-1}$

so $g^{n-1}(f'g - fg') = h^{n-1}(f'h - fh')$.

Let $f, g, h \in \mathbb{C}[X]$ be such that gcd(f, g, h) = 1 and $n \ge 3$. Then $f^n + g^n = h^n$ is only possible if $f, g, h \in \mathbb{C}$. **Proof:** So $g^{n-1}(f'g - fg') = h^{n-1}(f'h - fh')$. Let $f, g, h \in \mathbb{C}[X]$ be such that gcd(f, g, h) = 1 and $n \ge 3$. Then $f^n + g^n = h^n$ is only possible if $f, g, h \in \mathbb{C}$. **Proof:** So $g^{n-1}(f'g - fg') = h^{n-1}(f'h - fh')$. Suppose f'g - fg' = 0. Let $f, g, h \in \mathbb{C}[X]$ be such that gcd(f, g, h) = 1 and $n \ge 3$. Then $f^n + g^n = h^n$ is only possible if $f, g, h \in \mathbb{C}$. **Proof:** So $g^{n-1}(f'g - fg') = h^{n-1}(f'h - fh')$. Suppose f'g - fg' = 0.

Let
$$f, g, h \in \mathbb{C}[X]$$
 be such that
 $gcd(f, g, h) = 1$ and $n \ge 3$.
Then $f^n + g^n = h^n$ is only possible if $f, g, h \in \mathbb{C}$.
Proof: So $g^{n-1}(f'g - fg') = h^{n-1}(f'h - fh')$.
Suppose $f'g - fg' = 0$. Hence $f'g = fg'$.

Let $f, g, h \in \mathbb{C}[X]$ be such that gcd(f, g, h) = 1 and $n \ge 3$. Then $f^n + g^n = h^n$ is only possible if $f, g, h \in \mathbb{C}$. **Proof:** So $g^{n-1}(f'g - fg') = h^{n-1}(f'h - fh')$. Suppose f'g - fg' = 0. Hence f'g = fg'. Since gcd(g, f) = 1g divides g', and f divides f'

Let $f, g, h \in \mathbb{C}[X]$ be such that gcd(f, g, h) = 1 and $n \ge 3$. Then $f^n + g^n = h^n$ is only possible if $f, g, h \in \mathbb{C}$. **Proof:** So $g^{n-1}(f'g - fg') = h^{n-1}(f'h - fh')$. Suppose f'g - fg' = 0. Hence f'g = fg'. Since gcd(g, f) = 1 g divides g', and f divides f' - That is only possible if f, g are constant

Let $f, g, h \in \mathbb{C}[X]$ be such that gcd(f, g, h) = 1 and n > 3. Then $f^n + g^n = h^n$ is only possible if $f, g, h \in \mathbb{C}$. **Proof:** So $g^{n-1}(f'g - fg') = h^{n-1}(f'h - fh')$. Suppose f'g - fg' = 0. Hence f'g = fg'. Since gcd(g, f) = 1g divides g', and f divides f' - That is only possible if f, g are constant and then h is automatically constant! So this case is done. So we can assume that f'g - fg', f'h - f'h, and g'h - gh' are unequal to 0.

Let
$$f, g, h \in \mathbb{C}[X]$$
 such that
 $gcd(f, g, h) = 1$ and $n \ge 3$.
Then $f^n + g^n = h^n$ only possible if $f, g, h \in \mathbb{C}$.
Proof: So $g^{n-1}(f'g - fg') = h^{n-1}(f'h - fh')$,

and all of f'g - fg', f'h - f'h, and g'h - gh' are nonequal to zero.

Let
$$f, g, h \in \mathbb{C}[X]$$
 such that
 $gcd(f, g, h) = 1$ and $n \ge 3$.
Then $f^n + g^n = h^n$ only possible if $f, g, h \in \mathbb{C}$.
Proof: So $g^{n-1}(f'g - fg') = h^{n-1}(f'h - fh')$,
So g^{n-1} divides $f'h - fh'$,

and all of f'g - fg', f'h - f'h, and g'h - gh' are nonequal to zero.

Let $f, g, h \in \mathbb{C}[X]$ such that gcd(f, g, h) = 1 and n > 3. Then $f^n + g^n = h^n$ only possible if $f, g, h \in \mathbb{C}$. **Proof:** So $g^{n-1}(f'g - fg') = h^{n-1}(f'h - fh')$, So g^{n-1} divides f'h - fh', and h^{n-1} divides f'g - fg'. and f^{n-1} divides g'h - gh'. and all of f'g - fg', f'h - f'h, and g'h - gh' are nonequal to zero.

Let $f, g, h \in \mathbb{C}[X]$ such that gcd(f, g, h) = 1 and n > 3. Then $f^n + g^n = h^n$ only possible if $f, g, h \in \mathbb{C}$. **Proof:** So $g^{n-1}(f'g - fg') = h^{n-1}(f'h - fh')$. So g^{n-1} divides f'h - fh', $deg(g^{n-1}) < deg(f'h - fh')$ and h^{n-1} divides f'g - fg', $deg(h^{n-1}) < deg(f'g - fg')$ and f^{n-1} divides g'h - gh'. $deg(f^{n-1}) < deg(g'h - gh')$ and all of f'g - fg', f'h - f'h, and g'h - gh' are nonequal to zero.

Let $f, g, h \in \mathbb{C}[X]$ such that gcd(f, g, h) = 1 and n > 3. Then $f^n + g^n = h^n$ only possible if $f, g, h \in \mathbb{C}$. **Proof:** So $g^{n-1}(f'g - fg') = h^{n-1}(f'h - fh')$. So g^{n-1} divides f'h - fh', $deg(g^{n-1}) < deg(f) + deg(h) - 1$ and h^{n-1} divides f'g - fg', $deg(h^{n-1}) \leq deg(f) + deg(g) - 1$ and f^{n-1} divides g'h - gh', $deg(f^{n-1}) \le deg(g) + deg(h) - 1$ and all of f'g - fg', f'h - f'h, and g'h - gh' are nonequal to zero.

Let $f, g, h \in \mathbb{C}[X]$ such that gcd(f, g, h) = 1 and $n \ge 3$. Then $f^n + g^n = h^n$ is only possible if $f, g, h \in \mathbb{C}$. **Proof:** So $g^{n-1}(f'g - fg') = h^{n-1}(f'h - fh')$, $deg(g^{n-1}) \le deg(f) + deg(h) - 1$ $deg(h^{n-1}) \le deg(f) + deg(g) - 1$ $deg(f^{n-1}) \le deg(g) + deg(h) - 1$ Let $f, g, h \in \mathbb{C}[X]$ such that gcd(f, g, h) = 1 and $n \ge 3$. Then $f^n + g^n = h^n$ is only possible if $f, g, h \in \mathbb{C}$. **Proof:** So $g^{n-1}(f'g - fg') = h^{n-1}(f'h - fh')$, $ndeg(g) \le deg(f) + deg(h) - 1 + deg(g)$ $deg(h^{n-1}) \le deg(f) + deg(g) - 1$ $deg(f^{n-1}) \le deg(g) + deg(h) - 1$ Let $f, g, h \in \mathbb{C}[X]$ such that gcd(f, g, h) = 1 and $n \ge 3$. Then $f^n + g^n = h^n$ is only possible if $f, g, h \in \mathbb{C}$. **Proof:** So $g^{n-1}(f'g - fg') = h^{n-1}(f'h - fh')$, $ndeg(g) \le deg(f) + deg(h) - 1 + deg(g)$ $ndeg(h) \le deg(f) + deg(g) - 1 + deg(h)$ $deg(f^{n-1}) \le deg(g) + deg(h) - 1$ Let $f, g, h \in \mathbb{C}[X]$ such that gcd(f, g, h) = 1 and $n \ge 3$. Then $f^n + g^n = h^n$ is only possible if $f, g, h \in \mathbb{C}$. **Proof:** So $g^{n-1}(f'g - fg') = h^{n-1}(f'h - fh')$, $ndeg(g) \le deg(f) + deg(h) - 1 + deg(g)$ $ndeg(h) \le deg(f) + deg(g) - 1 + deg(h)$ $ndeg(f) \le deg(g) + deg(h) - 1 + deg(f)$ Let $f, g, h \in \mathbb{C}[X]$ such that gcd(f, g, h) = 1 and $n \ge 3$. Then $f^n + g^n = h^n$ is only possible if $f, g, h \in \mathbb{C}$. **Proof:** So $g^{n-1}(f'g - fg') = h^{n-1}(f'h - fh')$, $ndeg(g) \le deg(f) + deg(h) - 1 + deg(g)$ $ndeg(h) \le deg(f) + deg(g) - 1 + deg(h)$ $ndeg(f) \le deg(g) + deg(h) - 1 + deg(f)$

Let $f, g, h \in \mathbb{C}[X]$ such that gcd(f, g, h) = 1 and n > 3. Then $f^n + g^n = h^n$ is only possible if $f, g, h \in \mathbb{C}$. **Proof:** So $g^{n-1}(f'g - fg') = h^{n-1}(f'h - fh')$, $ndeg(g) \leq deg(f) + deg(h) - 1 + deg(g)$ $ndeg(h) \leq deg(f) + deg(g) - 1 + deg(h)$ $ndeg(f) \leq deg(g) + deg(h) - 1 + deg(f)$ n(deg(f) + deg(g) + deg(h))< 3(deg(f) + deg(g) + deg(h)) - 3

Let $f, g, h \in \mathbb{C}[X]$ such that gcd(f, g, h) = 1 and n > 3. Then $f^n + g^n = h^n$ is only possible if $f, g, h \in \mathbb{C}$. **Proof:** So $g^{n-1}(f'g - fg') = h^{n-1}(f'h - fh')$, $ndeg(g) \leq deg(f) + deg(h) - 1 + deg(g)$ $ndeg(h) \leq deg(f) + deg(g) - 1 + deg(h)$ $ndeg(f) \leq deg(g) + deg(h) - 1 + deg(f)$ n(deg(f) + deg(g) + deg(h))< 3(deg(f) + deg(g) + deg(h)) - 3(n-3)(deg(f) + deg(g) + deg(h)) < -3, contradiction!! What's the story about $l, m, n \in \mathbb{N}$ large enough and $x^{l} + y^{m} = z^{n}$? If $x, y, z \in \mathbb{Z}$ then Wiles only gave a proof for l = m = n!

Let's take it a little further...

Let's take it a little further... $\mathbb{C}[X]$: 3 is zero of $(X - 3)(X + 1)^2$ Let's take it a little further... $\mathbb{C}[X]$: 3 is zero of $(X - 3)(X + 1)^2$ \mathbb{Z} : 3 is a divisor of $3^2 57^3$. Let's take it a little further... $\mathbb{C}[X]$: 3 is zero of $(X - 3)(X + 1)^2$ \mathbb{Z} : 3 is a divisor of $3^2 57^3$.

 $\mathbb{C}[X]$: The zeroes of $(X-3)(X+1)^2$ are 3, 1

Let's take it a little further... $\mathbb{C}[X]$: 3 is zero of $(X - 3)(X + 1)^2$ \mathbb{Z} : 3 is a divisor of $3^2 57^3$. $\mathbb{C}[X]$: The zeroes of $(X - 3)(X + 1)^2$ are 3, 1

 \mathbb{Z} : The divisors of $3^2 57^3$ are 3,5,7.

Let's take it a little further... $\mathbb{C}[X]$: 3 is zero of $(X - 3)(X + 1)^2$ $\overline{\mathbb{Z}}$: 3 is a divisor of 3^257^3 . $\overline{\mathbb{C}}[X]$: The zeroes of $(X - 3)(X + 1)^2$ are 3, 1 $\overline{\mathbb{Z}}$: The divisors of 3^257^3 are 3,5,7. $\operatorname{rad}(3^257^3) = 3 \cdot 5 \cdot 7$. Let's take it a little further... $\mathbb{C}[X]$: 3 is zero of $(X - 3)(X + 1)^2$ $\overline{\mathbb{Z}}$: 3 is a divisor of 3^257^3 . $\overline{\mathbb{C}}[X]$: The zeroes of $(X - 3)(X + 1)^2$ are 3,1 \mathbb{Z} : The divisors of 3^257^3 are 3,5,7. rad $(3^257^3) = 3 \cdot 5 \cdot 7$. **ABC-conjecture:**

Let's take it a little further...

$$\mathbb{C}[X]$$
: 3 is zero of $(X - 3)(X + 1)^2$
 $\overline{\mathbb{C}}[X]$: 3 is a divisor of 3^257^3 .
 $\overline{\mathbb{C}}[X]$: The zeroes of $(X - 3)(X + 1)^2$ are 3, 1
 $\overline{\mathbb{C}}$: The divisors of 3^257^3 are 3,5,7.
rad $(3^257^3) = 3 \cdot 5 \cdot 7$.
ABC-conjecture: If $a + b = c$, $a, b, c \in \mathbb{N}$, $gcd(a, b, c) = 1$,
then c cannot be too big, compared to $rad(abc)$:

for every $\epsilon > 0$ there exists some K_ϵ such that

 $c < K_{\epsilon} \operatorname{rad}(abc)^{1+\epsilon}.$

ABC-conjecture:

If a + b = c, $a, b, c \in \mathbb{N}$, gcd(a, b, c) = 1, then c cannot be too big, compared to rad(abc): for every $\epsilon > 0$ there exists some K_{ϵ} such that

 $c < K_{\epsilon} \operatorname{rad}(abc)^{1+\epsilon}.$

ABC-conjecture:

If a + b = c, $a, b, c \in \mathbb{N}$, gcd(a, b, c) = 1, then c cannot be too big, compared to rad(abc): for every $\epsilon > 0$ there exists some K_{ϵ} such that

 $c < K_{\epsilon} \operatorname{rad}(abc)^{1+\epsilon}.$

Version for $\mathbb{C}[X]$:

ABC-conjecture:

If a + b = c, $a, b, c \in \mathbb{N}$, gcd(a, b, c) = 1, then c cannot be too big, compared to rad(abc): for every $\epsilon > 0$ there exists some K_{ϵ} such that

 $c < K_{\epsilon} \operatorname{rad}(abc)^{1+\epsilon}$.

Version for $\mathbb{C}[X]$: Let $f, g, h \in \mathbb{C}[X]$ satisfy f + g = h, gcd(f, g, h) = 1, then

deg(f) < N(fgh)

where N(fgh) is the number of zeroes of fgh.

If ABC conjecture true, then Fermat is an immediate consequence. And more stuff $(x^{l} + y^{m} = z^{n})$. I'll not prove this today, but - I'll prove the *ABC* conjecture for polynomials!!

Let $f, g, h \in \mathbb{C}[X]$ satisfy f + g = h, gcd(f, g, h) = 1, then

Let $f, g, h \in \mathbb{C}[X]$ satisfy f + g = h, gcd(f, g, h) = 1, then

deg(f) < N(fgh).

Proof:

Let $f,g,h\in \mathbb{C}[X]$ satisfy f+g=h, $\gcd(f,g,h)=1$, then

deg(f) < N(fgh).

$$f +g = h$$

Proof:

Let $f, g, h \in \mathbb{C}[X]$ satisfy f + g = h, gcd(f, g, h) = 1, then

	f	+g	= h
Proof:	f′	+g'	= h'

Let $f, g, h \in \mathbb{C}[X]$ satisfy f + g = h, $\gcd(f, g, h) = 1$, then

	f	+g	= h	times f'
Proof:	f′	+g'	= h'	times f

Let $f, g, h \in \mathbb{C}[X]$ satisfy f + g = h, $\gcd(f, g, h) = 1$, then

	f f' + g f'	= h f'	times f'
Proof:	f' f + g' f	= h' f	times f

Let $f, g, h \in \mathbb{C}[X]$ satisfy f + g = h, gcd(f, g, h) = 1, then

		f f'	+g f'	= h f'	times f'
Proof:	-	f' f	+g' f	= h' f	times f

Let $f, g, h \in \mathbb{C}[X]$ satisfy f + g = h, gcd(f, g, h) = 1, then

deg(f) < N(fgh).

Let $f,g,h\in \mathbb{C}[X]$ satisfy f+g=h, $\gcd(f,g,h)=1$, then

deg(f) < N(fgh).

Proof: So f'g - fg' = f'h - fh'.

Let $f, g, h \in \mathbb{C}[X]$ satisfy f + g = h, $\gcd(f, g, h) = 1$, then

deg(f) < N(fgh).

Proof: So f'g - fg' = f'h - fh'. Now we have: gcd(f, f')|f'g and |fg'.

Let $f,g,h\in \mathbb{C}[X]$ satisfy f+g=h, $\gcd(f,g,h)=1$, then

deg(f) < N(fgh).

Proof: So f'g - fg' = f'h - fh'. Now we have: gcd(f, f')|f'gand |fg'. So gcd(f, f')|f'g - fg'

Let $f,g,h\in \mathbb{C}[X]$ satisfy f+g=h, $\gcd(f,g,h)=1$, then

deg(f) < N(fgh).

Proof: So f'g - fg' = f'h - fh'. Now we have: gcd(f, f')|f'gand |fg'. So gcd(f, f')|f'g - fg'gcd(g, g')|f'g - fg'

Let $f,g,h\in \mathbb{C}[X]$ satisfy f+g=h, $\gcd(f,g,h)=1$, then

deg(f) < N(fgh).

Proof: So f'g - fg' = f'h - fh'. Now we have: gcd(f, f')|f'gand |fg'. So gcd(f, f')|f'g - fg'gcd(g, g')|f'g - fg'gcd(h, h')|f'h - fh'

Let $f,g,h\in \mathbb{C}[X]$ satisfy f+g=h, $\gcd(f,g,h)=1$, then

deg(f) < N(fgh).

Proof: So f'g - fg' = f'h - fh'. Now we have: gcd(f, f')|f'gand |fg'. So gcd(f, f')|f'g - fg'gcd(g, g')|f'g - fg'gcd(h, h')|f'h - fh' = f'g - fg'.

Let $f,g,h\in \mathbb{C}[X]$ satisfy f+g=h, $\gcd(f,g,h)=1$, then

deg(f) < N(fgh).

Proof: So f'g - fg' = f'h - fh'. Now we have: gcd(f, f')|f'gand |fg'. So gcd(f, f')|f'g - fg'gcd(g, g')|f'g - fg'gcd(h, h')|f'h - fh' = f'g - fg'. So gcd(f, f')gcd(g, g')gcd(h, h')|f'g - fg'.

Let $f, g, h \in \mathbb{C}[X]$ satisfy f + g = h, $\gcd(f, g, h) = 1$, then

deg(f) < N(fgh).

Proof: So f'g - fg' = f'h - fh'. Now we have: gcd(f, f')|f'gand |fg'. So gcd(f, f')|f'g - fg'gcd(g, g')|f'g - fg'gcd(h, h')|f'h - fh' = f'g - fg'. So gcd(f, f')gcd(g, g')gcd(h, h')|f'g - fg'. So

 $egin{aligned} & deg(\gcd(f,f')) + deg(\gcd(g,g')) + deg(\gcd(h,h')) \ & \leq deg(f) + deg(g) - 1. \end{aligned}$

Let $f,g,h\in \mathbb{C}[X]$ satisfy f+g=h, $\gcd(f,g,h)=1$, then

deg(f) < N(fgh).

Proof: So

 $egin{aligned} °(\gcd(f,f'))+deg(\gcd(g,g'))+deg(\gcd(h,h'))\ &\leq deg(f)+deg(g)-1. \end{aligned}$

Let $f, g, h \in \mathbb{C}[X]$ satisfy f + g = h, gcd(f, g, h) = 1, then

deg(f) < N(fgh).

Proof: So

$$egin{aligned} °(\gcd(f,f'))+deg(\gcd(g,g'))+deg(\gcd(h,h'))\ &\leq deg(f)+deg(g)-1. \end{aligned}$$

Everything to the right, and then +deg(h):

Let $f, g, h \in \mathbb{C}[X]$ satisfy f + g = h, gcd(f, g, h) = 1, then

deg(f) < N(fgh).

Proof: So

$$egin{aligned} & ext{deg}(ext{gcd}(f,f')) + ext{deg}(ext{gcd}(g,g')) + ext{deg}(ext{gcd}(h,h')) \ & \leq ext{deg}(f) + ext{deg}(g) - 1. \end{aligned}$$

Everything to the right, and then +deg(h):

$$egin{aligned} & deg(h) \leq \ & deg(f) - deg(\gcd(f,f')) + \ & deg(g) - deg(\gcd(g,g')) + \ & deg(h) - deg(\gcd(h,h')) \end{aligned}$$

Let $f, g, h \in \mathbb{C}[X]$ satisfy f + g = h, gcd(f, g, h) = 1, then

deg(f) < N(fgh).

Proof:

$$egin{aligned} & \deg(h) \leq \ & \deg(f) - \deg(\gcd(f,f')) + \ & \deg(g) - \deg(\gcd(g,g')) + \ & \deg(h) - \deg(\gcd(h,h')) \end{aligned}$$

Let $f, g, h \in \mathbb{C}[X]$ satisfy f + g = h, gcd(f, g, h) = 1, then

deg(f) < N(fgh).

Proof:

$$egin{aligned} °(h) \leq \ °(f) - deg(\gcd(f,f')) + \ °(g) - deg(\gcd(g,g')) + \ °(h) - deg(\gcd(h,h')) \end{aligned}$$

Lemma: $deg(f) \leq deg(gcd(f, f')) + N(f)$.

Let $f, g, h \in \mathbb{C}[X]$ satisfy f + g = h, gcd(f, g, h) = 1, then

deg(f) < N(fgh).

Proof:

 $egin{aligned} & deg(h) \leq \ & deg(f) - deg(\gcd(f,f')) + \ & deg(g) - deg(\gcd(g,g')) + \ & deg(h) - deg(\gcd(h,h')) \end{aligned}$

Lemma: $deg(f) \le deg(gcd(f, f')) + N(f)$. **Proof:** Suppose $(X - c)^n$ divides f

Let $f, g, h \in \mathbb{C}[X]$ satisfy f + g = h, gcd(f, g, h) = 1, then

deg(f) < N(fgh).

Proof:

 $egin{aligned} °(h) \leq \ °(f) - deg(\gcd(f,f')) + \ °(g) - deg(\gcd(g,g')) + \ °(h) - deg(\gcd(h,h')) \end{aligned}$

Lemma: $deg(f) \le deg(gcd(f, f')) + N(f)$. **Proof:** Suppose $(X - c)^n$ divides $f = (X - c)^n \tilde{f}$.

Let $f, g, h \in \mathbb{C}[X]$ satisfy f + g = h, gcd(f, g, h) = 1, then

deg(f) < N(fgh).

Proof:

 $egin{aligned} °(h) \leq \ °(f) - deg(\gcd(f,f')) + \ °(g) - deg(\gcd(g,g')) + \ °(h) - deg(\gcd(h,h')) \end{aligned}$

Lemma: $deg(f) \leq deg(gcd(f, f')) + N(f)$. **Proof:** Suppose $(X - c)^n$ divides $f = (X - c)^n \tilde{f}$. Then $(X - c)^{n-1}$ divides $f' = (X - c)^n \tilde{f}' + n(X - c)^{n-1} \tilde{f}$.

Let $f, g, h \in \mathbb{C}[X]$ satisfy f + g = h, $\gcd(f, g, h) = 1$, then

deg(f) < N(fgh).

Proof:

 $deg(h) \leq \\ deg(f) - deg(gcd(f, f')) + \\ deg(g) - deg(gcd(g, g')) + \\ deg(h) - deg(gcd(h, h')) \\ \textbf{Lemma:} \ deg(f) \leq deg(gcd(f, f')) + N(f).$

Proof: Suppose $(X - c)^n$ divides $f = (X - c)^n \tilde{f}$. Then $(X - c)^{n-1}$ divides $f' = (X - c)^n \tilde{f}' + n(X - c)^{n-1} \tilde{f}$ (krijtbord?)

Let $f, g, h \in \mathbb{C}[X]$ satisfy f + g = h, gcd(f, g, h) = 1, then

deg(f) < N(fgh).

Proof:

deg(h) <deg(f) - deg(gcd(f, f')) +deg(g) - deg(gcd(g,g')) +deg(h) - deg(gcd(h, h'))**Lemma:** $deg(f) \leq deg(gcd(f, f')) + N(f)$. **Proof:** Suppose $(X - c)^n$ divides $f = (X - c)^n \tilde{f}$. Then $(X - c)^{n-1}$ divides $f' = (X - c)^n \tilde{f}' + n(X - c)^{n-1} \tilde{f}$ (krijtbord?) Using the lemma we get Mason's!

Let $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} \le 1$. If $F, G, H \in \mathbb{C}[X]$ satisfying gcd(F, G, H) = 1 and $F^p + G^q = H^r$ then $F, G, H \in \mathbb{C}$.

We may assume that $deg(F^p) \ge deg(G^q), deg(H^r)$.

We may assume that $deg(F^p) \ge deg(G^q), deg(H^r)$. Thus $qdeg(G) \le pdeg(F),$ $rdeg(H) \le pdeg(F).$

We may assume that $deg(F^p) \ge deg(G^q), deg(H^r)$. Thus $qdeg(G) \le pdeg(F),$ $rdeg(H) \le pdeg(F).$ Using Mason's:

We may assume that $deg(F^p) \ge deg(G^q), deg(H^r)$. Thus $qdeg(G) \le pdeg(F),$ $rdeg(H) \le pdeg(F).$ Using Mason's:

 $pdeg(F) < N(F^pG^qH^r)$

We may assume that $deg(F^p) \ge deg(G^q), deg(H^r)$. Thus $qdeg(G) \le pdeg(F),$ $rdeg(H) \le pdeg(F).$ Using Mason's:

 $pdeg(F) < N(F^{p}G^{q}H^{r}) = N(FGH)$

We may assume that $deg(F^p) \ge deg(G^q)$, $deg(H^r)$. Thus $qdeg(G) \le pdeg(F)$, $rdeg(H) \le pdeg(F)$. Using Mason's:

$$pdeg(F) < N(F^{p}G^{q}H^{r})$$

$$= N(FGH)$$

$$\leq deg(F) + deg(G) + deg(H)$$

We may assume that $deg(F^p) \ge deg(G^q)$, $deg(H^r)$. Thus $qdeg(G) \le pdeg(F)$, $rdeg(H) \le pdeg(F)$. Using Mason's:

$$pdeg(F) < N(F^{p}G^{q}H^{r})$$

$$= N(FGH)$$

$$\leq deg(F) + deg(G) + deg(H)$$

$$\leq deg(F) + \frac{p}{q}deg(F) + \frac{p}{r}deg(F)$$

We may assume that $deg(F^p) \ge deg(G^q)$, $deg(H^r)$. Thus $qdeg(G) \le pdeg(F)$, $rdeg(H) \le pdeg(F)$. Using Mason's:

$$pdeg(F) < N(F^{p}G^{q}H^{r})$$

$$= N(FGH)$$

$$\leq deg(F) + deg(G) + deg(H)$$

$$\leq deg(F) + \frac{p}{q}deg(F) + \frac{p}{r}deg(F)$$

Divide by pdeg(F):

We may assume that $deg(F^p) \ge deg(G^q)$, $deg(H^r)$. Thus $qdeg(G) \le pdeg(F)$, $rdeg(H) \le pdeg(F)$. Using Mason's:

$$pdeg(F) < N(F^{p}G^{q}H^{r})$$

$$= N(FGH)$$

$$\leq deg(F) + deg(G) + deg(H)$$

$$\leq deg(F) + \frac{p}{q}deg(F) + \frac{p}{r}deg(F)$$

Divide by pdeg(F): $1 < \frac{1}{p} + \frac{1}{q} + \frac{1}{r}$.

We may assume that $deg(F^p) \ge deg(G^q)$, $deg(H^r)$. Thus $qdeg(G) \le pdeg(F)$, $rdeg(H) \le pdeg(F)$. Using Mason's:

$$pdeg(F) < N(F^{p}G^{q}H^{r})$$

$$= N(FGH)$$

$$\leq deg(F) + deg(G) + deg(H)$$

$$\leq deg(F) + \frac{p}{q}deg(F) + \frac{p}{r}deg(F)$$

Divide by pdeg(F): $1 < \frac{1}{p} + \frac{1}{q} + \frac{1}{r}$. Contradiction! Notice: p = q = r gives $\frac{1}{n} + \frac{1}{n} + \frac{1}{n} \le 1$ so $n \ge 3$.

It's even worse- There's a variant of the Riemann hypothesis for polynomials (over \mathbb{F}_p) that one can prove !

It's even worse- There's a variant of the Riemann hypothesis for polynomials (over \mathbb{F}_p) that one can prove ! Why can we prove all these things for $\mathbb{C}[X]$ and is it so hard for \mathbb{Z} ? It's even worse- There's a variant of the Riemann hypothesis for polynomials (over \mathbb{F}_p) that one can prove ! Why can we prove all these things for $\mathbb{C}[X]$ and is it so hard for \mathbb{Z} ?

Remember the proof...

It's even worse- There's a variant of the Riemann hypothesis for polynomials (over \mathbb{F}_p) that one can prove ! Why can we prove all these things for $\mathbb{C}[X]$ and is it so hard for \mathbb{Z} ?

Remember the proof...

f f' +g f' = h f'maal f' - f' f +g' f = h' f maal f f'g - fg' = f'h - fh' It's even worse- There's a variant of the Riemann hypothesis for polynomials (over \mathbb{F}_p) that one can prove ! Why can we prove all these things for $\mathbb{C}[X]$ and is it so hard for \mathbb{Z} ?

Remember the proof...

f f	f' + g f'	= h f'	maal f'
- f'	f + g' f	= h' f	maal <i>f</i>
	0 0	g' = f'h - f	

What is wrong in these lines if $f, g, h \in \mathbb{Z}$?

It's even worse- There's a variant of the Riemann hypothesis for polynomials (over \mathbb{F}_p) that one can prove ! Why can we prove all these things for $\mathbb{C}[X]$ and is it so hard for \mathbb{Z} ?

Remember the proof...

f f' +g f' = h f'maal f' - f' f +g' f = h' f maal f f'g - fg' = f'h - fh'

What is wrong in these lines if $f, g, h \in \mathbb{Z}$? Exactly! In $\mathbb{C}[X]$ one can take derivatives!

 $\mathbb{C}[X]$ has a *derivation*: a map δ satisfying $\delta(fg) = f\delta(g) + g\delta(f)$ all f, g. (Leibniz rule.) $\mathbb{C}[X]$ has a *derivation*: a map δ satisfying $\delta(fg) = f\delta(g) + g\delta(f)$ all f, g. (Leibniz rule.) Well, let's make one on \mathbb{Z} , so we can prove stuff! $\mathbb{C}[X]$ has a *derivation*: a map δ satisfying $\delta(fg) = f\delta(g) + g\delta(f)$ all f, g. (Leibniz rule.) Well, let's make one on \mathbb{Z} , so we can prove stuff! Copyying $\mathbb{C}[X]$: "primes" (X - c) go to 1.

 $D(5^7) = 7 \cdot 5^6$, $D(2^3 5^2) = 3 \cdot 2^2 5^2 + 2 \cdot 2^3 5$.

$$D(5^7) = 7 \cdot 5^6$$
, $D(2^35^2) = 3 \cdot 2^25^2 + 2 \cdot 2^35^2$

Fun!! Can we now solve Fermat with this??

$$D(5^7) = 7 \cdot 5^6$$
, $D(2^35^2) = 3 \cdot 2^25^2 + 2 \cdot 2^35$.
Fun!! Can we now solve Fermat with this??

Bummer.

 $D(5^7) = 7 \cdot 5^6$, $D(2^35^2) = 3 \cdot 2^25^2 + 2 \cdot 2^35$. Fun!! Can we now solve Fermat with this?? Bummer. $D(a + b) \neq D(a) + D(b)$.

$$D(5^7) = 7 \cdot 5^6$$
, $D(2^35^2) = 3 \cdot 2^25^2 + 2 \cdot 2^35$.

Fun!! Can we now solve Fermat with this??

Bummer.
$$D(a + b) \neq D(a) + D(b)$$
.

Als: δ is *locally nilpotent*. Which means: for every $f \in \mathbb{C}[X]$ there exists some *n* such that $\delta^n(f) = 0$.

$$D(5^7) = 7 \cdot 5^6$$
, $D(2^3 5^2) = 3 \cdot 2^2 5^2 + 2 \cdot 2^3 5$

Fun!! Can we now solve Fermat with this??

Bummer. $D(a + b) \neq D(a) + D(b)$.

Als: δ is *locally nilpotent*. Which means: for every $f \in \mathbb{C}[X]$ there exists some *n* such that $\delta^n(f) = 0$. On \mathbb{Z} : $D(2^2) = 2 \cdot 2$.

$$D(5^7) = 7 \cdot 5^6$$
, $D(2^3 5^2) = 3 \cdot 2^2 5^2 + 2 \cdot 2^3 5$

Fun!! Can we now solve Fermat with this??

Bummer.
$$D(a + b) \neq D(a) + D(b)$$
.

Als: δ is *locally nilpotent*. Which means: for every $f \in \mathbb{C}[X]$ there exists some *n* such that $\delta^n(f) = 0$.

On
$$\mathbb{Z}$$
: $D(2^2) = 2 \cdot 2$. And
 $D(2^2a) = 2^2D(a) + 2 \cdot 2a = 2^2(D(a) + a)$ so that one
increases and increases if $a > 1$!

Lifting a tip of the veil of my research...

Lifting a tip of the veil of my $\mathsf{research} \ldots V := \{(x,y,z) \in \mathbb{C}^3 \mid x^2 + y^3 + z^7 = 0\}.$

Lifting a tip of the veil of my research... $V := \{(x, y, z) \in \mathbb{C}^3 \mid x^2 + y^3 + z^7 = 0\}$. We want to understand this set - do there exist "nice" group actions of \mathbb{C} , + on this set? Lifting a tip of the veil of my research... $V := \{(x, y, z) \in \mathbb{C}^3 \mid x^2 + y^3 + z^7 = 0\}$. We want to understand this set - do there exist "nice" group actions of \mathbb{C} , + on this set? Comes down to finding a locally nilpotent derivation D on the ring $\mathbb{C}[X, Y, Z]/(X^2 + Y^3 + Z^7)$. Locally nilpotent derivations D on the ring $\mathbb{C}[X, Y, Z]/(X^2 + Y^3 + Z^7)$. D = 0 is one, are there more?.

Locally nilpotent derivations D on the ring $\mathbb{C}[X, Y, Z]/(X^2 + Y^3 + Z^7)$. D = 0 is one, are there more?. Suppose $D \neq 0$. Locally nilpotent derivations D on the ring $\mathbb{C}[X, Y, Z]/(X^2 + Y^3 + Z^7)$. D = 0 is one, are there more?. Suppose $D \neq 0$. Then it is possible to extend D on something bigger

 $\mathbb{C}[X, Y, Z]/(X^2 + Y^3 + Z^7)$. D = 0 is one, are there more?. Suppose $D \neq 0$. Then it is possible to extend D on something bigger - $\mathbb{C}[X, Y, Z]/(X^2 + Y^3 + Z^7) \subset \mathbb{K}[S]$ where K is some field.

 $\mathbb{C}[X, Y, Z]/(X^2 + Y^3 + Z^7)$. D = 0 is one, are there more?. Suppose $D \neq 0$. Then it is possible to extend D on something bigger - $\mathbb{C}[X, Y, Z]/(X^2 + Y^3 + Z^7) \subset \mathbb{K}[S]$ where K is some field. And on $\mathbb{K}[S]$ the map D behaves like $\frac{\partial}{\partial S}$.

 $\mathbb{C}[X, Y, Z]/(X^2 + Y^3 + Z^7)$. D = 0 is one, are there more?. Suppose $D \neq 0$. Then it is possible to extend D on something bigger - $\mathbb{C}[X, Y, Z]/(X^2 + Y^3 + Z^7) \subset \mathbb{K}[S]$ where K is some field. And on $\mathbb{K}[S]$ the map D behaves like $\frac{\partial}{\partial S}$. So elements x, y, z can be seen as elements in $\mathbb{K}[S]$:

$$x = f(S), y = g(S), z = h(S).$$

 $\mathbb{C}[X, Y, Z]/(X^2 + Y^3 + Z^7)$. D = 0 is one, are there more?. Suppose $D \neq 0$. Then it is possible to extend D on something bigger - $\mathbb{C}[X, Y, Z]/(X^2 + Y^3 + Z^7) \subset \mathbb{K}[S]$ where K is some field. And on $\mathbb{K}[S]$ the map D behaves like $\frac{\partial}{\partial S}$. So elements x, y, z can be seen as elements in $\mathbb{K}[S]$: x = f(S), y = g(S), z = h(S). For sure: $x^2 + y^3 + z^7 = 0$, so $f^2 + g^3 + h^7 = 0$. I can assume for some reason that gcd(f, g, h) = 1

 $\mathbb{C}[X, Y, Z]/(X^2 + Y^3 + Z^7)$. D = 0 is one, are there more?. Suppose $D \neq 0$. Then it is possible to extend D on something bigger - $\mathbb{C}[X, Y, Z]/(X^2 + Y^3 + Z^7) \subset \mathbb{K}[S]$ where K is some field. And on $\mathbb{K}[S]$ the map D behaves like $\frac{\partial}{\partial S}$. So elements x, y, z can be seen as elements in $\mathbb{K}[S]$: x = f(S), y = g(S), z = h(S). For sure: $x^2 + y^3 + z^7 = 0$, so $f^2 + g^3 + h^7 = 0$. I can assume for some reason that gcd(f, g, h) = 1, and now Mason's yields that $f, g, h \in \mathbb{K}$.

 $\mathbb{C}[X, Y, Z]/(X^2 + Y^3 + Z^7)$. D = 0 is one, are there more?. Suppose $D \neq 0$. Then it is possible to extend D on something bigger - $\mathbb{C}[X, Y, Z]/(X^2 + Y^3 + Z^7) \subset \mathbb{K}[S]$ where K is some field. And on $\mathbb{K}[S]$ the map D behaves like $\frac{\partial}{\partial S}$. So elements x, y, z can be seen as elements in $\mathbb{K}[S]$: x = f(S), y = g(S), z = h(S). For sure: $x^2 + y^3 + z^7 = 0$, so $f^2 + g^3 + h^7 = 0$. I can assume for some reason that gcd(f, g, h) = 1, and now Mason's yields that $f, g, h \in \mathbb{K}$. But D is zero on elements of \mathbb{K}

 $\mathbb{C}[X, Y, Z]/(X^2 + Y^3 + Z^7)$. D = 0 is one, are there more?. Suppose $D \neq 0$. Then it is possible to extend D on something bigger - $\mathbb{C}[X, Y, Z]/(X^2 + Y^3 + Z^7) \subset \mathbb{K}[S]$ where K is some field. And on $\mathbb{K}[S]$ the map D behaves like $\frac{\partial}{\partial S}$. So elements x, y, z can be seen as elements in $\mathbb{K}[S]$: x = f(S), y = g(S), z = h(S). For sure: $x^2 + y^3 + z^7 = 0$, so $f^2 + g^3 + h^7 = 0$. I can assume for some reason that gcd(f, g, h) = 1, and now Mason's yields that $f, g, h \in \mathbb{K}$. But *D* is zero on elements of \mathbb{K} - so D(x) = D(y) = D(z) = 0

 $\mathbb{C}[X, Y, Z]/(X^2 + Y^3 + Z^7)$. D = 0 is one, are there more?. Suppose $D \neq 0$. Then it is possible to extend D on something bigger - $\mathbb{C}[X, Y, Z]/(X^2 + Y^3 + Z^7) \subset \mathbb{K}[S]$ where K is some field. And on $\mathbb{K}[S]$ the map D behaves like $\frac{\partial}{\partial S}$. So elements x, y, z can be seen as elements in $\mathbb{K}[S]$: x = f(S), y = g(S), z = h(S). For sure: $x^2 + y^3 + z^7 = 0$, so $f^2 + g^3 + h^7 = 0$. I can assume for some reason that gcd(f, g, h) = 1, and now Mason's yields that $f, g, h \in \mathbb{K}$. But D is zero on elements of \mathbb{K} - so D(x) = D(y) = D(z) = 0 and that implies that D is zero on the whole ring $\mathbb{C}[X, Y, Z]/(X^2 + Y^3 + Z^7)$!

 $\mathbb{C}[X, Y, Z]/(X^2 + Y^3 + Z^7)$. D = 0 is one, are there more?. Suppose $D \neq 0$. Then it is possible to extend D on something bigger - $\mathbb{C}[X, Y, Z]/(X^2 + Y^3 + Z^7) \subset \mathbb{K}[S]$ where K is some field. And on $\mathbb{K}[S]$ the map D behaves like $\frac{\partial}{\partial S}$. So elements x, y, z can be seen as elements in $\mathbb{K}[S]$: x = f(S), y = g(S), z = h(S). For sure: $x^2 + y^3 + z^7 = 0$, so $f^2 + g^3 + h^7 = 0$. I can assume for some reason that gcd(f, g, h) = 1, and now Mason's yields that $f, g, h \in \mathbb{K}$. But D is zero on elements of \mathbb{K} - so D(x) = D(y) = D(z) = 0 and that implies that D is zero on the whole ring $\mathbb{C}[X, Y, Z]/(X^2 + Y^3 + Z^7)$! Contradiction, so the only locally nilpotent derivation on $\mathbb{C}[X, Y, Z]/(X^2 + Y^3 + Z^7)$ is D = 0.

Why is \mathbb{Z} so much more difficult as $\mathbb{C}[X]$?

Why is \mathbb{Z} so much more difficult as $\mathbb{C}[X]$? (Or why can't we do things with \mathbb{Z} and why can we with $\mathbb{C}[X]$?)

Why is \mathbb{Z} so much more difficult as $\mathbb{C}[X]$? (Or why can't we do things with \mathbb{Z} and why can we with $\mathbb{C}[X]$?) There's no "derivative" on elements of \mathbb{Z} ! (At least, no tasty one...)

Why is \mathbb{Z} so much more difficult as $\mathbb{C}[X]$? (Or why can't we do things with \mathbb{Z} and why can we with $\mathbb{C}[X]$?) There's no "derivative" on elements of \mathbb{Z} ! (At least, no tasty one...) **MORAL OF THIS STORY:**

- Why is \mathbb{Z} so much more difficult as $\mathbb{C}[X]$? (Or why can't we do things with \mathbb{Z} and why can we with $\mathbb{C}[X]$?) There's no "derivative" on elements of \mathbb{Z} ! (At least, no tasty one...)
- MORAL OF THIS STORY: Be Happy If You Find A

Locally Nilpotent Derivation on your ring...

- Why is \mathbb{Z} so much more difficult as $\mathbb{C}[X]$? (Or why can't we do things with \mathbb{Z} and why can we with $\mathbb{C}[X]$?) There's no "derivative" on elements of \mathbb{Z} ! (At least, no tasty one...)
- **MORAL OF THIS STORY:** Be Happy If You Find A Locally Nilpotent Derivation on your ring...

**** THANK YOU ****