The automorphism group of affine spaces (especially \mathbb{A}^{n})

Stefan Maubach

February 2008

BIG STUPID CLAIM:

BIG STUPID CLAIM:

Polynomial Automorphisms Can Be Used Whenever Linear Maps Are Used.

BIG STUPID CLAIM:

Polynomial Automorphisms Can Be Used Whenever Linear Maps Are Used.

Why this bold claim?

BIG STUPID CLAIM:
 Polynomial Automorphisms Can Be Used Whenever Linear Maps Are Used.

Why this bold claim? Polynomial maps seem to have similar properties as linear maps (much more so than holomorphic maps for example).

BIG STUPID CLAIM:
 Polynomial Automorphisms Can Be Used Whenever Linear Maps Are Used.

Why this bold claim? Polynomial maps seem to have similar properties as linear maps (much more so than holomorphic maps for example). Well. . . to be honest, most are conjectures...

BIG STUPID CLAIM:
 Polynomial Automorphisms Can Be Used Whenever Linear Maps Are Used.

Why this bold claim? Polynomial maps seem to have similar properties as linear maps (much more so than holomorphic maps for example). Well. . . to be honest, most are conjectures... Let's look at a few of these conjectures!

$$
L=(a X+b Y, c X+d Y) \text { in } M L_{2}(\mathbb{C})
$$

$L=(a X+b Y, c X+d Y)$ in $M L_{2}(\mathbb{C})$

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathbb{C}^{*} \Longleftrightarrow L \in G L_{2}(\mathbb{C})
$$

$L=(a X+b Y, c X+d Y)$ in $M L_{2}(\mathbb{C})$

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathbb{C}^{*} \Longleftrightarrow L \in G L_{2}(\mathbb{C})
$$

$$
F=\left(F_{1}, F_{2}\right) \in M A_{2}(\mathbb{C})
$$

$L=(a X+b Y, c X+d Y)$ in $M L_{2}(\mathbb{C})$

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathbb{C}^{*} \Longleftrightarrow L \in G L_{2}(\mathbb{C})
$$

$F=\left(F_{1}, F_{2}\right) \in M A_{2}(\mathbb{C})$

$$
\operatorname{det}\left(\begin{array}{ll}
\frac{\partial F_{1}}{\partial X} & \frac{\partial F_{1}}{\partial Y} \\
\frac{\partial F_{2}}{\partial X} & \frac{\partial F_{2}}{\partial Y}
\end{array}\right) \in \mathbb{C}^{*} \stackrel{? ?}{\Longleftrightarrow} F \in G A_{2}(\mathbb{C})
$$

$$
\begin{aligned}
L= & (a X+b Y, c X+d Y) \text { in } M L_{2}(\mathbb{C}) \\
& \operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathbb{C}^{*} \Longleftrightarrow L \in G L_{2}(\mathbb{C}) \\
F= & \left(F_{1}, F_{2}\right) \in M A_{2}(\mathbb{C}) \\
& \operatorname{det}\left(\begin{array}{ll}
\frac{\partial F_{1}}{\partial X} & \frac{\partial F_{1}}{\partial Y} \\
\frac{\partial F_{2}}{\partial X} & \frac{\partial F_{2}}{\partial Y}
\end{array}\right) \in \mathbb{C}^{*} \stackrel{? ?}{\Longleftrightarrow} F \in G A_{2}(\mathbb{C})
\end{aligned}
$$

Jacobian Conjecture in dimension $n(\mathrm{JC}(\mathrm{n})$):
Let $F \in M A_{n}(\mathbb{C})$. Then

$$
\operatorname{det}(\operatorname{Jac}(F)) \in \mathbb{C}^{*} \Rightarrow F \text { is invertible. }
$$

Let V be a vector space. Then

$$
V \times \mathbb{C} \cong \mathbb{C}^{n+1} \Longrightarrow V \cong \mathbb{C}^{n}
$$

Let V be a vector space. Then

$$
V \times \mathbb{C} \cong \mathbb{C}^{n+1} \Longrightarrow V \cong \mathbb{C}^{n}
$$

Cancelation Problem:
Let V be a variety. Then

$$
V \times \mathbb{C} \cong \mathbb{C}^{n+1} \Longrightarrow V \cong \mathbb{C}^{n}
$$

$G L_{n}(\mathbb{K})$ is generated by
$G L_{n}(\mathbb{K})$ is generated by

- Permutations $X_{1} \longleftrightarrow X_{i}$
$G L_{n}(\mathbb{K})$ is generated by
- Permutations $X_{1} \longleftrightarrow X_{i}$
- $\operatorname{Map}\left(a X_{1}+b X_{j}, X_{2}, \ldots, X_{n}\right)\left(a \in \mathbb{C}^{*}, b \in \mathbb{C}\right)$
$G L_{n}(\mathbb{K})$ is generated by
- Permutations $X_{1} \longleftrightarrow X_{i}$
- Map $\left(a X_{1}+b X_{j}, X_{2}, \ldots, X_{n}\right)\left(a \in \mathbb{C}^{*}, b \in \mathbb{C}\right)$
$G A_{n}(\mathbb{K})$ is generated by ???

Elementary map: $\left(X_{1}+f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$, invertible with inverse
$\left(X_{1}-f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$.

Elementary map: $\left(X_{1}+f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$, invertible with inverse
$\left(X_{1}-f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$.
Triangular map: $(X+f(Y, Z), Y+g(Z), Z+c)$
$=(X, Y, Z+c)(X, Y+g(Z), Z)(X+f(Y, Z), Y, Z)$

Elementary map: $\left(X_{1}+f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$, invertible with inverse
$\left(X_{1}-f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$.
Triangular map: $(X+f(Y, Z), Y+g(Z), Z+c)$
$=(X, Y, Z+c)(X, Y+g(Z), Z)(X+f(Y, Z), Y, Z)$
$\mathrm{J}_{n}(\mathbb{K}):=$ set of triangular maps.

Elementary map: $\left(X_{1}+f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$, invertible with inverse
$\left(X_{1}-f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$.
Triangular map: $(X+f(Y, Z), Y+g(Z), Z+c)$
$=(X, Y, Z+c)(X, Y+g(Z), Z)(X+f(Y, Z), Y, Z)$
$\mathrm{J}_{n}(\mathbb{K}):=$ set of triangular maps.
Aff $_{n}(\mathbb{K})$:= set of compositions of invertible linear maps and translations.

Elementary map: $\left(X_{1}+f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$, invertible with inverse
$\left(X_{1}-f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$.
Triangular map: $(X+f(Y, Z), Y+g(Z), Z+c)$
$=(X, Y, Z+c)(X, Y+g(Z), Z)(X+f(Y, Z), Y, Z)$
$\mathrm{J}_{n}(\mathbb{K}):=$ set of triangular maps.
Aff $_{n}(\mathbb{K})$:= set of compositions of invertible linear maps and translations.
$\mathrm{TA}_{n}(\mathbb{K}):=<\mathrm{J}_{n}(\mathbb{K}), \operatorname{Aff}_{n}(\mathbb{K})>$

In dimension 1: we understand the automorphism group.
(They are linear.)

In dimension 1: we understand the automorphism group.
(They are linear.)
In dimension 2: famous Jung-van der Kulk-theorem:

$$
\mathrm{GA}_{2}(\mathbb{K})=\mathrm{TA}_{2}(\mathbb{K})=\operatorname{Aff}_{2}(\mathbb{K}) \mid \times \mathrm{J}_{2}(\mathbb{K})
$$

Jung-van der Kulk is the reason that we can do a lot in dimension 2 !!!!

What about dimension 3?

What about dimension 3? Stupid idea: uh, everything will be tame? Perhaps?

What about dimension 3? Stupid idea: uh, everything will be tame? Perhaps?
1972: Nagata: "I cannot tame the following map:"
$N:=\left(X-Y \Delta-Z \Delta^{2}, Y+Z \Delta, Z\right)$ where $\Delta=X Z+Y^{2}$.

What about dimension 3? Stupid idea: uh, everything will be tame? Perhaps?
1972: Nagata: "I cannot tame the following map:"
$N:=\left(X-Y \Delta-Z \Delta^{2}, Y+Z \Delta, Z\right)$ where $\Delta=X Z+Y^{2}$.
Nagata's map is the historically most important map for polynomial automorphisms! No one could "tame Nagata", it is a very elegant but complicated map! It eluded everyone!

What about dimension 3? Stupid idea: uh, everything will be tame? Perhaps?
1972: Nagata: "I cannot tame the following map:"
$N:=\left(X-Y \Delta-Z \Delta^{2}, Y+Z \Delta, Z\right)$ where $\Delta=X Z+Y^{2}$.
Nagata's map is the historically most important map for polynomial automorphisms! No one could "tame Nagata", it is a very elegant but complicated map! It eluded everyone! AMAZING result: Umirbaev-Shestakov (2004)
Nagata is not tame!!

What about dimension 3? Stupid idea: uh, everything will be tame? Perhaps?
1972: Nagata: "I cannot tame the following map:"
$N:=\left(X-Y \Delta-Z \Delta^{2}, Y+Z \Delta, Z\right)$ where $\Delta=X Z+Y^{2}$.
Nagata's map is the historically most important map for polynomial automorphisms! No one could "tame Nagata", it is a very elegant but complicated map! It eluded everyone! AMAZING result: Umirbaev-Shestakov (2004)
Nagata is not tame!!
(Difficult and technical proof.) (2007 AMS Moore paper award.)

What about dimension 3? Stupid idea: uh, everything will be tame? Perhaps?
1972: Nagata: "I cannot tame the following map:"
$N:=\left(X-Y \Delta-Z \Delta^{2}, Y+Z \Delta, Z\right)$ where $\Delta=X Z+Y^{2}$.
Nagata's map is the historically most important map for polynomial automorphisms! No one could "tame Nagata", it is a very elegant but complicated map! It eluded everyone! AMAZING result: Umirbaev-Shestakov (2004)
Nagata is not tame!!
(Difficult and technical proof.) (2007 AMS Moore paper award.) So now it is official. Nagata is complicated.

AMS E.H. Moore Research Article Prize

Ivan Shestakov

(center) and Ualbai Umirbaev (right) with Jim Arthur.

So - what then? Can we give a generating set of $\mathrm{GA}_{n}(\mathbb{K})$? For $n=3$?

So - what then? Can we give a generating set of $\mathrm{GA}_{n}(\mathbb{K})$? For $n=3$? Let us focus on $\mathbb{K}=\mathbb{C}$.

Define

$$
D:=-2 Y \Delta \frac{\partial}{\partial X}+Z \Delta \frac{\partial}{\partial Y}
$$

where $\Delta=X Z+Y^{2}$.

So - what then? Can we give a generating set of $\mathrm{GA}_{n}(\mathbb{K})$? For $n=3$? Let us focus on $\mathbb{K}=\mathbb{C}$.
Define

$$
D:=-2 Y \Delta \frac{\partial}{\partial X}+Z \Delta \frac{\partial}{\partial Y}
$$

where $\Delta=X Z+Y^{2}$.

- D is a derivation: $D(f g)=f D(g)+g D(f)$, $D(f+g)=D(f)+D(g)$.

So - what then? Can we give a generating set of $\mathrm{GA}_{n}(\mathbb{K})$? For $n=3$? Let us focus on $\mathbb{K}=\mathbb{C}$.
Define

$$
D:=-2 Y \Delta \frac{\partial}{\partial X}+Z \Delta \frac{\partial}{\partial Y}
$$

where $\Delta=X Z+Y^{2}$.

- D is a derivation: $D(f g)=f D(g)+g D(f)$, $D(f+g)=D(f)+D(g)$.
- D is locally nilpotent: pick g, then exists $n \in \mathbb{N}$: $D^{n}(g)=0$.

So - what then? Can we give a generating set of $\mathrm{GA}_{n}(\mathbb{K})$? For $n=3$? Let us focus on $\mathbb{K}=\mathbb{C}$.
Define

$$
D:=-2 Y \Delta \frac{\partial}{\partial X}+Z \Delta \frac{\partial}{\partial Y}
$$

where $\Delta=X Z+Y^{2}$.

- D is a derivation: $D(f g)=f D(g)+g D(f)$,

$$
D(f+g)=D(f)+D(g) .
$$

- D is locally nilpotent: pick g, then exists $n \in \mathbb{N}$: $D^{n}(g)=0$.

If D is LND (locally nilpotent derivation) then $\exp (D)$ is automorphism !! We have a non-trivial way of making automorphisms! In fact: Nagata $=\exp (D)$!

Let

$\operatorname{LND}_{n}(\mathbb{C})$

be set of Locally Nilpotent Derivations,

Let

$\operatorname{LND}_{n}(\mathbb{C})$

be set of Locally Nilpotent Derivations, and

$$
e^{\mathrm{LND}_{n}(\mathbb{C})}
$$

be set of exponents of LNDs.

Let

$$
\mathrm{LND}_{n}(\mathbb{C})
$$

be set of Locally Nilpotent Derivations, and

$$
e^{\mathrm{LND}_{n}(\mathbb{C})}
$$

be set of exponents of LNDs.

Conjecture 1:

$$
\mathrm{GA}_{n}(\mathbb{C})=<\operatorname{Aff}_{n}(\mathbb{C}), e^{\mathrm{LND}_{n}(\mathbb{C})}>
$$

... candidate counterexamples start to emerge ...

If D is derivation, to be able to define $\exp (D)$ you do not need "locally nilpotent". You can define it in more cases:

If D is derivation, to be able to define $\exp (D)$ you do not need "locally nilpotent". You can define it in more cases:
D is called locally finite if
for all $g \in \mathbb{C}^{[n]}: g, D(g), D^{2}(g), \ldots$ span a finite dimensional \mathbb{C}-vector space.

If D is derivation, to be able to define $\exp (D)$ you do not need "locally nilpotent". You can define it in more cases:
D is called locally finite if
for all $g \in \mathbb{C}^{[n]}: g, D(g), D^{2}(g), \ldots$ span a finite dimensional \mathbb{C}-vector space. EXAMPLE: $D=X \frac{\partial}{\partial X}$.
D locally finite $\longrightarrow \exp (D)$ automorphism.
$\exp \left(X \frac{\partial}{\partial X}\right)=X+X+\frac{1}{2!} X+\frac{1}{6!} X+\ldots=e X$.

If D is derivation, to be able to define $\exp (D)$ you do not need "locally nilpotent". You can define it in more cases:
D is called locally finite if
for all $g \in \mathbb{C}^{[n]}: g, D(g), D^{2}(g), \ldots$ span a finite dimensional
\mathbb{C}-vector space. EXAMPLE: $D=X \frac{\partial}{\partial X}$.
D locally finite $\longrightarrow \exp (D)$ automorphism.
$\exp \left(X \frac{\partial}{\partial X}\right)=X+X+\frac{1}{2!} X+\frac{1}{6!} X+\ldots=e X$.
Define: $\operatorname{LFD}_{n}(\mathbb{C})=$ set of Locally Finite Derivations.

If D is derivation, to be able to define $\exp (D)$ you do not need "locally nilpotent". You can define it in more cases:
D is called locally finite if
for all $g \in \mathbb{C}^{[n]}: g, D(g), D^{2}(g), \ldots$ span a finite dimensional
\mathbb{C}-vector space. EXAMPLE: $D=X \frac{\partial}{\partial X}$.
D locally finite $\longrightarrow \exp (D)$ automorphism.
$\exp \left(X \frac{\partial}{\partial X}\right)=X+X+\frac{1}{2!} X+\frac{1}{6!} X+\ldots=e X$.
Define: $\operatorname{LFD}_{n}(\mathbb{C})=$ set of Locally Finite Derivations.

Conjecture 2:

$$
\mathrm{GA}_{n}(\mathbb{C})=<e^{\mathrm{LFD}_{n}(\mathbb{C})}>
$$

Back to Umirbaev-Shestakov: They prove exactly when a polynomial

$$
(P(X, Y, Z), Q(X, Y, Z), Z)
$$

is tame.

Back to Umirbaev-Shestakov: They prove exactly when a polynomial

$$
(P(X, Y, Z), Q(X, Y, Z), Z)
$$

is tame. Idea: Nagata fixes Z. Take all automorphisms fixing Z:

$$
\mathrm{GA}_{2}(\mathbb{C}[Z])
$$

Back to Umirbaev-Shestakov: They prove exactly when a polynomial

$$
(P(X, Y, Z), Q(X, Y, Z), Z)
$$

is tame. Idea: Nagata fixes Z. Take all automorphisms fixing Z:

$$
\mathrm{GA}_{2}(\mathbb{C}[Z])
$$

Conjecture 3:

$$
\mathrm{GA}_{3}(\mathbb{C})=<\operatorname{Aff}_{3}(\mathbb{C}), \mathrm{GA}_{2}(\mathbb{C}[Z])>
$$

A very recent, simple remark:

KNOWN: Nagata is not linearizable.
(Maubach \& Poloni) Nagata is shifted linearizable

A very recent, simple remark:

KNOWN: Nagata is not linearizable.
(Maubach \& Poloni) Nagata is shifted linearizable Let $N^{\lambda}:=\exp (\lambda D)$ where $\lambda \in \mathbb{C}$.

A very recent, simple remark:

KNOWN: Nagata is not linearizable.
(Maubach \& Poloni) Nagata is shifted linearizable
Let $N^{\lambda}:=\exp (\lambda D)$ where $\lambda \in \mathbb{C}$. Let
$2 N:=(2 X, 2 Y, 2 Z) \circ N=\left(2 X-2 Y \Delta-2 Z \Delta^{2}, 2 Y+2 Z \Delta, 2 Z\right)$

A very recent, simple remark:

KNOWN: Nagata is not linearizable.
(Maubach \& Poloni) Nagata is shifted linearizable
Let $N^{\lambda}:=\exp (\lambda D)$ where $\lambda \in \mathbb{C}$. Let
$2 N:=(2 X, 2 Y, 2 Z) \circ N=\left(2 X-2 Y \Delta-2 Z \Delta^{2}, 2 Y+2 Z \Delta, 2 Z\right)$

Now compute:

A very recent, simple remark:

KNOWN: Nagata is not linearizable.
(Maubach \& Poloni) Nagata is shifted linearizable
Let $N^{\lambda}:=\exp (\lambda D)$ where $\lambda \in \mathbb{C}$. Let
$2 N:=(2 X, 2 Y, 2 Z) \circ N=\left(2 X-2 Y \Delta-2 Z \Delta^{2}, 2 Y+2 Z \Delta, 2 Z\right)$

Now compute:
(2N)

A very recent, simple remark:

KNOWN: Nagata is not linearizable.
(Maubach \& Poloni) Nagata is shifted linearizable
Let $N^{\lambda}:=\exp (\lambda D)$ where $\lambda \in \mathbb{C}$. Let
$2 N:=(2 X, 2 Y, 2 Z) \circ N=\left(2 X-2 Y \Delta-2 Z \Delta^{2}, 2 Y+2 Z \Delta, 2 Z\right)$
Now compute: $N^{-\frac{1}{3}}(2 N) N^{\frac{1}{3}}$

A very recent, simple remark:

KNOWN: Nagata is not linearizable.
(Maubach \& Poloni) Nagata is shifted linearizable
Let $N^{\lambda}:=\exp (\lambda D)$ where $\lambda \in \mathbb{C}$. Let
$2 N:=(2 X, 2 Y, 2 Z) \circ N=\left(2 X-2 Y \Delta-2 Z \Delta^{2}, 2 Y+2 Z \Delta, 2 Z\right)$
Now compute: $N^{-\frac{1}{3}}(2 N) N^{\frac{1}{3}}=(2 X, 2 Y, 2 Z)!!!$

A very recent, simple remark:

KNOWN: Nagata is not linearizable.
(Maubach \& Poloni) Nagata is shifted linearizable
Let $N^{\lambda}:=\exp (\lambda D)$ where $\lambda \in \mathbb{C}$. Let
$2 N:=(2 X, 2 Y, 2 Z) \circ N=\left(2 X-2 Y \Delta-2 Z \Delta^{2}, 2 Y+2 Z \Delta, 2 Z\right)$
Now compute: $N^{-\frac{1}{3}}(2 N) N^{\frac{1}{3}}=(2 X, 2 Y, 2 Z)!!!$
Define $\operatorname{Lzbl}_{n}(\mathbb{C})$ as the set of linearizable automorphisms.

A very recent, simple remark:

KNOWN: Nagata is not linearizable.
(Maubach \& Poloni) Nagata is shifted linearizable
Let $N^{\lambda}:=\exp (\lambda D)$ where $\lambda \in \mathbb{C}$. Let
$2 N:=(2 X, 2 Y, 2 Z) \circ N=\left(2 X-2 Y \Delta-2 Z \Delta^{2}, 2 Y+2 Z \Delta, 2 Z\right)$
Now compute: $N^{-\frac{1}{3}}(2 N) N^{\frac{1}{3}}=(2 X, 2 Y, 2 Z)!!!$
Define $\operatorname{Lzbl}_{n}(\mathbb{C})$ as the set of linearizable automorphisms.
Conjecture 4:

$$
\mathrm{GA}_{n}(\mathbb{C})=<\operatorname{Lzbl}_{n}(\mathbb{C})>
$$

Let us step back for a moment ...

BIG STUPID CLAIM:

Polynomial Automorphisms Can Be Used Whenever Linear
Maps Are Used.

Let us step back for a moment ...

BIG STUPID CLAIM:
Polynomial Automorphisms Can Be Used Whenever Linear Maps Are Used.

If we want to have any hope of applying polynomial maps like linear maps, then we need to strengthen the theoretical foundation of polynomial maps.

Now let's be ambitious. What is the strongest theorem in linear algebra. Tell me!

Now let's be ambitious. What is the strongest theorem in linear algebra. Tell me!
Very good: the Cayley-Hamilton theorem (characteristic polynomials of linear maps etc.).

Now let's be ambitious. What is the strongest theorem in linear algebra. Tell me!
Very good: the Cayley-Hamilton theorem (characteristic polynomials of linear maps etc.).
Now, let's try to make a Cayley-Hamilton theorem for polynomial maps!

Now let's be ambitious. What is the strongest theorem in linear algebra. Tell me!
Very good: the Cayley-Hamilton theorem (characteristic polynomials of linear maps etc.).
Now, let's try to make a Cayley-Hamilton theorem for polynomial maps! (Perhaps the constant term can replace that stupid $\operatorname{det}(\operatorname{Jac}(F))=1$ requirement!)

Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then L is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L)
$$

Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then L is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L)
$$

What about generalizing $\mathrm{ML}_{n}(\mathbb{C}) \longrightarrow \mathrm{MA}_{n}(\mathbb{C})$?

Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then L is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L)
$$

What about generalizing $\mathrm{ML}_{n}(\mathbb{C}) \longrightarrow \mathrm{MA}_{n}(\mathbb{C})$? EXAMPLE:
Let $F=\left(X^{2}, Y^{2}\right)$.

Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then L is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L)
$$

What about generalizing $\mathrm{ML}_{n}(\mathbb{C}) \longrightarrow \mathrm{MA}_{n}(\mathbb{C})$? EXAMPLE:
Let $F=\left(X^{2}, Y^{2}\right)$. Then $\operatorname{deg}\left(F^{n}\right)=2^{n}$.

Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then L is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L)
$$

What about generalizing $\mathrm{ML}_{n}(\mathbb{C}) \longrightarrow \mathrm{MA}_{n}(\mathbb{C})$?
EXAMPLE:
Let $F=\left(X^{2}, Y^{2}\right)$. Then $\operatorname{deg}\left(F^{n}\right)=2^{n}$.
There exists no relation
$F^{n}+a_{n-1} F^{n-1}+\ldots+a_{1} F+a_{0} I=0$.

Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then L is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L)
$$

What about generalizing $\mathrm{ML}_{n}(\mathbb{C}) \longrightarrow \mathrm{MA}_{n}(\mathbb{C})$?
EXAMPLE:
Let $F=\left(X^{2}, Y^{2}\right)$. Then $\operatorname{deg}\left(F^{n}\right)=2^{n}$.
There exists no relation
$F^{n}+a_{n-1} F^{n-1}+\ldots+a_{1} F+a_{0} I=0$. GR! It will not work!

Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then L is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L)
$$

What about generalizing $\mathrm{ML}_{n}(\mathbb{C}) \longrightarrow \mathrm{MA}_{n}(\mathbb{C})$?
EXAMPLE:
Let $F=\left(X^{2}, Y^{2}\right)$. Then $\operatorname{deg}\left(F^{n}\right)=2^{n}$.
There exists no relation
$F^{n}+a_{n-1} F^{n-1}+\ldots+a_{1} F+a_{0} I=0$. GR! It will not work!
But. . .

Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then L is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L)
$$

What about generalizing $\mathrm{ML}_{n}(\mathbb{C}) \longrightarrow \mathrm{MA}_{n}(\mathbb{C})$?
EXAMPLE:
Let $F=\left(X^{2}, Y^{2}\right)$. Then $\operatorname{deg}\left(F^{n}\right)=2^{n}$.
There exists no relation
$F^{n}+a_{n-1} F^{n-1}+\ldots+a_{1} F+a_{0} I=0$. GR! It will not work!
But. .. Definition: If F is a zero of some $P(T) \in \mathbb{C}[T] \backslash\{0\}$, then we will call F a Locally Finite Polynomial Endomorphism (short LFPE).

Example:

$F:=\left(X+Y^{2}, Y\right)$

Example:

$$
\begin{aligned}
& F^{0}:=(X, Y) \\
& F:=\left(X+Y^{2}, Y\right) \\
& F^{2}:=\left(X+2 Y^{2}, Y\right) \\
& F^{2}-2 F+I=0, \text { so } F \text { is "zero of } T^{2}-2 T+1=(T-1)^{2} "
\end{aligned}
$$

Definition:

If F is a zero of some $P(T) \in \mathbb{C}[T] \backslash\{0\}$, then we will call F a Locally Finite Polynomial Endomorphism (short LFPE).

Definition:

If F is a zero of some $P(T) \in \mathbb{C}[T] \backslash\{0\}$, then we will call F a Locally Finite Polynomial Endomorphism (short LFPE).
Let's be a little less ambitious and study this set.

Definition:

If F is a zero of some $P(T) \in \mathbb{C}[T] \backslash\{0\}$, then we will call F a Locally Finite Polynomial Endomorphism (short LFPE). Let's be a little less ambitious and study this set. LFPE's should resemble linear maps more than general polynomial maps!

Some Remarks/ theorems:

Some Remarks/ theorems:

- F is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.

Some Remarks/ theorems:

- F is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.
- $I_{F}:=\{P(T) \in \mathbb{C}[T] \mid P(F)=0\}$ is an ideal of $\mathbb{C}[T]$

Some Remarks/ theorems:

- F is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.
- $I_{F}:=\{P(T) \in \mathbb{C}[T] \mid P(F)=0\}$ is an ideal of $\mathbb{C}[T]$
- $F \in \mathrm{GA}_{n}(\mathbb{C})$ is "zero of $(T-1)^{m}$ some $m \in \mathbb{N}^{\prime} \Longleftrightarrow$
$F=\exp (D)$ where $D \in \operatorname{LND}_{n}(\mathbb{C}) \Longleftrightarrow F$ is unipotent.

Some Remarks/ theorems:

- F is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.
- $I_{F}:=\{P(T) \in \mathbb{C}[T] \mid P(F)=0\}$ is an ideal of $\mathbb{C}[T]$
- $F \in \mathrm{GA}_{n}(\mathbb{C})$ is "zero of $(T-1)^{m}$ some $m \in \mathbb{N}^{\prime} \Longleftrightarrow$ $F=\exp (D)$ where $D \in \operatorname{LND}_{n}(\mathbb{C}) \Longleftrightarrow F$ is unipotent.
- $F \in \mathrm{GA}_{n}(\mathbb{C})$ is semisimple $\Longleftrightarrow F$ zero of $Q(T)$ where Q is radical, $\Longleftarrow F=\exp (D)$ where D is semisimple

Conjecture 5:

$$
\mathrm{GA}_{n}(\mathbb{C})=<\angle F P E>
$$

... and a conjecture that interests

discrete mathematicians

Consider $\varphi \in \mathrm{GA}_{n}\left(\mathbb{F}_{q}\right)$. Induces bijection $\mathcal{E}(\varphi): \mathbb{F}_{q}^{n} \longrightarrow \mathbb{F}_{q}^{n}$,
i.e. $\mathcal{E}(\varphi) \in \operatorname{Sym}\left(q^{n}\right)$.

Question: what is $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?

Question: what is $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
Answer: if $q=4,8,16,32, \ldots$ then $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$.

Question: what is $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)$?
Answer: if $q=2$ or $q=$ odd, then $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Sym}\left(q^{n}\right)$.
Answer: if $q=4,8,16,32, \ldots$ then $\mathcal{E}\left(T_{n}\left(\mathbb{F}_{q}\right)\right)=\operatorname{Alt}\left(q^{n}\right)$.
Problem: Do there exist "odd" polynomial automorphisms over \mathbb{F}_{4} ?

Consequences of an odd polynomial automorphism in dimension n :

Consequences of an odd polynomial automorphism in dimension n :
(1) $\mathrm{T}_{n}\left(\mathbb{F}_{4}\right) \neq \mathrm{GA}_{n}\left(\mathbb{F}_{4}\right)$.

Consequences of an odd polynomial automorphism in dimension n :
(1) $\mathrm{T}_{n}\left(\mathbb{F}_{4}\right) \neq \mathrm{GA}_{n}\left(\mathbb{F}_{4}\right)$.
(2) $\mathrm{GA}_{n}\left(\mathbb{F}_{4}\right) \neq<\operatorname{Linzble}_{n}\left(\mathbb{F}_{4}\right)$, Aff $_{n}\left(\mathbb{F}_{4}\right)>$.

Consequences of an odd polynomial automorphism in dimension n :
(1) $\mathrm{T}_{n}\left(\mathbb{F}_{4}\right) \neq \mathrm{GA}_{n}\left(\mathbb{F}_{4}\right)$.
(2) $\mathrm{GA}_{n}\left(\mathbb{F}_{4}\right) \neq<\operatorname{Linzble}_{n}\left(\mathbb{F}_{4}\right)$, Aff $_{n}\left(\mathbb{F}_{4}\right)>$.
(3) (if $n=3:$) $\mathrm{GA}_{3}(\mathbb{K}) \neq<\operatorname{Aff}_{3}(\mathbb{K}), \mathrm{GA}_{2}(\mathbb{K}[Z])>$.

Consequences of an odd polynomial automorphism in dimension n :
(1) $\mathrm{T}_{n}\left(\mathbb{F}_{4}\right) \neq \mathrm{GA}_{n}\left(\mathbb{F}_{4}\right)$.
(2) $\mathrm{GA}_{n}\left(\mathbb{F}_{4}\right) \neq<\operatorname{Linzble}_{n}\left(\mathbb{F}_{4}\right)$, Aff $_{n}\left(\mathbb{F}_{4}\right)>$.
(3) (if $n=3$:) $\mathrm{GA}_{3}(\mathbb{K}) \neq<\operatorname{Aff}_{3}(\mathbb{K}), \mathrm{GA}_{2}(\mathbb{K}[Z])>$.

So: Start looking for an odd automorphism!!! (Or prove they don't exist)

Not \mathbb{C}^{n} : Methods to distinguish varieties

and rings

Not \mathbb{C}^{n} : Methods to distinguish varieties

 and rings- Topology (homotopy theory, homotopy groups, etc.)

Not \mathbb{C}^{n} : Methods to distinguish varieties

 and rings- Topology (homotopy theory, homotopy groups, etc.)
- (Basic) algebraic or geometric properties (singularities, UFD, etc. etc.)

Not \mathbb{C}^{n} : Methods to distinguish varieties

and rings

- Topology (homotopy theory, homotopy groups, etc.)
- (Basic) algebraic or geometric properties (singularities, UFD, etc. etc.)
- Relatively new: certain group actions (\mathcal{G}_{a}-actions, derivations, etc.)

A new method: Makar-Limanov invariant

A new method: Makar-Limanov invariant

Brilliant breakthrough by Leonid Makar-Limanov:

A new method: Makar-Limanov invariant

Brilliant breakthrough by Leonid Makar-Limanov:

A new method: Makar-Limanov invariant

Brilliant breakthrough by Leonid Makar-Limanov:

On the hypersurface $X+X^{2} Y+Z^{2}+T^{3}$ in \mathbb{C}^{4}, Isr.M.J:

A new method: Makar-Limanov invariant

Brilliant breakthrough by Leonid Makar-Limanov:

On the hypersurface $X+X^{2} Y+Z^{2}+T^{3}$ in \mathbb{C}^{4}, Isr.M.J:
Introduction of the AK-invariant

A new method: Makar-Limanov invariant

Brilliant breakthrough by Leonid Makar-Limanov:

On the hypersurface $X+X^{2} Y+Z^{2}+T^{3}$ in \mathbb{C}^{4}, Isr.M.J: Introduction of the AK-invariant- ML-invariant.

Using LNDs

Using LNDs

How to recognize if a variety V is not \mathbb{C}^{n} ?

Using LNDs

How to recognize if a variety V is not \mathbb{C}^{n} ?
How to recognize if a ring A is not a polynomial ring?

Using LNDs

How to recognize if a variety V is not \mathbb{C}^{n} ?
How to recognize if a ring A is not a polynomial ring?
A polynomial ring has MANY different kernels of LNDs.

Using LNDs

How to recognize if a variety V is not \mathbb{C}^{n} ?
How to recognize if a ring A is not a polynomial ring?
A polynomial ring has MANY different kernels of LNDs. Idea of Makar-Limanov: study

$$
M L(A):=\bigcap_{D \in \operatorname{LND}(A)} A^{D}
$$

Using LNDs

How to recognize if a variety V is not \mathbb{C}^{n} ?
How to recognize if a ring A is not a polynomial ring?
A polynomial ring has MANY different kernels of LNDs. Idea of Makar-Limanov: study

$$
M L(A):=\bigcap_{D \in \operatorname{LND}(A)} A^{D}
$$

Notice:

$$
\begin{aligned}
M L(\mathbb{C}[X, Y, Z]) \subseteq & \mathbb{C}[X, Y, Z]^{\partial \times} \cap \mathbb{C}[X, Y, Z]^{\partial_{r}} \cap \mathbb{C}[X, Y, Z]^{\partial_{Z}} \\
& \mathbb{C}[Y, Z] \cap \mathbb{C}[X, Z] \cap \mathbb{C}[X, Y]=\mathbb{C} .
\end{aligned}
$$

The Makar-Limanov invariant

Example: $A:=\mathbb{C}[X, Y, Z] /\left(X^{2} Y-P(Z)\right)$.

The Makar-Limanov invariant

Example: $A:=\mathbb{C}[X, Y, Z] /\left(X^{2} Y-P(Z)\right) . M L(A)=\mathbb{C}[X]$, hence A is not a polynomial ring.

The Makar-Limanov invariant

Example: $A:=\mathbb{C}[X, Y, Z] /\left(X^{2} Y-P(Z)\right) . M L(A)=\mathbb{C}[X]$, hence A is not a polynomial ring.
Hence $X^{2} Y-P(Z)=0$ is not isomorphic to \mathbb{C}^{3}.

The Makar-Limanov invariant

In '93 Russel and Koras constructed surfaces which were topologically the same as \mathbb{C}^{3}, but of which they didn't know if they were \mathbb{C}^{3}.

The Makar-Limanov invariant

In '93 Russel and Koras constructed surfaces which were topologically the same as \mathbb{C}^{3}, but of which they didn't know if they were \mathbb{C}^{3}.
Simplest example: $V:=X^{2} Y+X+Z^{2}+T^{3}$.

The Makar-Limanov invariant

In '93 Russel and Koras constructed surfaces which were topologically the same as \mathbb{C}^{3}, but of which they didn't know if they were \mathbb{C}^{3}.
Simplest example: $V:=X^{2} Y+X+Z^{2}+T^{3}$. Breakthrough by Makar-Limanov:
$M L(\mathcal{O}(V))=\mathbb{C}[X]$.
Proof is quite elaborate - using smart gradings, filtrations, etc. etc.

Makar-Limanov techniques

The strength of ML invariant comes because of the techniques to compute it. Sometimes one can use these techniques, sometimes not. But - there are cases where the ML invariant will fail. Example: $\mathbb{C}[X, Y, Z, T] /\left(X Y+X+Z^{2}+T^{3}\right)$. (You can see exactly when $p(X) Y+q(X, Z, T)$ is $\mathbb{C}^{3}(\mathrm{M} .2003)$ by studying commuting derivations)

(Biregular) cancellation problems

Let k be a field. Let U, V, W be k-varieties.

(Biregular) cancellation problems

Let k be a field. Let U, V, W be k-varieties. Suppose
$U \times k \cong V \times k$. Is $U \cong V$?
Ring theoretic version:
Suppose A, B are finitely generated k-algebras. Suppose $A[X] \cong B[X]$. Is $A \cong B$?

First counterexamples over \mathbb{R}

First counterexamples over \mathbb{R}

(Hoechster (1972):) Let $R:=\mathbb{R}[x, y, z] /\left(x^{2}+y^{2}+z^{2}-1\right)$ etc. . .

Danielewski surfaces

Preprint of Danielewski(83?): Examples over \mathbb{C} !

Danielewski surfaces

Preprint of Danielewski(83?): Examples over \mathbb{C} !

$$
\text { Let } V_{1}:=\left\{x y-z^{2}+1=0\right\}, V_{2}=\left\{x^{2} y-z^{2}+1\right\} .
$$

Danielewski surfaces

Preprint of Danielewski(83?): Examples over \mathbb{C} !
Let $V_{1}:=\left\{x y-z^{2}+1=0\right\}, V_{2}=\left\{x^{2} y-z^{2}+1\right\}$. Then
$V_{1} \times \mathbb{C} \cong V_{2} \times \mathbb{C}$ but $V_{1} \neq V_{2}$.

Danielewski surfaces are not UFDs.

Danielewski surfaces are not UFDs. In fact:
If $V, W \mathbb{C}$-algebras of $\operatorname{dim}=2$, then
$V \times_{\mathbb{C}} \mathbb{C} \cong W \times_{\mathbb{C}} \mathbb{C} \longrightarrow V \cong W$.
(Due to Miyanishi)

UFD counterexamples (in dimension 3)

UFD counterexamples (in dimension 3)

(Finston, Maubach) V, W UFDs, $\operatorname{dim} 3, V \times \mathbb{C} \cong W \times \mathbb{C}$.

UFD counterexamples (in dimension 3)

(Finston, Maubach) V, W UFDs, $\operatorname{dim} 3, V \times \mathbb{C} \cong W \times \mathbb{C}$. Mimic Danielewski construction:
$A_{i j}:=R[U, V] /\left(r_{i} U-r_{j} V-1\right)$

UFD counterexamples (in dimension 3)

(Finston, Maubach) V, W UFDs, $\operatorname{dim} 3, V \times \mathbb{C} \cong W \times \mathbb{C}$. Mimic Danielewski construction:
$A_{i j}:=R[U, V] /\left(r_{i} U-r_{j} V-1\right)$

$$
\begin{array}{rllll}
A_{12}[X] & \cong & A_{12} \otimes_{R} A_{34} & \cong & A_{34}[X] \\
& \nearrow & & & \\
A_{12} & & & A_{34} \\
& & & & \nearrow \\
& & & (\text { rigid } & \text { ring } R) \\
& &
\end{array}
$$

(rigid ring R)

(rigid ring R)
How to prove that A_{12} is not always isomorphic to A_{34} ?

(rigid ring R)
How to prove that A_{12} is not always isomorphic to A_{34} ?
Amongst others - use $\operatorname{ML}\left(A_{12}\right)=\operatorname{ML}\left(A_{34}\right)=R!$

(rigid ring R)
How to prove that A_{12} is not always isomorphic to A_{34} ?
Amongst others - use $\operatorname{ML}\left(A_{12}\right)=M L\left(A_{34}\right)=R!M L$ invariant is invariant subring. \longrightarrow determine automorphism group of $A_{i j}$,

(rigid ring R)
How to prove that A_{12} is not always isomorphic to A_{34} ?
Amongst others - use $\operatorname{ML}\left(A_{12}\right)=M L\left(A_{34}\right)=R!M L$ invariant is invariant subring. \longrightarrow determine automorphism group of $A_{i j},=<e^{\mathrm{LFD}}>$

(rigid ring R)
How to prove that A_{12} is not always isomorphic to A_{34} ?
Amongst others - use $\operatorname{ML}\left(A_{12}\right)=M L\left(A_{34}\right)=R!M L$ invariant is invariant subring. \longrightarrow determine automorphism group of $A_{i j},=<e^{\mathrm{LFD}}>A_{12} \not \approx A_{34}$.

THANK YOU

