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BIG STUPID CLAIM:

Polynomial Automorphisms Can Be Used Whenever Linear

Maps Are Used.

Why this bold claim? Polynomial maps seem to have similar

properties as linear maps (much more so than holomorphic

maps for example). Well. . . to be honest, most are

conjectures. . . Let’s look at a few of these conjectures!
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c d

)
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∗ ⇐⇒ L ∈ GL2(C)

F = (F1, F2) ∈ MA2(C)

det

(

∂F1

∂X

∂F1

∂Y

∂F2

∂X

∂F2

∂Y

)

∈ C
∗ ??
⇐⇒ F ∈ GA2(C)

Jacobian Conjecture in dimension n (JC(n)):

Let F ∈ MAn(C). Then

det(Jac(F )) ∈ C
∗ ⇒ F is invertible.
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Let V be a vector space. Then

V ×C ∼= C
n+1 =⇒ V ∼= C

n.

Cancelation Problem:

Let V be a variety. Then

V ×C ∼= C
n+1 =⇒ V ∼= C

n.
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GAn(K) is generated by ???
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Elementary map: (X1 + f (X2, . . . , Xn), X2, . . . , Xn),

invertible with inverse

(X1 − f (X2, . . . , Xn), X2, . . . , Xn).

Triangular map: (X + f (Y , Z ), Y + g(Z ), Z + c)

= (X , Y , Z + c)(X , Y + g(Z ), Z )(X + f (Y , Z ), Y , Z )

Jn(K):= set of triangular maps.

Affn(K):= set of compositions of invertible linear maps and

translations.

TAn(K) :=< Jn(K), Affn(K) >
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(They are linear.)

In dimension 2: famous Jung-van der Kulk-theorem:

GA2(K) = TA2(K) = Aff2(K)|× J2(K)

Jung-van der Kulk is the reason that we can do a lot in

dimension 2 !!!!
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What about dimension 3? Stupid idea: uh, everything will be

tame? Perhaps?

1972: Nagata: “I cannot tame the following map:”

N := (X − Y ∆− Z∆2, Y + Z∆, Z ) where ∆ = XZ + Y 2.

Nagata’s map is the historically most important map for

polynomial automorphisms! No one could “tame Nagata”, it is

a very elegant but complicated map! It eluded everyone!

AMAZING result: Umirbaev-Shestakov (2004)

Nagata is not tame!!

(Difficult and technical proof. ) (2007 AMS Moore paper

award.) So now it is official. Nagata is complicated.



AMS E.H. Moore Research Article Prize

Ivan Shestakov

(center) and Ualbai Umirbaev (right) with Jim Arthur.
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So - what then? Can we give a generating set of GAn(K)? For

n = 3? Let us focus on K = C.

Define

D := −2Y ∆
∂

∂X
+ Z∆

∂

∂Y

where ∆ = XZ + Y 2.

◮ D is a derivation: D(fg) = fD(g) + gD(f ),

D(f + g) = D(f ) + D(g).

◮ D is locally nilpotent: pick g , then exists n ∈ N:

Dn(g) = 0.

If D is LND(locally nilpotent derivation) then exp(D) is

automorphism !! We have a non-trivial way of making

automorphisms! In fact: Nagata = exp(D) !
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Let

LNDn(C)

be set of Locally Nilpotent Derivations, and

eLNDn(C)

be set of exponents of LNDs.

Conjecture 1:

GAn(C) =< Affn(C), eLNDn(C) > .

. . . candidate counterexamples start to emerge . . .
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If D is derivation, to be able to define exp(D) you do not need

“locally nilpotent”. You can define it in more cases:

D is called locally finite if

for all g ∈ C[n]: g , D(g), D2(g), . . . span a finite dimensional

C-vector space. EXAMPLE: D = X ∂

∂X
.

D locally finite −→ exp(D) automorphism.

exp(X ∂

∂X
) = X + X + 1

2!
X + 1

6!
X + . . . = eX .

Define: LFDn(C) = set of Locally Finite Derivations.

Conjecture 2:

GAn(C) =< eLFDn(C) > .
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Back to Umirbaev-Shestakov: They prove exactly when a

polynomial
(

P(X , Y , Z ), Q(X , Y , Z ), Z
)

is tame. Idea: Nagata fixes Z . Take all automorphisms fixing

Z :

GA2(C[Z ])

Conjecture 3:

GA3(C) =< Aff3(C), GA2(C[Z ]) >
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A very recent, simple remark:

KNOWN: Nagata is not linearizable.

( Maubach & Poloni) Nagata is shifted linearizable

Let Nλ := exp(λD) where λ ∈ C. Let

2N := (2X , 2Y , 2Z )◦N = (2X−2Y ∆−2Z∆2, 2Y +2Z∆, 2Z )

Now compute: N−
1
3 (2N)N

1
3 = (2X , 2Y , 2Z )!!!

Define Lzbln(C) as the set of linearizable automorphisms.

Conjecture 4:

GAn(C) =< Lzbln(C) > .
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Let us step back for a moment . . .

BIG STUPID CLAIM:

Polynomial Automorphisms Can Be Used Whenever Linear

Maps Are Used.

If we want to have any hope of applying polynomial maps like

linear maps, then we need to strengthen the theoretical

foundation of polynomial maps.
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Now let’s be ambitious. What is the strongest theorem in

linear algebra. Tell me!

Very good: the Cayley-Hamilton theorem (characteristic

polynomials of linear maps etc.).

Now, let’s try to make a Cayley-Hamilton theorem for

polynomial maps! (Perhaps the constant term can replace that

stupid det(Jac(F )) = 1 requirement!)
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Cayley-Hamilton:

Let L : Cn −→ Cn be a linear map. Then L is a zero of

PL(T ) := det(TI − L).

What about generalizing MLn(C) −→ MAn(C)?

EXAMPLE:

Let F = (X 2, Y 2). Then deg(F n) = 2n.

There exists no relation

F n + an−1F
n−1 + . . . + a1F + a0I = 0. GR! It will not work!

But. . . Definition: If F is a zero of some P(T ) ∈ C[T ]\{0},

then we will call F a Locally Finite Polynomial Endomorphism

(short LFPE).
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F 2 := (X + 2Y 2, Y )

F 2 − 2F + I = 0, so F is “zero of T 2 − 2T + 1 = (T − 1)2”.
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Definition:

If F is a zero of some P(T ) ∈ C[T ]\{0}, then we will call F a

Locally Finite Polynomial Endomorphism (short LFPE).

Let’s be a little less ambitious and study this set. LFPE’s

should resemble linear maps more than general polynomial

maps!
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Some Remarks/ theorems:

◮ F is LFPE ⇐⇒ {deg(F n)}n∈N is bounded.

◮ IF := {P(T ) ∈ C[T ] | P(F ) = 0} is an ideal of C[T ]

◮ F ∈ GAn(C) is “zero of (T − 1)m some m ∈ N” ⇐⇒

F = exp(D) where D ∈ LNDn(C) ⇐⇒ F is unipotent.

◮ F ∈ GAn(C) is semisimple ⇐⇒ F zero of Q(T ) where

Q is radical, ⇐= F = exp(D) where D is semisimple



Conjecture 5:

GAn(C) =< LFPE >
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discrete mathematicians
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Question: what is E(Tn(Fq))?

Answer: if q = 2 or q = odd, then E(Tn(Fq)) = Sym(qn).

Answer: if q = 4, 8, 16, 32, . . . then E(Tn(Fq)) = Alt(qn).

Problem: Do there exist “odd” polynomial automorphisms

over F4?
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Consequences of an odd polynomial automorphism in

dimension n:

(1) Tn(F4) 6= GAn(F4).

(2) GAn(F4) 6=< Linzblen(F4), Affn(F4) >.

(3) (if n = 3:) GA3(K) 6=< Aff3(K), GA2(K[Z ]) >.

So: Start looking for an odd automorphism!!! (Or prove they

don’t exist)
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Not C
n: Methods to distinguish varieties

and rings

◮ Topology (homotopy theory, homotopy groups, etc.)

◮ (Basic) algebraic or geometric properties (singularities,

UFD, etc. etc.)

◮ Relatively new: certain group actions (Ga-actions,

derivations, etc.)
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A new method: Makar-Limanov invariant

Brilliant breakthrough by Leonid Makar-Limanov:

On the hypersurface X + X 2Y + Z 2 + T 3 in C4, Isr.M.J:

Introduction of the AK-invariant—————- ML-invariant.
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Using LNDs

How to recognize if a variety V is not Cn?

How to recognize if a ring A is not a polynomial ring?

A polynomial ring has MANY different kernels of LNDs. Idea

of Makar-Limanov: study

ML(A) :=
⋂

D∈LND(A)

AD .

Notice:

ML(C[X , Y , Z ]) ⊆ C[X , Y , Z ]∂X ∩ C[X , Y , Z ]∂Y ∩ C[X , Y , Z ]∂Z

C[Y , Z ] ∩ C[X , Z ] ∩ C[X , Y ] = C.
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Example: A := C[X , Y , Z ]/(X 2Y − P(Z )). ML(A) = C[X ],

hence A is not a polynomial ring.

Hence X 2Y − P(Z ) = 0 is not isomorphic to C3.
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The Makar-Limanov invariant

In ’93 Russel and Koras constructed surfaces which were

topologically the same as C3, but of which they didn’t know if

they were C3.

Simplest example: V := X 2Y + X + Z 2 + T 3. Breakthrough

by Makar-Limanov:

ML(O(V )) = C[X ].

Proof is quite elaborate - using smart gradings, filtrations, etc.

etc.



Makar-Limanov techniques

The strength of ML invariant comes because of the techniques

to compute it. Sometimes one can use these techniques,

sometimes not. But - there are cases where the ML invariant

will fail. Example: C[X , Y , Z , T ]/(XY + X + Z 2 + T 3). (You

can see exactly when p(X )Y + q(X , Z , T ) is C3 (M. 2003) by

studying commuting derivations)
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(Biregular) cancellation problems

Let k be a field. Let U, V , W be k-varieties. Suppose

U × k ∼= V × k. Is U ∼= V ?

Ring theoretic version:

Suppose A, B are finitely generated k-algebras. Suppose

A[X ] ∼= B[X ]. Is A ∼= B?
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First counterexamples over R

(Hoechster (1972):) Let R := R[x , y , z ]/(x2 + y 2 + z2 − 1)

etc. . .



Danielewski surfaces

Preprint of Danielewski(83?): Examples over C!



Danielewski surfaces

Preprint of Danielewski(83?): Examples over C!

Let V1 := {xy − z2 + 1 = 0}, V2 = {x2y − z2 + 1}.



Danielewski surfaces

Preprint of Danielewski(83?): Examples over C!

Let V1 := {xy − z2 + 1 = 0}, V2 = {x2y − z2 + 1}. Then

V1 × C ∼= V2 ×C but V1 6= V2.
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Danielewski surfaces are not UFDs. In fact:

If V , W C-algebras of dim=2, then

V ×C C ∼= W ×C C −→ V ∼= W .

(Due to Miyanishi)
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A12[X ] ∼= A12 ⊗R A34
∼= A34[X ]

ր տ

A12 A34

տ ր

(rigid ring R)

How to prove that A12 is not always isomorphic to A34?

Amongst others - use ML(A12) = ML(A34) = R! ML invariant

is invariant subring. −→ determine automorphism group of

Aij , =< eLFD > A12 6∼= A34.



THANK YOU


