
Linear Ramified Higher Type Recursion and
Parallel Complexity

Klaus Aehlig1,�, Jan Johannsen2,��, Helmut Schwichtenberg1,� � �, and
Sebastiaan A. Terwijn3,†

1 Mathematisches Institut, Ludwig-Maximilians-Universität München,
Theresienstraße 39, 80333 München, Germany

{aehlig,schwicht}@rz.mathematik.uni-muenchen.de
2 Institut für Informatik, Ludwig-Maximilians-Universität München

Oettingenstraße 67, 80538 München, Germany
jjohanns@informatik.uni-muenchen.de

3 Department of Mathematics and Computer Science, Vrije Universiteit Amsterdam,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

terwijn@cs.vu.nl

Abstract. A typed lambda calculus with recursion in all finite types is
defined such that the first order terms exactly characterize the parallel
complexity class NC. This is achieved by use of the appropriate forms
of recursion (concatenation recursion and logarithmic recursion), a
ramified type structure and imposing of a linearity constraint.

Keywords: higher types, recursion, parallel computation, NC, lambda
calculus, linear logic, implicit computational complexity

1 Introduction

One of the most prominent complexity classes, other than polynomial time, is
the class NC of functions computable in parallel polylogarithmic time with a
polynomial amount of hardware. This class has several natural characterizations
in terms of circuits, alternating Turing machines, or parallel random access ma-
chines as used in this work. It can be argued that NC is the class of efficiently
parallalizable problems, just as polynomial time is generally considered as the
correct formalization of feasible sequential computation.
Machine-independent characterizations of computational complexity classes

are not only of theoretical, but recently also of increasing practical interest.
Besides indicating the robustness and naturalness of the classes in question,
they also provide guidance for the development of programming languages [11].
� Supported by the DFG Graduiertenkolleg “Logik in der Informatik”

�� Supported by the DFG Emmy Noether-Programme under grant No. Jo 291/2-1
� � � The hospitality of the Mittag-Leffler Institute in the spring of 2001 is gratefully

acknowledged.
† Supported by a Marie Curie fellowship of the European Union under grant no. ERB-
FMBI-CT98-3248

R. Kahle, P. Schroeder-Heister, and R. Stärk (Eds.): PTCS 2001, LNCS 2183, pp. 1–21, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

2 K. Aehlig et al.

The earliest such characterizations, starting with Cobham’s function algebra
for polynomial time [9], used recursions with explicit bounds on the growth of
the defined functions. Function algebra characterizations in this style of parallel
complexity classes, among them NC, were given by Clote [8] and Allen [1].

More elegant implicit characterizations, i.e., without any explicitly given
bounds, but instead using logical concepts like ramification or tiering, have been
given for many complexity classes, starting with the work of Bellantoni and Cook
[4] and Leivant [14] on polynomial time. In his thesis [2], Bellantoni gives such
a characterization of NC using a ramified variant of Clote’s recursion schemes.
A different implicit characterization of NC, using tree recursion, was given by
Leivant [15], and refined by Bellantoni and Oitavem [6]. Other parallel complex-
ity classes, viz. parallel logarithmic and polylogarithmic time, were given implicit
characterizations by Bellantoni [3], Bloch [7] and Leivant and Marion [16].

In order to apply the approach within the functional programming paradigm,
one has to consider functions of higher type, and thus extend the function alge-
bras by a typed lambda calculus. To really make use of this feature, it is desirable
to allow the definition of higher type functions by recursion. Higher type recur-
sion was originally considered by Gödel [10] for the analysis of logical systems.
Systems with recursion in all finite types characterizing polynomial time were
given by Bellantoni et al. [5] and Hofmann [12], based on the first-order system
of Bellantoni and Cook [4].

We define an analogous system that characterizes NC while allowing an ap-
propriate form of recursion, viz. logarithmic recursion as used by Clote [8] and
Bellantoni [2], in all finite types. More precisely, our system is a typed lambda
calculus which allows two kinds of function types, denoted σ � τ and σ → τ ,
and two sorts of variables of the ground type ι, the complete ones in addition
to the usual ones, which are called incomplete for emphasis. A function of type
σ → τ can only be applied to complete terms of type σ, i.e., terms containing
only complete free variables.

It features two recursion operators LR and CR, the latter corresponding to
Clote’s [8] concatenation recursion on notation, which can naturally only be
applied to first-order functions. The former is a form of recursion of logarithmic
length characteristic of all function algebra representations of NC, and here can
be applied to functions of all linear types, i.e., types only built up using ι and�.
The function being iterated, as well as the numerical argument being recurred
on have to be complete, i.e., the type of LR is σ � (ι → σ � σ) → ι → σ for
linear σ.

Our analysis clearly reveals the different roles played by the two forms of
recursion in characterizing NC: Logarithmic recursion controls the runtime, in
that the degree of the polylogarithm that bounds the runtime depends only on
the number of occurrences of LR. On the other hand, concatenation recursion is
responsible for parallelism; the degree of the polynomial bounding the amount
of hardware used depends only on the number of occurrences of CR (and the
number of occurences of the constant #.)

Linear Ramified Higher Type Recursion and Parallel Complexity 3

The crucial restriction in our system, justifying the use of linear logic nota-
tion, is a linearity constraint on variables of higher types: all higher type variables
in a term must occur at most once.
The main new contribution in the analysis of the complexity of the system

is a strict separation between the term, i.e., the program, and the numerical
context, i.e., its input and data. Whereas the runtime may depend polynomially
on the former, it may only depend polylogarithmically on the latter.
To make use of this conceptual separation, the algorithm that unfolds re-

cursions computes, given a term and context, a recursion-free term plus a new
context . In particular, it does not substitute numerical parameters, as this would
immediately lead to linear growth, but only uses them for unfolding; in some
cases, including the reduction of CR, it extends the context. This way, the growth
of terms in the elimination of recursions is kept under control. In earlier systems
that comprised at least polynomial time this strict distinction was not necessary,
since the computation time there may depend on the input superlinearly. Note
that any reasonable form of computation will depend at least linearly on the size
of the program.
A direct extension to higher types of the first-order system of Bellantoni [2]

would have a constant for concatenation recursion of linear type (ι � ι)� ι � ι.
This causes problems in our analysis because the amount of hardware required
depends exponentially on the number of CR in a term, thus we must not allow
duplications of this constant during the unfolding of LR. The only way to avoid
this is by giving CR the more restrictive typ (ι → ι) � ι → ι. This weaker form
of concatenation recursion nevertheless suffices to include all of NC, when the
set of base functions is slightly extended.
Finally, in order to be able to handle numerals in parallel logarithmic time,

we use a tree data structure to store numerals during the computation. Whereas
trees are used as the principal data structure in other characterizations of parallel
complexity classes [15,16], our system works with usual binary numerals, and
trees are only used in the implementation.

2 Clote’s Function Algebra for NC

Clote [8] gives a function algebra characterization of NC using two recursion
schemes. The class A is defined as the least class of functions that contain the
constant 0, projections πn

j (x1, . . . , xn) = xj , the binary successors s0, s1, bit
test bit, binary length |x| := �log2(x+ 1)�, and # where x#y = 2|x|·|y|, and is
closed under composition and the following two forms of recursion:
A function f is defined by concatenation recursion on notation (CRN) from

functions g, h0, h1 if

f(0,−→x) = g(−→x)
f(si(y),−→x) = shi(y,−→x)(f(y,−→x)) ,

4 K. Aehlig et al.

and f is defined from g, h0, h1 and r by weak bounded recursion on notation
(WBRN) if there is F such that

F (0,−→x) = g(−→x)
F (si(y),−→x) = hi(y,−→x , F (y,−→x))

F (y,−→x) ≤ r(y,−→x)
f(y,−→x) = F (|y| ,−→x) .

Theorem 1 (Clote [8]). A number-theoretic function f is in A if and only if
f is in NC.

It is easy to see that the recursion scheme WBRN can be replaced by the
following scheme: f is defined from g, h and r by bounded logarithmic recursion
if

f(0,−→x) = g(−→x)
f(y,−→x) = h(y,−→x , f(H(y),−→x)) for y > 0
f(y,−→x) ≤ r(y,−→x) ,

where H(n) :=
⌊ n

2�|n|/2�

⌋
has length about half the length of n. Both forms

of recursion produce log |y| iterations of the step function. We shall denote the
function algebra with bounded logarithmic recursion by A as well.

3 Formal Definition of the System

We use simple types with two forms of abstraction over a single base type ι, i.e.,
our types are given by the grammar

σ, τ ::= ι | σ � τ | σ → τ ,

and we call the types that are built up from ι and � only the linear types.
As the intended semantics for our base type are the binary numerals we have

the constants 0 of type ι and s0 and s1 of type ι � ι. Moreover we add constants
len of type ι � ι and bit of type ι � ι � ι for the corresponding base functions
of A.
The functionality of the base function # is split between two constants, a

unary # of type ι → ι to produce growth, and sm of type ι � ι � ι � ι that
performs the multiplication of lengths without producing growth. The intended
semantics, reflected in the conversion rules below, is #n = 2|n|2 and sm(w, a, b) =
2|a|·|b| mod 2|w|.
In order to embed A into the system, we need two more constants drop

of type ι � ι � ι and half of type ι � ι, intended to denote the functions
drop(n,m) =

⌊
n

2|m|
⌋
and H, respectively.

Linear Ramified Higher Type Recursion and Parallel Complexity 5

We allow case-distinction for arbitrary types, so we have a constant dσ of
type ι � σ � σ � σ for every type σ. Recursion is added to the system via
the constant LR and parallelism via the constant CR. Their types are

CR : (ι → ι) � ι → ι

LRσ : σ � (ι → σ � σ) → ι → σ for σ linear

Terms are built from variables and constants via abstraction and typed appli-
cation. We have incomplete variables of every type, denoted by x, y, . . . and
complete variables of ground type, denoted by x, y, All our variables and
terms have a fixed type and we add type superscripts to emphasize the type: xσ,
xι, tσ.
Corresponding to the two kinds of function types, there are two forms of

abstraction

(λxσ.tτ)σ�τ and (λxι.tτ)ι→τ

and two forms of application
(
tσ�τ sσ

)τ and (tσ→τ sσ)τ ,

where in the last case we require s to be complete, and a term is called complete
if all its free variables are. It should be noted that, although we cannot form
terms of type σ → τ with σ �= ι directly via abstraction, it is still important to
have that type in order to express, for example, that the first argument of LR
must not contain free incomplete variables.
In the following we omit the type subscripts at the constants dσ and LRσ if

the type is obvious or irrelevant. Moreover we identify α-equal terms. As usual
application associates to the left. A binary numeral is either 0, or of the form
si1(. . . (sik

(s10))). We abbreviate the binary numeral (s10) by 1.
The semantics of ι as binary numerals (rather than binary words) is given

by the conversion rule s0 0 �→ 0. In the following definitions we identify binary
numerals with the natural number they represent. The base functions get their
usual semantics, i.e., we add conversion rules lenn �→ |n|, dropnm �→ drop(n,m),
half n �→ H(n), bitn i �→ ⌊

n
2i

⌋
mod 2, smwmn �→ sm(w,m, n). Moreover, we

add the conversion rules

dσ 0 �→ λxσ yσ . x

dσ (sin) �→ λxσ
0 xσ

1 . xi

#n �→ s0|n|21
CRh 0 �→ 0
CRh (si n) �→ d(ι�ι) (h (sin)) s0 s1 (CRhn)
LR g h 0 �→ g

LR g hn �→ hn (LR g h (half n))

6 K. Aehlig et al.

Here we always assumed that n,m and si n are binary numerals, and in particular
that the latter does not reduce to 0. In the last rule, n has to be a binary numeral
different from 0.
As usual the reduction relation is the closure of �→ under all term forming

operations and equivalence is the symmetric, reflexive, transitive closure of the
reduction relation. As all reduction rules are correct with respect to the intended
semantics and obviously all closed normal terms of type ι are numerals, closed
terms t of type ι have a unique normal form that we denote by tnf .
As usual, lists of notations for terms/numbers/ . . . that only differ in suc-

cessive indices are denoted by leaving out the indices and putting an arrow
over the notation. It is usually obvious where to add the missing indices. If not
we add a dot wherever an index is left out. Lists are inserted into formulae
“in the natural way”, e.g., −−→

hm· = hm1, . . . , hmk and x
−→
t = ((x t1) . . . tk) and

|g|+−→|s| = |g|+ |s1|+ . . .+ |sk|. Moreover, by abuse of notation, we denote lists
consisting of maybe both, complete and incomplete variables also by −→x .
As already mentioned, we are not interested in all terms of the system, but

only in those fulfilling a certain linearity condition.

Definition 1. A term t is called linear, if every variable of higher type in t
occurs at most once.

Since we allow that the variable x does not occur in λx.t, our linear terms should
correctly be called affine, but we keep the more familiar term linear.

4 Completeness

Definition 2. A term t : −→ι → ι denotes the function f(−→x) if for every −→n ,
t−→n reduces to the numeral f(−→n).

We will sometimes identify a term with the function it denotes.
In order to prove that our term system can denote all functions in NC, we

first have to define some auxiliary terms. We define ones := CR(λx.1), then we
have that onesn = 2|n| − 1, i.e., a numeral of the same length as n consisting of
ones only. We use this to define

≤� := λy b . bit (onesy) (len b) ,

so that ≤� mn is the characteristic function of |m| ≤ |n|. We will write ≤� infix
in the following. It is used to define

max� := λa b . d (a ≤� b) ba

computing the longer of two binary numerals.
Next we define rev := λx.CR(λi.bitx i), so that revmn returns the |n| least

significant bits of m reversed. Finally we define the binary predecessor as p :=
λx.dropx 1.

Linear Ramified Higher Type Recursion and Parallel Complexity 7

Theorem 2. For every function f(−→x) in A, there is a closed linear term tf of
type −→ι → ι that denotes f .

Proof. The proof follows the lines of Bellantoni’s [2] completeness proof for his
two-sorted function algebra for NC.
We will use the following fact: for every function f ∈ A there is a polynomial

qf such that for all −→n , |f(−→n)| ≤ qf (
−→|n|). To prove the theorem, we will prove

the following stronger claim:

For every f(−→x) ∈ A, there is a closed linear term tf of type ι → −→ι � ι
and a polynomial pf such that for every −→n , tf w−→n reduces to f(−→n) for
all w with |w| ≥ pf (

−→|n|).
The claim implies the theorem, since by use of the constant # and the term
max�, we can define terms wf : −→ι → ι such that for all −→n , |wf

−→n | ≥ pf (
−→|n|).

We prove the claim by induction on the definition of f in the function algebra
A with bounded logarithmic recursion.

If f is any of the base functions 0, si, |.| , bit, then we let tf := λw.c where c is
the corresponding constant of our system, and for f = πn

j we let tf := λw−→x .xj .
In these cases we can set pf = 0, and the claim obviously holds.

If f is #, then we set tf := λw . smw. It holds that tf w a b = a#b as long
as |a| · |b| < |w|, so we set pf (x, y) = x · y + 1.
If f is defined by composition, f(−→x) = h(

−−−→
g(−→x)), then by induction we have

terms th,
−→
tg and polynomials ph,−→pg . We define tf := λw−→x .thw

−−−−−−→
(tgw−→x) and

pf (−→x) := ph(
−−−−→
qg(−→x)) + −−−−→

pg(−→x) . The claim follows easily from the induction
hypothesis.

Now let f be defined by CRN from g, h0, h1, and let tg, thi
be given by

induction. First we define a function h that combines the two step functions into
one, by

h := λw y . d y (th0 w (p y)) (th1 w (p y))

then we use this to define a function f ′ that computes an end-segment of f(y,−→x)
reversed, using CR, by

aux := λw y −→x z . d (z ≤� y)
(
hw (drop y (p z))−→x)

(
bit (tg w−→x) (|z| − |y| − 1))

f ′ := λw y −→x .CR (auxw y −→x) ,

where |z| − |y| − 1 is computed as len (drop z (s1 y)). Finally, the computed value
is reversed, and tf is defined by

tf := λw y −→x . rev (f ′ w y −→x w)w .

8 K. Aehlig et al.

In order for this to work, w has to be large enough for g and the hi to be
computed correctly by the inductive hypothesis, thus pf needs to maximize pg

and the phi
. Also, w has to be long enough for the concatenation recursion in the

definition of f ′ to actually compute all bits of f(y,−→x), so |w| has to be larger
than |y|+ |g(−→x)|. All this is guaranteed if we set

pf (y,−→x) := pg(−→x) +
∑

i=1,2

phi(y,−→x) + y + qg(−→x) + 1 .

Finally, let f be defined by bounded logarithmic recursion from g, h and r,

f(0,−→x) = g(−→x)
f(y,−→x) = h(y,−→x , f(H(y),−→x)) for y > 0
f(y,−→x) ≤ r(y,−→x) ,

and let tg and th be given by induction. In order to define tf , we cannot use log-
arithmic recursion on y since y is incomplete. Instead we simulate the recursion
on y by a recursion on a complete argument.
We first define a function Y that yields the values H(k)(y) that are needed

in the recursion as

S := λu vι�ι y .
(
d (u ≤� z) y (half (v y))

)

Y := λzw . LRι�ι (λy.y)Sw .

We now use this function to define a term f ′ computing f by recursion on a
complete argument z by

T := λu vι�−→ι �ι y −→x .
(
d ((Y uw y) = 0) (tg w y −→x)
(
th w (Y uw y)−→x (v y −→x))

)

f ′ := λwz . LRι�−→ι �ι (λ y −→x . 0)T z

where the test x = 0 is implemented as d (bit (s0 x) (lenx)) 1 0. Finally, tf is
defined by identifying the complete arguments in f ′:

tf := λw . f ′ ww

To show the correctness of this definition, define

pf (y,−→x) := 2y + ph(y,−→x , qr(y,−→x)) + pg(−→x)

and fix y,−→x and w with |w| ≥ pf (|y| ,−→|x|).
Note that the only values of z for which the function Y is ever invoked during

the computation are H(k)(w) for 0 ≤ k ≤ ||y||, and that for these values of z,

Linear Ramified Higher Type Recursion and Parallel Complexity 9

Y (z, w, y) varies over the values H(k)(y). By a downward induction on k we show
that for these values of z,

(f ′(w, z, y,−→x) = f(Y (z, w, y),−→x) .
This implies the claim for tf , since Y (w,w, y) = y.

The induction basis occurs for k = ||y||, where V (z, w, y) = 0. Since |w| ≥
2 |y|, we have z > 0, thus the recursive step in the definition of f ′ is used, and
the first branch of the case distinction is chosen. Therefore the equality follows
from the fact that w is large enough for tg to compute g correctly.
In the inductive step, we use the fact that Y (H(z), w, y) = H(Y (z, w, y)),

and that w is large enough for th to compute h correctly. Since for z = H(k−1)(w)
we have Y (z, w, y) > 0, we get

f ′(w, z, y,−→x) = th(w, Y (z, w, y),−→x , f ′(w,H(z), y,−→x)
= th(w, Y (z, w, y),−→x , f(Y (H(z), w, y),−→x)
= th(w, Y (z, w, y),−→x , f(H(Y (z, w, y)),−→x)
= h(Y (z, w, y),−→x , f(H(Y (z, w, y)),−→x))
= f(Y (z, w, y),−→x)

where the second equality holds by the induction hypothesis. This completes the
proof of the claim and the theorem. �

5 Soundness

Definition 3. The length |t| of a term t is inductively defined as follows: For a
variable x, |x| = 1, and for any constant c other than d, |c| = 1, whereas |d| = 3.
For complex terms we have the usual clauses |r s| = |r|+ |s| and |λx.r| = |r|+1.
The length of the constant d is motivated by the desire to decrease the length
of a term in the reduction of a d-redex.

Note that due to our identification of natural numbers with binary numerals,
the notation |n| is ambiguous now. Nevertheless, in the following we will only
use |n| as the term length defined above which for numerals n differs from the
binary length only by one.

Definition 4. For a list −→n of numerals, define |−→n | := max(−→|n|).
Definition 5. A context is a list of pairs (x, n) of variables (complete or incom-
plete) of type ι and numerals, where all the variables are distinct. If −→x is a list
of distinct variables of type ι and −→n a list of numerals of the same length, then
we denote by −→x ;−→n the context

−−−→
(x, n) .

Definition 6. For every symbol c of our language and term t,)c(t) denotes the
number of occurrences of c in t. For obvious aesthetic reasons we abbreviate)#(t)
by #(t).

Definition 7. A term t is called simple if t contains none of the constants #,
CR or LR.

10 K. Aehlig et al.

Bounding the Size of Numerals

Lemma 1. Let t be a simple, linear term of type ι and −→x ;−→n a context, such
that all free variables in t are among −→x . Then for t∗ := t[−→x := −→n]nf we have
|t∗| ≤ |t|+ |−→n |.

Proof. By induction on |t|. We distinguish cases according to the form of t.
Case 1: t is x−→r for a variable x. Since x must be of type ι, −→r must be

empty, and t∗ is just one of the numerals in −→n .
Case 2: t is c−→r for a constant c. Here we have four subcases, depending on

the constant c.
Case 2a: c is 0, so −→r is empty and t is already normal.
Case 2b: c is si, so t is c r for a term r of type ι. Let r∗ := r[−→x := −→n]nf ,

by the induction hypothesis we have |r∗| ≤ |r| + |−→n |, and therefore we get
|t∗| ≤ |r∗|+ 1 ≤ |t|+ |−→n | .
Case 2c: c is one of the constants len, half, drop, bit or sm, so t is c r−→s for

terms r,−→s of type ι. Let r∗ := r[−→x := −→n]nf , by the induction hypothesis we
have |r∗| ≤ |r|+ |−→n |, and therefore we get |t∗| ≤ |r∗| ≤ |t|+ |−→n | .
Case 2d: c is dσ, so t is dσ s u0 u1 −→v , where s is of type ι and ui are of type σ.

Depending on the last bit i of the value of s[−→x := −→n], t reduces to the shorter
term t′ = ui

−→v , to which we can apply the induction hypothesis obtaining the
normal form t∗ with |t∗| ≤ |t′|+ |−→n | < |t|+ |−→n |.
Case 3: t is (λx.r) s−→s . Here we have two subcases, depending on the number

of occurrences of x in r.
Case 3a: x occurs at most once, then the term t′ := r[x := s]−→s is smaller

than t, and we can apply the induction hypothesis to t′.
Case 3b: x occurs more than once, and thus is of type ι. Then s is of type ι, so

we first apply the induction hypothesis to s, obtaining s∗ := s[−→x := −→n]nf with
|s∗| ≤ |s| + |−→n |. Now we let t′ := r−→s , and we apply the induction hypothesis
to t′ and the context −→x , y;−→n , s∗, so we get

|t∗| ≤ |t′|+ |−→n , s∗| ≤ |t′|+ |s|+ |−→n | .

The last case, where t is λx.r, cannot occur because of the type of t. �

Data Structure

We represent terms as parse trees, fulfilling the obvious typing constraints. The
number of edges leaving a particular node is called the out-degree of this node.
There is a distinguished node with in-degree 0, called the root. Each node is
stored in a record consisting of an entry cont indicating its kind, plus some
pointers to its children. We allow the following kinds of nodes with the given
restrictions:

– Variable nodes representing a variable x. Variable nodes have out-degree 0.
Every variable has a unique name and an associated register R[x].

Linear Ramified Higher Type Recursion and Parallel Complexity 11

– Abstraction nodes λx representing the binding of the variable x. Abstraction
nodes have out-degree one, and we denote the pointer to its child by succ.

– For each constant c, there are nodes representing the constant c. These nodes
have out-degree 0.

– Application nodes @ representing the application of two terms. The obvious
typing constraints have to be fulfilled. We denote the pointers to the two
children of an application node by left and right.

– Auxiliary nodes κi representing the composition of type one. These nodes
are labeled with a natural number i, and each of those nodes has out-degree
either 2 or 3. They will be used to form 2/3-trees (as e.g. described by
Knuth [13]) representing numerals during the computation. We require that
any node reachable from a κ·-node is either a κ· node as well or one of the
constants s0 or s1.

– Auxiliary nodes κ′ representing the identification of type-one-terms with
numerals (via “applying” them to 0). The out-degree of such a node, which is
also called a “numeral node”, either is zero, in which case the node represents
the term 0, or the out-degree is one and the edge starting from this node
either points to one of the constants s0 or s1 or to a κ· node.

– Finally, there are so-called dummy nodes � of out-degree 1. The pointer to
the child of a dummy node is again denoted by succ. Dummy nodes serve to
pass on pointers: a node that becomes superfluous during reduction is made
into a dummy node, and any pointer to it will be regarded as if it pointed
to its child.

A tree is called a numeral if the root is a numeral node, all leaves have the
same distance to the root and the label i of every κi node is the number of leaves
reachable from that node. By standard operations on 2/3-trees it is possible in
sequential logarithmic time to

– split a numeral at a given position i.
– find out the i’th bit of the numeral.
– concatenate two numerals.

So using κ′ and κ· nodes is just a way of implementing “nodes” labeled with a
numeral allowing all the standard operations on numerals in logarithmic time.
Note that the length of the label i (coded in binary) of a κi node is bounded by
the logarithm of the number of nodes.

Normalization Algorithms and Their Complexity

Lemma 2. Let t be a simple, linear term of type ι and −→x ;−→n a context such that
all free variables in t are among the −→x . Then the normal form of t[−→x := −→n]
can be computed in time O(|t| · log |−→n |) by O(|t| · |−→n |) processors.
Proof. We start one processor for each of the nodes of the parse-tree of t, with a
pointer to this node in its local register. The registers associated to the variables
−→x in the context contain pointers to the respective numerals−→n , and the registers
associated to all other variables are initialized with a NULL pointer.

12 K. Aehlig et al.

The program operates in rounds, where the next round starts once all active
processors have completed the current round. The only processors that will ever
do something are those at the application or variable nodes. Thus all processors
where cont /∈ {@, x, d} can halt immediately. Processors at d nodes do not halt
because they will be converted to variable nodes in the course of the reduction.
The action of a processor at an application node in one round depends on

the type of its sons. If the right son is a dummy node, i.e., right.cont = �,
then this dummy is eliminated by setting right := right.succ. Otherwise, the
action depends on the type of the left son.

– If left.cont = �, then eliminate this dummy by setting left := left.succ.
– If left.cont = λx, then this β-redex is partially reduced by copying the
argument right into the register R[x] associated to the variable x. The sub-
stitution part of the β-reduction is then performed by the processors at vari-
able nodes. Afterwards, replace the @ and λx nodes by dummies by setting
cont := �, left.cont := � and succ := left.

– If left.cont ∈ {si, len, half} and the right son is a numeral, right.cont = κ′,
then replace the current node by a dummy, and let succ point to a numeral
representing the result. In the case of si and half, this can be implemented
by 2/3-tree operations using sequential time O(log |−→n |).
In the case of len, the result is equal to the number i of leaves of the numeral
argument. This value is read off the topmost κi node, and a numeral of that
value is produced. Since i is a number of length O(log |−→n |), this can also be
done in sequential time O(log |−→n |).

– If left.cont = @, left.left.cont ∈ {drop, bit} and right and left.right
both point to numerals, then again replace the current node by a dummy,
and let succ point to a numeral representing the result, which again can be
computed by 2/3-tree operations in time O(log |−→n |).

– If left.cont = left.left.cont = @, left.left.left.cont = sm and all of
right, left.right and left.left.right point to numerals, then again the
current node is replaced by a dummy with succ pointing to the result.
To compute the result, the lengths i and j are read off the second and third
argument, and multiplied. As i and j are O(log |−→n |) bit numbers, this can
be done in parallel time O(log log |−→n |) by O(log3 |−→n |) many processors.
The product i · j is compared to the length of the first argument; let the
maximum of both be k. Now the result is a numeral consisting of a one
followed by k zeroes, which can be produced in parallel time log2 k by O(k)
many processors using the square-and-multiply method, which suffices since
k ≤ O(log |−→n |).

– Finally, if left.cont = d and right.cont = κ′, then extract the last bit
b of the numeral at right, and create two new variables x0 and x1. Then
reduce the d-redex by replacing the current node and the right son by ab-
straction nodes, and the left son by a variable node, i.e., setting cont := λx0,
right.cont := λx1, succ.right, succ.succ := left and left.cont := xb.

A processor with cont = x only becomes active when R[x] �= NULL, and what
it does then depends on the type of x.

Linear Ramified Higher Type Recursion and Parallel Complexity 13

If x is not of ground type, then the variable x occurs only in this place, so
the substitution can be safely performed by setting cont := � and succ := R[x].
If x is of type ι, the processor waits until the content of register R[x] has

been normalized, i.e., it acts only if R[x].cont = κ′. In this case, it replaces the
variable node by a dummy, and lets succ point to a newly formed copy of the
numeral in R[x]. This copy can be produced in parallel time O(log |−→n |) by |−→n |
processors, since the depth of any numeral is bounded by log |−→n |.
Concerning correctness, note that the tree structure is preserved, since nu-

merals being substituted for type ι variables are explicitly copied, and variables
of higher type occur at most once. Obviously, no redex is left when the program
halts.
For the time bound, observe that every processor performs at most one proper

reduction plus possibly some dummy reductions. Every dummy reduction makes
one dummy node unreachable, so the number of dummy reductions is bounded
by the number of dummy nodes generated. Every dummy used to be a proper
node, and the number of nodes is at most 2 |t|, so this number is bounded by
2 |t|. Thus at most 4 |t| reductions are performed, and the program ends after at
most that many rounds. As argued above, every round takes at most O(log |−→n |)
operations with O(|−→n |) many additional processors. �
The next lemma is the key to show that all terms can be normalized in NC: it

shows how to eliminate the constants #, LR and CR. As mentioned in the intro-
duction, we have to distinguish between the program, i.e., the term we wish to
normalize, and its input, given as a context. The runtime and length of the out-
put term may depend polynomially on the former, but only polylogarithmically
on the latter.
Since an ordinary O(·)-analysis is too coarse for the inductive argument, we

need a more refined asymptotic analysis. Therefore we introduce the following
notation:

f(n) � g(n) : ⇐⇒ f(n) ≤ (1 + o(1))g(n) ,

or equivalently lim supn→∞
f(n)
g(n) ≤ 1.

Lemma 3. Let t be a linear term of linear type and −→x ;−→n a context with all
free variables of t[−→x := −→n] incomplete. Then there are a term simp(t,−→x ;−→n)
and a context −→y ;−→m such that simp(t,−→x ;−→n)[−→y := −→m] is simple and equivalent
to t[−→x := −→n], and which can be computed in time

T (|−→n |) � 2�LR(t) · |t| · (2#(t) · log |−→n |)�LR(t)+2

by
P (|−→n |) � |t| · |−→n |2#(t)(�CR(t)+2) · (log |−→n |)2#(t)(�LR(t)+1)

processors, such that

|simp(t,−→x ;−→n)| � |t| ·
(
2#(t) · log |−→n |

)�LR(t)
and |−→m | � |−→n |2#(t)

.

14 K. Aehlig et al.

The proof is somewhat lengthy, so we sketch it first:
We start by describing the algorithm. It searches for the head-redex and

reduces it in the obvious way (and then continues in the same way until the
term is normal): in the case of a ground-type β-redex enlarge the context, in the
case of a higher type β-redex reduce it in the term; in the case of LR the step
term has to be unfolded only logarithmically many times, so we can just form
a new term, whereas in the case of CR we have to use parallelism. However, in
this case the result of every processor is just a single bit, so the results can be
collected efficiently and returned to the context (whereas in the case of LR the
result is a term of higher type). Note the crucial interplay between the length of
the term, the size of the context, the running time and the number of processors
needed; therefore we have to provide all four bounds simultaneously.
After the description of the algorithm, a long and tedious (but elementary)

calculation follows showing that all bounds indeed hold in every case. The struc-
ture of the proof is always the same: in the interesting cases a numerical argument
has to be evaluated in order to be able to reduce the redex (i.e., the numeral
we recurse on, or the numeral to be put in the context in the case of a ground
type β-redex). Then the induction hypothesis yields the size of this numeral and
also the amount of time and processors needed. Then calculate the length of the
unfolded term. The induction hypothesis for this term yields the amount of time
and processors needed for the final computation, and also the bounds for the
final output. Summing up all the times (calculation of the numeral, unfolding,
final computation) one verifies that the time bound holds as well.

Proof (of lemma 3). By induction on)LR(t), with a side-induction on |t| show
that the following algorithm does it:
By pattern matching, determine in time O(|t|) the form of t, and branch

according to the form.

– If t is a variable or one of the constants 0 or d, then return t and leave −→x ;−→n
unchanged.

– If t is c−→s , where c is one of the constants si, drop, bit, len or sm then
recursively simplify −→s , giving −→

s∗ and contexts −→yj ;−→mj , and return c
−→
s∗

and −→−→y ;−→−→m .
– If t is d r−→s , then simplify r giving r′ and −→y ;−→m . Compute the numeral

r∗ := r′[−→y := −→m]nf , and reduce the redex d r∗, giving t′, and recursively
simplify t′ −→s with context −→x ;−→n .

– If t is # r then simplify r giving r′ and −→y ;−→m . Compute the numeral r∗ :=
r′[−→y := −→m]nf , and return a new variable y′ and the context y′; 2|r∗|2 .

– If t is CRh r, then simplify r giving r′ and −→y ;−→m , and compute the numeral
r∗ := r′[−→y := −→m]nf .
Spawn |r∗| many processors, one for each leaf of r∗, by moving along the
tree structure of r∗. The processor at bit i of r∗ simplifies h z in the context
−→x , z;−→n ,

⌊
r∗/2i

⌋
(with z a new complete variable), giving a term hi and

context −→yi ;−→mi , then he computes h∗
i := hi[yi := mi]

nf , retaining only the
lowest order bit bi.

Linear Ramified Higher Type Recursion and Parallel Complexity 15

The bits −→
b are collected into a 2/3-tree representation of a numeral m,

which is output in the form of a new variable z and the context z;m.
– t is LR g hm−→s then simplifym, givingm′ and −→xm ;−−→nm . Normalizem′ in the
context −→x ,−→xm ;−→n ,−−→nm , giving m∗. Form k numerals mi = halfi(m∗) and
sequentially simplify −−−→

hm· , giving
−→
h′ . (Of course, more precisely simplify hx

for a new variable x in the context extended by x;mi.) Then form the term

t′ := h′
0(h

′
1 . . . (h

′
k g))−→s

and simplify it.
– If t is of the form λx.r then recursively simplify r.
– If t is of the form (λx.r) s−→s and x occurs at most once in r then recursively
simplify r[x := s]−→s .

– If t is of the form (λx.r) s−→s and x occurs several times in r, then simplify
s giving s′ and a context −→y ;−→m . Normalize s′ in this context giving the
numeral s∗. Then simplify r−→s in the context −→x , x;−→n , s∗.

For correctness, note that in the case d r−→s simplifying r takes time

� 2�LR(r) · |r| ·
(
2#(r) · log |−→n |

)�LR(r)+2

and uses
� |r| · |−→n |2#(r)(�CR(r)+2) (log |−→n |)2#(r)(�LR(r)+1)

many processors. For the output we have |r′| � |r| · (
2#(r) · log |−→n |)�LR(r) and

|−→m | � |−→n |2#(r)

. Hence the time used to normalize r′ (using the algorithm of
lemma 2) is O(|r′| · log |−→m |), which is (order of)

|r| ·
(
2�LR(r) · log |−→n |

)�LR(r)+1

and the number of processors needed is O(|r′| · |−→m |) ≤ |r| · |−→n |2#(r)+1. Finally,
to simplify t′−→s we need time

� 2�LR(−→s) · (|−→s |+ 3) · (2#(−→s) · log |−→n |)�LR(−→s)+2

and the number of processors is

� (|−→s |+ 3) |−→n |2#(−→s)(�CR(−→s)+2) (log−→n)2#(−→s)(�LR(−→s)+1)

Summing up gives an overall time that is

� 2�LR(t) · (|r|+ |−→s |+ 3) ·
(
2#(t) · log |−→n |

)�LR(t)+2

which is a correct bound since |d| = 3. Maximizing gives that the overall number
of processors is

� |t| · |−→n |2#(t)(�CR(t)+2) (log |−→n |)2#(t)(�LR(t)+1)

16 K. Aehlig et al.

The length of the output term is

� (|−→s |+ 3) · (
2#(−→s) · log |−→n |)�LR(−→s)

and the size of the output context is � |−→n |2#(−→s)

, which suffices.

In the case # r we obtain the same bounds for simplification and normal-
ization of r as in the previous case. For r∗ we get

|r∗| = O(|r′|+ |−→m |) � |−→n |2#(r)

Computing the output now takes time

log |r∗|2 = 2#(r)+1 · log |−→n |

and
|r∗|2 � |−→n |2#(r)+1

many processors. Thus the overall time is

� 2�LR(r) · |r| ·
(
2#(r)+1 · log |−→n |

)�LR(r)+2

and the number of processors is

� |r| · |−→n |2#(r)+1(�CR(r)+2) · (log |−→n |)2#(r)(�LR(r)+1) .

The length of the output term is 1, and the size of the output context is bounded
by |r∗|2 + 1 � |−→n |2#(r)+1

, which implies the claim.

In the case CRh r note that the arguments h : ι → ι and r : ι both have
to be present, since t has to be of linear type (and CR : (ι → ι) � ι → ι). We
obtain the same bounds for simplification and normalization of r and the length
of the numeral r∗ as in the previous case. Spawning the parallel processors and
collecting the result in the end each needs time log |r∗| = 2#(r) · |−→n |. The main
work is done by the |−→n |2#(r)

many processors that do the simplification and
normalization of the step terms. Each of them takes time

� 2�LR(h) · (|h|+ 1) ·
(
2#(h) · log |−→n , r∗|

)�LR(h)+2

� 2�LR(h) · (|h|+ 1) ·
(
2#(h)+#(r) · log |−→n |

)�LR(h)+2

and a number of sub-processors satisfying

� (|h|+ 1) · |−→n , r∗|2#(h)(�CR(h)+2) · (log |−→n , r∗|)2#(h)(�LR(h)+1)

� (|h|+ 1) · |−→n |2#(h)+#(r)(�CR(h)+2) · (2#(r) log |−→n |)2#(h)(�LR(h)+1)

Linear Ramified Higher Type Recursion and Parallel Complexity 17

� (|h|+ 1) · |−→n |2#(h)+#(r)(�CR(h)+2) · (log |−→n |)2#(h)+#(r)(�LR(h)+1)

to compute hi and −→yi ;−→mi with

|hi| � (|h|+ 1) ·
(
2#(h) · log |−→n , r∗|

)�LR(h)

� (|h|+ 1) ·
(
2#(h)+#(r) · log |−→n |

)�LR(h)

and
|−→mi | � |−→n , r∗|2#(h)

� |−→n |2#(h)+#(r)

Now the normal form h∗
i is computed in time

O(|hi| · log |−→mi |) � (|h|+ 1) ·
(
2#(h)+#(r) · log |−→n |

)�LR(h)+1

by

O(|hi| · |−→mi |) � (|h|+ 1) |−→n |2#(h)+#(r)+1 · (log |−→n |)2#(h)+#(r)(�LR(h)+1)

many sub-processors. Summing up the times yields that the overall time is

� 2�LR(r) · |r| ·
(
2#(r) · log |−→n |

)�LR(r)+2

+ 2�LR(h) · (|h|+ 1) ·
(
2#(h)+#(r) · log |−→n |

)�LR(h)+2

� 2�LR(t) · (|r|+ |h|+ 1) ·
(
2#(t) · log |−→n |

)�LR(t)+2

The number of sub-processors used by each of the |r∗| processes is

� (|h|+ 1) · |−→n |2#(h)+#(r)(�CR(h)+2) · (log |−→n |)2#(h)+#(r)(�LR(h)+1)

and multiplying this by the upper bound |−→n |2#(r)

on the number of processes
yields that the bound for the total number of processor holds. The output term is
of length 1, and the length of the output context is bounded by |r∗| � |−→n |2#(r)

.

In the case LR g hm−→s note that, as t has linear type, all the arguments up
to and including the m have to be present. Moreover, h is in a complete position,
so it cannot contain incomplete free variables, therefore neither can do any of
the

−→
h′ ; so t′ really is linear. Due to the typing restrictions of the LR the step

functions −−→
hm· have linear type. So in all cases we’re entitled to recursively call

the algorithm and to apply the induction hypothesis. For calculatingm∗ we have
the same bounds as in the previous cases. We have k ∼ log |m∗| � 2#(m) log |−→n |.
The time needed for calculating the

−→
h′ is

≤ k2�LR(h)(|h|+ 1)(2#(h) log |−→n ,m∗|)�LR(h)+2

18 K. Aehlig et al.

� 2�LR(h)(|h|+ 1)(2#(h)+#(m) log |−→n |)�LR(h)+3

For the length
∣∣∣−→h′

∣∣∣ we have
∣∣∣−→h′

∣∣∣ � (|h|+ 1) (2#(h) · log |−→n ,m∗|)�LR(h)

� (|h|+ 1) (2#(h)+#(m) log |−→n |)�LR(h)

and the length of the numerals −→−→n in the contexts output by the computation
of the

−→
h′ is bounded by |−→n ,m∗|2#(h)

� (|−→n |2#(m)

)2
#(h)

= |−→n |2#(m)+#(h)

. For
the length of t′ we have

|t′| ≤ k
∣∣∣−→h′

∣∣∣+ |g|+−→|s|
� (|h|+ |g|+−→|s| + 1) (2#(h)+#(m) log |−→n |)�LR(h)+1

So the final computation takes time

� 2�LR(t′) |t′| (2#(t′) log
∣∣∣−→n ,

−→−→n
∣∣∣)�LR(t′)+2

� 2�LR(g)+
−−−−→
�LR(s) (|h|+ |g|+−→|s| + 1)(2#(h)+#(m) log |−→n |)�LR(h)+1

· (2#(g)+−−−→#(s) · 2#(m)+#(h) log |−→n |)�LR(g)+
−−−−→
�LR(s) +2

� 2�LR(g)+
−−−−→
�LR(s) (|h|+ |g|+−→|s| + 1)(2#(t) log |−→n |)�LR(h)+1+�LR(g)+

−−−−→
�LR(s) +2.

So summing up all the times one verifies that the time bound holds. The number
of processors needed in the final computation is

� |t′| ·
∣∣∣−→n ,

−→−→n
∣∣∣
2#(t′)(�CR(t′)+2)

(log
∣∣∣−→n ,

−→−→n
∣∣∣)2#(t′)(�LR(t′)+1)

� (|h|+ |g|+−→|s| + 1)
(
2#(h)+#(m) log |−→n |

)�LR(h)+1

·
(
|−→n |2#(m)+#(h)

)2#(t′)(�CR(t′)+2)

·
(
2#(m)+#(h) log |−→n |

)2#(t′)(�LR(t′)+1)

� (|h|+ |g|+−→|s| + 1) · |−→n |2#(m)+#(h)+#(t′)(�CR(t′)+2)

·
(
2#(m)+#(h) log |−→n |

)�LR(h)+1+2#(t′)(�LR(t′)+1)

� |t| · |−→n |2#(t)(�CR(t)+2) ·
(
2#(m)+#(h) log |−→n |

)2#(t′)(�LR(h)+�LR(t′)+2)

� |t| · |−→n |2#(t)(�CR(t)+2) · (log |−→n |)2#(m)+#(h)+#(t′)(�LR(h)+�LR(t′)+2)

The context finally output is bounded by �
∣∣∣−→n ,

−→−→n
∣∣∣
2#(t′)

� |−→n |2#(m)+#(h)+#(t′)
.

The length of the final output is bounded by

� |t′| · (2#(t′) log
∣∣∣−→n ,

−→−→n
∣∣∣)�LR(t′)

Linear Ramified Higher Type Recursion and Parallel Complexity 19

� (|h|+ |g|+−→|s| + 1)(2#(h)+#(m) log |−→n |)�LR(h)+1

· (2#(t′)+#(m)+#(h) log |−→n |)�LR(t′)

� (|h|+ |g|+−→|s| + 1)(2#(t′)+#(m)+#(h) log |−→n |)�LR(t′)+�LR(h)+1

So all bounds hold in this case.

In the case λx.r note that due to the fact that t has linear type x has to
be incomplete, so we’re entitled to use the induction hypothesis.

In the case (λx.r) s−→s with several occurrences of x in r note that due
to the fact that t is linear, x has to be of ground type (since higher type variables
are only allowed to occur once). The time needed to calculate s′ is bounded by

2�LR(s) |s| (2#(s) log |−→n |)�LR(s)+2

and the number of processors is not too high. For the length of s′ we have

|s′| � |s| · (2#(s) log |−→n |)�LR(s)

and |−→m | � |−→n |2#(s)

. So the time for calculating s∗ is bounded by

� |s′| log |−→n ,−→m | � |s| · (2#(s) log |−→n |)�LR(s)+1

For the length of the numeral s∗ we have

|s∗| ≤ |s′|+ |−→n ,−→m | � |−→n |2#(s)

So the last computation takes time

2�LR(r−→s) · |r−→s |
(
2#(r−→s)+#(s) log |−→n |

)�LR(r−→s)+2
.

Summing up, the time bound holds. The number of processors needed for the
last computation is bounded by

� |r−→s | ·
(
|−→n |2#(s)

)2#(r−→s)(�CR(r−→s)+2) (
2#(s) log |−→n |

)2#(r−→s)(�LR(r−→s)+1)

� |t| · |−→n |2#(s)+#(r−→s)(�CR(r−→s)+2) (log |−→n |)2#(s)+#(r−→s)(�LR(r−→s)+1)

The context finally output is bounded by |−→n , s∗|2#(r−→s)

� |−→n |2#(s)+#(r−→s)

.

In all other cases the bounds trivially hold. �
We conclude that a term of linear type can be simplified by an NC algorithm,

where the degree of the runtime bound only depends on the number of occur-
rences of LR, and the degree of the hardware bound only depends on the number
of occurrences of # and CR. More precisely, we have the following corollary.

20 K. Aehlig et al.

Corollary 1. The term simp(t,−→x ;−→n) and the new context −→y ;−→m in the above
lemma can be computed in time

T (|−→n |) ≤ O((log |−→n |)�LR(t)+2)

by a number of processors satisfying

P (|−→n |) ≤ O(|−→n |2#(t)(�CR(t)+3)) .

Theorem 3. Let t be a linear term of type −→ι → ι. Then the function denoted
by t is in NC.

Proof. Let −→n be an input, given as 2/3-tree representations of numerals, and −→x
complete variables of type ι. Using Lemma 3, we compute t′ := simp(t−→x ,−→x ;−→n)
and a new context −→y ;−→m with |t′| ≤ (log |−→n |)O(1) and |−→m | ≤ |−→n |O(1) in time
(log |−→n |)O(1) by |−→n |O(1) many processors.
Then using Lemma 2 we compute the normal form t′[−→y := −→m]nf in time

O(|t′| · log |−→m |) = (log |−→n |)O(1) by O(|t′| |−→m |) = |−→n |O(1) many processors.
Hence the function denoted by t is computable in polylogarithmic time by

polynomially many processors, and thus is in NC. �
From Theorems 2 and 3 we immediately get our main result:

Corollary 2. A number-theoretic function f is in NC if and only if it is denoted
by a linear term of our system.

References

1. B. Allen. Arithmetizing uniform NC. Annals of Pure and Applied Logic, 53(1):1–50,
1991.

2. S. Bellantoni. Predicative Recursion and Computational Complexity. PhD thesis,
University of Toronto, 1992.

3. S. Bellantoni. Characterizing parallel time by type 2 recursions with polynomial
output length. In D. Leivant, editor, Logic and Computational Complexity, pages
253–268. Springer LNCS 960, 1995.

4. S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the poly-
time functions. Computational Complexity, 2:97–110, 1992.

5. S. Bellantoni, K.-H. Niggl, and H. Schwichtenberg. Higher type recursion, ramifi-
cation and polynomial time. Annals of Pure and Applied Logic, 104:17–30, 2000.

6. S. Bellantoni and I. Oitavem. Separating NC along the δ axis. Submitted, 2001.
7. S. Bloch. Function-algebraic characterizations of log and polylog parallel time.

Computational Complexity, 4:175–205, 1994.
8. P. Clote. Sequential, machine independent characterizations of the parallel com-

plexity classes ALogTIME, ACk, NCk and NC. In S. Buss and P. Scott, editors,
Feasible Mathematics, pages 49–69. Birkhäuser, 1990.

9. A. Cobham. The intrinsic computational difficulty of functions. In Proceedings of
the second International Congress on Logic, Methodology and Philosophy of Sci-
ence, pages 24–30, 1965.

Linear Ramified Higher Type Recursion and Parallel Complexity 21

10. K. Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Stand-
punktes. Dialectica, 12:280–287, 1958.

11. M. Hofmann. Programming languages capturing complexity classes. ACM
SIGACT News, 31(2), 2000. Logic Column 9.

12. M. Hofmann. Safe recursion with higher types and BCK-algebra. Annals of Pure
and Applied Logic, 104:113–166, 2000.

13. D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Program-
ming. Addison-Wesley, 2nd edition, 1998.

14. D. Leivant. Stratified functional programs and computational complexity. In Proc.
of the 20th Symposium on Principles of Programming Languages, pages 325–333,
1993.

15. D. Leivant. A characterization of NC by tree recurrence. In Proc. 39th Symposium
on Foundations of Computer Science, pages 716–724, 1998.

16. D. Leivant and J.-Y. Marion. A characterization of alternating log time by ramified
recurrence. Theoretical Computer Science, 236:193–208, 2000.

	Introduction
	Clote's Function Algebra for NC
	Formal Definition of the System
	Completeness
	Soundness

