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Abstract. Recently Lutz [14,15] introduced a polynomial time bounded version of

Lebesgue measure. He and others (see e.g. [11,13,14,15,16,17,18,20]) used this

concept to investigate the quantitative structure of Exponential Time

(E=DTIME (2lin )). Previously, Ambos-Spies, Fleischhack and Huwig [2,3]

introduced polynomial time bounded genericity concepts and used them for the

investigation of structural properties of NP  (under appropriate assumptions) and E.

Here we relate these concepts to each other. We show that, for any c≥1, the class of

nc-generic sets has p-measure 1. This allows us to simplify and extend certain p-

measure 1-results. To illustrate the power of generic sets we take the Small Span

Theorem of Juedes and Lutz [11] as an example and prove a generalization for

bounded query reductions.

1. Introduction

The classical Lebesgue measure was effectivized by Martin-Löf [19], Schnorr [21], and
others. Recently Lutz [14,15] further persued this approach to define a feasible, i.e.,
polynomial time computable, measure concept. He and others showed that this p-measure is

a natural tool for the quantitative analysis of the class E=DTIME(2lin) of exponential time
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foundation during the time of this research.
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computable sets (see [16] for a survey). E.g., Mayordomo [20] and Juedes and Lutz [11]
showed that concepts like p-bi-immunity and p-incompressibility, respectively, which play
a fundamental role in the structural analysis of E, have p-measure 1. Another important
result with various applications is the Small Span Theorem of Juedes and Lutz [11] which

asserts that, for any set A∈E, the class Pm(A)∩E of sets in E which are p-m-reducible to A

or the class Pm
-1(A) of the sets to which A is p-m-reducible has p-measure 0.

Preceding Lutz's work on resource bounded measure, Ambos-Spies, Fleischhack and
Huwig [2,3,7,8] introduced resource bounded genericity concepts. These genericity
concepts, which were inspired by restricted arithmetical forcing concepts in recursion
theory (see e.g. Jockusch [10]), formalize standard diagonalization concepts and classify
these concepts by the complexity of the conditions corresponding to the single
diagonalization steps. The corresponding generic sets share all properties which can be
enforced by the diagonalization arguments of given complexity. In [2] Ambos-Spies et al.
consider only such diagonalizations which have tally witnesses. (This restriction became
necessary by the goal to characterize a diagonalization concept which pertains to P, in the
sense that it allows diagonalization over P but not over any larger complexity class. I.e. for
this concept generic sets can be found in any "smooth" hyperpolynomial time class.) Then,
in [3], general diagonalization concepts were studied. Here we will relate these latter
concepts to the p-measure of Lutz.

In Section 2 we introduce the genericity concept adequate for p-measure, namely nc-

genericity (c≥1), which in [3] was called DTIME(nc)-2-genericity. By modifying the proof

in [3] that P-2-generic sets exist in DTIME(2n2) we obtain a general existence theorem for
t(n)-generic sets, for t any time constructible time bound. In particular this result implies

that there are nc-generic sets in DTIME(2(c+2)n) of arbitrary density. To show how to work

with generic sets we prove that, for any nc-generic set A (c≥2), A∉DTIME(2cn), A is 2cn-

bi-immune and A is 2(c–1)n-incompressible. Moreover, we show that the nc-generic sets
witness the separation of the common polynomial reducibilities between one-one and

(bounded) truth-table. As a corollary we obtain that, for c≥2, nc-generic sets are not p-btt-

complete for E. Finally we complement the latter by constructing nc-generic sets which are
p-tt-complete for E.

Then, in Section 3, we relate genericity to measure. Fleischhack [7,8] has shown that, for
any recursive t, the class of t(n)-generic sets has measure 1 in the classical sense. Here we

prove the analogous result for p-measure, by showing that, for any c≥1, the class of nc-

generic sets has p-measure 1. So any property implied by nc-genericity occurs with p-
measure 1. This gives a new way to obtain p-measure 1-results which can be technically
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and combinatorically considerably simpler than the direct approach. 

We illustrate this approach in Section 4, by first reproving the Small Span Theorem of
Juedes and Lutz [11] (for p-m-reducibility) using genericity. The technical main result

required for this approach is that, for any nk-generic set A∈DTIME(2cn), no set B∈Pm
-1(A)

is nd(c)-generic (for some constant d(c) depending on c), whence µp(Pm
-1(A))=0. Then we

extend the Small Span Theorem to polynomial-time bounded-query (p-k-tt) reductions. The
proof of this theorem, which is considerably more complex, depends -besides the results on
the measure of generic sets from Section 3- only on structural properties of the generic sets.
We conclude this section by discussing some serious obstacles for extending the Small
Span Theorem to still weaker polynomial reducibilities. Moreover, we apply our results to
determine the p-measure of the E-hard and E-complete sets under the strong polynomial
reducibilities.

Finally, in Section 5, we point out the limitations of our generic-set approach to p-measure

1-results. We show that in general nc-generic sets are not nc-random. This distinction
follows from the observations (made first in [3] and [17], respectively) that, in contrast to
genericity, randomness determines the density of a set.

We conclude this section by introducing some notation. N denotes the set of natural

numbers. The lower case letters c,d,i,j,k,m,n denote numbers. Let Σ={0,1} and let Σ* be

the set of (finite) binary strings. A subset of Σ* is called a language or simply a set.
Strings are denoted by lower case letters from the end of the alphabet (u,v,w,x,y,z),
languages are denoted by capital letters A, B, C, ... Boldface capital letters A, B, C, denote

classes of languages, i.e., subsets of the power set of Σ*. In particular, P is the class of

polynomial time computable languages, E = ∪c≥1 DTIME(2cn) is the class of linear

exponential time sets, and E2 = ∪c≥1 DTIME(2nc
) is the class of polynomial exponential

time sets. For a deterministic time class C we let FC denote the class of functions
���

Σ*→Σ* which can be computed within C's time bound.

The concatenation of two strings x and y is denoted by xy; λ is the empty string; |x| denotes

the length of the string x; < is the length–lexicographical ordering on Σ*; zn is the n–th

string under this ordering; and x+k is the kth successor of x under < (k≥1). We identify a

language A and its characteristic function, i.e., x∈A iff A(x)=1, and we let ||A|| denote the

cardinality of A. For A⊆Σ* and x∈Σ* we let A|x denote the finite initial segment of A

below x, i.e., A|x = {y: y<x & y∈A}, and we identify this initial segment with its
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characteristic string, i.e., A|zn = A(z0)...A(zn-1) ∈ Σ*. Accordingly we let |A|x| denote the

length of the characteristic string of A|x. Note that

(1.0) 2|x|–1 ≤ |A|x| < 2|x|+1–1.

We say A is C � � ����� ����	�

��� ����������� ≤C–m ����� 
�� � 
 � �
∈FC  and, for every x∈Σ*,

A(x)=B(f(x)). Instead of P-m-reducible and DTIME(t(n))-m-reducible we shortly say p-
m-reducible and t(n)-m-reducible, respectively, and write ≤p-m and ≤t(n)-m. In case of the

other resource bounded reducibilities we will consider only the polynomial case. We
assume the reader to be familiar with the polynomial time bounded versions of one-one (p-
1), truth-table (p-tt), and Turing (p-T) reducibility (see Ladner et al. [12]). As intermediate
reducibilities between p-m and p-tt we consider the bounded-query reductions: A
p–k–tt–reduction h(g1,…,gk) consists of polynomial time computable functions
� �

Σ*×Σk→Σ (evaluator) and gi: Σ*→Σ* (1≤i≤k; selectors). For an evaluator function h

we define hx(a1,…,ak)=h(x,a1,…,ak). So hx is the k–ary Boolean function which evaluates

the k oracle queries on input x. A set A is p–k–tt–reducible to a set B (A ≤p–k–tt B) via

h(g1,…,gk) if ∀x∈Σ* (A(x) = h(x,B(g1(x)),…,B(gk(x)))). A is p–k–tt–reducible to B if

� ≤p–k–tt B via some p–k–tt–reduction h(g1,…,gk). Finally, A is p-btt-reducible to B

��� ≤p–btt ��� 
 � � ≤� � ! �#" " B for some k≥1.

2. Generic Sets

We now introduce the central concept of this paper.

2.1. Definition (Ambos-Spies et al. [3]). A condition is a set C⊆Σ*. A language A

meets the condition C if, for some string x, A|x∈C. C is dense along A if

∃∞x∈Σ* ∃i∈Σ ((A|x)i∈C);
and C is dense if C is dense along all languages. A language A is C–generic if A meets

every condition C∈C which is dense along A.

This genericity concept was introduced by Ambos–Spies, Fleischhack and Huwig in [3].
Of the three types of genericity concepts introduced there, here we consider only the second
type. In [3], C–generic sets were called C–2–generic sets. For deterministic time classes
we abbreviate DTIME (t(n))–generic by t(n)–generic and we call a condition

C∈DTIME(t(n)) a t(n)–condition.

A condition C should be viewed as a finitary property P of languages, where C contains all
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finite initial parts X|x of languages such that all languages Y extending X|x have the
property P. So a language A has the property P if and only if A meets C. C is dense along
A if and only if in a construction of A along the ordering <, where at stage s of the
construction we decide whether or not the string zs belongs to A, there are infinitely many

stages s such that by appropriately defining A(zs) we can ensure that A has the property P

(i.e. A|(zs+1)∈C). Finally, in case of a t(n)-condition, the complexity for the correct choice

for A(zs) is t(n)-time bounded in |A|zs|, i.e., by (1.0), t(2n)-time bounded in the length of

zs. So a t(n)-generic set will have all finitary properties P of time complexity t(n) (relative to

the length n of the initial segment) which can be ensured in a construction of the above type
infinitely often.

In the following we will mainly consider nc–generic sets (c≥1) which are adequate for
analyzing the structure of E. We start, however, with some more general results.

2.2. Proposition. (i) Let C and D be classes such that C⊆D. Then any D-generic set is C-
generic. In particular, if t and t' are recursive functions such that t(n)≤t'(n) almost
everywhere then any t'(n)-generic set is t(n)-generic.

(ii) For any recursive function t, the complement A of a t(n)–generic set A is t(n)–generic
too.

Proof. The first part is immediate by definition. The second part follows from closure of
DTIME(t(n)) under complements.

In [3] Ambos–Spies, Fleischhack and Huwig have shown that there are sparse P–generic

sets in DTIME(2n2). By a simple modification of this proof we obtain a strong general
existence theorem for t(n)-generic sets.

2.3. Theorem. Let t(n), t'(n) and f(n) be nondecreasing functions on N such that t(n) and
t'(n) are time-constructible, t(n),t'(n)≥n, f(n) is polynomial time computable with respect to
the unary representation, and the range of f is unbounded. Moreover, let B be a set in

DTIME(t'(n)). Then there is a t(n)–generic set A such that

A ∈ DTIME(2n+1.(t'(n)+n2.t(2n+1).log(t(2n+1))))
 and, for any n≥0,

 ||(A∆B)∩{x ∈Σ*: |x|=n}|| ≤ f(n).

Proof. We construct a t(n)–generic set A with the required properties in stages, where at

stage s we decide whether or not zs∈A. By means of a standard universal machine we may
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fix a recursive enumeration {Ce: e∈N} of DTIME(t(n)) such that, 

(2.0) C = {0e1x: x∈Ce} ∈ DTIME(e.t(|x|).log(t(|x|))+e). 

Then to ensure that A is t(n)-generic it suffices to meet the requirements

 Re:   Ce dense along A   ⇒   A meets Ce  

for all numbers e∈N. Simultaneously with A we enumerate a list Sat of the indices of the
requirements which are satisfied by diagonalization and we let Sats be the part of Sat

enumerated by the end of stage s (Sat–1=Ø). So, by the end of stage s–1, A|zs and Sats–1

are given.

Stage s. We say that the requirement Re requires attention (at stage s) if

e<f(|zs|), e∉Sats–1 and

(*) ∃i≤1 ((A|zs)i∈Ce).

Distinguish the following two cases.
Case 1: Some requirement requires attention. Fix the least e such that Re

requires attention and fix i≤1 minimal with (A|zs)i∈Ce. Let A(zs)=i and Sats =

Sats–1∪{e} and say that Re receives attention. 

Case 2: Otherwise. Let A(zs)=B(zs) and let Sats = Sats-1. 

This completes the construction. To show that A is t(n)–generic, first note that every
requirement receives attention at most once and that Sats contains the indices of the

requirements which received attention by the end of stage s. So, by a straightforward
induction, every requirement requires attention only finitely often. Hence if Ce is dense

along A, (* ) will hold at infinitely many stages s, whence Re will eventually receive

attention, thereby ensuring that A meets Ce. So every requirement Re is met whence A is

t(n)-generic.
Moreover, at a stage s with |zs|=n, only a requirement Re with e<f(n) may receive attention.

So Case 1 can apply to at most f(n) such stages, whence, by definition of A in Case 2,

||(A∆B)∩{x ∈Σ*: |x|=n}|| ≤ f(n) will hold.

It remains to show that A∈ D T I M E ( 2n + 1.(t'(n)+t''(n))), where t''(n) =

n2.t(2n+1).log(t(2n+1)). Fix any string zs of length n. Then, by (1.0), s<2n+1 whence it

suffices to show that, given A|zs and Sats–1, A(zs) and Sats can be computed in t'(n)+t''(n)

steps. To do so, without loss of generality assume that f(n)≤n. Moreover, since f(n) can be
computed in poly(n) steps, we may assume that f(n) is given. Then t''(n) steps suffice to
decide whether Case 1 applies to stage s and if so to perform the corresponding action:
Since, by assumption, A|zs and Sats–1 are given, it suffices to check for each of the n

numbers e<|zs| and for i≤1 whether (A|zs)i∈Ce which, by (2.0), can be done in
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O(n.t(2n+1).log(t(2n+1))) steps for each such e. Finally, since Case 2 can be performed in
t'(n) steps this implies the claim.

2.4. Corollary. There is a sparse nc–generic set in DTIME(2(c+2)n).

Proof. Apply Theorem 2.3 to t(n)=nc, t'(n)=f(n)=n and B=∅. Since

2n+1.(n+n2.(2n+1)c.log((2n+1)c)) < 2(c+2)n

almost everywhere, this yields an nc–generic set A∈DTIME(2(c+2)n) with 

||A∩{x ∈Σ*: |x|=n}|| ≤ n.

As the following theorem shows, Theorem 2.3 provides an almost optimal lower bound on
the time complexity of t(n)-generic sets.

2.5. Theorem. Let A be t(n)-generic. Then A∉DTIME(t(2n)). In particular, there is no

nc–generic set in DTIME(2cn).

Proof. For a contradiction assume that A∈DTIME(t(2n)). Then, by (1.0), 
C = {X|(x+1): A(x)≠X(x)}

is a t(n)–condition which is obviously dense. So, by t(n)–genericity, A meets C. By
definition of C this implies that A(x)≠A(x) for some x, a contradiction.

The argument in the proof of Theorem 2.5 is typical for showing that a generic set has a
certain property. In the following we give two further examples: we prove that generic sets
are incompressible under many-one reductions and bi-immune. Here as in the following we

will restrict ourselves to nc-genericity.

A function f: Σ*→Σ* is almost 1–1 if the collision set of f,

COLLf = {x∈Σ*: ∃y<x (f(x)=f(y))},

is finite. f is consistent with a set A if, for all x,y∈Σ*, A(x)≠A(y) implies that f(x)≠f(y).

Then A is C–incompressible if, for any f∈FC which is consistent with A, f is almost 1–1.
Again we abbreviate DTIME(t(n))-incompressible by t(n)-incompressible and we write p-
incompressible for P� 
�� 	 � ��� � ����� 
 � � ���
	�� � � � � � � � ≤C–m � � 
 � � 
 ��� � 
 ��� � � � � � 
 � 	 � � � 
 � � � � �
with A. So, for C-incompressible A, any C-m-reduction from A is almost 1–1.

2.6. Theorem. Let A be nc–generic (c≥2). Then A is 2(c-1)n–incompressible.

Proof. Fix f∈FDTIME(2(c-1)n) such that f is consistent with A. To show that f is almost
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1-1, define C = {X|(x+1): ∃y<x (f(x)=f(y) & X(x) ≠X(y))}. Then C is an nc–condition.

Moreover, by consistency of f with A, A does not meet C. So, by nc–genericity of A, C is
not dense along A. By definition of C, it follows that the collision set of f is finite.

It is easy to show that any 2cn–incompressible set A is 2cn–bi-immune, i.e., A∩B≠Ø and

A∩B≠Ø for any infinite B∈DTIME(2cn) (see [5]). So Theorem 2.6 implies that any
nc–generic set is 2(c-1)n–bi-immune (c≥2). By a direct argument we can slightly improve
this result: 

2.7. Theorem. Let A be nc–generic (c≥2). Then A is 2cn–bi-immune.

Proof. By Proposition 2.2 it suffices to show that A is 2cn–immune, i.e., that A∩B≠Ø for

any infinite B∈DTIME(2cn). So fix such a set B. Define 
C = {X|(x+1): X(x)=B(x)=1}.

Then, by (1.0), C is an nc–condition which, by infinity of B, is dense. Hence A meets C

which, by definition of C, implies that A∩B≠Ø.

We can also apply nc–genericity to separate the standard polynomial time reducibilities
between p-one-one and p-bounded-truth-table (see [12]). As a corollary we obtain that

nc–generic sets cannot be p-btt-complete for E.

2.8. Theorem. Let A be nc–generic (c≥2).

(i) A⊕A ≤| p-1 A 

(ii) A ≤| p-m A

(iii) Ak ≤| p-k-tt A, where Ak = {x: {x,x+1,...,x+k}∩A≠∅} (k≥1)

(iv) Aω ≤| p-btt A, where Aω = {0k1x: x∈Ak}

We omit the proof of Theorem 2.8 since it is very similar to the proof of the corresponding
facts for the tally p-generic sets in [2] (see [2], Theorem 5.9). Note that, for any set A,

A⊕A ≤p-m A, A ≤p-1-tt A, Ak ≤p-(k+1)-tt A, and Aω ≤p-tt A. So we can mutually distinguish

p-1, p-m, p-1-tt, p-(k+1)-tt (k≥1), p-btt and p-tt reductions to nc-generic sets:

2.9. Corollary. Let A be nc–generic (c≥2). There are sets B1, B2, B3,k (k≥1) and B4 such

that
(i) B1 ≤p-m A but B1 ≤| p-1 A 

(ii) B2 ≤p-1-tt A but B2 ≤| p-m A
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(iii) B3,k ≤p-(k+1)-tt A but B3,k ≤| p-k-tt A (k≥1)

(iv) B4 ≤p-tt A but B4 ≤| p-btt A

2.10. Corollary. Let A be nc–generic (c≥2). Then A is not p-btt-complete for E.

Proof. Assume that A∈E. Then, for Aω as in Theorem 2.8, Aω∈E but Aω ≤| p-btt A. So A

is not p-btt-complete for E.

We conclude this section with the observation that Corollary 2.10 is optimal. Given
��� 	 →N we say that A is p-f(n)-tt-reducible to B if there is a p-tt-reduction from A to B for
which the number of oracle queries on inputs of length n is bounded by f(n).

2.11. Theorem.� � � � � 	 → N be nondecreasing, unbounded and polynomial time

computable with respect to the unary representation. There is an nc–generic set A which is

complete for E under p-f(n)-tt-reductions (c≥1). In particular, there is an nc–generic set A
which is p-tt-complete for E.

Proof. Fix a p-m-complete set C for E. We will use the following transitivity law for p-m-
and p-f(n)-tt-reductions: Since a p-m-reduction increases the size of the input only by a
polynomial factor and since f is nondecreasing, for any sets X, Y, Z,

X ≤p-m Y & Y ≤p-f(log(n))-tt Z  ⇒  X ≤p-f(n)-tt Z.

Hence it suffices to show that there is an nc-generic set A∈E with C ≤p-f(log(n))-tt A.

Let B = {xy: |x|=|y| & x∈C}. Then, by Theorem 2.3, there is an nc–generic set A∈E such
that

||(A∆B)∩{x ∈Σ*: |x|=2n}|| ≤ 1/3.f(log(n)).

Hence x∈ C if and only if ||A∩ Fx|| ≥ 2/3.f(log(|x|)), where Fx consists of the

lexicographically first f(log(|x|)) strings xy with |x|=|y|. So C is p-f(log(n))-tt-reducible to A.

2.12. Remark. As the results of this section show, the nc-generic sets pertain to
diagonalizations over the levels of the linear exponential time hierarchy E =
∪c≥1 DTIME(2cn). So, since a set is P-generic iff it is nc-generic for all c≥1, P-generic

sets relate to diagonalizations over E. In particular, by Theorem 2.5, no set in E is P-
generic. In fact, by Theorems 2.6 and 2.7, P-generic sets are E-incompressible and E-bi-
immune. On the other hand, by Theorem 2.3, P-generic sets can be found in all sufficiently
closed, smooth deterministic time classes properly containing E. E.g., as shown already in

[3], there are P-generic sets in the class DTIME(2(n2)).
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In an analogous way, the 2(log n)c-generic sets pertain to the levels DTIME(2(nc)) of the

polynomial exponential time hierarchy E2. E.g., by Theorem 2.5, there is no 2(log n)c-

generic set in DTIME(2(nc)), and the proofs of Theorems 2.6 and 2.7 can be easily

modified to show that 2(log n)c-generic sets are DTIME(2(nc-1))-incompressible and

DTIME(2(nc))-bi-immune (c≥2). On the other hand, by Theorem 2.3, there are 2(log n)c-

generic sets in DTIME(2(nc+2)). So, for P2 = ∪c≥1 DTIME(2(log n)c), the P2-generic sets

relate to diagonalizations over E2  just as the P-generic sets relate to diagonalizations over

E. In particular, observe that the proof of Theorem 2.11 can be easily modified to show

that, for any function f as there and for any c≥1, there is a 2(log n)c-generic set (hence a P-
generic set) which is complete for E2 under p-f(n)-tt-reductions.

3. Genericity and Measure

We first introduce a fragment of Lutz's measure theory which will be sufficient for our
investigations. Our presentation follows [16]. A more complete account of resource
bounded measure theory can be found in [15].

A martingale is a function d: Σ*→[0,∞) such that, for all x∈Σ*, d(x0)+d(x1) ≤ 2d(x). A

martingale d succeeds on a language A⊆Σ* if lim supn d(A|zn) = ∞. Note that the values

of martingales are reals. So to define computability of a martingale we consider

approximations dk: Σ*→Q+, where Q+ is the set of nonnegative rationals, satisfying

|dk(x)–d(x)| ≤ 2–k (k∈N). For such approximation functions we can define the time

complexity in the standard way and we can say that a martingale d is t(n)–computable if it
has uniformly t(n)–computable approximation functions dk, k≥0. If d is p(n)–computable

for some polynomial p then we say that d is p–computable.

Now a class C of languages has t(n)–measure 0 (µt(n)(C)=0) if there is a t(n)–computable

martingale which succeeds on every language in C. The class C has t(n)–measure 1

(µt(n)(C)=1) if µt(n)(C
c)=0 for the complement Cc={A ⊆Σ*: A ∉C } of C . We write

µt(n)(C)≠0 to indicate that C does not have t(n)-measure 0. The p–measure of a class C is
defined similarly by p–computable martingales and is denoted by µp(C). The measure of a

class C relative to E is defined by saying that C  has measure 0 in E (µ(C|E)=0) if

µp(C∩E)=0 and C has measure 1 in E (µ(C|E)=1) if µ(Cc|E)=0. We write µ(C|E)≠0 to

indicate that C does not have measure 0 in E. Lutz has shown that the measure in E is
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nontrivial: Since µp(E)≠0, µ(C|E)=1 implies that µ(C|E)≠0.

We should remark that, for technical convenience, our martingale definition differs slightly
from Lutz's definition: while he requires that d(x0)+d(x1) = 2d(x) we only require that
d(x0)+d(x1) ≤ 2d(x) (In the literature such a function is sometimes called a super-
martingale and Lutz calls it a density function). As a consequence the resulting t(n)-
measure notions may differ by a linear factor. In both cases, however, we obtain the same
notion of p-measure and measure in E. As a technical tool we will need the following

(weak) version of σ–additivity of the p–measure:

3.1. Lemma (Lutz [15]). Let Ce (e∈N) be classes of languages and let C=∪e≥0Ce.

Assume that, for some c≥1, there is an nc–computable function d: N×Σ*→Q+ such that,

for any e∈N, de=λx.d(e,x) is a martingale which succeeds on every language in Ce. Then
µnc+1(C)=µp(C)=0.

3.2. Theorem. For any c≥1, the class of nc–generic sets has nc+3-measure 1, hence
p–measure 1.

Proof. Fix c and let {Ce: e∈N} be a recursive enumeration of DTIME(nc) such that

 (3.0) C = {0e1x: x∈Ce} ∈ DTIME(e.|x|c.log(|x|c)+e)

holds. Let Ce = {X: Ce is dense along X & X does not meet Ce} and let C=∪e≥0Ce. Then

C is the class of languages which are not nc–generic. So, by Lemma 3.1, it suffices to

define an nc+2–computable function d such that, for e∈N, de is a martingale which succeeds

on every language in Ce. For x with |x|≤2e let d(e,x)=1 and, for x with |x|≥2e and for i≤1,

let
 0 if xi ∈Ce & x(1–i)∉Ce

d(e,xi)    =  2d(e,x) if x(1–i)∈Ce & xi∉Ce

  d(e,x) otherwise
Then each de is a martingale. Moreover, it easily follows from (3.0) that d is nc+2-

computable. So it only remains to prove that each de succeeds on the languages in Ce. Fix e

and X∈Ce. Then Ce is dense along X but X does not meet Ce. By the latter, X|x∉Ce  for all

x, whence d(e,X|x)≠0 for all x. It follows that d(e,X|zn) is nondecreasing in n. So it

suffices to show that there are infinitely many x such that d(e,X|(x+1)) = 2d(e,X|x), i.e., by

definition of d, such that, for some i≤1, X|(x+1)=(X|x)i, (X|x)(1–i)∈Ce and (X|x)i∉Ce.

But this is immediate by definition of Ce.
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By Theorem 3.2, any property shared by all nc-generic sets (for some c≥1) occurs with p-

measure 1. E.g. from Theorem 2.6 we may conclude that the class of 2cn-incompressible
sets has p-measure 1. This was first shown by Juedes and Lutz [11] using a direct
argument. Though, in general, the direct proof that a property P has p-measure 1 uses the

same ideas as showing that any nc-generic set (for some c) has this property, the latter may
turn out to be less complex, since it suffices to consider single requirements. In particular in
more involved arguments this simplified machinery can help to keep down the
combinatorical complexity of proofs. In the next section we will give an example for this.

3.3. Remark. Besides the measure on E Lutz also introduced a measure on E2. Let P2 =

∪c≥1 DTIME(2(log n)c). Then the p2-measure of a class C is defined by letting µp2
(C)=i

(i∈0,1) if there is a number c such that, for t(n)=2(log n)c, µt(n)(C)=i. Moreover, C has

measure 0 in E2 (µ(C|E2)=0) if µp2
(C∩E2)=0 and C has measure 1 in E2 (µ(C|E2)=1) if

µ(Cc|E2)=0. By duplicating the above argument we can show that, for any c, the class of

the 2(log n)c-generic sets has p2-measure 1, hence measure 1 in E2. In particular, the class of

P-generic sets has p2-measure 1 and measure 1 in E2.

4. The Small Span Theorem for Bounded Query Reductions.

For a polynomial time bounded reducibility ≤p-r the lower and upper span of a set A are

defined by Pr(A) = {B: B ≤p-r A} and Pr
-1(A) = {B: A ≤p-r B}, respectively. The

intersection of the upper and lower span of A is the p-r-degree of A: degp-r(A) = {B: B =p-r

A}. Juedes and Lutz [11] have shown that, for any set A∈E, the upper span of A or the
lower span of A under p-m-reducibility has measure 0 in E. Hence degp-m(A) has measure

0 in E for any set A∈E. So, in particular, the class of p-m-complete problems for E has
measure 0 in E.

Here we first deduce the Small Span Theorem for p-m-reducibility from Theorem 3.2 and a

theorem on the distribution of the nc-generic sets under p-m-reducibility which we will
prove next. Then, by extending this theorem to bounded truth-table reductions, we
generalize the Small Span Theorem to these reductions.

4.1. Theorem. Let A and B be sets such that A ≤p-m B, A is nc-generic and

A∈DTIME(2dn) where c,d≥2. Then B is not nd+1-generic.
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Proof. Fix f∈FP such that A ≤p-m B via f and let D = {x: |f(x)| ≥ |x|}. Note that, by

Theorem 2.6, A is p-incompressible whence f is almost 1-1. This easily implies that D is
infinite. So the condition

C = {X|(y+1): ∃x(|x|≤|y| & f(x)=y & A(x)≠X(y))}

is dense. Moreover, as one can easily check, C∈DTIME(nd+1) and, since A ≤p-m B via f,

B does not meet C. So B is not nd+1-generic.

Note that the main step in the above proof shows that, for any p-incompressible

A∈DTIME(2dn) and for any B with A ≤p-m B, B is not 2(d+1)n-bi-immune. The first proof

of this fact is due to Lindner [13].

4.2. Corollary (Small Span Theorem of Juedes and Lutz [11]). Let A∈E. Then

µ(Pm(A)|E) = 0  or  µp(Pm
-1(A)) = µ(Pm

-1(A)|E) = 0.

Proof. If there is no n2-generic set in Pm(A)∩E then µ(Pm(A)|E) = µp(Pm(A)∩E) = 0 by

Theorem 3.2. Otherwise, fix A' and d≥2 such that A' is n2-generic, A' ≤p-m A, and

A'∈DTIME(2dn). Since Pm
-1(A) is contained in Pm

-1(A') it follows from Theorem 4.1, that

Pm
-1(A) does not contain any nd+1-generic set. So, again by Theorem 3.2, µp(Pm

-1(A)) =

µ(Pm
-1(A)|E) = 0.

Lutz [16] raised the question whether the Small Span Theorem generalizes to the weaker
polynomial reducibilities. Lindner [13] proved the Small Span Theorem for p-1-tt-
reducibility. So the positive character of p-m-reducibility is not necessary for the theorem.
This still left the question what happens for reducibilities which may ask more than one
query. Here we prove the Small Span Theorem for p-k-tt-reductions for any k≥1, i.e., for
reductions where the number of queries does not depend on the input (for the definition of
p-k-tt-reducibility, see the introduction). The main step in the proof is an analogue of
Theorem 4.1 for p-k-tt-reducibility.

4.3. Theorem. Let A and B be sets such that A ≤p–k–tt B for some k≥1, A is nc–generic for

some c≥2, and A∈DTIME(2dn) for some d≥2. Then B is not n(k+1)(d+1)–generic.

For the proof of this theorem we need an incompressibility concept for p-k–tt–reductions
and some more technical tools.

4.4. Definition. The collision set of a p–k–tt–reduction h(g1,…,gk) is defined by
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COLLh(g
1
,…,g

k
) = {x∈Σ*: ∃y<x (g1(x)=g1(y) & … & gk(x)=gk(y) & hx=hy)}.

The reduction h(g1,…,gk) is almost 1–1 if COLLh(g
1
,…,g

k
) is finite; and h(g1,…,gk) is

consistent with a language A if

∀x,y∈Σ* ([g1(x)=g1(y) & … & gk(x)=gk(y) & hx=hy] ⇒ A(x)=A(y)).

A language A is p–k–tt–incompressible if, for any p–k–tt–reduction h(g1,…,gk) which is

consistent with A, h(g1,…,gk) is almost 1–1.

Note that A ≤p–k–tt B via h(g1,…,gk) implies that h(g1,…,gk) is consistent with A, whence

for p–k–tt–incompressible A, h(g1,…,gk) is almost 1–1. As we show next, p-k-tt-

incompressibility coincides with p-incompressibility. So, by Theorem 2.6, nc–generic sets
are incompressible under p–k–tt–reductions.

4.5. Lemma. For any k≥1, A is p–k–tt–incompressible iff A is p-incompressible.

Proof. Since any p-m-reduction may be viewed as a p-k-tt-reduction, obviously any p-k-tt-
incompressible set is p-incompressible. For a proof of the nontrivial direction, let A be p-
incompressible and fix any p-k-tt-reduction h(g1,…,gk) which is consistent with A (k≥1).

We have to show that h(g1,…,gk) is almost 1-1. Let

A' = {<hx,g1(x),...,gk(x)>: x∈A}.

Since h(g1,…,gk) is consistent with A, A ≤p-m A' via f(x)=<hx,g1(x),...,gk(x)>. So, by p-

incompressibility of A, f is almost 1-1, whence h(g1,…,gk) is almost 1-1 too.

For technical convenience, in the following we assume that all p-k-tt-reductions are in a
normal form, where the queries are listed in decreasing order and redundant queries are

replaced by λ: A p–k–tt–reduction h(g1,…,gk) is normal if, for any x∈Σ*, there is some

i≤k such that, for 1≤j<i, gj(x)>gj+1(x) and, for j≥i, gj(x)=λ. It is easy to show that, for any

p–k–tt–reduction, there is an equivalent normal p–k–tt–reduction. For a normal p-k-tt-
reduction h(g1,…,gk), the rank of h(g1,…,gk) is defined to be the greatest number

r∈{1,...,k} such that 

∃∞x∈Σ* (|x| ≤ (k+1)|gr(x)|).

(If no such r exists then the rank of h(g1,…,gk) is 0.)

4.6. Lemma. Let h(g1,…,gk) be a normal p–k–tt–reduction which is almost 1–1. Then the

rank of h(g1,…,gk) is greater than 0.

Proof. Fix n such that 2n > 22k
 and no x with |x|≥n is in the collision set of h(g1,…,gk). It
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suffices to show that, for some x with |x|=(k+1)n, |g1(x)|≥n. Let

BCn={(α,y1,…,yk): α is a k–ary Boolean function and, for 1≤i≤k, yi∈Σ* and |yi|<n}.

Since h(g1,…,gk) is normal, for any x with |g1(x)|<n, (hx,g1(x),…gk(x))∈BCn. So, since,

by choice of n, h(g1,…,gk) is 1–1 on {x∈Σ*: |x|=(k+1)n}, the existence of an x with the

desired properties will follow from

||BCn|| < ||{x∈Σ*: |x|=(k+1)n}|| = 2(k+1)n.

This holds since there are 2n–1 strings of length less than n and 22k
 k–ary Boolean

functions, whence by choice of n, ||BCn|| < 22k
⋅(2n)k < 2n⋅(2n)k = 2(k+1)n.

We are now ready to prove Theorem 4.3.

Proof of Theorem 4.3. Fix a normal p-k-tt-reduction h(g1,...,gk) from A to B of minimal

rank, say r. Note that, by Lemma 4.5, h(g1,...,gk) is almost 1-1 whence, by Lemma 4.6, r

> 0. We first show that there are infinitely many strings x satisfying
(4.0) |x| ≤ (k+1)|g1(x)| & hx(0,B(g2(x)),...,B(gk(x))) ≠ hx(1,B(g2(x)),...,B(gk(x))).

For a contradiction assume that (4.0) fails for almost all strings x, and fix n such that no
string x with |x|≥n has this property. Define a p-k-tt-reduction h'(g1',...,gk') as follows.

For x with n ≤ |x| ≤ (k+1)|g1(x)| let

(g1'(x),...,gk'(x)) = (g2(x),...,gk(x),λ)  &  hx'(j1,...,jk) = hx(0,j1,...,jk-1)

(for any j1,...,jk∈Σ), and let (g1'(x),...,gk'(x)) = (g1(x),...,gk(x)) and hx' = hx otherwise.

Note that in the first case,
hx'(B(g1'(x)),B(g2'(x)),...,B(gk'(x))) =   hx(0,B(g2(x)),...,B(gk(x)))

=   hx(B(g1(x)),B(g2(x)),...,B(gk(x))),

where the second equality follows from failure of (4.0). So A ≤p-k-tt B via h'(g1',...,gk').

Moreover, this reduction is normal, and, for almost all x with |x| ≤ (k+1)|g1(x)|,

h'(g1',...,gk') is obtained from h(g1,...,gk) by eliminating the greatest query g1(x). So the

rank of h'(g1',...,gk') is r-1, contrary to minimality of r. So (4.0) holds infinitely often. 

Hence the condition

C = {X|y+1: ∃x (|x|≤(k+1)|y| & g1(x)=y & hx(X(g1(x)),...,X(gk(x)))≠A(x))}

is dense. Moreover, C∈DTIME(n(k+1)(d+1)) and, since A ≤p-k-tt B via h(g1,...,gk), B does

not meet C. So B is not n(k+1)(d+1)–generic.

4.7. Corollary (Small Span Theorem for ≤p-k-tt). Let A∈E and k≥1. Then

µ(Pk-tt(A)|E) = 0  or  µp(Pk-tt
-1 (A)) = µ(Pk-tt

-1 (A)|E) = 0.

Proof. This is shown as Corollary 4.2 using Theorem 4.3 in place of Theorem 4.1.
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We do not know whether Corollary 4.7 can be extended to p-btt-reducibility. Note that in
Theorem 4.3 the polynomial bound on the genericity for the successors (under p-k-tt-

reducibility) of the nc-generic set A in E grows with k so that we do not get a polynomial
bound for the successors under all btt-reductions. We expect that an extension of Theorem
4.3 and Corollary 4.7 to p-btt-reducibility (if possible) will be of technical interest. 

An interesting consequence of Corollary 4.7 is that, for any k≥1, the class of p-k-tt-hard
languages for E has p-measure 0. A corresponding result for generic sets follows from
Theorem 4.3.

4.8. Corollary. Let A be n5(k+1)-generic (k≥1). Then A is not E-hard under p-k-tt-
reductions. Hence, the class of E-hard languages under p-k-tt-reducibility has p-measure 0.

Proof. By Corollary 2.4 there is an n2-generic set in DTIME(24n), whence, by Theorem

4.3, no p-k-tt-hard set for E can be n5(k+1)-generic.

Though Corollary 4.8 does not settle the question whether the class of the p-btt-hard
languages for E has p-measure 0, we obtain two partial results: First, by Corollary 4.8, no
P-generic set is p-btt hard for E, whence, by Remark 3.3, the class of p-btt-hard problems
for E has p2-measure 0. The second partial result concerns the complete sets. Here, a p-
measure-0 result follows immediately from Corollary 2.10 and Theorem 3.2:

4.9. Theorem. µp({A: A p-btt-complete for E})=0.

By using a different method, Buhrman and Mayordomo (private communication)
independently but earlier proved a weaker version of the latter two results, namely that the
class of the p-btt-complete languages for E has p2-measure 0.

The question, whether there are Small Span Theorems for the weak p-reducibilities,
namely polynomial truth-table (p-tt) and polynomial Turing (p-T) reducibility, and the more
specific question whether the classes of E-hard problems under these reducibilities have p-
measure 0 seem to be much more fundamental. By Theorem 2.11 our approach by generic
sets fails for the weak reducibilities. Moreover, as observed already by Lutz, these

questions may depend on the relation between E and BPP: For the classical measure µ,

Bennet and Gill [6] have shown that µ(PT
-1(A)) = 1 iff A∈BPP while Ambos-Spies [1] has

shown that µ(Pm
-1(A)) = 1 iff A∈P . Moreover, Ambos-Spies (unpublished) and,

independently, Tang and Book [22] extended these results to the intermediate reducibilities
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by showing that µ(Ptt
-1(A)) = 1 iff A∈BPP while µ(Pbtt

-1 (A)) = 1 iff A∈P. Since µ(C) = 1

implies that C does not have p-measure 0, these results imply that, assuming E⊆BPP, the
Small Span Theorem fails for p-tt-reducibility and p-Turing-reducibility and the classes of
the E-hard sets under these reducibilities do not have p-measure 0. Moreover, Heller [9]
has constructed an oracle relative to which E2=BPP. So a proof of the Small Span

Theorem for the weak p-reducibilities would require nonrelativizable techniques.

5. Conclusion

We have shown that many properties which occur with p-measure 1 are shared by all nc-
generic sets (some c≥2). This gives a new, modular approach to some p-measure 1-results
which can be combinatorically much simpler than the direct approach. This approach,
however, does not cover all p-measure 1-results. Generic sets are designed to be universal
for standard resource bounded diagonalization arguments. In such a diagonalization
argument, a single diagonalization step corresponding to one of the subrequirements has to
be performed only once and only under the proviso that there are infinitely many chances to
do so. Though, in general, this easily implies that the action for a single requirement will be
performed infinitely often (provided there are infinitely many chances to do so), we cannot
say anything about the frequency with which the opportunities are taken. The latter
contrasts with a typical measure 1 construction where we have to take the majority of the
opportunities. To illustrate this difference we consider the density of a set. We have shown
already that a generic set can be sparse (Corollary 2.4). As first observed in [17], the class

of sparse sets, however, has p-measure 0. To see this consider the n2-martingale d:

Σ*→Q+ defined by d(λ)=1, d(x0)=3/2.d(x), and d(x1)=1/2.d(x). Then it is easy to see that

d succeeds on any sparse set, in fact on any set which is not exponentially dense.

Though this example points out limitations of the generic set approach to p-measure 1-
results, we would like to emphasize that the generic sets help us to distinguish between
those properties which can be forced by standard diagonalizations and those which require a
measure diagonalization argument. Moreover, this example also shows that the assumption

that a class C contains an nc-generic set is weaker than the assumption that C has nonzero
p-measure. This observation might be of particular interest when studying the structure of
NP  assuming that NP  is sufficiently large. Lutz defines that NP  is not small if

µp(NP)≠0, and in [18] he and Mayordomo proved that under this non-smallness

hypothesis p-T-completeness and p-m-completeness for NP do not coincide. We can show
that this result already follows from the (apparently weaker) assumption that NP contains
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an n2-generic set.

Moreover, the relations between resource bounded genericity and measure which we
explored here for the polynomial case hold for arbitrary time (and space) bounds. In
particular, as shortly indicated in Remarks 2.12 and 3.3 already, we obtain corresponding
results for the p2-measure analysis of E2 by Lutz.

Finally we want to remark that there is a general modular approach to p-measure 1-results
by using random sets in place of generic ones. Following Schnorr [21] and Lutz [16] we
say that a language A is t(n)-random if no t(n)-computable martingale succeeds on A, i.e., if

A does not belong to any class of t(n)-measure 0. The existence of nc-random sets in E is

shown in [4]. In fact, there it is shown that the class of nc-random sets has p-measure 1,
and random sets are used to further analyze the p-measure on E. Moreover, as also shown

in [4], randomness is a refinement of genericity, namely, any nc+1-random set is nc-generic
whence any P-random set is P-generic, whereas, by the above observation on sparseness,
the converse is not true.
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