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Abstract. Recently Lutz [14,15] introduced a polynomial timigounded version of
Lebesgue measure. He and others (seg[¥l¢l3,14,15,16,17,18,20]) used this
concept to investigatethe quantitative structure of Exponential Time
(E=DTIME (2")). Previously, Ambos-Spies, Fleischhack and Huwig [2,3]
introduced polynomial timebounded genericity concepts and used them for the
investigation of structural properties df P (under appropriate assumptions) dhd
Here we relate these concepts to each other. We show that, feeényhe class of
n°-generic sets has p-measure 1. This allows us to sim@ifg extend certain p-
measure 1-results. To illustrate the power of generic sets we tak&thall Span
Theorem of Juedes and Lutz [11] as example and prove a generalization for
bounded query reductions.

1. Introduction

The classical Lebesgue measure was effectivized by Martin-L6f [19], Schnorr [21], and
others. Recently Lutz [14,15] further persued this approach to define a feasible, i.e.,
polynomial time computable, measure concept. He and others showed that this p-measure is
a natural tool for the quantitative analysis of the diEsBTIME(2'") of exponential time
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computable sets (see [16] for a survey). E.g., Mayordomo [20] and Juedes and Lutz [11]
showed that concepts like p-bi-immunity and p-incompressibility, respectively, which play
a fundamental role in the structural analysi€phave p-measure 1. Another important
result with various applications is the Small Span Theorem of Juedes and Lutz [11] which
asserts that, for any setli, the class R(A) nE of sets inE which are p-m-reducible to A

or the clas$:H(A) of the sets to which A is p-m-reducible has p-measure 0.

Preceding Lutz's work on resource bounded measure, Ambos-Spies, Fleischhack and
Huwig [2,3,7,8] introduced resource bounded genericity concepts. These genericity
concepts, which were inspired by restricted arithmetical forcing concepts in recursion
theory (see e.g. Jockusch [10]), formalize standard diagonalization concepts and classify
these concepts by the complexity of the conditions corresponding to the single
diagonalization steps. The correspondgemericsets sharall properties which can be
enforced by the diagonalization arguments of given complexity. In [2] Ambos-Spies et al.
consider only such diagonalizations which have tally witnesses. (This restriction became
necessary by the goal to characterize a diagonalization concept which perRiimsttee

sense that it allows diagonalization ofebut not over any larger complexity class. l.e. for

this concept generic sets can be found in any "smooth" hyperpolynomial time class.) Then,
in [3], general diagonalization concepts were studied. Here we will relate these latter
concepts to the p-measure of Lutz.

In Section 2 we introduce the genericity concept adequate for p-measure, n&mely n
genericity (e1), which in [3] was calle®TIME(n®)-2-genericity. By modifying the proof

in [3] thatP-2-generic sets exist BTIME(2¥) we obtain a general existence theorem for
t(n)-generic sets, for t any time constructible time bound. In particular this result implies
that there are%generic sets iDTIME(2(¢+*2M of arbitrary density. To show how to work
with generic sets we prove that, for arfygeneric set A @2), AODTIME(2"), A is X"
bi-immune and A is @1incompressible. Moreover, we show that tlfeganeric sets
witness the separation of the common polynomial reducibilities between one-one and
(bounded) truth-table. As a corollary we obtain that, &&, ¢f-generic sets are not p-btt-
complete foiE. Finally we complement the latter by constructifigganeric sets which are
p-tt-complete foiE.

Then, in Section 3, we relate genericity to measure. Fleischhack [7,8] has shown that, for
any recursive t, the class of t(n)-generic sets has measure 1 in the classical sense. Here we
prove the analogous result for p-measure, by showing that, for=dnyhe class of f

generic sets has p-measure 1. So any property implied-ggnericity occurs with p-
measure 1. This gives a new way to obtain p-measure 1-results which can be technically



and combinatorically considerably simpler than the direct approach.

We illustrate this approach in Section 4, by first reproving the Small Span Theorem of
Juedes and Lutz [11] (for p-m-reducibility) using genericity. The technical main result
required for this approach is that, for affygeneric set ADTIME(2°), no set BIP;(A)

is rf(®-generic (for some constant d(c) depending on c), whpg(@e}(A)):O. Then we

extend the Small Span Theorem to polynomial-time bounded-query (p-k-tt) reductions. The
proof of this theorem, which is considerably more complex, depends -besides the results on
the measure of generic sets from Section 3- only on structural properties of the generic sets.
We conclude this section by discussing some serious obstacles for extending the Small
Span Theorem to still weaker polynomial reducibilities. Moreover, we apply our results to
determine the p-measure of tBehard andE-complete sets under the strong polynomial
reducibilities.

Finally, in Section 5, we point out the limitations of our generic-set approach to p-measure
1-results. We show that in generdtgeneric sets are nof-nandom. This distinction
follows from the observations (made first in [3] and [17], respectively) that, in contrast to
genericity, randomness determines the density of a set.

We conclude this section by introducing some notation. N denotes the set of natural
numbers. The lower case letters c,d,i,j,k,m,n denote numbers={@t1} and let=* be

the set of (finite) binary strings. A subset Xf is called alanguageor simply aset
Strings are denoted by lower case letters from the end of the alphabet (u,v,w,X,y,z),
languages are denoted by capital letters A, B, C, ... Boldface capital Aeti&r€, denote
classes of languages, i.e., subsets of the power &&t &f particular,P is the class of

polynomial time computable languagés= Dczl DTIME(2M is the class of linear

exponential time sets, afigy =[], DTIM E(Z“C) is the class of polynomial exponential
time sets. For a deterministic time claSswe letFC denote the class of functions
f: 2* - 2* which can be computed withi@'s time bound.

The concatenation of two strings x and y is denoted by ig/the empty string; |x| denotes
the length of the string x; < is the length—lexicographical ordering*oiz , is the n—th
string under this ordering; and x+k is the kth successor of x underly. (We identify a
language A and its characteristic function, i.€lAxff A(x)=1, and we let ||A|| denote the
cardinality of A. For A1Z* and XJX* we let A|x denote the finite initial segment of A
below x, i.e., Alx = {y: y<x & YJA}, and we identify this initial segment with its



characteristic string, i.e., A|z A(zy)...A(z,;) O Z*. Accordingly we let |A|x| denote the
length of the characteristic string of A|x. Note that
(1.0) 2KL1<|Ax] < P,

We say A isC-m-reducible to B (A £-_,B) via f if f{LFC and, for every XZ*,
A(X)=B(f(x)). Instead ofP-m-reducible andTIM E(t(n))-m-reducible we shortly say p-
m-reducible and t(n)-m-reducible, respectively, and V‘“H—% andst(n)_m. In case of the
other resource bounded reducibilities we will consider only the polynomial case. We
assume the reader to be familiar with the polynomial time bounded versions of one-one (p-
1), truth-table (p-tt), and Turing (p-T) reducibility (see Ladner et al. [12]). As intermediate
reducibilities between p-m and p-tt we consider the bounded-query reductions: A
p—k-tt—reduction h(g;,...,9,) consists of polynomial time computable functions

h: x5k 5 (evaluato) and ¢ * - =* (1<i<k; selector$. For an evaluator function h

we define R(ay,...,3)=h(x,a,...,§). So h is the k—ary Boolean function which evaluates
the k oracle queries on input x. A set A is p—krdtiucibleto a set B (Asp_k_tt B) via
h(g,,...,g) if OXOZ* (A(X) = h(x,B(g,(X)),...,B(g,(X)))). A is p—k-tt+educible toB if
A<y B via some p-k-tt-reduction h(g..,g,). Finally, A is p-bttreducibleto B

(A sp_an) if A <okt B for some k1.

2. Generic Sets

We now introduce the central concept of this paper.

2.1. Definition(Ambos-Spies et al. [3])A conditionis a set Cz*. A language A
meetghe condition C if, for some string x, AJ. C isdense alond\ if

[(PexOx* O0OZ ((Alx)iOC);
and C isdenseif C is dense along all languages. A language B-genericif A meets
every condition CIC which is dense along A.

This genericity concept was introduced by Ambos—Spies, Fleischhack and Huwig in [3].
Of the three types of genericity concepts introduced there, here we consider only the second
type. In [3],C—generic sets were call€t2—generic sets. For deterministic time classes

we abbreviateDT I M E(t(n))—generic by t(n)generic and we call a condition
CUDTIME(t(n)) a t(n)-€ondition

A condition C should be viewed as a finitary property P of languages, where C contains all



finite initial parts X|x of languages such that all languages Y extending X|x have the
property P. So a language A has the property P if and only if A meets C. C is dense along
A if and only if in a construction of A along the ordering <, where at stage s of the
construction we decide whether or not the strinlgetongs to A, there are infinitely many
stages s such that by appropriately defining)A{@ can ensure that A has the property P
(i.e. Al(z+1)OC). Finally, in case of a t(n)-condition, the complexity for the correct choice
for A(zy) is t(n)-time bounded in |AJz i.e., by (1.0), t(d-time bounded in the length of

z. So a t(n)-generic set will have all finitary properties P of time complexity t(n) (relative to

the length n of the initial segment) which can be ensured in a construction of the above type
infinitely often.

In the following we will mainly consider®ageneric sets &l) which are adequate for
analyzing the structure &. We start, however, with some more general results.

2.2. Proposition(i) Let C andD be classes such th@aflD. Then anyD-generic set i€-
generic. In particular, if t and t' are recursive functions such thatti(m) almost
everywhere then any t'(n)-generic set is t(n)-generic.

(i) For any recursive function t, the compleménof a t(n)—generic set A is t(n)—generic
too.

Proof. The first part is immediate by definition. The second part follows from closure of
DTIME(t(n)) under complements.

In [3] Ambos—Spies, Fleischhack and Huwig have shown that there are Bpgeseeric
sets inDTIME(2™). By a simple modification of this proof we obtain a strong general
existence theorem for t(n)-generic sets.

2.3. TheoremLet t(n), t'(n) and f(n) be nondecreasing functions on N such that t(n) and
t'(n) are time-constructible, t(n),t'@), f(n) is polynomial time computable with respect to
the unary representation, and the range of f is unbounded. Moreover, let B be a set in
DTIME(t'(n)). Then there is a t(n)—generic set A such that

A O DTIME@M*L(t'(n)+r2-t(2"* ) log(t(2"+Y)))
and, for any RO,

[[(AAB)n {x OZ*: |x|=n}|| < f(n).

Proof. We construct a t(n)—generic set A with the required properties in stages, where at
stage s we decide whether or ngfi&. By means of a standard universal machine we may



fix a recursive enumeration {CelIN} of DTIME(t(n)) such that,

(2.0) C={0°1x: xOCS} O DTIME(et(|x|ylog(t(|x|))+e).
Then to ensure that A is t(n)-generic it suffices to meet the requirements

Rs C.dense along Al A meets ¢

for all numbers EIN. Simultaneously with A we enumerate a list Sat of the indices of the
requirements which are satisfied by diagonalization and we lgtb8ahe part of Sat
enumerated by the end of stage s (5#). So, by the end of stage s-1, Ajand Sat ;
are given.

Stage sWe say that the requirement, Requires attentior(at stage s) if
e<f(|z]), €1Sat_, and

(*) O<1 ((Alz)idc)).
Distinguish the following two cases.
Case 1:Some requirement requires attention. Fix the least e such that R
requires attention and fixi minimal with (A|z)iCIC,. Let A(z)=i and Sa{=

Sat_,[1{e} and say that Rreceives attentian
Case 20therwise. Let A(9=B(z,) and let Sat= Sa{ ;.

This completes the construction. To show that A is t(n)—generic, first note that every
requirement receives attention at most once and thatcBatains the indices of the
requirements which received attention by the end of stage s. So, by a straightforward
induction, every requirement requires attention only finitely often. Hencg i @ense

along A, ¢) will hold at infinitely many stages s, whencgwll eventually receive
attention, thereby ensuring that A meefs §b every requirement & met whence A is
t(n)-generic.

Moreover, at a stage s with|{n, only a requirement Rvith e<f(n) may receive attention.

So Case 1 can apply to at most f(n) such stages, whence, by definition of A in Case 2,
[|(AAB)n {x OZ*: [x|=n}|| < f(n) will hold.

It remains to show that BDTIM E (2"+1:(t'(n)+t"(n))), where t"(n) =
n2t(2"*1)-log(t(2"*1)). Fix any string zof length n. Then, by (1.0), s&2 whence it
suffices to show that, given Aland Sat ,, A(zy) and Satcan be computed in t'(n)+t"(n)
steps. To do so, without loss of generality assume thanf(iWoreover, since f(n) can be
computed in poly(n) steps, we may assume that f(n) is given. Then t"(n) steps suffice to
decide whether Case 1 applies to stage s and if so to perform the corresponding action:
Since, by assumption, Aland Sat ; are given, it suffices to check for each of the n

numbers e<|g and for £1 whether (A[gi00C, which, by (2.0), can be done in



O(nt(2"1)-log(t(2"*1))) steps for each such e. Finally, since Case 2 can be performed in
t'(n) steps this implies the claim.

2.4. Corollary.There is a sparsé-generic set ilDTIM E(2(6+2),

Proof. Apply Theorem 2.3 to t(n)=nt'(n)=f(n)=n and BEl. Since
2n+1.(n+n2.(2n+1)c.|og((2n+1)c)) < Ac+2)n

almost everywhere, this yields af--generic set ADTIME(2(¢*2M with
[[An{x OZ*: |x|=n}|| < n.

As the following theorem shows, Theorem 2.3 provides an almost optimal lower bound on
the time complexity of t(n)-generic sets.

2.5. TheoremLet A be t(n)-generic. ThenBDTIME(t(2"). In particular, there is no
n—generic set iDTIME(2°").

Proof. For a contradiction assume thalBTIME(t(2")). Then, by (1.0),

C = {X|(x+1): AX)=EX(X)}
is a t(n)—condition which is obviously dense. So, by t(n)-genericity, A meets C. By
definition of C this implies that A(®A(x) for some x, a contradiction.

The argument in the proof of Theorem 2.5 is typical for showing that a generic set has a
certain property. In the following we give two further examples: we prove that generic sets
are incompressible under many-one reductions and bi-immune. Here as in the following we
will restrict ourselves to%genericity.

A function f: 2* -, >* is almost 1-1if the collision setof f,

COLL; = {x0Ox*: Oy<x (f(x)=f(y))},
is finite. f isconsistenwith a set Aif, for all x,y02*, A(X)#ZA(y) implies that f(x¥f(y).
Then A isC—incompressiblé, for any {JFC which is consistent with A, f is almost 1-1.
Again we abbreviat®BTIME(t(n))-incompressible by t(n)-incompressible and we write p-
incompressible foP-incompressible. Note that A <~_,, B via f implies that f is consistent
with A. So, forC-incompressible A, an€-m-reduction from A is almost 1-1.

2.6. TheoremLet A be i—generic (22). Then A is £-D%incompressible.

Proof. Fix fOFDTIME(2-DM such that f is consistent with A. To show that f is almost



1-1, define C = {X|(x+1)Iy<x (f(x)=f(y) & X(x) #X(y))}. Then C is an A-condition.
Moreover, by consistency of f with A, A does not meet C. So%bgenericity of A, C is
not dense along A. By definition of C, it follows that the collision set of f is finite.

It is easy to show that any™2incompressible set A iS2-bi-immune i.e., AnB£& and
AnBz@ for any infinite BIDTIME(2°" (see [5]) So Theorem 2.6 implies that any
n°—generic set is(@D-bi-immune (22). By a direct argument we can slightly improve
this result:

2.7. TheoremlLet A be i—generic (22). Then A is 2-bi-immune.

Proof. By Proposition 2.2 it suffices to show tifais Z"-immune, i.e., that ABz@ for
any infinite BIDTIME(2°"). So fix such a set B. Define

C = {X|(x+1): X(x)=B(x)=1}.
Then, by (1.0), C is an®acondition which, by infinity of B, is dense. Hence A meets C
which, by definition of C, implies that ABzd.

We can also apply®rgenericity to separate the standard polynomial time reducibilities
between p-one-one and p-bounded-truth-table (see [12]). As a corollary we obtain that
n—generic sets cannot be p-btt-completeEor

2.8. TheoremLet A be ri—generic (22).
0] AOA %, A
(i) A $pmA
(iii) A, $p_k_n A, where A = {x: {x,x+1,....x+k}n Az} (k=1)
(iv) Ay, $pon A Where A = {0K1x: XOA}

We omit the proof of Theorem 2.8 since it is very similar to the proof of the corresponding

facts for the tally p-generic sets in [2] (see [2], Theorem 5.9). Note that, for any set A,
ADA <, A, A <p1t A Ay Sy A and A < A So we can mutually distinguish

p-1, p-m, p-1-tt, p-(k+1)-tt ¢k1), p-btt and p-tt reductions t&-generic sets:

2.9. Corollary.Let A be ri-generic (22). There are sets;BB,, B3, (k=1) and B such
that

0] Bi<pmAbutB £, A

(i) By<p i AbutByg, A



(i_ii) B3 kSp-cen)-tt A DUt By A (k1)
(iv) By<pu A but B, $p-btt A
2.10. Corollary.Let A be ri—generic (22). Then A is not p-btt-complete fé&r

Proof. Assume that AIE. Then, for A as in Theorem 2.8, AJE but A £ A. So A
is not p-btt-complete fdE.

We conclude this section with the observation that Corollary 2.10 is optimal. Given
f: N N we say that A is p-f(n)-tt-reducible to B if there is a p-tt-reduction from A to B for
which the number of oracle queries on inputs of length n is bounded by f(n).

2.11. TheoremLet f: N~ N be nondecreasing, unbounded and polynomial time
computable with respect to the unary representation. There fsgeneric set A which is
complete foilE under p-f(n)-tt-reductions ¥4). In particular, there is arf+generic set A
which is p-tt-complete foE.

Proof. Fix a p-m-complete set C f&. We will use the following transitivity law for p-m-
and p-f(n)-tt-reductions: Since a p-m-reduction increases the size of the input only by a
polynomial factor and since f is nondecreasing, for any sets X, Y, Z,
X<omY &Y < iogmp-uZ 0 X Syt Z-
Hence it suffices to show that there is &ganeric set AIE with Csp_f(log(n))_tt A.
Let B = {xy: [x|=|y| & XOC}. Then, by Theorem 2.3, there is dr-generic set AE such
that
[[(AAB)n {x O%*: |x|=2n}|| < 1/3f(log(n)).
Hence XJIC if and only if ||/ F || = 2/3f(log(|x|)), where E consists of the
lexicographically first f(log(|x|)) strings xy with |x|=|y|. So C is p-f(log(n))-tt-reducible to A.

2.12. RemarkAs the results of this section show, thegeneric sets pertain to
diagonalizations over the levels of the linear exponential time hierakchy
Dczl DTIME(2°M. So, since a set B-generic iff it is 5-generic for all 1, P-generic
sets relate to diagonalizations o\r In particular, by Theorem 2.5, no setknis P-
generic. In fact, by Theorems 2.6 and P-generic sets aré-incompressible an#-bi-
immune. On the other hand, by Theorem P:8eneric sets can be found in all sufficiently
closed, smooth deterministic time classes properly contaihigg., as shown already in

[3], there ardP-generic sets in the claBg IM E(Z(”Z)).



In an analogous way, thé®® ""-generic sets pertain to the lev&l¥ IME(2M) of the
polynomial exponential time hierarclyy,. E.g., by Theorem 2.5, there is ntpen)’
generic set irDTI ME(Z(“C)), and the proofs of Theorems 2.6 and 2.7 can be easily
modified to show that ®9 " -generic sets ar®TIM E(2(“C-1))-incompressible and
DTIM E(Z(”C))-bi-immune (€2). On the other hand, by Theorem 2.3, there toery-
generic sets iDTIM E(2(”C+2)). So, forP, =, DTIME(2(°9 nf), theP,-generic sets
relate to diagonalizations ovEy, just as théP-generic sets relate to diagonalizations over

E. In particular, observe that the proof of Theorem 2.11 can be easily modified to show

that, for any function f as there and for aml cthere is a 49 n)C-generic set (henceRx
generic set) which is complete fiés under p-f(n)-tt-reductions.

3. Genericity and Measure

We first introduce a fragment of Lutz's measure theory which will be sufficient for our
investigations. Our presentation follows [16]. A more complete account of resource
bounded measure theory can be found in [15].

A martingaleis a function dx* - [0,0) such that, for all X>*, d(x0)+d(x1)< 2d(x). A
martingale dsucceedsn a language AZ* if lim sup,, d(A|z,) = «. Note that the values

of martingales are reals. So to define computability of a martingale we consider
approximations d >* - Q,, where Q is the set of nonnegative rationals, satisfying
|d, (x)—-d(x)| < 2K (kON). For such approximation functions we can define the time
complexity in the standard way and we can say that a martingale d tottrputabldf it

has uniformly t(n)—computable approximation functiopskatO. If d is p(n)-computable

for some polynomial p then we say that d+s@mputable

Now a clas<C of languages has taneasuré (ut(n)(C):O) if there is a t(n)—computable
martingale which succeeds on every languag€.imhe clas<C has t(nymeasurel
(ut(n)(C):l) if ut(n)(CC):O for the complemen€c={A0X*: AOC} of C. We write
ut(n)(C)vtO to indicate tha€ does not have t(n)-measure 0. Thenpasureof a clas<C is
defined similarly by p—computable martingales and is denotqat;(w. The measure of a
classC relative toE is defined by saying tha® hasmeasureO in E (u(C|E)=0) if
Hp(CNE)=0 andC hasmeasurel in E (u(C|E)=1) if u(C¢|E)=0. We writeu(C|E)#0 to
indicate thatC does not have measure OEn Lutz has shown that the measureEitis

10



nontrivial: Sincmp(E),—tO, H(C|E)=1 implies thati(C|E)=O0.

We should remark that, for technical convenience, our martingale definition differs slightly
from Lutz's definition: while he requires that d(x0)+d(x1) = 2d(x) we only require that
d(x0)+d(x1) < 2d(x) (In the literature such a function is sometimes calledizer-
martingaleand Lutz calls it alensity functiop As a consequence the resulting t(n)-
measure notions may differ by a linear factor. In both cases, however, we obtain the same
notion of p-measure and measureEinAs a technical tool we will need the following

(weak) version ob—additivity of the p—measure:

3.1. LemmgLutz [15]).Let C_(eN) be classes of languages and (]ZetDeZOCe.
Assume that, for somezt, there is an%computable function d: #£* - Q. such that,

for any eIN, d.=Ax.d(e,x) is a martingale which succeeds on every langua@g ifhen
UnC"'l(C):Up(C):O'

3.2. TheoremFor any &1, the class of &+generic sets has‘t?-measure 1, hence
p—measure 1.

Proof. Fix ¢ and let {G; e0IN} be a recursive enumeration BT IME(n®) such that

(3.0) C={0°x:xOCS} ODTIME(e|x[log(|xP)+e)
holds. LetC_= {X: C,is dense along X & X does not meg} @nd IetC:DQOCe. Then
C is the class of languages which are rfetgeneric. So, by Lemma 3.1, it suffices to
define an f*2-computable function d such that, faiN, d, is a martingale which succeeds
on every language i@, For x with [x£2° let d(e,x)=1 and, fax with |x2°and for &1,
let

0o if xi C, & X(1-)0C,
dexi) = O 2d(ex) if x(1-)0C, & xiOC,
O d(e,x) otherwise

Then each gdis a martingale. Moreover, it easily follows from (3.0) that d 98%n
computable. So it only remains to prove that easludceeds on the language<€in Fix e

and XJC,. Then G is dense along X but X does not megtBy the latter, X|XIC, for all

x, whence d(e,X|%0 for all x. It follows that d(e,X|) is nondecreasing in n. So it
suffices to show that there are infinitely many x such that d(e,X|(x+1)) = 2d(e,X|x), i.e., by
definition of d, such that, for somel, X|(x+1)=(X|x)i, (X|x)(1-JC, and (X|x)OC,.

But this is immediate by definition &,

11



By Theorem 3.2, any property shared by &baneric sets (for somext) occurs with p-
measure 1. E.g. from Theorem 2.6 we may conclude that the cla¥siné¢@mpressible

sets has p-measure 1. This was first shown by Juedes and Lutz [11] using a direct
argument. Though, in general, the direct proof that a property P has p-measure 1 uses the
same ideas as showing that afyganeric set (for some c) has this property, the latter may
turn out to be less complex, since it suffices to consider single requirements. In particular in
more involved arguments this simplified machinery can help to keep down the
combinatorical complexity of proofs. In the next section we will give an example for this.

3.3. RemarkBesides the measure &nLutz also introduced a measure By LetP, =
O _, DTIME(2009 "), Then the pmeasure of a clags is defined by lettingi, (C)=i
(i00,1) if there is a number ¢ such that, for t(rf{es2", Hyny(C)=i. Moreover,C has
measure 0 i, (W(C|E,)=0) if ppz(CnEz):O andC hasmeasurel in E, (UW(CIE,)=1) if

H(CC|E,)=0. By duplicating the above argument we can show that, for any c, the class of

cz1

the 209 n)c-generic sets has,ymeasure 1, hence measure Ejnin particular, the class of
P-generic sets hasymeasure 1 and measure Eip

4. The Small Span Theorem for Bounded Query Reductions.

For a polynomial time bounded reducibiligg_r thelower andupper sparof a set A are
defined by RA) = {B: B e A} and P1{(A) = {B: A <ot B}, respectively. The
intersection of the upper and lower span of A is thedpgreeof A: deq)_r(A) ={B: B o
A}. Juedes and Lutz [11] have shown that, for any d8EAthe upper span of A or the
lower span of A under p-m-reducibility has measure B.iRlence de,gm(A) has measure

0 in E for any set AIE. So, in particular, the class of p-m-complete problem&foas
measure 0 ift.

Here we first deduce the Small Span Theorem for p-m-reducibility from Theorem 3.2 and a
theorem on the distribution of thé-generic sets under p-m-reducibility which we will
prove next. Then, by extending this theorem to bounded truth-table reductions, we
generalize the Small Span Theorem to these reductions.

4.1. Theoremlet A and B be sets such that#, . B, A is rf-generic and
AODTIME(29") where c,&2. Then B is not #-generic.
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Proof. Fix fOFP such that A<y.m B via f and let D = {x: |f(xX)E2 |x|}. Note that, by
Theorem 2.6, A is p-incompressible whence f is almost 1-1. This easily implies that D is
infinite. So the condition

C = {XI(y+1): Ix(Ixklyl & f(x)=y & A(X)#X(y))}
is dense. Moreover, as one can easily che€lD T ME(nd*1) and, since A B via f,
B does not meet C. So B is néthgeneric.

Note that the main step in the above proof shows that, for any p-incompressible
AODTIME(2¢n) and for any B with A<, B, B is not K+ piimmune. The first proof
of this fact is due to Lindner [13].

4.2. Corollary(Small Span Theorem of Juedes and Lutz [11).ACIE. Then
H(PL(A)IE) = 0 or py(Pri(A)) = H(PRI(A)|E) = 0.

Proof. If there is no Ageneric set in F(A) nE thenu(P(A)[E) = Hy(P,(A)NE) = 0 by
Theorem 3.2. Otherwise, fix A" and2l such that A' is hgeneric, A'sp_m A, and
A'ODTIME(29M). SinceP(A) is contained irPii(A) it follows from Theorem 4.1, that
Pil(A) does not contain any’h-generic set. So, again by Theorem APi(A)) =

W(PA(A)IE) = O.

Lutz [16] raised the question whether the Small Span Theorem generalizes to the weaker
polynomial reducibilities. Lindner [13] proved the Small Span Theorem for p-1-tt-
reducibility. So the positive character of p-m-reducibility is not necessary for the theorem.
This still left the question what happens for reducibilities which may ask more than one
guery. Here we prove the Small Span Theorem for p-k-tt-reductions for=dny., for
reductions where the number of queries does not depend on the input (for the definition of
p-k-tt-reducibility, see the introduction). The main step in the proof is an analogue of
Theorem 4.1 for p-k-tt-reducibility.

4.3. TheoremLet A and B be sets such thatsy B for some k1, A is rf—generic for

some &2, and AIDTIME(29") for some &2. Then B is not $*1(@*+1generic.

For the proof of this theorem we need an incompressibility concept for p-k—tt—reductions
and some more technical tools.

4.4. Definition.Thecollision setof a p—k-tt-reduction h(g..,g,) is defined by

13



consistent witta language A if

DX, YOZ* ([95()=05() & - & 9,()=G,(¥) & h,=h] T AX)=A(Y)).
A language A is p—k-ttrcompressibléf, for any p—k-tt—reduction h(g..,g,) which is
consistent with A, h(g...,g ) is almost 1-1.

Note that A<, | B via h(g.....q,) implies that h(g....g,) is consistent with A, whence
for p—k-tt-incompressible A, h{g..,g,) is almost 1-1. As we show next, p-k-tt-

incompressibility coincides with p-incompressibility. So, by Theorem 2-@eameric sets
are incompressible under p—k—tt—reductions.

4.5. LemmaFor any k1, A is p—k-tt—incompressible iff A is p-incompressible.

Proof. Since any p-m-reduction may be viewed as a p-k-tt-reduction, obviously any p-k-tt-
incompressible set is p-incompressible. For a proof of the nontrivial direction, let A be p-
incompressible and fix any p-k-tt-reduction h(g,g,) which is consistent with A &1).
We have to show that h(g..,g) is almost 1-1. Let

A' = {<h,g,(x),....q.(x)>: xOA}.
Since h(g,....g,) is consistent with A, Asp_m A’ via f(x)=<h,g,(X),...,g.(x)>. So, by p-
incompressibility of A, fis almost 1-1, whence h(g,g,) is aimost 1-1 too.

For technical convenience, in the following we assume that all p-k-tt-reductions are in a
normal form, where the queries are listed in decreasing order and redundant queries are

replaced by\: A p—k—tt-reduction h(g...,g,) is normalif, for any x1>*, there is some

i<k such that, for gj<i, gj(x)>gj+1(x) and, for ki, gj(x):)\. It is easy to show that, for any
p—k—tt—reduction, there is an equivalent normal p—k—tt-reduction. For a normal p-k-tt-
reduction h(g,...,9,), therank of h(g,...,g,) is defined to be the greatest number

r{1,...,k} such that

[PexOz* (x| < (k+1)|g(x))).
(If no such r exists then the rank of h(g.,g,) is 0.)

4.6. LemmalLet h(g,,...,g) be a normal p—k-tt-reduction which is almost 1-1. Then the
rank of h(g,...,g,) is greater than 0.

Proof. Fix n such that™®> 22 and no x with |"n is in the collision set of h(g..,g,). It

14



suffices to show that, for some x with [x|=(k+1)p(Y=n. Let

BC ={(a,y;,...,¥,): o is a k—ary Boolean function and, farizk, y,00Z* and |y|<n}.
Since h(g,...,g,) is normal, for any x with |gx)|<n, (h,g,(x),...g(x))BC,. So, since,
by choice of n, h(g...,g,) is 1-1 on {XJZ*: |x|=(k+1)n}, the existence of an x with the
desired properties will follow from

IBGII < [IDOZ*: [x|=(k+1)n}| = 2+

This holds since there aréd-2 strings of length less than n apdl k—ary Boolean
functions, whence by choice of n, ||rl=,}|(k22k[02”)k < 2n[emk = 2Ak+1)n

We are now ready to prove Theorem 4.3.

Proof of Theorem 4.Fix a normal p-k-tt-reduction h{g..,g) from A to B of minimal
rank, say r. Note that, by Lemma 4.5, h(g,g) is almost 1-1 whence, by Lemma 4.6, r
> 0. We first show that there are infinitely many strings x satisfying
(4.0) IX|< (k+D)Ig ()] & h(0,B(G0)),--.B(G0D)) # hy(L,B(G0)),-,B(GO))).
For a contradiction assume that (4.0) fails for almost all strings x, and fix n such that no
string x with |xgn has this property. Define a p-k-tt-reduction {i,(g,g,") as follows.
For x with n< |x|< (k+1)|g (X)| let

(gll(x)i"'vg<l(x)) = (gz(x)ivg<(x)1)\) & hx'(j]_v"'vjk) = u((ovjli"'vjk-l)

(for any j,....j 0Z), and let (§'(x),...,g'(X)) = (g,(X)....,g.(X)) and i’ = h, otherwise.
Note that in the first case,

h,'(B(91'(x)),B(9,'(x))....,.B(g/(x)))

h,(0,B(g,(x)),.-..B(g(X)))
h (B(g,()).B(G,()),--,B(G())),
where the second equality follows from failure of (4.0). Sspﬁ_n B via h'(g',....q.)-
Moreover, this reduction is normal, and, for almost all x with<|xk+1)|g,(x)],
h'(g,'.....q,) is obtained from h(g...,q) by eliminating the greatest query(x). So the
rank of h'(g',...,q) is r-1, contrary to minimality of r. So (4.0) holds infinitely often.
Hence the condition

C = {X]y+1: Ix (Ixk(k+1)ly| & gi(X)=y & hy(X(g;(X)),-...X(g(X)))ZA(X))}
is dense. Moreover, [@DTIM E(n&*D(@+1) and, since A, B Via h(g,....q), B does
not meet C. So B is notil(@+1)generic.

4.7. Corollary(Small Span Theorem ftsrp_k_n). Let AOE and k1. Then
H(P(AIE) = 0 or py(PiLy(A) = H(PILH(A)[E) = 0.

Proof. This is shown as Corollary 4.2 using Theorem 4.3 in place of Theorem 4.1.
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We do not know whether Corollary 4.7 can be extended to p-btt-reducibility. Note that in
Theorem 4.3 the polynomial bound on the genericity for the successors (under p-k-tt-
reducibility) of the K-generic set A irE grows with k so that we do not get a polynomial
bound for the successors under all btt-reductions. We expect that an extension of Theorem
4.3 and Corollary 4.7 to p-btt-reducibility (if possible) will be of technical interest.

An interesting consequence of Corollary 4.7 is that, for &y the class of p-k-tt-hard
languages foE has p-measure 0. A corresponding result for generic sets follows from
Theorem 4.3.

4.8. Corollary.Let A be ®&+1-generic (21). Then A is notE-hard under p-k-tt-
reductions. Hence, the classtbhard languages under p-k-tt-reducibility has p-measure 0.

Proof. By Corollary 2.4 there is arfgeneric set iDTIME(24"), whence, by Theorem
4.3, no p-k-tt-hard set fdE can be Ak*1-generic.

Though Corollary 4.8 does not settle the question whether the class of the p-btt-hard
languages foE has p-measure 0, we obtain two partial results: First, by Corollary 4.8, no
P-generic set is p-btt hard f&, whence, by Remark 3.3, the class of p-btt-hard problems
for E has g-measure 0. The second partial result concerns the complete sets. Here, a p-
measure-0 result follows immediately from Corollary 2.10 and Theorem 3.2:

4.9. Theoremup({A: A p-btt-complete forE})=0.

By using a different method, Buhrman and Mayordomo (private communication)
independently but earlier proved a weaker version of the latter two results, namely that the
class of the p-btt-complete languagesHdras g-measure 0.

The question, whether there are Small Span Theorems fawehé& p-reducibilities,

namely polynomial truth-table (p-tt) and polynomial Turing (p-T) reducibility, and the more
specific question whether the classe&dfard problems under these reducibilities have p-
measure 0 seem to be much more fundamental. By Theorem 2.11 our approach by generic
sets fails for the weak reducibilities. Moreover, as observed already by Lutz, these
guestions may depend on the relation betweemdBPP: For the classical measuue

Bennet and Gill [6] have shown thaa(lP'Tl(A)) = 1 iff AOBPP while Ambos-Spies [1] has
shown thatu(P(A)) = 1 iff AOP. Moreover, Ambos-Spies (unpublished) and,
independently, Tang and Book [22] extended these results to the intermediate reducibilities
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by showing thap(P;H(A)) = 1 iff ADBPP while pu(Pgi(A)) = 1 iff AOP. Sincep(C) = 1
implies thatC does not have p-measure 0, these results imply that, assamB®P, the

Small Span Theorem fails for p-tt-reducibility and p-Turing-reducibility and the classes of
the E-hard sets under these reducibilities do not have p-measure 0. Moreover, Heller [9]
has constructed an oracle relative to whiejFBPP. So a proof of the Small Span
Theorem for the weak p-reducibilities would require nonrelativizable techniques.

5. Conclusion

We have shown that many properties which occur with p-measure 1 are sharedby all n
generic sets (someR). This gives a new, modular approach to some p-measure 1-results
which can be combinatorically much simpler than the direct approach. This approach,
however, does not cover all p-measure 1-results. Generic sets are designed to be universal
for standard resource bounded diagonalization arguments. In such a diagonalization
argument, a single diagonalization step corresponding to one of the subrequirements has to
be performed only once and only under the proviso that there are infinitely many chances to
do so. Though, in general, this easily implies that the action for a single requirement will be
performed infinitely often (provided there are infinitely many chances to do so), we cannot
say anything about the frequency with which the opportunities are taken. The latter
contrasts with a typical measure 1 construction where we have to take the majority of the
opportunities. To illustrate this difference we consider the density of a set. We have shown
already that a generic set can be sparse (Corollary 2.4). As first observed in [17], the class
of sparse sets, however, has p-measure 0. To see this considéntlagtingale d:

>* - Q, defined by d)=1, d(x0)=3/2d(x), and d(x1)=1/2I(x). Then it is easy to see that

d succeeds on any sparse set, in fact on any set which is not exponentially dense.

Though this example points out limitations of the generic set approach to p-measure 1-
results, we would like to emphasize that the generic sets help us to distinguish between
those properties which can be forced by standard diagonalizations and those which require a
measure diagonalization argument. Moreover, this example also shows that the assumption
that a clas€ contains an fageneric set is weaker than the assumptionGhiaés nonzero
p-measure. This observation might be of particular interest when studying the structure of
NP assuming thaflNP is sufficiently large. Lutz defines thadP is not smallif

pp(N P)#£0, and in [18] he and Mayordomo proved that under this non-smallness
hypothesis p-T-completeness and p-m-completenedéFfalo not coincide. We can show

that this result already follows from the (apparently weaker) assumptioNRhaintains
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an rf-generic set.

Moreover, the relations between resource bounded genericity and measure which we
explored here for the polynomial case hold for arbitrary time (and space) bounds. In

particular, as shortly indicated in Remarks 2.12 and 3.3 already, we obtain corresponding
results for the pmeasure analysis &, by Lutz.

Finally we want to remark that there ig@neralmodular approach to p-measure 1-results

by using random sets in place of generic ones. Following Schnorr [21] and Lutz [16] we
say that a language A is t(n)-random if no t(n)-computable martingale succeeds on A, i.e., if
A does not belong to any class of t(n)-measure 0. The existenégarsfdom sets it is

shown in [4]. In fact, there it is shown that the class®afandom sets has p-measure 1,
and random sets are used to further analyze the p-measkrévmmeover, as also shown

in [4], randomness is a refinement of genericity, namely, &fyrandom set is%generic
whence any-random set i®-generic, whereas, by the above observation on sparseness,
the converse is not true.
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