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Abstract

Let BC be the model of behaviourally correct function learning as introduced by
Bārzdins [4] and Case and Smith [8]. We introduce a mind change hierarchy for
BC, counting the number of extensional differences in the hypotheses of a learner.
We compare the resulting models BCn to models from the literature and discuss
confidence, team learning, and finitely defective hypotheses. Among other things,
we prove that there is a tradeoff between the number of semantic mind changes
and the number of anomalies in the hypotheses. We also discuss consequences for
language learning. In particular we show that, in contrast to the case of function
learning, the family of classes that are confidently BC-learnable from text is not
closed under finite unions.

Keywords. Models of grammar induction, inductive inference, behaviourally
correct learning.

1 Introduction

Gold [10] introduced an abstract model of learning computable functions,
where a learner receives increasing amounts of data about an unknown func-
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tion and outputs a sequence of hypothesis that has to converge to a single
explanation, i.e. a program, for the function at hand. This concept of explana-
tory or Ex-learning has been widely studied [8,10,11,15]. A recurring theme
is the question how often the learner can change its hypothesis and how con-
scious it is of this process: does the learner know when it has converged and
how fast does the learner see when new data requires the hypothesis to be
changed. Gold [10] already observed that a learner who knows when the cor-
rect hypothesis has been found is quite restricted: such a learner can wait
until it has the correct hypothesis and then output a single but correct guess.
Therefore such a learner can never learn a dense class of functions, which re-
quires one to be able to withdraw and change to a new hypothesis at arbitrary
late time points, as in the model Ex.

Another well-studied paradigm is the model BC of behaviourally correct learn-
ing [4,8]. The difference with the Ex-model lies in the notion of convergence:
Whereas in Ex the syntax of the hypotheses of the learner is required to con-
verge, i.e. convergence is intensional, in BC the semantics of the hypotheses
should converge, i.e. convergence is extensional. Bārzdins [4] showed that be-
haviourally correct learners can learn classes on which no Ex-learner succeeds.
BC-learners are quite powerful: Steel [8] noticed that the concept of syntactic
convergence to an almost everywhere correct hypothesis can be covered by
an error-free BC-learner. Furthermore, Harrington [8] showed that a further
generalization of BC-learners, namely those which almost always output finite
variants of the function to be learned, can learn all recursive functions.

There are many models of learning in which the number of changes in hypoth-
esis, also called mind changes, is counted. Previous studies focussed mainly on
intermediate notions employing syntactic convergence. In particular Bārzdins
and Freivalds [5] initiated the analysis of Ex-learning with a bound on the
number of mind changes. Freivalds and Smith [9] generalized this concept by
using recursive ordinals which are counted down recursively at every mind
change. Just as it is interesting to study syntactic mind changes, we find it
interesting to explore semantic mind changes. In Section 3 we introduce the
models BCn (for n being a natural number) where the BC-learner may make at
most n semantic mind changes on any function to be learned. It is shown that
the classes BCn form a proper hierarchy that is incomparable to Ex-learning.

Ambainis, Jain and Sharma [1] showed that a class of functions is Ex-learnable
with a recursive ordinal number of mind changes if and only if it can be learned
by a machine which converges on every function, even on the nonrecursive
ones, to some hypothesis. Following Osherson, Stob and Weinstein [17, Section
4.6.2], we call a learner that converges on all functions confident. This notion
can be generalized to BC: A BC-learner is confident if it converges semantically
on every function. Before we define ordinal mind change bounds for BC, we
take instead the characterization of ConfEx as an alternative starting point
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and study ConfBC. In Section 4, we show among other things that the result
that all classes Exn are in confident Ex also holds in the case of semantic
convergence: Every BCn-learnable class has a confident BC-learner. At the
end we show how to introduce ordinal mind change bounds for BC-learning
and note that this concept is equivalent to the notion ConfBC.

In Section 5 we consider hypotheses which are finitely defective. The more
noticeable difference with the Ex case is that here there is a tradeoff between
anomalies and mind changes. We prove that BC1, the first nontrivial level of
the BCn hierarchy (since BC0 coincides with Ex0), is not contained in OEx∗,
a learning criterion from Case and Smith [8]. This improves a result from [8].

Finally, in Section 6 we discuss consequences for grammatical inference. In
[10] Gold also introduced a model of learning recursively enumerable sets (in
this context also called languages), which is more general than the model of
learning recursive functions. The negative results obtained in the previous sec-
tions for function learning immediately imply their counterparts for language
learning. In this section we discuss the positive counterparts. In contrast to
the case of function learning we show that the family of classes that are con-
fidently BC-learnable from text is not closed under finite unions. We do this
by constructing a certain class of finite thickness that also shows that a result
from [22] is optimal.

2 Preliminaries and Notation

We will use the following notation. For a function f , f [n] denotes the string
f(0)f(1)f(2) . . . f(n − 1). Our recursion theoretic notation is standard and
follows Odifreddi [14] and Soare [20]. ϕ denotes a standard acceptable pro-
gramming system. ϕe is the e-th partial recursive function, and ϕe,s(x) is the
result of running ϕe for s steps on input x. N is the set of natural numbers.
〈. , .〉 denotes a standard pairing function. For a string σ, |σ| is the length of
σ.

We recall the following definitions. A recursive function M from finite se-
quences of natural numbers to N, Ex-learns (see [10]) a recursive function f
if k = limn→∞M(f [n]) exists and is a code for f , i.e. ϕk = f . We say that M
Ex-learns a class C of recursive functions if and only if M Ex-learns each func-
tion in the class. M BC-learns (see [4,8]) a recursive function f , if for almost
every n, M(f [n]) is a code for f , i.e. ϕM(f [n]) = f . We say that M BC-learns
a class C of recursive functions if and only if M BC-learns each function in
the class. Ex and BC denote the families of classes that are learnable by a
recursive Ex and BC learner, respectively.
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In the literature on inductive inference, it is customary to allow a learner to
output initially the symbol “?”, that does not count as a numerical hypothesis.
This is relevant when counting the number of mind changes that a learner
makes on given input data. We say that a learner M makes a mind change on
f at n + 1, if M(f [n]) 6=? and M(f [n]) 6= M(f [n + 1]). A class of recursive
functions C is in Exm, if there is a recursive learner that learns every f ∈ C

by making at most m mind changes on f .

We will also consider team learning [16,19]. Recall that for a learning criterion
I, a class A is in [m,n]I, if there is a team consisting of n learners such that,
for every f ∈ A, at least m of these learners I-learn f .

3 Semantic mind changes

It is clear that the notion of mind change as defined above is not useful for the
study of the model of BC-learning, since in this model the inductive inference
machine does not have to converge to a particular code for the input function
but may infinitely often output a different code, as long as in the limit these
codes are for the input function. In other words, in the limit the outputs of
the function may differ syntactically but semantically they must be the same.
This brings us to define a notion of mind change for BC-learning as follows.

Definition 1 A machine M BCn-learns a recursive function f (or: M BC-
learns f with at most n semantic mind changes) if M BC-learns f such that
the cardinality of the set {m : M(f [m]) 6= ? ∧ ϕM(f [m]) 6= ϕM(f [m+1])} is at
most n.
M BCn-learns a class C of recursive functions, if M BCn-learns each function
in C.
BCn denotes the family of classes that can be BCn-learned by some recursive
learner.

That is, the machine M is allowed only n semantic mind changes, i.e. a change
of output from e0 to e1 such that ϕe0

6= ϕe1
. Here, as in the case of Exn, an

initial sequence of empty hypotheses “?” is allowed. In the following, when we
speak about mind changes it will depend on the model under consideration
what we mean: If the model is defined using the basic model Ex we will
always mean ‘mind change’ in the previously defined, syntactical, sense and if
the model is a variant of BC we will always use the semantic meaning of the
word mind change. We now state the basic properties of the model BCn and
show how it relates to the other models.

Theorem 2 (a) BC0 = Ex0.

(b) Exn ⊂ BCn for n ≥ 1.
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(c) For every n ∈ N it holds that Exn+1 6⊆ BCn.

(d) Ex 6⊆
⋃

n∈N BCn.

(e) BC1 is not contained in Ex.

Proof. (a) Ex0 ⊆ BC0 by definition. To Ex0-learn a class C, which is BC0-
learned by a machine M : on any input function, simply output the first hy-
pothesis of M that is unequal to “?”. For functions in C, since M is not
permitted to change the hypothesis semantically, the first hypothesis must be
correct.

The strictness of the inclusion in (b) follows from (e). Items (c) and (d) can
be proven by a well-known argument used in Theorem 14 in order to obtain
a more general result. Item (e) will be proven in Theorem 19. 2

The following two propositions are useful for us. The proofs, which are easy
diagonalizations similar to the ones found in [8], are left to the reader.

Proposition 3 (Based on [8]) Let n ∈ N. Consider the classes

C
n
1 = {f : f(0) = n+ 1 and f(x+ 1) ≤ f(x) for all x},

C
n
2 = {f : card({x : f(x) 6= 0}) ≤ n+ 1}.

Both classes, Cn
1 and Cn

2 , cannot be learned (in the Ex-sense) by any (even
non-recursive) learner using at most n mind changes. Thus, Cn

1 ,C
n
2 /∈ BCn.

On the other hand, both classes, Cn
1 and Cn

2 , are in Exn+1.

4 Confidence

The notion of confidence was defined by Osherson, Stob and Weinstein [17]
for set-learners. We can define confidence for function-learners in the following
analogous way.

Definition 4 An Ex-learner is called confident if it converges on every func-
tion. (This is in general not the same as only requiring convergence on all re-
cursive functions, see Ambainis, Freivalds and Smith [2], and Sharma, Stephan
and Ventsov [18].) A BC-learner is called confident if it semantically converges
on every function. We denote by ConfEx the family of classes that are learn-
able by a recursive and confident Ex-learner and by ConfBC the family of
classes that are learnable by a recursive and confident BC-learner.

Ambainis, Jain and Sharma [1] showed that a class is confidently Ex-learnable
if and only if it can be Ex-learned with a countable ordinal number of mind
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changes. In particular, every class that is Ex-learnable with a constant num-
ber of mind changes is also confidently Ex-learnable. The next result is the
corresponding one for BC: Every class BCn is in ConfBC, indeed one even has
analogous to the Exn-case that the learner makes at most n semantic mind
changes on every function f . It needs a new proof technique since the semantic
mind changes cannot be directly detected and counted down as in the case
of Ex-learning. While one can trivially enforce that an Exn-learner makes at
most n mind changes on any input function, also on functions not intended
to be learned, the corresponding result for BCn-learners is more involved.

Theorem 5 Let n ∈ N. Every BCn-learner M can be translated into an at

least as powerful BCn-learner making at most n mind changes on every input

function. In particular,
⋃

n∈N BCn is included in ConfBC.

Proof. Let M be a BCn-learner. We transform M into a BC-learner M ′ that
learns at least the functions that M learns and makes no more than n mind
changes on any input function. In order to do this, we consider the concept of
seeds. Not all finite strings qualify as a seed.

Within this proof, f(0)f(1) . . . f(m) is a seed if and only if

• M(f(0)f(1) . . . f(m)) ∈ N and
• ϕM(f(0)f(1)...f(m))(x) is defined and equal to f(x), for x = 0, 1, . . . , m.

We define the function F α associated with a seed α = f(0)f(1) . . . f(m) as
follows:

F α(x) =















f(x) if x ≤ m;

ϕM(F α[x])(x) if x > m and F α(y) ↓ for all y < x;

↑ otherwise.

Note that a program for F α can be found effectively from α.

We say that two seeds α = f(0)f(1) . . . f(m) and α′ = g(0)g(1) . . . g(m′),
where m′ ≥ m, are equivalent if and only if for all x ≤ m′, F α(x) = g(x).
Note that the equivalence relation of seeds is recursively enumerable and if α
and α′ are equivalent then α ⊆ α′ or α′ ⊆ α. Furthermore, if seeds α and α′

are equivalent, then for every seed α′′ such that α ⊆ α′′ ⊆ α′, α′′ is equivalent
to α.

Let α′

0, α
′

1, . . . be a 1–1 recursive enumeration of all the seeds. Let α0, α1, . . .
be obtained from α′

0, α
′

1, . . . , by suppressing all α′

i such that for some j < i,
α′

i ⊆ α′

j . Thus for any function g, any subsequence of αi’s, which are also
prefixes of g, forms a monotonic sequence.
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Now the new learning algorithm M ′ does the following on input g[r]. If no
αm ⊆ g[r], for m ≤ r, then M ′(g[r]) outputs ?. Otherwise, M ′ on g[r] outputs
a program for the function F αm , for the largest m ≤ r such that (i) αm ⊆ g[r]
and (ii) it can be verified in r steps that {αi : i < m, αi ⊆ g[r]}, form at most
n equivalence classes.

It is now easy to verify that (a) M ′ on any function makes at most n semantic
mind changes and (b) M ′ BC-learns any function BCn-learned by M . This
proves the theorem. 2

Definition 6 A recursive learner M learns a class C with the ordinal bound µ
for the number of hypotheses iff there is a (not necessarily recursive) function
Ord that takes arbitrary ordinals as values such that

(a) µ > Ord(σ) for all σ with M(σ) 6= ? and
(b) for all σ with M(σ) 6= ?, Ord(σ) > Ord(τ) whenever σ � τ and ϕM(σ) 6=
ϕM(τ).

One can easily show that for every confident learner M , one can define Ord
as required in the above definition, as one can first translate M into a non-
recursive learner M ′ making only the semantical mind changes and omitting
the other ones and then applying the known result for ConfEx-learners (see
for example, [1]).

Theorem 7 A class C is ConfBC-learnable iff C is BC-learnable with an or-

dinal bound on the number of hypotheses.

If one takes the seed-learner M ′ from Theorem 5 one can easily verify that by
taking Ord(σ) = n −m, whenever M(σ) 6= ? and m semantic mind changes
have occurred after the first τ � σ with M(τ) 6= ?, one satisfies the require-
ments of Definition 6. Thus we have the following proposition.

Proposition 8 Let n ∈ N. A class C is learnable with n semantic mind

changes iff C is learnable with n + 1 hypotheses.

Let µ+ν+1 be the first ordinal ρ for which a set of order type ρ does not have
a two-colouring into red and blue such that the subset of the red elements has
order type ≤ µ and that of the blue elements has order type ≤ ν. Then one
can show that ρ has a predecessor and define µ + ν to be this predecessor.
The important difference of this definition of + to the standard one having
1+ω = ω is that, whenever µ ≤ µ′ and ν ≤ ν ′ and one of the relations is strict,
that is µ < µ′ ∨ ν < ν′, then µ + ν < µ′ + ν ′. The following theorem shows
that whenever one can learn two classes C1 and C2 with µ and ν hypotheses,
then one can learn their union with µ+ ν hypotheses.

Theorem 9 Suppose that C1 is BC-learnable with µ hypotheses and C2 is BC-
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learnable with ν hypotheses. Then C1∪C2 is BC-learnable with µ+ν hypotheses.

In particular, whenever C1 ∈ BCm and C2 ∈ BCn for natural numbers m,n,
then C1 ∪ C2 ∈ BCm+n+1.

Proof. The special case follows from the first statement of Theorem 9 in com-
bination with Proposition 8.

The proof of the first statement uses a similar trick as in Theorem 5. Sup-
pose that M1 BC-learns C1 with µ hypotheses and M2 BC-learns C2 with ν
hypotheses. We say that f(0)f(1) . . . f(s) is a seed if and only if there exists
an i ∈ {1, 2} such that,

• Mi(f(0)f(1) . . . f(s)) ∈ N and
• ϕMi(f(0)f(1)...f(s))(x) is defined and equal to f(x), for x = 0, 1, . . . , s.

We define the function F α associated with a seed α = f(0)f(1) . . . f(s) as
follows:

F α(x) =































































f(x) if x ≤ s,

ϕMi(F α[x])(x) if x > s, F α(y) ↓ for all y < x, and
the number i ∈ {1, 2} is the first el-
ement found, if any, in some standard
search (which depends only on the se-
quence F α[x]) such that Mi(F

α[x]) ↓ and
F α(y) = ϕMi(F α[x])(y) for all y < x,

↑ otherwise.

Note that a program for F α can be found effectively from α.

We say that two seeds α = f(0)f(1) . . . f(m) and α′ = g(0)g(1) . . . g(m′),
where m′ ≥ m, are equivalent if and only if for all x ≤ m′, F α(x) = g(x).
Note that the equivalence relation of seeds is recursively enumerable and if α
and α′ are equivalent then α ⊆ α′ or α′ ⊆ α. Furthermore, if seeds α and α′

are equivalent, then for every seed α′′ such that α ⊆ α′′ ⊆ α′, α′′ is equivalent
to α.

Let α′

0, α
′

1, . . . be a 1–1 recursive enumeration of all the seeds. Let α0, α1, . . .
be obtained from α′

0, α
′

1, . . . , by suppressing all α′

i such that for some j < i,
α′

i ⊆ α′

j. (Thus for any function g, any subsequence of αi’s, which are also
prefixes of g, form a monotonic sequence).

Now the new learning algorithm M ′ does the following on input g[r]. If no
αm ⊆ g[r], for m ≤ r, then M ′(g[r]) outputs ?. Otherwise, M ′ on g[r] outputs
a program for F αs for the largest s ≤ r such that αs ⊆ g[r].
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It is easy to verify that M ′ BC-learns g, if M1 BC-learns g or M2 BC-learns
g with µ or ν hypotheses, respectively. We now show that M ′ learns using
ordinal bound µ+ ν for the number of hypothesis.

For ease of notation, we make the convention that ϕ? does not extend α.

For a seed α, let d(α) be a function such that d(α) = 1, if ϕMi(α) ⊇ α for both
i ∈ {1, 2}. d(α) = 0 otherwise. Define Ord(α) = (Ord1(α) +Ord2(α)) + d(α),
where Ord1, Ord2 are the ordinal counters for M1 and M2 respectively (here
we take Ord1(α) = µ if M1(α) =?, and Ord2(α) = ν if M2(α) =?).

To show the bound on number of hypothesis used by M ′ it suffices to show
that for any two seeds α, α′, if α and α′ are not equivalent and α ⊆ α′, then
Ord(α) > Ord(α′).

We consider two cases.

Case 1: Both ϕM1(α) and ϕM2(α) extend α.

In this case clearly, for some i ∈ {1, 2}, either Mi made a mind change between
α and α′ or ϕMi(α) does not extend α′ (otherwise, we will have that α is
equivalent to α′). Thus, Ord(α′) < Ord(α).

Case 2: ϕMi(α) extends α for exactly one i ∈ {1, 2}.

Without loss of generality assume i = 1, that is: ϕM1(α) extends α.

Case 2.1: M1 changes hypothesis between α and α′.

Now either M2 changes hypothesis between α and α′, or ϕM2(α′) does not
extend α′. In both cases we have Ord(α′) < Ord(α).

Case 2.2: M1 does not change hypothesis between α and α′ and ϕM1(α) does
not extend α′.

In this case, since α′ is a seed, ϕM2(α′) must extend α′. Thus M2 must have
changed hypothesis between α and α′. It follows that Ord(α′) < Ord(α).

Case 2.3: M1 does not change hypothesis between α and α′ and ϕM1(α) extends
α′.

In this case M2 must change hypothesis at least once between α and α′ (oth-
erwise we would have that α and α′ are equivalent).

Case 2.3.1: M2 changes hypothesis at least twice between α and α′.

In this case clearly, Ord(α′) < Ord(α).
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Case 2.3.2: M2 changes hypothesis exactly once between α and α′.

If ϕM2(α′) extends α′ then we would have that α is equivalent to α′. Thus,
ϕM2(α′) does not extend α′. It follows that Ord(α′) < Ord(α).

From the above case analysis, we get that Ord(α′) < Ord(α). Also, µ + ν >
Ord(α), whenever at least one of Mi(α) 6=?. This proves the theorem. 2

Note that the simulation in Theorem 9 is optimal, for µ and ν being natural
numbers, as any class C ∈ Exm+n+1 can be split into two classes C1,C2 such
that C1 ∪ C2 = C, C1 ∈ Exm and C2 ∈ Exn. However, we have by Theorem 14
below that Exm+n+1 6⊆ BCm+n.

Blum and Blum [6] showed that Ex is not closed under finite unions. That
the same holds for BC was proved by Smith [19]. In contrast to this result,
the confident version of BC is closed under finite unions, as is the confident
version of Ex [1,18]. This is obtained as a direct corollary of the Theorems 7
and 9.

Corollary 10 ConfBC is closed under finite unions.

Note 1 Recall the notion of team learning from Section 2. The previous result

can be seen as a result on team learning: In the proof of Theorem 9 we showed

that two confident BC-learners can be replaced by one. By induction we see

that a finite team of confident BC-learners can be replaced by one confident

learner which BC-learns all the functions which are BC-learned by at least one

machine in the team.

The below theorem shows that the inclusion in Theorem 5 is strict. It should
be noted that one can generalize it even to stating that there is a class in
ConfEx which cannot be learned with α hypotheses where α is any fixed
recursive ordinal. The diagonalizing class D is obtained by considering the
nonincreasing functions with respect to a recursive well-ordering on N of order
type α+ 1.

Theorem 11 ConfEx is not contained in
⋃

n∈N BCn.

Proof. Let D be the class of all nonincreasing functions. It follows from Propo-
sition 3 that D 6∈ BCn for any n. On the other hand, D ∈ ConfEx: Since any
f ∈ D can step down at most f(0) times, we can learn D by a confident learner
that on any input σ makes sure that no more than σ(0) syntactic changes have
been made. 2
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5 Anomalous hypotheses

In this section we discuss learning with a finite number of anomalies. In both
the Ex and the BC case it is known that allowing final hypotheses that are
defective at a finite number of inputs, either by being undefined or by giving
the wrong answer, increases the number of classes that can be effectively
learned. For partial functions η and ψ, let η =∗ ψ denote that for almost
every x, η(x) = ψ(x). (As usual, we take η(x) = ψ(x) to mean that if one of
η(x),ψ(x) is undefined, then the other one is too.) Similarly, η =n ψ means
that η(x) = ψ(x) for all x, with the possibility of at most n exceptions. Now
Ex∗ and Exn are defined similarly to Ex except that instead of requiring the
final hypothesis k to be a program for f , we require ϕk =∗ f and ϕk =n f
respectively. Similarly for BC∗ and BCn. For example M BCn-learns a function
f if for almost every k, ϕM(f [k]) =n f . We define BCn

m as follows.

Definition 12 Let n,m ∈ N. A learner M BCn
m-learns a function f whenever

M BCn-learns f with at most m semantic mind changes. BCn
m denotes the

family of classes that can be recursively BCn
m-learned.

We note that there is at least one other (nonequivalent) way of defining BCn
m,

where one also counts the semantic mind changes modulo finite differences.
That is, one considers a mind change to have taken place by M at f [k + 1],
if M(f [k]) 6= ? and ϕM(f [k]) 6=

n ϕM(f [k+1]). However, this definition is mathe-
matically less elegant. For example the relation “=n” is not transitive and so
it might happen that ϕM(f [k]) =n ϕM(f [k+1]) and ϕM(f [k+1]) =n ϕM(f [k+2]) while
ϕM(f [k]) 6=n ϕM(f [k+2]). Furthermore, there would be nontrivial collapses like
BC1

0 = BC2
0 with respect to the alternative definition.

Steel [15] noticed that Ex∗ ⊆ BC. The next result shows that a smaller bound
on the number of mind changes cannot be compensated by permitting errors
and using semantic instead of syntactic mind changes. Note that the result
provides the omitted proofs of parts (c) and (d) of Theorem 2.

The following proposition can be proved using easy diagonalizations, similar
to the ones found in [8]. We leave the details to the reader.

Proposition 13 (Based on [8]) Let n ∈ N. Let Cn
1 be as in Proposition 3.

Then Cn
1 6∈ BC∗

n.

Theorem 14 For every n ∈ N it holds that Exn+1 6⊆ BC∗

n. Furthermore,

Ex 6⊆
⋃

n∈N BC∗

n.

Proof. The family Cn
1 from Proposition 3 witnesses that Exn+1 6⊆ BC∗

n (by
Proposition 3 and Proposition 13). Let C =

⋃

n∈N Cn
1 . Clearly, C ∈ Ex. However,

C 6∈
⋃

n∈N BC∗

n by Proposition 13. 2
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Blum and Blum [6, page 152] stated that Ex∗ 6⊆ Ex. Bārzdins [4] proved that
BC 6⊆ Ex. Case and Smith [8, Theorem 2.3] proved that the class S1 = {f :
ϕf(0) =1 f} is in Ex1 − Ex. Clearly S1 ∈ BC1 so it follows immediately that
BC1 6⊆ Ex. Case and Smith and Harrington [8, Theorem 3.1] proved that the
class {f : (∀∞x) [ϕf(x) = f ]} is in BC − Ex∗. From this proof actually follows
the stronger statement that the smaller class

X = {f : (∃n) (∀i) [i ≤ n→ ϕf(i) = ϕf(0) ∧ i > n→ ϕf(i) = f ]}

is in BC − Ex∗. Since X is clearly in BC1 this gives us the following result.

Theorem 15 BC1 is not included in Ex∗.

Theorem 15 will be improved in Theorem 19.

The following result shows that in the BC model there is a tradeoff between
mind changes and anomalies. Note that this is different in the Ex model where
there is no such tradeoff. Namely, Case and Smith [8] proved that Ex1

0 is not
contained in Ex. Tradeoff results for a different notion of mind change in the
context of vacillatory function learning were studied in Case, Jain and Sharma
[7].

Theorem 16 Let n,m ∈ N. BCn
m is included in BCn(m+1)+m. For n > 0 the

inclusion is strict. Furthermore, the bound n(m+ 1) +m is optimal.

Proof. Proof of the inclusion: LetM be a BCn
m-learner. We will try to overcome

anomalies by hard-wiring bits of the input data, in such a way as to make the
least possible number of semantic changes. Hard-wiring all values of the input
data can already make this number recursively unbounded when the first
hypotheses of M are wrong, so we have to be more careful. Since we know
that the “final” hypotheses of M are faulted at at most n places, we never
patch more than n inputs. That is, we transform every hypothesis M(σ) into
an hypothesis M ′(σ) that implements the following algorithm. Compute the
longest τ � σ such that there are at most n places x ∈ dom(τ) with either
ϕM(τ),s(x) ↑ or ϕM(τ),s(x) ↓6= τ(x), where s = |σ|. Then let

ϕM ′(σ)(x) =











τ(x) if x ∈ dom(τ),

ϕM(τ)(x) if x /∈ dom(τ).

So the algorithm has two ingredients: delaying and patching. It is easy to
verify that every mind change is either caused by patching some x with τ(x)
that has been incorrect before or by following an original mind change of M .
Between two (delayed) semantic mind changes of M there are at most n places
at which M ′ causes a mind change by patching one input. So patching may
induce up to n mind changes between two delayed ones plus n mind changes
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before the first (delayed) mind change of M and n mind changes after the
last (delayed) mind change of M . Together with the up to m original mind
changes of M this gives altogether at most n(m+ 1) +m mind changes.

Furthermore the last hypothesis of M agrees with the function to be learned
on all but up to n places. These at most n places are repaired by patching.
So whenever M BCn

m-learns a function f , M ′ BCn(m+1)+m-learns the same
function f .

Proof of the strictness of the inclusion when n > 0: This follows immediately
from Theorem 14.

Proof of the optimality of the bound: We prove that Exn
m is not included in

BCn(m+1)+m−1. Consider the class S of functions that are zero at all but up
to n(m + 1) + m inputs. Then S 6∈ BCn(m+1)+m−1 by Proposition 3. On the
other hand, S ∈ Exn

m because an Exn
m-learner can output its (j + 1)-th guess

after having seen j(n + 1) nonzero values in the input function (where the
guess is the zero-extension of the function seen so far; note that the (j+1)-th
guess would make at most n errors as long as there are ≤ (j + 1)(n + 1) − 1
non-zero values in the input function). In this way, with m mind changes the
Exn

m-learner can handle upto (n + 1)(m+ 1) − 1 nonzero values in the input
function. Hence S ∈ Exn

m. 2

Next we consider learning by team of learners (see Section 2). First we prove
that BCn ⊆ [1, n+ 1]Ex and that BCn 6⊆ [1, n]Ex∗.

Theorem 17 BCn is strictly included in [1, n+ 1]Ex for every n ∈ N.

Proof. Let M witness that S ∈ BCn and let Sk be the subclass of those
functions in S where M makes exactly k semantic mind changes. Clearly S =
S0 ∪ S1 ∪ . . . ∪ Sn.

For each class Sk there is an Ex-learner Mk: The machine Mk searches for
the least tuple (σ0, x0, σ1, x1, . . . , σk−1, xk−1, σk) that is a candidate for wit-
nessing k semantic mind changes. Mk computes at every f [m] � f an m-th
approximation to this tuple and outputs M(σk) for this approximation.

The search conditions for this tuple to witness the k semantic mind changes
are the following three.

• σ0 ≺ σ1 ≺ . . . ≺ σk � f where f is the function to be learned,
• M(σh) 6= ? for every h ≤ k,
• ϕM(σh)(xh) 6= ϕM(σh+1)(xh) (i.e. either exactly one of the values is undefined

or both are defined but different) for every h < k.
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Note that for the learner M0 the first and the third condition are void so that
the only search condition is to find some σ0 � f with M(σ0) 6= ?. The last
condition can only be verified in the limit, so it might happen that either a
correct tuple needs some time until it qualifies or that some incorrect tuple is
considered to be a candidate until it is disqualified.

If f ∈ Sk then there exist such tuples and Mk converges to the least one of
them. It follows that Mk(f [m]) converges to M(σk) for the σk of this least
tuple. The candidates for the mind changes are then correct. So M makes k
mind changes before seeing σk and no mind change later. So M(σk) is indeed
a program for f and Mk is an Ex-learner for Sk. It follows that the team
M0,M1, . . . ,Mn infers the whole class S with respect to the criterion [1, n +
1]Ex.

The strictness of the inclusion follows from (the proof of) Theorem 11 showing
that the class D is in ConfEx and thus in [1, n+ 1]Ex, but not in BCn. 2

Theorem 18 BCn is not included in [1, n]Ex∗ for every n ∈ N.

Proof. Let S1 = {f : ϕf(0) =1 f}. (See also the discussion preceding Theo-
rem 15.) Let Sn = {f1⊕· · ·⊕fn : fi ∈ S1}. Here, given f1, . . . , fn, the function
f = f1 ⊕ · · · ⊕ fn is defined by f(a · n + b) = fb+1(a) where a ∈ {0, 1, 2, . . .}
and b ∈ {0, 1, . . . , n− 1}. It follows from Kummer and Stephan [13, Theorem
8.2] that S

n 6∈ [1, n]Ex, whereas it is easy to see (by combining the codes of
the fi) that Sn ∈ Exn

0 ⊆ BCn. To obtain a result for [1, n]Ex∗, define the cylin-
drification Cyl(Sn) = {f : (∃g ∈ Sn)(∀x, y)[f(〈x, y〉) = g(x)]}. Since for any
class A it holds that Cyl(A) ∈ [1, n]Ex if and only if Cyl(A) ∈ [1, n]Ex∗, and
Cyl(A) ∈ [1, n]Ex implies A ∈ [1, n]Ex, it follows that Cyl(Sn) 6∈ [1, n]Ex∗.
However, the BCn-algorithm for Sn easily transfers to Cyl(Sn). 2

Case and Smith [8] introduced the notion of OEx∗-learning. In this criteria,
the learner outputs finitely many indices such that at least one of these indices
computes a finite variant of f . Case and Smith [8] proved that neither of the
classes BC and OEx∗ is included in the other. The next result improves on one
of these noninclusions by showing that BC1 is not contained in OEx∗. Note
that since Ex∗ ⊆ OEx∗, this also improves Theorem 15.

Theorem 19 BC1 is not contained in OEx∗.

Proof. The class Cyl(S1), the cylindrification of the class S1 (see the proof of
Theorem 18), is in BC1. Suppose for a contradiction that Cyl(S1) is in OEx∗,
and that M is a total OEx∗-learner for it.

Now a family of partial functions ψe is constructed, using for each ψe a marker
me; after each step s the domain of ψe is {0, 1, . . . , s} − {me,s} where me,s
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is the marker position after step s. The intention of construction for ψe is to
show that there is a function fe ∈ Cyl(S1) that is an extension of the function
〈x, y〉 7→ ψe(x) and which is not OEx∗-learned by M .

• In step 1 define ψe(0) = e and place me on the position 1, that is, let
me,1 = 1.

• In step s+ 1, s ≥ 1, for all a, b ≤ s+ 1 define the strings σa,b such that the
domain of σa,b is the longest interval {0, 1, . . . , ub} where all pairs 〈x, y〉 ≤ ub

satisfy x < b and

σa,b(〈x, y〉) =











ψe(x) if x 6= me,s,

a if x = me,s.

• Then check whether there is a value a ≤ s + 1 such that M outputs on
some input σ with σa,me,s

≺ σ � σa,s+1 a new guess which has not been seen
before.

• If so, then let ψe(me,s) = a and move the marker to the next still undefined
position of ψe: me,s+1 = s+ 1.

• If not, then let ψe(s+ 1) = 0 and let the marker stay where it is: me,s+1 =
me,s.

If the marker moves infinitely often then ψe is total; otherwise ψe is defined at
all inputs except the end-position me,∞ of the marker me. By the Recursion
Theorem there is an index e with ϕe = ψe; fix such index e and note that all
extensions of ψe are in S1.

If the marker me moves infinitely often, then ψe is total and the function fe

given by fe(〈x, y〉) = ψe(x) is in Cyl(S1). It follows from the construction that
M outputs infinitely many different guesses on fe. So M does not OEx∗-learn
fe which gives the desired contradiction for this case.

So it remains to look at the scenario when me moves only finitely often and
remains on the end-position me,∞. Now define the functions

fe,a(〈x, y〉) =











ψe(x) if x 6= me,∞,

a if x = me,∞.

M shows on all these functions the same behaviour in the sense that it outputs
the same finite set E of indices — since otherwise there would be an a permit-
ting a new output outside E and the marker would move again. Furthermore
all functions fe,a are in Cyl(S1) and they differ on infinitely many values.
So only finitely many of these functions have a program in E that computes
them at almost all places. Thus, one can choose a such that no program in E
computes fe = fe,a with at most finitely many errors.
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So in both cases there is a function fe ∈ Cyl(S1) which is not learned by
M under the criterion OEx∗ and it follows that Cyl(S1) is a witness for the
non-inclusion BC1 6⊆ OEx∗. 2

Recall the notion of confidence from Definition 4. A class is in ConfEx∗ if it is
Ex∗-learned by a learner that converges on every function. Since every Ex∗

m-
learner can easily be converted into a ConfEx∗-learner we have the inclusion
[1, n]Ex∗

m ⊆ [1, n]ConfEx∗. Furthermore, every ConfEx∗-learner outputs on
every function only finitely many indices, so a team of n ConfEx∗-learners
in total also outputs on every function finitely many indices. Thus it follows
that [1, n]ConfEx∗ ⊆ OEx∗. As a consequence, BC1 is not contained in any
of the just mentioned criteria. Smith [19, Theorem 3.8] proved that BC 6⊆
⋃

n∈N[1, n]Ex∗. This may be compared to the following corollary.

Corollary 20 For every n,m ∈ N, BC1 is neither a subclass of
⋃

n,m∈N [1, n]Ex∗

m

nor a subclass of
⋃

n∈N [1, n]ConfEx∗.

Note that it makes sense to consider teams in the case of learning with finitely
many errors since teams of ConfEx∗-learners have more power than single
ConfEx∗-learners: The class containing the functions that are zero almost ev-
erywhere and the functions that are self-describing is learnable by a [1, 2]Ex∗

0

team but not by a single Ex∗-learner [8, Theorem 2.13].

We also remark that the proof of Theorem 11 shows that in fact ConfEx is
not included in

⋃

n∈N BC∗

n.

The results presented in this paper do not resolve all the relationship between
different BCm

n criteria, which is an open problem. Similarly, for the case in-
volving team of learners. In this respect note that since the classes [a, b]BC0

and [a, b]Ex0 are the same and the exact relation between the classes [a, b]Ex0

is still unknown, the same holds for the classes [a, b]BCn. Nevertheless many
results have already been obtained for the inclusion relation of [a, b]Ex0. For
a list of references see [11, p 219].

6 Grammar induction

In this section we make some remarks on grammatical inference. In the pre-
vious sections we have been concerned with the inductive inference of com-
putable functions. Here we consider the more general paradigm of learning
recursively enumerable sets, or, when we think of the code of a recursively
enumerable set as a grammar generating the set, the learning of grammars
from pieces of text. The set learning analogs of the models Ex and BC that
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we studied in the previous sections are defined as follows (we use the notation
of [11]): Let We denote the domain of ϕe, i.e. the set accepted by the e-th
program in the standard acceptable numbering ϕ.

Definition 21 Let L be a recursively enumerable set. A text t for L is a (not
necessarily recursive) mapping from N to L ∪ {#} such that all elements of
L appear in the range of t (# may or may not appear in the range of t; The
usage of # is to allow texts for empty language).

The initial segment of length n of t is denoted by t[n]. A learner M TxtEx-
learns L if for every text t for L, limn→∞M(t[n]) = e exists and We = L.
M TxtBC-learns L if for every text t for L, WM(t[n]) = L for almost every
n. A machine M TxtBCn-learns L (or: M TxtBC-learns L with at most n
semantic mind changes) if M TxtBC-learns L such that the cardinality of
the set {n : M(t[n]) 6= ? ∧ WM(t[n]) 6= WM(t[n+1])} is at most n. A class L

of recursively enumerable sets is in TxtEx [TxtBC, TxtBCn] when there is
a recursive learner that TxtEx-learns [TxtBC-learns, TxtBCn-learns] every
L ∈ L. Variants of these classes, such as the analog TxtBCn of BCn, are
defined in the obvious way.

The definition of confidence for language-learners is as follows:

Definition 22 A TxtEx-learner is confident if it converges on every text. A
TxtBC-learner is confident if it TxtBC-converges on every text. We denote by
ConfTxtBC the classes that are TxtBC-learnable by a confident learner.

First we note that a negative result on function learning immediately yields a
corresponding negative result for language learning, since the latter is a more
general setting. (We can embed the first into the second by interpreting the
graph of a recursive function as a simple kind of recursively enumerable set.)
Thus, the Theorems 2, 11, 14, 15, 18 and 19 all hold for the corresponding
models of language learning. The following simple result shows that Theo-
rem 16 does not transfer.

Theorem 23 (See [11, page 145, 147]) TxtBC1
0 is not contained in TxtBC,

as witnessed by the class {We : We =1
N}.

Proof. Consider the class X = {We : We =1
N}. X ∈ TxtBC1

0 since it is learned
by the learner that always outputs a code for N. On the other hand, it follows
from Angluin’s characterization of learnability without errors [11, Theorem
3.26] that X is not learnable by any learner (even when nonrecursive learners
are allowed). In particular X is not TxtBC-learnable. 2

Finally, it is easy to see that the idea for the proof of Theorem 17 can be used
to show that this result also holds for language learning. We now consider
Corollary 10. We want to show that Corollary 10 does not hold for language
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learning. For this we use the following result, which is interesting in itself.
First a definition:

Definition 24 Let L be a collection of recursively enumerable sets.

(i) (Angluin [3]) L has finite thickness if for every finite D 6= ∅ the collection
{L ∈ L : D ⊆ L} is finite.

(ii) L is finite-to-1 enumerable if there is a recursive function f such that
L = {Wf(i) : i ∈ N} and for every member L ∈ L there are at most finitely
many i such that L = Wf(i). (Note that this finite number may depend on
L.) Similarly, L is 1-1-enumerable if it has an enumeration in which every
set has only one code.

Theorem 25 There exists a uniformly recursively enumerable collection L

that has finite thickness and that is not in TxtBC.

Proof. The proof is an adaptation of the proof of Theorem 3.1 in Terwijn [22]
(which showed that there is a 1-1-enumerable learnable collection of recursive
sets that is not in TxtBC). The collection L contains for every e a subclass
Le such that the e-th partial recursive function ϕe does not TxtBC-learn Le.
To separate the strategies for different e we let the elements of Le be subsets
of N

[e] = {〈e, x〉 : x ∈ N}.

The classes Le are uniformly enumerated as follows. Le will contain Le,0 = N
[e],

a certain diagonal set Le,1 and sets Le,j, j > 1, such that at least one of the
following cases holds:

• ϕe does not TxtBC-learn Le,1. Furthermore, every Le,i, i > 1, will be either
empty or equal to Le,0.

• ϕe does not TxtBC-learn a Le,j with j > 1. Furthermore, every Le,i, with
1 < i < j, will equal Le,0 and all Le,i with i > j will be empty.

The construction of Le is now as follows. We use auxiliary variables xe,j and σj .

Initialization: Let σ0 be the empty string, Le,0 = N
[e], Le,j = ∅ for all j > 0.

In subsequent stages we may add elements to these sets. Go to stage 1.
Stage j. For all i with 1 < i < j, let Le,i = Le,0 and Le,j+1 = Le,0 −
{xe,1, xe,2, . . . , xe,j−1}. Search for a number xe,j in Le,j+1 and an extension
σj of σj−1 such that the range of σj contains only elements from N

[e] −
{xe,1, . . . , xe,j}, ϕe(σj) is defined and the set Wϕe(σj) generated by it contains
xe,j. If these are found, add the range of σj to Le,1, and go to Stage j + 1.

This completes the construction of the Le. Now there are two possibilities:

• The construction of Le is completed at every stage j. Then the union of all
the σj constitute a text for Le,1, but ϕe infinitely often outputs an hypothesis
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that contains a non-element of Le,1. Hence ϕe does not TxtBC-learn Le,1.
• Stage j in the construction is not completed for some j. In this case xe,j is

not found and the learner ϕ does not overgeneralize on any text for Le,j+1

starting with σj−1. Hence ϕ does not TxtBC-learn Le,j+1.

Note that every Le has finite thickness since it contains at most the sets Le,0,
Le,1 and possibly some Le,j. 2

Terwijn [22, Theorem 5.3] showed that a finite-to-1 enumerable collection that
has finite thickness is in TxtBC. Theorem 25 shows that the hypothesis of
finite-to-1 enumerability is necessary for this result. Now we use the proof of
Theorem 25 to show that the analog of Corollary 10 fails for language learning.

Theorem 26 There are classes C0 and C1 in ConfTxtBC1 such that C0 ∪ C1

is not in TxtBC. Hence neither ConfTxtBC nor TxtBCn, n ≥ 1, is closed

under finite unions.

Proof. Let L be the collection from the proof of Theorem 25. This collection
contains for every e a set Le,1. Let C0 be the collection consisting of all these
Le,1’s, plus the empty set. Clearly C0 is in ConfTxtBC1. We now prove that
also C1 = L − C0 is in ConfTxtBC1. Since by Theorem 25 C0 ∪ C1 = L is not
in TxtBC the theorem follows. We define a confident recursive TxtBC-learner
M for C1. We use the notation of the proof of Theorem 25. Given a piece of
text σ: If σ contains no elements, then M outputs ?. Otherwise M finds e
such that σ contains elements only from N

[e]. M then follows the definition of
Le,1 for |σ| steps in order to find the first “gap” xe,1. If xe,1 is not found, M
outputs N

[e] as a guess. If xe,1 is found and is in the range of σ, then σ can
only be a subset of Le,0 (among languages in C1). Thus M can safely output
a grammar for Le,0 = N

[e]. Otherwise, let M(σ) be the program that searches
for |σ| steps for as many gaps xe,i as possible. If after |σ| steps xe,1, . . . , xe,l

are found, M(σ) starts to enumerate Le,0 −{xe,1, . . . , xe,l}. If, however, in the
course of this enumeration another gap xe,l+1 is found, M knows its guess is
wrong and starts to enumerate all of Le,0. Now if there is indeed an infinite
number of gaps xe,i, then M(σ) is always a code for Le,0. If there is only a
finite number of gaps xe,1, . . . , xe,l, then M(σ) is almost always a code for
Le,0 − {xe,1, . . . , xe,l}. Note that in this last case there is also at most one
semantic mind change. So M is confident and it TxtBC1-learns C1. 2

We note without proof that, in analogy to Theorem 26, there are two classes
in TxtEx0 whose union is not in TxtEx. However, in Theorem 26 one cannot
get TxtBC0 instead of TxtBC1 since the union of two classes in ConfTxtEx
is in ConfTxtBC and every TxtExn-learnable class is ConfTxtEx-learnable.
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