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Gold [10] introduced the notion of learning languages from text: A learner reads an infinite
sequence, called text, of data which contains every element of the language to be learned
but no element outside the language. The task of the learner is to output after each data
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item a guess for the grammar of the language such that the sequence of these guesses
converges to a single correct grammar. A collection of languages is called learnable if there
is a single computable learner for this collection.

There exist classes which cannot be learned by a computable learner. For example the
class REC of all computable functions cannot be learned by a computable machine which
receives as input the sequence f(0)f(1)... of the values of f. Adleman and Blum [1] as
well as Gasarch and Pleszkoch [9] considered nonrecursive learners and measured their
complexity in terms of Turing degrees. Adleman and Blum showed, for example, that a
learner for REC exists in a Turing degree a if and only if a is high (a’ > 0”).

A learner which can learn every object in the target concept class is called omniscient.
Adleman and Blum [1] constructed nonrecursive omniscient learners for function learning.
But such omniscient learners do not exist for the model of learning from text: The class
{N}U{D C IN : D is finite} cannot be learned from text relative to any oracle [10].
Let A denote the collection of all classes £ of languages which are learnable by some
(possibly nonrecursive) oracle machine. The languages are represented in an abstract way
as recursively enumerable subsets of the natural numbers so that a grammar is just an
algorithm which enumerates all elements of the language but no nonelements. Jain and
Sharma [13] showed that no Turing degree suffices to learn all classes in A: for any oracle
A, there exists a class £ € A which is not learnable relative to A. An alternative proof
for this fact is given by Osherson, Stob and Weinstein [21, Proposition 4.1A] who showed
that no denumerable set of learners can learn every class from A — this implies the just
mentioned fact directly since there are only countably many learners computable relative
to a given Turing degree.

It is a natural question to ask what resources are needed to learn all the learnable
in a uniform way. Although no fixed resource allows to learn all classes in A, one can
inquire whether there exists a uniform learning procedure that is given as a parameter
extra information about the class of which the current target language is an element.
Following a model presented by Kaufmann and Stephan [16] the question is asked whether
there is a learner M which succeeds for every class £ € A when M receives as additional
information an oracle B which describes £ in some specified way.

It is shown that such a learner exists if B contains an index for all languages in £ but for
no language outside of £. The Turing degrees of such learners are exactly the degrees above
0”, that is, every universal learner must be able to solve the inclusion problem for recursively
enumerable sets. While in this general case the learner is inherently nonrecursive, it is
shown that for the more restricted case where B = {e : W, € L} there exists already a
computable universal learner. After presenting these results in Section 2, they are adapted
to the world of learning recursive languages in Section 3. Section 4 deals with the case
where an upper bound on the size of some grammar for each language L is provided to the
learner instead of information on the whole class £. In this setting, which was introduced
by Freivalds and Wiehagen [8] and explored by Jain and Sharma [12], there is a single
learner for the whole class of all recursively enumerable languages. Such a learner exists in
a Turing degree a if and only if a is high. In Section 5 it is investigated to which extent it
is possible to transfer the results of the previous sections to the concept of finite learning.



Even if B is an index set of £, it might in some cases be necessary to work with B instead
of B since a finite learner cannot investigate the whole set B in finite time.

Osherson, Stob and Weinstein [23] proved a result similar to those in Sections 2 and
3 in a model-theoretic context. They constructed a universal inductive inference machine
that learns in the limit from data about a model of a set of sentences 7" whether a given
sentence # holds in this model, provided that T is given as an oracle and that both 6
and —f are equivalent under T to an existential-universal sentence. Further related work
considers the case where uniformly recursively enumerable classes are given by a single
index e where the class to be learned is of the form £ = {W. : ¢ € W.}. Osherson,
Stob and Weinstein [22] introduced this concept and Baliga, Case and Jain [3] extended
the study. One fundamental result is that on the one hand there is a computable learner
which identifies every finite class £ provided that £ is given via a set W, which contains
for every L € L exactly one index but that on the other hand this fails if W, may contain
up to 2 indices per set in £. Kapur and Bilardi [15] considered the case where the family
to be learned is uniformly recursive. They showed that it is impossible to learn these
families universally if the only information supplied is an index of a uniformly recursive
enumeration of the family. Nevertheless they give some natural subcollections of A which
have universal learners using an index of the families to be learned as the only additional
information.

For further background information on inductive inference and recursion theory see
[5, 10, 25, 19, 20, 21, 26]. The notation mainly follows the given references. So W, is the
e-th recursively enumerable set given as the domain of the e-th partial computable function
@. computed by the e-th program. K is the halting problem {e: e € W.}. For any finite
or infinite set A, let A* denote the set of the finite strings of elements in A. range(o) is
the set of all elements occurring in the string o. The concatenation of strings o and 7 is
denoted by o7. Finally, o < 7 denotes that o is a prefix of 7, that is, 7 = on for some
string 7. Sets and languages are identified with their characteristic function, so L(z) =1

forz € L and L(z) =0 for = ¢ L.

2 Universal Learning From Text With Index Sets

This section contains the two main results: in the general scenario the Turing degrees of
the universal learners (as defined below) are just the cone above 0", that is, the Turing
degree 0” is necessary and sufficient. Furthermore, in the special case where the oracle
B contains exactly those indices e where W, € L there is already a computable universal
learner, that is a universal learner of Turing degree 0.

Definition 2.1 A set B is for L if L = {W, : ¢ € B}. Let A be the collection of all
classes £ of languages which are learnable by some (possibly nonrecursive) learner without
any additional information. A wuniversal (text) learner is a (not necessarily computable)
machine M which learns every class £ € A using a set B for £ as additional information.

Note that a set B for £ is not fully determined by £, that is, B can be a proper subset of



the index set {e : W, € L} of L. The next two theorems taken together form one of the
main results of this paper.

Theorem 2.2 There is a universal learner M of Turing degree 0.
Proof The learner M works as follows:
On input o, M looks for the first 7 < |o| such that

range(c) C W;; (1)
range(c) C W; C W, for no j € B with j < |o|. (2)

If such ¢ are found then M outputs the smallest one of them. Otherwise M
abstains from guessing by outputting “7”.

For the verification, let « be the minimal index within B of a language . € £. Angluin [2,
Theorem 1] and, for the noneffective case, Osherson, Stob and Weinstein [21, Proposition
2.4A] showed that for the given W, there is a finite set F' such that F is a subset of W;
and no language in £ is between F' and W;:

FCWin(YW; e L)[F L W;VW; ¢ Wi (3)

and so no 5 € B satisfies ' CW; C W;. Any text T for L has a sufficiently long prefix o
such that F' C range(o) and 1 < |o|. It is easy to see that the algorithm for this and any
longer prefix outputs 1.

So it remains to show that the algorithm can be executed by a machine having Turing
degree 0”. The only two uncomputable operations required in the algorithm, besides the
access to the oracle B, are to compare whether one language is a subset of another and to
check whether the range of a finite string is contained in some language. Both operations
can be performed by a machine whose Turing degree is 0”. 1

The next theorem shows that it is necessary to have the ability to check subset-conditions.
It shows that every universal learner has the computational power to decide whether

W; C W; or not.
Theorem 2.3 The Turing degree of every universal learner is at least 0”.

Proof Let M be a universal learner and define £ = {L: L =KV (L € K A L is finite)},
that is, £ contains K and all finite sets which are not subsets of K. This class is in A since
it is learnable with oracle K: the learner guesses K if range(o) C K and guesses range(o)
otherwise.

The expression use(M, B, o) denotes all oracle queries made by the learner M? to
compute MB(7) for some 7 < o. This use is always a finite set. Now the following
statement holds by adapting the construction of a locking sequence to the general case of
universal learners:

There exists a finite set C' of indices of languages in £ including some index of
K and there is a string o € K* such that M®(or) = M%(o) for all 7 € K*
whenever B contains only indices of languages in £ and B(z) = C(z) for all

x € use(M, B, o).

(4)



If (4) fails, then one can construct inductively a sequence of finite sets C; and strings
o; € K* such that M%+1(0,.,) # M%(0;), each C; contains the minimal index of K
and perhaps finitely many other indices of languages in £, Ciy1(z) = Cy(z) for all = €
use(M,C;,0;) and 0,41 = 0;a; where aga; ... is an enumeration of K. It follows that
T = lim; o; is a text for K and the set B = |J; C; contains only indices of languages in L.
Furthermore, M?(a;) = M%(c;) for all i and so MP? diverges on the text T. But since
B is a set for a class in A containing K, M® has to learn K from the text 7' and from this
contradiction it follows that (4) holds.

Now the condition (4) is used in order to decide the inclusion problem. Let C' and o
be as in (4) and define a total recursive function g such that

0 ifW., C W
309(676/7t)($> = T

otherwise.

So g produces a sequence of indices such that all indices belong to K in the case that
W. C W. (since the functions Py(eert) are total and therefore defined at their indices

g(e, ¢, 1)) and some index does not belong to K in the case W, € W, namely g(e, €', 1)
for the first ¢ such that W, , € W... Now let

Wi(e,ery = range(a) U{g(e, e, 1) : (Vs < t)[g(e, €, s) € K]}

and use padding in order to obtain that range( f) is disjoint from use(M, o, C'). f W, £ W,
then Wy e is a finite set not contained in K. If W, C Wer then Wy oy is a subset of K.
The function mapping every x to 1 has infinitely many indices which are all in K" but only
finitely many of them can be in Wy . since these are not of the form g(e,¢’,1) and have
to be members of range(o). So Wiy(e,e is either a finite set not contained in K or a proper
subset of K.

Let B=CU{f(e,€¢')}. Since B is finite, the class of all languages with indices in B is
learnable and M® has to identify Wi (e,ery. Furthermore, if Wy o) is a proper subset of K,
then MB(UT) # MC(U) for some 7 € K. Otherwise Wy o) is in £ and MB(UT) = MC(0'>

for all 7 € K*. So one obtains
W.CW. & (31 € K7) [MB(JT) + MO(G')]

where the characteristic function of B is uniformly recursive with parameters ¢ and ¢’. The
inclusion problem {(e,e’) : W, C W, } is recursively enumerable relative to the learner M
as an oracle.

Since K is many-one-reducible to the inclusion problem, K is recursively enumerable
relative to M. Hence K is computable relative to M. Since the complement {(e,¢’) :
W, & W} of the inclusion problem is recursively enumerable relative to K, it is also
recursively enumerable relative to M. So the inclusion problem is computable relative to

M. Hence, the Turing degree of M is 0" or above. |

If B contains all indices of the languages to be learned and not only some then there
exist computable universal learners. This is chiefly due to the fact that index sets have a
high complexity in terms of Turing degree. Rice [24] showed that every nontrivial index set

5



(and those of learnable classes are always nontrivial) has at least the Turing degree 0’. The
construction exploits that whenever a learnable class contains an infinite language then its
index set B has even degree 0", in particular, one can find in the limit an algorithm which

computes relative to B the inclusion problem {(e,€’) : W. C W, }.

Theorem 2.4 There is a compulable universal learner M such that M® learns every class
L € A provided that B is the index set of L.

Proof A canonical encoding D; of a finite set allows to compute the cardinality and a list
of all elements of D; from the index ¢. Since canonical indices can be translated effectively
into recursively enumerable indices, not only the question whether W; € £ but also whether
D; € L can be answered effectively by inspecting the index set B of L.

A pair (D;, W) (or better said, its indices) are a potential candidate to compute the
inclusion problem if

DZ' g Wj, DZ Qé L and Wj S E; (5)
Dy ¢ L for all & with D; C D, C W;. (6)

The set A of (the indices of) these candidates is the difference of two sets which are
recursively enumerable relative to B: the first one enumerates the pairs (D;, W;) which
satisfy the condition (5) and the second one all pairs which fail to satisfy (6). So A has a
B-recursive approximation: A = lim, A;.

Recall that whenever £ contains an infinite language W; then this W; has a finite subset
D; ¢ L such that no set in £, in particular no finite set Dy € L, is between D; and W;
[2, 21]. So whenever £ contains an infinite language then there is also a pair (D;, W;)
satisfying (5) and (6). Furthermore, whenever a pair (D;, W;) belongs to A, then W is
infinite: If W; is finite then it has a canonical index k. By D; C Dy =W; A Dy € L it
follows that no subset D; satisfies (6) together with W;. The inclusion problem whether
W, C W.r can be computed relative to B under the assumption that a given pair (D;, W;)
is in A.

From the index e let W, denote the finitely many elements enumerated into

W, within z steps and define
Wieey = DiU{w € Wj: [Wep € Wel}.
Now W, C W. & f(e,€') € B.

Assuming that (D;, W;) is in A, the verification is based on the fact that Wj is infinite
and on the two implications W, C W. = (Va)[W., C Wa] = (Vo € W;) [W., C W.]
= Wieeny =W; = Wieey € L = fle,¢') € Band W, € W = (V°z) [W., € Wo] =
(37‘) [Wf(e,e’) = {y € W]’ ry<zVy € DZ}] = (E”f) [Dk = Wf(e,e’) AND; C D, C W]] =
Wit & £ = f(e.") & B.

All pairs (D;, W;) can be put into an ordering equivalent to that of the natural numbers,
so that it is possible to speak of a first pair, second pair and so on. Recall that it is
computable relative to B in the limit as to which of these pairs belong to A — Ay, A, ...



denotes this B-recursive approximation of A. Having this approximation, it is possible

to describe a computable universal learner which learns every class £ from text using the

index set B for £ provided that £ € A.

On input o check whether there is a pair in A|,| among the first [range(o)| pairs.

If so, take the least such pair (D;,W;) € A}, and emulate the algorithm
from Theorem 2.2 using this pair to answer the inclusion queries at positions

(1) and (2).

If not, just output the canonical index for range(o).

For the verification of the algorithm it is necessary to consider two cases where I denotes
the actual language I € L whose text is fed into the learner. Recall that |L| is the
cardinality of L and note that n < |L| for all n if L is infinite.

First, the case that, for all n < |L|, the n-th pair does not belong to A. Then L
has to be finite since otherwise such a pair must exist and must have an index below the
cardinality oo of L. So for sufficiently long prefixes o of a given text, range(oc) = L and
none of the first |L| pairs is in the current approximation Aj,. So for all these sufficiently
long prefixes of the text, M outputs the canonical index of I and so converges to a correct
index.

Second, there is a least n-th pair (D;,W;) € A and n < |L|. Then for all sufficiently
long prefixes ¢ of a given text of L, |range(o)| > n, (D;,W;) belongs to Aj,| but none
of the pairs before (D;,W;). So M goes into the first case and uses the pair (D;, W;)
for deciding the subset queries of type (1) and (2). Therefore the algorithm produces for
almost all prefixes o of the given text the same output as the algorithm in Theorem 2.2
and converges to an index of L. |

3 Learning From Recursive Indices

In the case of learning classes of recursive languages, one may consider the situation where
one or more programs are given for each L € L, rather than just one or more grammars
generating it. An index e is a program for L if p. computes the characteristic function of L:
@, is total and L(z) = ¢.(z) for all z. In the following every total function ¢. is identified
with the set {z : p.(z) > 0}. Furthermore, B is a set of programs for L if and only if B
contains only total programs (which converge on every input) and £ = {p. : e € B}. A
machine M BC-learns a class £ from text if and only if on every text for some L € £, M
outputs an infinite sequence eg, €1, . .. of hypotheses such that almost all e, are grammars
for L.

The next result is quite parallel to the a result of Baliga, Case and Jain [3, Theorem 11],
who showed that there is an algorithm which translates every index of a uniform decision
procedure of a class £ € A into a program of a BC-learner for £. The essential ideas of

the proof of that result and the one below are the same.

Theorem 3.1 There is a computable universal BC-learner M such that MP learns a class
L € A whenever L consists of recursive languages and B is a set of programs for L.



Proof The BC-learner M is constructed as follows: M computes on input o first the
set Iy of all indices ¢ < |o| such that ¢ € B and range(c) C ;. The guess f(ly) then
does two processes in parallel: First it throws out all indices from [y which are believed
to be incorrect. Second it enumerates all elements which are in all remaining sets ¢, with
o € I into Wy(,). Formally the set of the “correct indices” is given as an intersection
I=1I,nlLNI;N... where the sets I; are defined inductively by

i€l & 1eLANNI<)E LV ei(t) <)
Now Wy(1,) = Nier i 1s recursively enumerable by the following formula:
Wiy ={z: ) (Vi€ L) [z € @il }-

For the verification note that, for every ¢ € B, there is a finite subset F' of @, such that,
for all y € B with I' C ¢;, the following holds:

o if j < then ¢; D ¢y
o if j > then ¢; Z v;.

Therefore whenever F' C range(o) C ¢; and |o| > i then ¢ € [ and every j € [ is a
program of a superset of ;. So W) = w; for almost all prefixes o of a text for L. 1

If a learner having Turing degree a > 0" is chosen then even Ex-convergence is possible,
that is, the learner makes on every text of a language in £ only finitely many mind changes.
In addition to that, such a learner can take characteristic indices. So given a BC-learner
M, the new Ex-learner N is obtained by

N(o) = minfe : (Va < lo|) [p.(2) 4 = Wargoy ()] }.

On the other hand, a universal Ex-learner which succeeds on every family £ € A of recursive
languages given as a set of programs for £ needs at least Turing degree 0'.

Theorem 3.2 There is a universal Ex-learner M such that MP learns a class L € A
whenever L consists of recursive lanquages and B is a set of programs for L. The Turing

degrees of such learners are just those above 0.

Proof As just mentioned, any universal computable BC-learner can be transferred into
a O-recursive Ex-learner. So the converse direction is the interesting one. Its proof is
obtained by adapting the one of Theorem 2.3.

The role of K is replaced by the role of the set I/ of even numbers, any other infinite
and coinfinite recursive set could also be used. Now L just consists of the set F and every
finite set containing an odd number, that is, a nonelement of K. One can again show that
for every universal learner M there is a finite set C' of characteristic indices for sets in £
including one for F, a constant ¢ and o € E* such that, for all sets B containing only
characteristic indices for languages in £ and agreeing with C' below ¢ and for all 7 € E*,
the equation MP(o7) = M“(c) holds. M“(c) is then a characteristic index for . Having



this, one can enumerate K relative to C':

There is a recursive function f with range {c¢+ 1,¢+ 2,...} which assigns to any z the
characteristic index of the language range(c) in the case z ¢ K and range(o)U{2s + 1}
in the case that z is enumerated into K exactly at stage s. Then

r¢ K & (3r e B [MOYDor) £ M (0)]

is an existentially quantified formula for K relative to the Turing degree of M. Tt follows
that K is computable relative to M, that is, the Turing degree of M is at least 0’. |

The above result uses the fact that the learner M must also succeed with nonrecursive sets
B for some languages. If one requires that B is recursive, one obtains a further restriction.
These restricted classes are then exactly the uniformly recursive classes. The next result
shows that the Turing degrees of universal learners for these classes are exactly the high

ones.

Theorem 3.3 There are universal learners who learn those classes L € N from every
recursive sel B of characteristic indices for the languages in L which have such a set B.
The Turing degrees of these universal learners are just the high degrees.

Proof In a high Turing degree a, the learner can first identify an index for the set B in the
limit. Whenever the learner makes a mind change concerning B, the learning algorithm
for the language learner is restarted. So it is sufficient to formulate the algorithm for the
case that a program for B is known to the universal learner M. The learner M uses a list
of pairs (i, 7) such that all pairs of indices and strings occur exactly once in the list. The
set

A={(i,7): (Vj € B)(Vz)(Jy)[range(r) Cp; Nz € ;i —p; = y € p; — i}

contains all (z,7) such that W; € £ and (range(7), W;) satisfy Angluin’s condition (3) for
the class given by B. The set A is in Il; and thus membership in A can be computed
relative to a in the limit, let A; be the corresponding a-recursive approximation. Now the
learning algorithm is the following:

M(o) searches the first pair (i,7) such that
e i€ B,i<|o|and r <o,
o v;(z) =1 for all z € range(a),
o (i,7) € Ay
If the pair (i,7) is found then M (o) =i else M(c) =7,

For any text 7" for a language L € L there is a first pair (i,7) € A satisfying 7 <T., 1€ B
and p; = L. The learner converges either to this pair or to some previous one, thus also
the output of the learner converges to some 7’

Assume now by way of contradiction, that 7’ is not an index for L. Then ' must be an
index of a proper superset and there must be a 7’ such that the leaner converges to (¢/,7').

9



range(t') is a subset of L and therefore (i, 7') ¢ A since the relation range(r’) C ¢; C pu
holds. This contradiction gives the correctness of M.

For the converse direction let a be the Turing degree of some learner M for the class £
containing all languages {2z, 2z + 2,...}, all finite sets with at least one odd element and
all sets {22,224 2,...,22+ 2y} whenever W, has at least y elements but is finite. There is
a recursive set B for £: Let B contain standard indices for the languages {2z, 2z 4 2,22 +
4
of the set having the elements 2,2z + 2,..., 2z 4+ 2y plus the element 2s + 1 in the case

,...} and the finite languages with odd elements. Furthermore, let f(z,y,?) be an index
that s > ¢ and s is the first stage where a new element not yet in W, ; is enumerated into
W,. Let B contain those f(z,y,t) where W, ; has at least y elements.

Now one enumerates relative to a’ the locking sequences o, for the sets {2z,22+2,...}
and defines that g(z) = max(range(o,)). Since each set {2z,2z + 2,...} has at least one
locking sequence, g(z) is defined for all z. One has that g(z) > 2z + 2|W,| whenever W,
is finite and it follows that W, is finite if and only if W, has at most g(z) elements. The
condition |W;| > ¢(z) can be checked relative to a’ and one can compute relative to a’

which sets W, are finite. Therefore a is high. |

Kapur and Bilardi [15, Theorem 3] showed that there is no computable learner which is
universal for recursively enumerable families which are learnable from text by a computable
learner. Indeed they showed that the Turing degree a of such a learner satisfies a” > 0",
that is, a is high,. The above proof uses a single family such that this family is not learnable
without a high oracle. So the previous theorem does not imply the result of Kapur and
Bilardi, but one can adapt the above proof by considering the parameterized classes

L,={L €L :min(L) € {22,2z + 1}}

which have uniformly recursive decision procedures whose index can be computed from .
These classes contain the set {2z,2x 42, ...}, some finite sets with at least one odd element
and perhaps finitely many subsets of {2z, 22 +2, ...}, so they are all learnable by a recursive
learner. But a universal learner for all of them can be translated into a learner for £ by
waiting until some first data-item appears in the text and then emulating always the
learning procedure for that £, where z is the minimal number such that some number
y < 2z + 1 has occurred in the input text so far.

So any learner which is universal for those recursively enumerable families that are
learnable by a computable learner must have high Turing degree. This improves the result

of Kapur and Bilardi quoted above.

4 Bounds on the Grammar Size

Freivalds and Wiehagen [8] introduced the model where the learner receives in addition to
the data f(0), f(1),... of the function to be learned some upper bound b on the size of some
program e of f, that is, some number b such that b > e for at least one of the programs
for f. They showed that in this case there exists a computable universal learner which
is able to learn all computable functions. Jain and Sharma [12] transferred this model to

10



the scenario of language learning from text and showed that the result does not hold in
this setting. This kind of nonlearnability is not a principal one but is only caused by the
limited computational abilities of a recursive machine. Using more complex machines it is
possible to learn the class of all recursively enumerable languages with one machine whose
input is a text for a language L to be learned and an upper bound b on the size of some
grammar for L. The Turing degrees of these machines are exactly the high degrees and so
the result is very similar to those of Adleman and Blum [1] and Fortnow et al. [6] for many
other learning criteria.

Theorem 4.1 Let M be a learner which can infer every recursively enumerable language
L from a text for L and from an upper bound b on some grammar for L. Then M has a
high Turing degree. Furthermore, there exists such a learner in every high Turing degree.

Proof ILet a be a high Turing degree. Now a learner M as specified in the theorem is
constructed which is computable relative to a. Consider the following function f:

. . J = for the smallest number x with Wi(z) # W;(z);
1g) = 0 if there is no such x, that is, if W; = W;.

This function is computable relative to 0”. The high degrees are those which can compute
in the limit every 0”-recursive function. So it follows that for each pair 7,7, f(i,7) can be
computed in the limit by some machine of Turing degree a. In particular, for every b, the
value ¢(b) = max{f(i,7) : 1 < 7 < b} can be approximated by a sequence ¢s(b) which is
a-recursive in both parameters s and b. The learner M uses the approximation ¢,(b):

M(o,b) =i for the smallest ¢ with W, (z) = range(o)(x) for all z < ¢,((b).

Note that M(c,b) is always defined since every finite set range(o) has a canonical index
and one might define that, for canonical indices, every element appears already at stage 0.

Now, for the verification, let 7" be a text and s be so large that c¢,(b) already has
converged to ¢(b), that every element = of L which is smaller than ¢(b) has already appeared
in the text and that every y € W; with 5 < b and y < ¢(b) has already been enumerated
to W;. Then M(o,b) outputs the least index i of L for every prefix o < T of length at
least s: W; and range(o) coincide below C|0.|(b> since W, = L and the conditions above are
satisfied. For j < i the values of W; and W; differ below ¢(b) and Wi o) and W; coincide
below ¢(b). Thus W ,| and range(o) disagree below ¢j,)(b). The algorithm outputs 7 and
therefore converges to the minimal index of L.

It remains to show that such a learner has high Turing degree. Let M learn every recursively
enumerable language from text with an upper bound b on a grammar of this language and
let a be the Turing degree of M. Now it is shown that the problem whether a set equals
IN can be computed relative to @’ and thus a is high.

Let a be an index for the language IN and consider the behaviour of M with the
additional information e 4+ a, which is an upper bound for the indices of both languages,
W, and IN. So M must learn them both using this upper bound. The language IN has a
locking sequence o in the sense that M(e 4+ a,07) = M(e + a, o) for all strings 7. Such a
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o can be found by a suitable algorithm of Turing degree a’. If W, % IN then the difference

must occur in range(o) since otherwise M would fail to learn W.. So
W.=N & range(oc) C W..

This test whether range(o) C W, is recursive in 0’ and in particular recursive in a’. So
it can be computed within Turing degree a’ whether W, = IN. This problem has the
complexity 0” and thus the Turing degree a is high. |

The algorithm to learn all languages from an upper bound needs nonrecursive information
for exactly one part: the computation of ¢(b). Taking now b as the minimal index of a
language L, the Ex-learner can be made recursive by supplying an upper bound ¢ > ¢(b)
instead of b itself. So one obtains an (unpublished) result of Jain, that an Ex-learner
identifies all recursively enumerable languages with a sufficiently large upper bound as
additional information.

Corollary 4.2 There is a computable learner M which infers every recursively enumerable
language L from text, given a bound c¢ such that for the minimal index 1 of L and every
J <t there is some x < ¢ such that W; and W; differ on z.

The difficulty for learning with upper bounds on the size of a grammar is due to the
fact that it is impossible to know whether two languages are equal or not. To overcome
this problem, Barzdins and Podnieks [4] have introduced the slightly weaker criterion
called FEx: Here the learner is not required to converge syntactically but is allowed to
alternate between finitely many correct indices infinitely often. Jain and Sharma [12,
Proposition 16] showed that there is a universal FEx-learner which succeeds on every
recursively enumerable language I provided that an upper bound b on some grammar for
L is given to the learner.

The algorithm is quite easy: For every string o the learner takes just that index e below
the given bound b for which the value

z(e,0) = max{y < |o|: (Vz < y)[range(c)(z) = W, - /(2)]}

is maximal. On a text for the language L, z(e,o) is bounded uniformly for all prefixes o
of the text if W, # L and converges to oo if W, = L. Thus the learner outputs from some
certain stage only correct indices.

So weakening from Ex to FEx brings down the complexities of universal learners from
the high Turing degrees to computable.

5 Finite Learning With Additional Information

Smith proposed to study topics related to those in the previous sections also for finite
learning. Gold [10] introduced the notion of finite learning where the learner outputs
exactly one guess which has to be correct. So a finite learner differs from an Ex-learner in
that the first hypothesis output has to be the correct one. The classes which are finitely
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learnable, even relative to oracles, are more restricted than for the other learning criteria.
Therefore, besides A, also the collections Ag, and Ajr are considered, where Ag, contains
all classes of languages learnable by some finite learner with access to an oracle and Ay all
inclusion-free classes. A class £ is inclusion-free if and only if any two distinct languages
L,H € L satisfy L € H and H € L. Osherson, Stob and Weinstein [21, Exercise 1.5.2C]

characterized Ag,; Mukouchi [18, Theorem 7] did the same for uniformly recursive families.

Fact 5.1 [21] A class L is in Agy if and only if every L € L has a finite subset I C L
such that F € H for every H € L different from L.

The proper inclusions Ag, C Ay C A hold: Clearly every finitely learnable class is
inclusion-free and the class £ containing the set F of all even numbers and every set
{0,2,4,...,22,2x 4+ 1} witnesses the properness of the first inclusion since £ is inclusion-
free but F has no finite subset I’ such that F is the only superset of F' within £. The
algorithm “Learning by Enumeration” which outputs an index of the first L; to satisfy
range(o) C L; witnesses that every class {Lg, L1,...} € Ai is also in A. The class {0, IN}
witnesses the properness of this second inclusion Ay C A.

Behaviourally correct and explanatory learning can take into account the whole set B
since they have the right to withdraw or update a hypothesis if some assumption on B
turns out to be false. This is no longer true for finite learning, therefore a finite universal
learner cannot succeed if it has access only to the index set. Some method to obtain infinite
information on B is necessary.

Theorem 5.2 There is no universal learner M (of arbitrarily high Turing degree) which
learns every L € Agy finitely from text with the index set B = {e : W, € L} of L as the
only additional information about L.

Proof Let £ contain theset £ = {0,2,4,...} of all even numbers and perhaps also a finite
set L which contains an odd number. The learner M® has to output after reading some
part 024 ... 2z of the canonical text for F a guess, this guess must compute £. Since M P
does not know whether there is any language in £ besides F, MP outputs this hypothesis
after having queried only elements B(b) with b < a and each such b is in B if and only if b
is an index for K.

Now there is another set L = {0,2,4,...,2y,2y + 1} with y > x which has no index
below a — this can be obtained by taking a sufficiently large y. So L can be added to
the class £ without changing B at the queried places. The language L has a text which
starts with 024 ... 2z and therefore M® fails to identify it. So M is not a finite universal
learner for all languages in Agn. 1

A direct consequence of the proof is that there is no finite learner — with an arbitrarily high
oracle — which learns the class containing F and all sets of the form {0,2,4, ... 2z, 2z+1}
from text. Thus the inclusion Ag, C Ajf is proper.

It is possible to find an uniform learner for £ if more information than an index set
is supplied to M. This information is the halting problem relative to the index set which
then also allows to derive some facts of the structure of the whole set by one query. The
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learner can be taken to be recursive. This fact is not very surprising, since K <,, B"in a

uniform way and by Rice’s Theorem [24] even K’ <,, B'.

Theorem 5.3 There is a machine M such that MP' finitely learns every class £ € Agn
where the oracle B' is the halting problem relativized to the index set B of L.

Proof Ifi,5 € B and W; # W;, then the union W; U W; does not belong to L since for
no proper superset of a set in £ is also in £; but if W; = W; then the union equals to W;
and is still in £. Thus the index f(i,7) of the union is in B if and only if W; = W,. The
finite learner has to read new data-items until there is a unique superset of the data seen
so far in £ and so the learner can check this condition by asking to B’ whether

(3i,5 € B)[range(o) € Win W; A f(i,5) ¢ B (7)

and outputs the symbol “?” for no guess as long as (7) is satisfied. Then the learner checks
using B’ whether there is an ¢ € B with range(o) C W;. If so, the learner outputs the
smallest such 2, otherwise the data is incorrect and the learner continues to output the

special symbol “77. 11

Instead of going from B to B’ one might ask whether there are other ways to improve
learnability. Indeed one can use the concept of using an upper bound on the size of the
smallest grammar to generate a concept. This still does not work for the class containing
{0} and {0, 1} since an upper bound on the size of both programs does not help to decide
whether a given text starting with a lot of 0’s will eventually have also a 1. But it works
for all inclusion-free classes, so this learning criterion is more powerful than finite learning
alone. Progress is made in two directions: the collection of learnable classes is increased
from Agn to Ay and the complexity of the additional input for the universal learner is
decreased from B’ to B.

Theorem 5.4 There is a computable learner M which learns every class L € Ais from the
additional information consisting of the index set B for L and an upper bound a on the

size of a grammar generating the language L to be learned.

Proof M executes the following algorithm.

M®(a, o) computes the finite sets

By = {i € B : the size of 7 is below a} and
Bi={j€By: (Vi€ By)li <j= W, #W,l}.

If there is a unique 1 € By with range(o) C W;

Then M (a, o) outputs this ¢ else MP(a, o) outputs the symbol “?7.

First, it is shown that all steps of the algorithm can be computed using the data given.
Since L is inclusion-free one knows that, for 7, j € B with W; # W, the union W; UW; is a
proper superset of W; and W; and thus not in £. As in the previous proof, f(i,7) computes
an index of W;UW; and, for i, j € B, one has that W; = W; & f(i,j) € B. Similarly it can
be checked using B whether range(o) C W; for any ¢ € B and o: If so, then W;Urange(o)
is in £, otherwise W; U range(o) is a proper superset of W; and not in L.

Second, one verifies that the algorithm never outputs a wrong index. Whenever T is a
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text for some L € L and a is an upper bound on the size of some grammar generating L
then the minimal index ¢ of L is in B;. For any o < T' it holds that range(c) C W; and
therefore the output can either be this ¢ or the symbol “?”. So the output cannot be an
incorrect index.

Third, one verifies that the correct index is output eventually. Each two indices in By are
minimal indices of different languages in £. They enumerate sets which are incomparable
according to the choice of £. Thus for every ; € By different from ¢ there is an z; in
W; — W;. After sufficient long time, for the finitely many j € By — {i}, the corresponding
z; have shown up in the text and thus range(o) € W;. It follows that from this time on,
the index ¢ is unique. The learner M outputs this index 7. |

The nonlearnability of the class containing {0} and {0,1} cannot be overcome by us-
ing powerful oracles combined with upper bounds on programs. Freivalds, Kinber and
Wiehagen [7] introduced the concept of learning from good examples. Lange, Nessel and
Wiehagen [17] transferred the concepts to learning from text and showed that the learning
power can be increased to that of conservative learning [2] from text for uniformly recur-
sive families [17, Theorem 2]. Using sufficiently powerful oracles, one can turn every text
learner into a conservative learner, thus one knows that every class from A is learnable
from good examples with a sufficiently powerful learner. So good examples are a variant
of finite learning having the advantage of covering all classes in A. Goldman and Mathias
[11] defined the same notion and addressed the role of a teacher (that is, the algorithm to
compute I from e in the definition below) in learning concrete classes like Horn formulas
and decision lists.

Definition 5.5 [11, 17] A class £ is learnable from good examples if and only if there
are a partial learner M and a partial function ¢ such that, for every e with W, € L, ¢ (¢)

is the canonical index of a finite subset Dy of We such that, for all finite sets Dy with
Dy € Dy € We, M(d) is defined and an index for W-..

Again it is not possible to generate the learner M and the partial function @ from the
index set B alone. The proof of Theorem 5.2 can be adapted by taking IN instead of F
and any finite superset L of some prefix 01 ... z of the canonical text for IN. Therefore
the next result uses B’ instead of B.

Definition 5.5 omitted any constraints on the computability of the mappings related to
the learning process. Therefore it was possible to define the process without caring about
the enumeration on which the concept is based — Lange, Nessel and Wiehagen [17] used
uniformly recursive families which makes it easier to compute 1 (¢) than in the case where e
is taken from some acceptable numbering of all recursively enumerable sets — but the next
result shows that besides the set B’ no extra source of nonrecursive computation power is
necessary for computing M and .

Theorem 5.6 There is a universal learner which learns every L in A from good examples
using the oracle B' where B is the index set of L. Furthermore, no fized L ¢ A can be
learned from good examples, even when no bound in terms of Turing degrees is placed on
the complexity of the learner,
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Proof Let M be the universal learner from Theorem 2.4. For every W, € L, M has
a locking sequence o satisfying MB(or) = M®B(o) for all 7 € W7. This definition can
be checked using oracle B’ and so one can define the following B’-recursive algorithm to
compute t(e):

Enumerate W* until a o € W with (V7 € W*) [MB(or) = MB(0)] is found.
Then let ¢(e) be the canonical index for range(o).

(8)

Since M® learns all sets in £ and B is the index set for £, ¢(e) is defined for all e € B.
Given MP, the following machine N7 is a universal learner for the criterion of learning
from good examples.

NBI(d) enumerates all strings in D} until a n € D} is found such that D,; C
Whrs, and (V1 € W’X/IB(”))[MB(T]T) = MPB(n)]. Then NP'(d) outputs the  (9)
index MB(n).

For the verification of NBI, assume that W. € £ and Dw(e) CD; CW.,. Let 0 € Dz(e) be
the string from (8).

The algorithm for NB'(d) is defined since it could take o for the value 7 in its definition
(9). For the case that the n taken there is different from o, consider the strings on and
no. Recall that MP was constructed in Theorem 2.4 such that M? outputs for strings of
the same length and range the same index, thus M®(on) = MB(no). Furthermore, 5 is
in WIJ’\K/IB(U) since the set Wy s,y equals to W, and contains therefore Dy and range(n). Tt
follows that MB(on) = MP(n). Since o is in Dy, Warn(y) contains Dy and Dy contains
Dy(e), the equality MP(no) = MP(n) holds as well. Putting these observations together,
one obtains that NP'(d) outputs also in the case n # & the hypothesis MP(s): NP'(d) =
MPF(n) = MP(no) = MP(on) = MP(q).

Since there is a text for W, starting with ¢ and since MP? does not withdraw the
hypothesis MZ (o) on this text, it follows that M®(c) is a recursively enumerable index
for W, and the output NBl(d) is correct. So NP’ witnesses together with the auxiliary
function 1 that the languages in A are universally learnable from good examples.

The second result can be obtained by just transferring the learnability result [17, Section 3]
from the world of uniformly recursive classes to arbitrary classes: the usage of learners of
higher Turing degrees compensates the loss by giving up the uniform decision procedure.
The direct proof is nevertheless shorter and therefore included here.

Let M and % witness that £ is learnable from good examples. Since constraints on
computability are absent, M and @ are without loss of generality total. A new learner N
which infers £ from text in the limit, is defined as follows:

N(o) is the minimal index e of the language generated by M(d) where d is the
canonical index for range(o).

For every W, € L, Dy is a finite subset of W, and whenever Dy, C range(c) C W,
then N (o) outputs the minimal index of W,. All the finitely many elements of Dy, show
up eventually on every text for W,, thus the learner N converges on every text of W, to
an index for W,. So N learns £ in the limit from text and £ € A. 1
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