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Abstract

‘We introduce and study resource bounded random sets based on Lutz’s
concept of resource bounded measure ([7, 8]). We concentrate on n°-
randomness (¢ > 2) which corresponds to the polynomial time bounded
(p-) measure of Lutz, and which is adequate for studying the internal and
quantitative structure of E = DTIME(?“"). However we will also com-
ment on E; = DTIME(27°!) and its corresponding (p2-) measure. First
we show that the class of n°-random sets has p-measure 1. This provides
a new, simplified approach to p-measure 1-results. Next we compare ran-
domness with genericity (in the sense of [2, 3]) and we show that n°T'-
random sets are n°-generic, whereas the converse fails. From the former
we conclude that n°-random sets are not p-btt-complete for E. Our tech-
nical main results describe the distribution of the n°-random sets under
p-m-reducibility. We show that every n°-random set in E has n*-random
predecessors in E for any & > 1, whereas the amount of randomness of the
successors is bounded. We apply this result to answer a question raised
by Lutz [10]: We show that the class of weakly complete sets has mea-
sure 1 in E and that there are weakly complete problems which are not
p-btt-complete for E.
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1 Introduction

Recently, Lutz [7, 8] introduced resource bounded versions of the classical Lebes-
gue measure. He proposed these concepts as natural tools for the quantitative
analysis of complexity classes. In particular he suggested to use the polynomial
time bounded (p-) measure for the study of the class E = DTIME(2!neem) | of
exponential time computable sets, and he and others already obtained interest-
ing results along these lines (see [9] for a survey). Juedes and Lutz [5] used this
new measure approach to prove new and reprove old results on the strong in-
tractability of p-m-complete sets for E, like the result of Orponen and Schoning
[13] that any p-m-complete set A for E has a dense polynomial complexity core.
As Lutz observed, the measure approach does not require p-m-completeness
(or hardness) but only a weaker property of the complete sets: It suffices that
the class P,,(A) N E of the predecessors of A in E does not have p-measure
0. Lutz calls a set A € E with this property weakly complete (for E), and in
[10] he constructed a weakly complete set which is not p-m-complete for E.
His construction required a new sophisticated diagonalization technique which
he calls martingale diagonalization. The combinatorial complexity of the argu-
ment, however, makes it difficult to combine it with other techniques. So Lutz
raised the question what properties the weakly complete sets might have and
how they are distributed in E. In particular, he asked about the p-measure of
this class and whether there are weakly complete sets in E which are incomplete
under the weaker polynomial time reducibilities.

Here, by using a very different (and technically much simpler) approach,
we answer some of Lutz’s questions. To obtain our results we introduce and
study resource bounded random sets. This concept is of fundamental interest
for the investigation of resource bounded measure. Our application of this
concept to investigate the weakly complete problems should be viewed as just
one example illustrating the power of this concept. Hence we will also mention
some fundamental properties of the random sets not required for the study of
the weakly complete sets. In particular we relate randomness to genericity.

In Section 2 we introduce the randomness concept. Following Schnorr [14]
and Lutz [9] we say that a set A is ¢(n)-random if A does not belong to any
class of t(n)-measure 0. So a t(n)-random set has all properties which occur with
t(n)-measure 1. It is easy to show that, for any recursive time bound ¢, there is a
recursive t(n)-random set. Here we will concentrate on n°-randomness (¢ > 1),
which corresponds to the p-measure of Lutz and is appropriate for the analysis
of E. We show that the class of n®-random sets has p-measure 1. It follows that
the n°-random sets have measure 1 in E, which in turn implies the existence of
such sets in E. Similar results hold for the class E; = DTIME(2polynemial) and
the corresponding ps-measure.

Next, in Section 3, we relate randomness to the resource bounded genericity
concepts introduced by Ambos-Spies, Fleischhack, and Huwig in [2, 3]. These
genericity concepts were recently used by Ambos-Spies, Neis, and Terwijn [4]



to investigate the p-measure on E. In particular they observed that the class of
nc-generic sets has p-measure 1, so that the properties shared by all generic sets
occur with p-measure 1. By studying properties of the n°-generic sets, Ambos-
Spies et al. [4] obtained various new p-measure l-results. Here we show that
any n°tl-random set is n°-generic. So the results on n°-generic sets obtained
in [4] carry over to the n°-random sets. For instance we obtain that n°-random
sets are not p-btt-complete for E and that the amount of randomness of the
successors (under p-m-reducibility) of an n°-random set is limited.

In Section 4 we contrast the result on the successors of random sets by a
theorem on the predecessors: We show that any n°-random set in E (¢ > 2)
has n*-random predecessors in E for any k > 1 and, in fact, has a p-random
predecessor in DTIME(Z"Z). Furthermore, it has 2(1°8 )" _random predecessors
in Es, for any k£ > 1.

Finally, in Section 5, we apply some of our results on random sets to weak
completeness. Our result on the predecessors of n°-random sets immediately
implies that any n°-random set in E is weakly complete for E (¢ > 2). So, by
the results on n°-random sets from Section 2, we may conclude that the class
of weakly complete problems does not have p-measure 0, in fact, has measure
1 in E, and that there are weakly complete problems which are not p-btt-
complete. Moreover, the question whether the latter result can be extended to
the weaker polynomial time reducibilities like p-tt (polynomial truth-table) or
p-T (polynomial Turing) reducibility can be reduced to the problem of showing
that the corresponding incomplete sets for E do not have p-measure 0. Again,
similar results hold for the ps-measure on E,.

We conclude this section by introducing some notation. Let ¥ = {0,1} and
let X* be the set of binary strings. A subset of X* is called a problem or simply
a set. Strings are denoted by lower case letters from the end of the alphabet (u,
v, w, T, Y, z), problems are denoted by capital letters A, B, C,... and classes of
problems are denoted by boldface capital letters A, B, C,... The concatenation
of two strings z and y is denoted by zy and the n'" iteration of z by z™; A
is the empty string; |z| denotes the length of the string z; < is the length-
lexicographical ordering on ¥*; z, is the n'® string under this ordering, and
z + 1 is the <-successor of z. The '} bit of the string z is denoted by z(i), so
z =z(0)...z(|Jz| —1). We identify a problem A with its characteristic function,
ie. z € Aiff A(z) = 1. For A C ¥* and z € ¥* we let Az denote the finite
initial segment of A below z,i.e. Alz = {y : y < zAy € A}, and we identify this
initial segment with its characteristic string, i.e. Az, = A(z)... A(zn_1) €
3*. For the calculations below it is crucial to note that

2lfl —1 < ATz <2l 1) (1)

whence O(|A [ z|°) = O(2¢/?]) for any ¢ > 1. In particular, since the concepts of
n-measure, n°-randomness, and n°-genericity introduced below refer to initial
segments of length n, these concepts are intimately related to (diagonalizations



over) DTIME(2°™). We let A/, Q% and [0,00) denote the sets of nonnegative
integers, rationals, and reals, respectively. The lower case letters ¢, k, n always
denote elements of N,

2 Resource Bounded Measure and Randomness

Lutz’s resource bounded measure theory is inspired by earlier effectivizations of
Lebesgue measure by Martin-Lof [12] and Schnorr [14]. It is based on the con-
cept of a computable martingale. For technical convenience our definition of a
martingale slightly differs from the one of Lutz (our martingales are called den-
sity functions by Lutz, and supermartingales by Schnorr and others). Though
for a fixed time bound ¢(n) the corresponding measure concepts may differ by
a linear factor, both definitions lead to the same notion of p-measure and mea-
sure in E. Throughout, t(n) : N' — AN will be a recursive, time constructible
function satisfying t(n) > n for almost every n.

Definition. A martingale is a function d : ¥* — [0,00) such that, for all
w € ¥*, d(w0) + d(wl) < 2d(w). A martingale d succeeds on a problem A C ¥*
if limsup,, d(A [ 2,) = co. To define computability of a martingale d we consider
approximations dp : & » QF satisfying |d(w) — d (w)| < 27k, If such a
sequence dy, is uniformly computable in time O(t(n)), we say that d is a t(n)-
martingale and that the function d : N x £* — QF defined by d(k,w) = dj(w)
is a t(n)-computation of d. (The complexity of d : N x £* — OF on argument
(k,w) is measured in max{k,|w|}.) We say that d is a p-martingale if it is an
n°-martingale, for some c.

Definition. A class C of problems has t(n)-measure 0 (py(n)(C) = 0) if there
is a t(n)-martingale which succeeds on every problem in C. The class C has
t(n)-measure 1 (py(n)(C) = 1) if pyn)(C¢) = 0 for the complement C¢ = {A C
¥*: A¢C}of C.

Definition. A set A is t(n)-random if, for every t(n)-martingale d : ¥* —
[0, 00), limsup,, d(A [ z,) < 0o, i.e. d does not succeed on A. A set is p-random
if it is n°-random for every c.

Note that a set A is t(n)-random if and only if A does not belong to any
class of t(n)-measure 0, i.e. if and only if the singleton {A} does not have t(n)-
measure 0. As the following technical lemma shows, for the definition of measure
and randomness it suffices to consider martingales with rational values, which
are not just approximable but ezactly computable within the given time bound.
This observation simplifies the construction of random sets.

Lemma 2.1 If, for a class C of problems, py(,)(C) = 0, then there is a martin-

gale d : ©* — Qt computable in time O(t(n)) which succeeds on every problem
in C.



Proof. Suppose d is a t(n)-martingale which succeeds on every problem in C,
and let d : N x £* = QT be a t(n)-computation of d:

VEk € N'Vw € $*(|d(w) — di(w)| < 27F).

Define a martingale d which succeeds on every A € C as follows: d(w) =
djy|(w) + 4 - 21, Then d(w) > d(w) +3-2* and d(w) < d(w) + 5 -2~ 1*].

Furthermore,

d(w0) + d(w1) d(w0) + 5 27%/=1 4 d(wl) + 5 - 271wl
2(d(w) + 5/2 - 271
2(d(w) +3 -2

2d(w),

IAIA IN A

so d is a martingale, and d succeeds on every A € C because d(w) > d(w) and
d succeeds on every A € C. Finally, d is computable in time O(t(n)), because
t(n) > n. O

The existence of recursive t(n)-random sets can be shown by diagonalization:
Let {d. : € € N'} be a recursive enumeration of the ¢(n)-martingales d : £* —
QF with d(\) = 1 (for a martingale d which succeeds on a problem we may

assume that d is normed: d(A) = 1). Define A(A) = 0 and, for w # A,
A(w) =1 f((ATw)0) > f((ATw)l), where

w|
=> 2 %di(w)
=0

Then, as one can easily check, f is bounded on A whence, by definition of f,
any d; is bounded on A, so that by Lemma 2.1 A is ¢(n)-random.

To show that the class of n°-random sets has p-measure 1 we need a weak
version of o-additivity for the ¢(n)-measure.

Definition.(Lutz) A class X is a t(n)-union of the ¢(n)-measure 0 classes X;,
i € N, if X = ;¢ Xi and there exists a t(n)-computable function d : N'x¥* —
Q% such that for every i, d;(z) = d(i, z) is a martingale and d; succeeds on every
problem in X;.

By Lemma 2.1 this definition is equivalent to Lutz’s definition (see e.g. [8, p
231]). The next lemma is a generalization of Lutz’s A-Ideal Lemma for arbitrary

time bounds A = O(¢(n)) ([8, Lemma 3.10]).

Lemma 2.2 If X is a t(n)-union of the t(n)-measure O classes X;, i € N, then
X has nt(2n)-measure 0.

Proof. By assumption there exists a t(n)-computable function d : N’ x¥* — QF
such that for every i, d; is a martingale and d; succeeds on every problem in



X;. W.l.o.g. we may assume that d;(\) = 1 for every i. Define d' : ¥* — [0, 00)
by

d'(w) = Z 27, (w).

Note that by the martingale property of the d; and the assumption that
di(\) = 1, di(w) < 2/*! for every i, so this sum is convergent. Now d' is a
martingale because all the d; are, and d'(w) > 27¢d;(w), so d' succeeds on X;
for every i, hence d' succeeds on X. We show that d' is n¢(2n)-computable.

Define
k+|w|

di(w) = Z 27 d; (w).

Then
d(w)—de(w) = > 27%d;(w)
i=k+|w|+1

i=k+|w|+1

(The inequality holds since d;(w) < 2/*! . d;(A) = 2/*!). Since clearly dj(w) €
FDTIME(n t(2n)), it follows that the sequence {di(w) : k € N'} is an nt(2n)-

computation of d'. m|

Theorem 2.3 The class of t(n)-random sets has n3t(2n) logt(2n)-measure 1.

Proof. Let f : A x ¥* — Q% be a universal function of the class of the
unary t(n)-computable functions g : ¥* — Qt. We may assume that f €
FDTIME(n t(n) logt(n)). For any e, define a martingale d, as follows.

O ) i w0+ 10w < 20,0
. e,wi) if f(e,w0)+ f(e,wl) < 2d.(w
de(wt) = { de(w) otherwise

Obviously, if f., where f.(z) = f(e,z), is a martingale then d. = f.. So
{de : € € N'} is an enumeration of all {(n)-martingales, i.e. the function d with
d(e,z) = de(z) is a universal function of the t(n)-martingales and, by definition,
d € FDTIME(n?t(n)logt(n)). Let X, = {A C £* : d. succeeds on A} and
X = U.en Xe. Then X is an (n?t(n)logt(n))-union of the (nt(n)logt(n))-
measure 0 classes X, whence, by Lemma 2.2, fin34(2n) log t(2n) (X) = 0. Since,
by Lemma 2.1, the class of ¢(n)-random sets is the complement of X, it has
(n3t(2n) log t(2n))-measure 1. O



Corollary 2.4 The class of n°-random sets (c > 1) has n°t*-measure 1, hence
p-measure 1.

Lutz and others also studied the class E; = DTIME(2pelynomial) n [8] it is
shown that the natural measure on this class is the ps-measure, where p, is the
class consisting of all the functions 2P(1°8™) p a polynomial. By the same proof
as above we see that

Corollary 2.5 The class of p-random sets has n'°8™-measure 1, hence pa-
measure 1.

Lutz defines a measure on E by saying that C has measure 0 in E (u(C|E) =
0) if u,(CNE) = 0 and C has measure 1 in E (u(C|E) = 1) if p(C°|E) = 0. Lutz
has shown that this definition is sound: p(C|E) = 1 implies that u(C|E) # 0,
i.e. that C does not have measure 0 in E. In particular, if 4(C|E) = 1 then
CNE # (. Similarly for E; and p» instead of E and p. So Corollaries 2.4 and
2.5 imply

Corollary 2.6 (i) For any c > 1, the class of n°-random sets has measure 1 in
E. In particular there is an n°-random set in E.

(i) (Lutz [8]) The class of p-random sets has measure 1 in Es. In particular
there is a p-random set in Es.

Note that, for time bounds ¢ and #' such that t'(n) < t(n) almost everywhere,
any t(n)-random set is t'(n)-random. So any p-random set is n°-random, and
any n°-random set is ncl—random, for any ¢’ < c. Conversely, by diagonalization
¢+l_random (for any
¢ >1). So these concepts of randomness give rise to a proper hierarchy.

Also note that the existence results for n°-random and p-random sets in
Corollary 2.6 can be easily extended to the general case: If in the construction
of a t(n)-random set A described above (after Lemma 2.1) we use an enu-
meration of the t(n)-martingales as in the proof of Theorem 2.3, then A €
DTIME(# (27*1)) for #(n) = n*t(n) logt(n).

Some further basic properties of random sets are stated in the following

we can show that there are n°-random sets which are not n

lemma.

Lemma 2.7 Let A be a t(n)-random set. Then the following hold:

(i) The complement A of A is t(n)-random.

(i) A is dense, i.e. there exists an € > 0 such that |A<,| > 2™ for almost
every n.

Proof. To prove (i), suppose that the ¢(n)-martingale d succeeds on A. Then
d' defined by d'(w) = d(w) succeeds on A, where w is the unique string of length
|w| such that w(z) =1 — w(z) for ¢ < |w].

For a proof of (ii), it suffices to show that the class of nondense sets has n-
measure 0, since t(n) > n a.e. n. Define the n-martingale d : ¥* — QT by



d(A) =1, d(w0) = 3/2-d(w), and d(wl) = 1/2-d(w). If B is a nondense set
then |B<,| < 2V™ for infinitely many n. However, |E*§n| =2l 1 so

limsupd(B | z,) > lim((3/2)%" " 172" . (1/2)2"") = co.
n n O

Note that many more much stronger properties than the above can be proven
(such as the various stochastic properties from probability theory, or such as
the Weak Stochasticity Theorem from [11]), but we will not need these in the
sequel.

3 Resource Bounded Genericity and Randomness

Ambos-Spies, Fleischhack, and Huwig [2, 3] introduced different types of re-
source bounded genericity. Here we shortly review one of their concepts which
is closely related to resource bounded measure (see [4]).

Definition. A condition is a set C C ¥*. A problem A meets the condition C
if, for some string =, A [z € C. C is dense along A if

I*°z € 2*Ji e T((Az)i € O).

A problem A is t(n)-generic if A meets every condition C € DTIME(¢(n)) which
is dense along A.
The t(n)-generic sets are universal for standard diagonalization constructions
where the single diagonalization steps correspond to subrequirements of time
complexity t(n) (measured in the length n of the previously built part A [z of
A) so that these subrequirements may be described by ¢(n)-bounded conditions.
For a more detailed discussion of these concepts see [1, 3].

The proof of the next theorem is essentially the same as the proof in [4]
showing that the n°-generic sets have p-measure 1.

Theorem 3.1 Let A be n°tl-random. Then A is n°-generic. Hence any p-
random set is p-generic.

Proof. Let C € DTIME(n®) be a condition which is dense along A. To show
that A meets C, define d: ¥* — Q%1 by d()\) =1 and, for w in ¥* and ¢ < 1,

0 itwieCAw(l—i)gC
dwi) =<¢ 2d(w) fw(l—13)eCAwigC

d(w)  otherwise
Then d € FDTIME(n°t!) is a martingale whence, by n°t!-randomness of A,

limsup, d(A[2,) < co. By density of C along A and by definition of d this
implies that A meets C. O

The converse of Theorem 3.1 fails: by Lemma 2.7, any n°-random set is
dense whereas, as shown in [4], there exist sparse n°-generic sets. Intuitively,



the difference between t(n)-genericity and ¢(n)-randomness can be described as
follows: Both concepts are universal for ¢(n)-bounded diagonalizations. In case
of genericity, however, we only require that, for any single condition, if there
are infinitely many chances to meet the condition then the condition has to be
met at least once, or (as one can easily check) equivalently, infinitely often. In
case of randomness this does not suffice; here a majority of the chances has to
be taken.

In [4] numerous properties of the n°-generic sets were proven. By Theo-
rem 3.1 these properties are shared by all n°t!-random sets. For instance, in [4]
it is shown that n°-generic sets are not p-btt-complete for E, that p-generic sets
are not p-btt-hard for E, and that the genericity of successors of n°-generic sets
in E is limited (¢ > 2). So we obtain the corresponding results for n°-random
sets:

Corollary 3.2 (i) If A is n®-random (c > 3), then A is not p-btt-complete
for E.
(i1) If A is p-random, then A is not p-btt-hard for E.

Corollary 3.3 Let A and B be sets such that A <P B, A is n®-random and
A € DTIME(29"), where c¢,d > 3. Then B is not n®t!-random.

Corollary 3.3 shows that, for any n°-random set A € E there is a bound on the
polynomial randomness of the successors of A (under p-m-reducibility). The
reason for this is the following: If A <2 B via f, then, by n?-randomness, f
cannot compress A, so that f(A) contains an infinite 2(d+1)n_computable subset
of B. An n?*!-random set, however, does not have such easy infinite parts.

4 Randomness Below a Random Set

Here we will contrast the preceding result on the limitations on randomness of
the successors of an exponential time computable n°-random set by showing
that any such set has predecessors of arbitrarily high polynomial randomness.

Theorem 4.1 Let A be ann’-random set. For anyk > 1 there is an n*-random

set A with A <P, A. In fact, there is a p-random set A, with A <P A.
Also, for any k > 1, there is a 20og™)* random set By <P A. If, moreover,
A € E then A, and Ao, can be chosen so that A € E and Ao € DTIME(2"2),
and if A € Ey then By can be chosen to be in E,.

The idea underlying the proof of Theorem 4.1 is the following. If we restrict
the domain D of a random set A then, relative to this domain, A N D remains
random. So if we take the restriction of A to some polynomially scattered
domain D and polynomially compress A N D by mapping D onto ¥* then, for
the compressed version Ap of AN D, time complexity and randomness increase
by a polynomial factor but still Ap can be reduced in polynomial time to AN D



and hence to A. The formal proof of Theorem 4.1 requires the following lemma,
which uses the idea above in a slightly more general form.

Lemma 4.2 Let A be nt(n)-random for a nondecreasing function t with t(n) >
n a.e. , and let f : N' — N be a nondecreasing time constructible function. Then

A ={z: 0/(eD1z € A} is t(27 008 =1\ _random.

Proof. Define t'(n) = t(2/08(™-1) and let d : ¥* = Q% be a t'(n)-
computable martingale. We will show that d does not succeed on Af. To
prove this it suffices, by n t(n)-randomness of A, to define an n t(n)-martingale
d such that

d succeeds on Ay = d succeeds on A.

For the definition of d we will use the following notation: For a string
X [(070=D1z), let X [z be defined by X(y) = X (0/(¥D1y) for y < 2. Now
d is defined by induction as follows:

1. d(\) = d()N),
2. For y = 0/(#D1z and i < 1, J((X ly)i) = d(()? [ 2)i),
3. For y not of the form 072D 1z and i < 1, d((X [y)i) = d(X ).

Since d is a martingale, a straightforward induction on |z| shows that

~

d((X T2)0) + d((X 2)1) < 2d(X | z)
and, by definition of Ay and cz, fori <1
d(AT(070=D12)i) = d((A [ 2)d).

Sodis a martingale which succeeds on A if d succeeds on Ay. It remains to
show that d is computable in time nt(n). By induction, it suffices to show
that, given d(}),...,d(X l'y), the value of d(X | (y + 1)) can be computed in
O(t(|X I (y+1)|)) steps. Now fix any y and let m = | X [ (y+1)|. Since f is time
constructible the time required for the decision whether or not y is of the form
07(=D1z is polynomial in the length of y, hence, by equation (1) and t(n) > n,
linear in t(m). So it suffices to analyze the cases 2. and 3. in the definition of d
individually. The case 3. is trivial by induction hypothesis. For a proof of the
case 2. fix z € £* and i < 1 such that y = 07(2D1z and (X [ (y + 1))(y) = i.
Then, by definition of d, d(X | (y + 1)) = d((X lz)i), whence it suffices to
show that d((X [ z)i) can be computed in O(t(m)) steps. Now it follows from
ly| = f(|=|) + |z| + 1 and the monotonicity of ¢ that

tm)=t(IX T (y+1))) > 2 (by equation (1))

10



4(2FleD+al+1)

> t(zf(|$|))
— t/(2|z|+1)
> ¢(|(X Ta)i]) (by equation (1)).

Since d is t'(n)-computable this implies that d((X [)i) can be computed in
O(t(m)) steps. This completes the proof of Lemma 4.2. O

Proof of Theorem 4.1. Let t(n) = n and let A be n’-random. Fix k € N
and define fo(n) = k-n, fi(n) = (n+1)log(n+1), and fo(n) = nF+'. It is easy
to see that for 7 < 2,

A = {z:0F D1z € 4} <P A
Now define Ay = Ayf,, Asx = Ay,, and By = Ay,. Then by Lemma 4.2, A; is

2~ k.pk_random, hence n*-random, A is n'°81°8 "_random, hence p-random, and
By, is 2(1"15(")_1)k+l—random7 hence 2(°¢™" random. For a proof of the second
part fix ¢ such that A € DTIME(2°"). Then, as one can easily check, Ay €
DTIME(2(+D)en) ¢ E and A, € DTIME(2¢(n+1)(leg(n+1)+1)) « DTIME(2").
If A is in DTIME(2") then B; € DTIME(2"“™”) C E,. O

It follows from Theorem 4.1 that classes that are closed under <? -reductions,
like NP, UP, PP, or PSPACE, contain an n2?-random set if and only if they

contain a p-random set if and only if they contain a 2(1°8 )" random set.

5 Random Sets are Weakly Complete

In this final section we apply our results on random sets to study the weakly
complete problems in E and E;. We first review this concept of Lutz [9, 10].
For any set A, let Py, (A) = {B : B <P, A}. Then A is weakly hard for E if
wW(Pr(A)|E) # 0; if moreover A € E then we say that A is weakly complete
for E. Weak completeness for E- is defined in the same way, using p2 and E,
instead of p and E. Lutz [10] showed that there is a weakly complete set in E
which is not p-m-complete for E. To show this Lutz introduced a quite involved
new diagonalization technique which he calls martingale diagonalization. Our
results on random sets provide an elementary proof of this fact and yield stronger
results.

Theorem 5.1 (i) A is weakly hard for E if and only if P,,(A) NE contains an
n?-random set.

(i) A is weakly hard for Es if and only if P,,(A)NEy contains an n?-random
set.

Proof. (i) If A is weakly hard for E then P,,(A4) N E contains an n?-random
set by Corollary 2.6 (i). Now suppose that P,,(A4) N E contains an n?-random

11



set. Then, by Theorem 4.1, P,,(A) N E contains an n*-random set for every
k € N. But this means that there is no n*-martingale which succeeds on every
set in P,,,(A) N E, whence p,({B : B <P, A} NE) # 0. Assertion (ii) follows

from Corollary 2.6 (ii) and Theorem 4.1 with a similar argument. O

Corollary 5.2 Let A € E (Ey) be n?-random. Then A is weakly complete for
E (E,).

Proof. Immediate from Theorem 5.1. O

In contrast to Corollary 5.2, note that for any k > 1 there are n*-generic sets
in E which are not weakly complete for E. This follows from the result in [4]
that for every k there are sparse n*-generic sets in E, and the result of Lutz
and Mayordomo [11] that for sparse sets A, py(Pm(A)) = 0.

Juedes and Lutz recently [6] proved the following relation between complete-
ness for E and Es. Their proof was based in part on the padding techniques
of Section 4, which appeared in an early draft of this paper circulated at a
1994 Dagstuhl meeting. We now show how Corollary 3.3 and Theorem 5.1 (not
present in the early draft) can be used to give a very direct proof of their result.

Corollary 5.3 (Juedes and Lutz [6]) (i) If A is weakly complete for E then A
is also weakly complete for Es.
(ii) There exists a set A € E which is weakly complete for Ey but not for E.

Proof. (i) Since E is contained in E,, this is immediate by Theorem 5.1.

(i1) By Corollary 2.6 (ii), let B € E5 be p-random, and by padding B, let
A € E be aset with A =P, B. Then A is weakly complete for E; by Theorem 5.1.
However, by Corollary 3.3, P,,(A4) N E does not contain any n?-random set, so
by Theorem 5.1 A is not weakly complete for E. O

By Corollary 5.2, we can extend Lutz’s theorem on the existence of proper
weakly complete sets from p-m-reducibility to p-btt-reducibility:

Corollary 5.4 There is a weakly complete set for E which is not p-btt-complete
for E.

Proof. By Corollary 2.6 there is an n?-random set A in E and, by Corollary 5.2
and Corollary 3.2, A is weakly complete but not p-btt-complete for E. O

We do not know whether there are weakly complete sets which are not p-
tt-complete or even not p-T-complete. As our final result shows, however, to
prove this it suffices to show that the classes of incomplete sets under these
reducibilities in E do not have p-measure 0.

Corollary 5.5 p,({A: A weakly complete for E}) # 0. In fact,
n({A : A weakly complete for E}|E) = 1. Similarly, for the measure in Ey we
have p({A : A weakly complete for Eo}|Es) = 1.
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Proof. By Corollary 5.2 this follows from Corollary 2.6 and the fact that every

2

p-random set is n®-random. O

Juedes independently proved the first part of Corollary 5.5 (namely that the
weakly complete sets for E do not have p-measure 0) using Lutz’s martingale
diagonalization technique (private communication).
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