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Abstract

Simpson introduced the lattice P of Π0

1
classes under Medvedev re-

ducibility. Questions regarding completeness in P are related to ques-
tions about measure and randomness. We present a solution to a
question of Simpson about Medvedev degrees of Π0

1
classes of positive

measure that was independently solved by Simpson and Slaman. We
then proceed to discuss connections to constructive logic. In particu-
lar we show that the dual of P does not allow an implication operator
(i.e. that P is not a Heyting algebra). We also discuss properties of
the class of PA-complete sets that are relevant in this context.
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1 Introduction

The Medvedev lattice M was introduced in [11] as an implementation of
Kolmogorov’s idea of a “calculus of problems”. Let us briefly recall the
definition of M. Let ω denote the naturals and let ωω be the set of all
functions from ω to ω (Baire space). A mass problem is a subset of ωω. We
think of such subsets as a “problem”, namely the problem of producing an
element of it, and so we can think of the elements of the mass problem as
its set of solutions. We say that a mass problem A Medvedev reduces to
mass problem B if there is an effective procedure of transforming solutions
to B into solutions to A. Formally: A ≤M B if there is a recursive functional
Ψ : ωω → ωω such that for all f ∈ B, Ψ(f) ∈ A. The relation ≤M induces an
equivalence relation on mass problems: A ≡M B if A ≤M B and B ≤M A.
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The equivalence class of A is denoted by [A] and is called the Medvedev
degree, or the degree of difficulty of A. We usually denote Medvedev degrees
by boldface symbols. There is a smallest Medvedev degree, denoted by 0,
namely the degree of any mass problem containing a computable function.
There is also a largest degree 1, the degree of the empty mass problem, of
which it is impossible to produce an element by whatever means. Finally,
it is possible to define a meet operator × and a join operator + on mass
problems: For functions f and g, as usual define the function f ⊕ g by
f ⊕ g(2x) = f(x) and f ⊕ g(2x + 1) = g(x). Let n̂A = {n̂f : f ∈ A},
where ̂ denotes concatenation. Define

A + B =
{
f ⊕ g : f ∈ A∧ g ∈ B

}

and
A× B = 0̂A∪ 1̂B.

It is not hard to show that × and + indeed define a greatest lower bound
and a least upper bound operator on the Medvedev degrees:1 The structure
M of all Medvedev degrees, ordered by ≤M and together with + and × is
a distributive lattice [11]. But M carries more structure as the following
theorem shows.

A distributive lattice L with 0, 1 is called a Brouwer algebra if for any
elements a and b one can show that the element a → b defined by

a → b := least
{
c ∈ L : b ≤ a + c

}

always exists. (Here + denotes the join operator of L.)

Theorem 1.1 (Medvedev [11]) M is a Brouwer algebra.

Proof. Define A → B =
{
n̂f : (∀g ∈ A)[Φn(g ⊕ f) ∈ B]

}
, where Φn is the

n-th partial recursive functional. �

1There is an annoying notational conflict between the various papers in this area. Sorbi
[24] maintains the usual lattice theoretic notation with ∧ for meet and ∨ for join, but e.g.
Rogers [16] and Skvortsova [20] use ∧ and ∨ exactly the other way round! The advantage
of the latter choice will become clear below, namely that ∧ and ∨ then nicely correspond
with “and” and “or” in the propositional logic corresponding to the lattice. To avoid
confusion we introduced in [27] separate notation for the lattices (+ for join and × for
meet) and the logic (the usual ∧ for “and” and ∨ for “or”). This is in line with notation
that is used in some textbooks on lattice theory, cf. [1]. It has as an additional advantage
that the join operator + in M corresponds to the usual notation ⊕ for the join operator
in the Turing degrees.
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L is called a Heyting algebra if its dual is a Brouwer algebra. Sorbi [21] has
shown that M is not a Heyting algebra. Some more discussion and facts
about M can be found in Rogers [16]. A good survey of what is known
about M is Sorbi [24], where also a more complete list of references can be
found.

Simpson (see e.g. [17, 18]) introduced the structure P of Medvedev de-
grees of nonempty Π0

1 subsets of 2ω. This is a lattice under Medvedev
reducibility in the same way as M, with meet × and join + defined as be-
fore. P has smallest element 0, the degree of 2ω, and largest degree 1, the
degree of the class of all PA-complete sets. For information about Π0

1 classes
in general we refer to the survey by Cenzer [4]. The following is a sample of
results showing what is possible for Π0

1 classes under Medvedev reducibility.
The list is of course not exhaustive.

• (Binns and Simpson [3]) Every finite distributive lattice is embeddable
into P.

• (Cenzer and Hinman [5]) P is dense.

• (Binns [2]) Every degree in P splits in two lesser ones.

In section 2 we will discuss the Medvedev degrees of Π0
1 classes of positive

measure. The Medvedev lattice has some very interesting connections to
constructive logics such as intuitionistic propositional logic. In section 4
we briefly review these connections and extend the discussion to P. In
particular we discuss some relevant properties of the class of PA-complete
sets. In section 3 we prove that P is not a Heyting algebra.

We conclude this section with some definitions that we will use later.
Note that A ≤M B means that there is a uniform way to transform solutions
for the one problem into solutions to the other. There is also an interesting
nonuniform variant of this definition [13]: We say that A Muchnik reduces
to B, denoted A ≤w B, if (∀f ∈ B)(∃g ∈ A)[f ≤T g], where ≤T denotes
Turing reducibility. The corresponding degrees are called Muchnik degrees.
They form a distributive lattice in the same way as the Medvedev degrees.

A Π0
1 class is called special when it is nonempty and it does not have

any computable elements. Our notation is fairly standard. Unexplained
notation from computability theory can be found e.g. in Odifreddi [14]. We
use the following notation for finite strings. 2ω is the Cantor space of infinite
binary strings, and 2<ω is the tree of finite binary strings. µ is the uniform
Lebesgue measure on 2ω. σ w τ denotes that the finite or infinite string σ
extends the finite string τ . [σ] denotes the set {X ∈ 2ω : X A σ}. If no
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confusion can be caused by it we will sometimes denote by 2n the set of
binary strings of length n.

2 Medvedev reducibility and sets of positive measure

As pointed out by Simpson [17, 18], the structure P possesses many natural
elements that are strictly between 0 and 1. In particular he showed that
completeness in P is related to measure theory.

Theorem 2.1 (Simpson [17]) Let P be any special Π0
1 class of positive mea-

sure. Then the Medvedev degree of P is strictly between 0 and 1.

The proof of Theorem 2.1 uses considerations about 1-random sets, such
as Theorem 2.2 below. For the definition, discussion, and references about
1-random sets see e.g. [26].

Define the left shift T : 2ω → 2ω by T (X)(n) = X(n+1). Let T k denote
the k-iteration of T .

Theorem 2.2 (Kučera [10]) For any Π0
1 class P of positive measure we

have the following: For every 1-random X there exists k ∈ ω such that
T k(X) ∈ P.

It follows from Theorem 2.2 that in particular

(∀X 1-random )(∃Y ∈ P)[X ≡T Y ]. (1)

Next we show that Theorem 2.2 and its corollary (1) do not hold uniformly :

Proposition 2.3 Let P be any special Π0
1 class of positive measure. Then

P 6≤M R, where R is the class of 1-random sets.

Proof. Suppose that P ≤M R via the partial recursive functional Φ. Then
dom(Φ) contains a computable set: Since R is dense in 2ω we can recursively
find for any σ ∈ 2<ω an extension τ A σ such that Φ(τ)↓. Let X ∈ dom(Φ)
be computable. Then Φ(X) is also computable, hence since P is special
there is n such that Φ(X�n) ∈ U , where U is the open complement of P.
Now let Z be a 1-random set extending X�n. Then Φ(Z) ∈ U , but also
Φ(Z) ∈ P by assumption on Φ, which is a contradiction. �

Simpson [17], using Theorem 2.2, proved that the Muchnik degrees of
positive measure have a largest element. The next theorem shows that this
does not hold for the Medvedev degrees, answering a question posed by
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Simpson. This result was obtained independently and earlier by Simpson
and Slaman [19] (personal communication Simpson, March 2004). These
authors also proved that every nonzero Muchnik degree of a Π0

1 subset of 2ω

contains Π0
1 subsets of infinitely many distinct Medvedev degrees.

Our proof makes use of the following elementary combinatorial lemma:

Lemma 2.4 Let the real interval [0,H] be partitioned in N pieces σ, ordered
by length from left to right in decreasing order. Let J < H. Then the number
of pieces σ contained in [0, J ] is bounded by b J

H
Nc, i.e. the optimum is

reached when all σ have length equal to the average H
N

.

Proof. This can be proved by induction on N . �

Theorem 2.5 The set of elements of P of positive measure does not have
a maximal element.

Proof. Suppose that P ∈ P of positive measure is given as the complement
of the Σ0

1 class U . We construct a Π0
1 class Q of positive measure such that

Q 6≤M P. We will make Q ⊆ P so that P ≤M Q and hence Q is strictly
bigger than P. Without loss of generality µ(U) < 1/4 and U is given as a
computable prefix-free set of strings U . We construct the Π0

1 class Q as the
complement of an effectively open set V such that for all e

Re : P ⊆ dom(Φe) =⇒ (∃X ∈ P)[ Φe(X) /∈ Q ].

M : µ(V ) < 1.

Clearly, the requirement M will make Q a set of positive measure, and the
requirement Re guarantees that Φe does not reduce Q to P. For notational
convenience we start counting at 3, so we only have to consider Re with
e ≥ 3. The construction is in fact not difficult since there is no conflict
between the requirements Re. We only have to satisfy them in such a way
that M is satisfied. We will have U ⊆ V , and we let Re add at most an
additional amount of 2−e +µ(U) in measure to V , where the “µ(U)-part” is
shared with all other Re-requirements, so that if a part of this is added to V
by Re then another Re′ does not have to add it anymore. This will ensure
that µ(V ) < 1.

Note that if Q ≤M P via Φe then by compactness of 2ω there exist a
level n ≥ e and a stage s in the enumeration of U such that for all τ ∈ 2n,
either [τ ] ⊆ Us or the string Φe,s(τ) is defined and has length ≥ e. Now the
idea to satisfy Re is the following. We wait until we see n and s as above.
Then if we delete the string σ = Φe,s(τ)�e from Q by putting it into V we
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have a potential candidate for an X ∈ P such that Φe(X) /∈ Q. We need
that σ is not too short in order not to add too much measure to V . However,
it may happen that later all the τ with Φe,s(τ) w σ turn out to be in U .
Then we have to pick a new σ and repeat the procedure. Every time we add
a σ to V we add the amount 2−e in measure to µ(V ). In order to prevent
µ(V ) from growing too big we have to bound the number of times we have
to pick a new σ. We do this by picking first those σ’s that have the largest
weight , i.e. those that get mapped the largest number of τ ’s to them. Since
in order to disqualify σ all these τ ’s have to enter U , and µ(U) is bounded,
not too many σ’s will be disqualified. We now describe the construction in
more technical detail.

Construction At stage s = 0 of the construction we let V0 = U0. At
stage s+1, add all strings from Us+1−Us to Vs+1. We say that requirement
Re with e ≤ s requires attention at s + 1 if there is n ≤ s such that for all
τ ∈ 2n either we have τ ∈ Us or Φs(τ)↓ and has length ≥ e. Given such n,
let the weight of σ ∈ 2e at stage s + 1 be

∑ {
2−n : τ ∈ 2n ∧ τ /∈ Us ∧ Φe,s(τ)↓w σ

}
.

Now for every Re that requires attention at s + 1 and that does not have
a current witness σ, let n as above be minimal, select σ ∈ 2e such that σ
has maximal weight and put σ into V . We say that σ is the current witness
of Re. If at a later stage it happens that all τ ∈ 2n with Φe,s(τ)↓w σ have
entered U then we say that σ is disqualified and that Re has no current
witness. This completes the construction.

We verify that every Re is eventually satisfied. For this it suffices to show
that after a certain stage of the construction Re never requires attention or
its witness is never disqualified. We do this by giving an explicit bound on
the number of times this can happen.

Suppose that at some stage s the string σ is put into V for the sake of
Re, and n is the level as in the construction. If at the end of the construction
there is a τ ∈ 2n such that [τ ] 6⊆ U then there is an X ∈ P extending τ
such that Φe(X) A σ /∈ Q, hence Re is satisfied. But the action for Re may
be destroyed when during the construction [τ ] ⊆ U (either because τ enters
U or because a (by compactness finite) number of strings covering [τ ] enter
U). If this happens for all τ with Φe(τ)↓w σ we have to pick a new σ and
repeat. Now the weights of all the σ ∈ 2e give a partition on [0, 1 − µ(Us)],
so by the combinatorial Lemma 2.4 (with H = 1−µ(Us), J = µ(U)−µ(Us),
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and N = 2e) this can happen at most

⌊
µ(U) − µ(Us)

1 − µ(Us)
2e

⌋
≤ µ(U)2e

times. Every time 2−e in measure is added to µ(V ), so in total at most
µ(U) + 2−e (the number of disqualifications +1) is added to µ(V ) by Re.
Moreover, measure added by Re on the basis of a “false” σ that is later
discarded is not added by any other Re′ . Thus the total extra amount added
to V is less than

∑
e≥3

2−e + µ(U) < 1/2, so that µ(V ) < µ(U) + 1/2 < 1.
Hence the measure requirement M is also satisfied. This concludes the proof
of the theorem. �

3 P is not a Heyting algebra

In this section we prove that the dual of P is not an implicative lattice.
The motivation for this comes from the connection with constructive logic
discussed in section 4. We first prove a lemma. Note that for mass problems
A and B, A× B is basically a disjoint union of A and B. We can of course
take the disjoint union of more sets at a time: For mass problems An, n ∈ ω,
define ∏

n∈ω An =
{
n f̂ ∈ ωω : f ∈ An

}
.

Lemma 3.1 There exist A ∈ P and a uniform sequence Bn ∈ P, n ∈ ω,
such that

(i) For every m,
∏

n6=m Bn 6≤M Bm,

(ii) For every n, A ≤M Bn,

(iii) For every n, (∀X ∈ Bn)[ Φn(X) /∈ A ].

Proof. A and the Bn can be constructed using methods similar to the ones
used in Binns and Simpson [3], which in turn uses ideas from Jockusch and
Soare [8, 9].

By [3, Theorem 2.1], let {Cn}n∈ω be a uniform sequence of Π0
1 classes

satisfying the strong independence property

(iv) (∀m)(∀e)(∀X ∈ Cm)[ Φe(X) /∈
∏

n6=m Cn ].

Clearly property (iv) implies (i).
Now we build A and the Bn, where the latter are only a slight modifica-

tion of the Cn. To build A satisfying (ii) and (iii) it is actually not needed
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to know exactly how the Cn have been constructed. We define A =
∏

m Am,
where the Am are a permutation of the Bn together with a number of copies
of the empty Π0

1 class. The idea is that we assign the classes Cn to locations
m ∈ ω (where we think of m as the m-th location in the product

∏
m Am).

If Cn is assigned to location m we let Am = Bn = Cn, until, if ever, we see
that Φn tries to map something to location m. In that case we redefine Bn

in such a way to make sure that Φn maps all of Bn to location m, we make
Am = ∅, and we relocate Cn to another location. This will ensure property
(iii).

Simultaneous construction of A and the Bn. At stage s = 0 all Am are
empty. At the start of the construction no Cn is assigned a location yet. The
Bn start out by copying the Cn.

At stage s+1 we have started the construction of finitely many Am, and
the first s Cn have been assigned a location.

For every n ≤ s see if there is a string σ, |σ| ≤ s, such that Φn,s(σ)(0)↓=
m for some m. This means that Φn maps something to location m. If Cn

happens to be assigned to location m, we relocate it to a fresh location,
namely to the smallest location m′ that is not yet in use. In this case we
also change the definition of Bn, and for the rest of the construction Bn will
copy the Π0

1 class σ̂Cn, i.e. we start the copying of Cn anew, but now we
move it above σ.

Next pick the first location m that is not yet in use, and assign Cs+1 to
m.

Finally we define the Am as follows. First note that every location m
gets assigned some Cn during the construction. If m gets assigned Cn, then
define Am = Bn, until, if ever, Cn is relocated, in which case we redefine
Am = ∅. Clearly Am is Π0

1. This completes the construction of A and the
Bn.

To verify that A and the Bn satisfy (i)–(iii), first note that the Bn still
satisfy (iv) (because the Cn satisfy (iv)), and hence satisfy (i). Further note
that every Cn is assigned a location (namely at stage n + 1) and that it is
relocated at most once (namely if Φn tries to map some σ to the location
of Cn). If Cn is initially assigned to location m and is never relocated, then
Am = Bn = Cn. If Cn is later relocated to m′ then Am = ∅ and Bn is of
the form σ̂Cn, Am′ = Bn, and (∀X ∈ Bn)[ Φn(X)(0) = m ]. From this it
is clear that A ≤M Bn, hence item (ii) is also satisfied. Finally, to see that
(iii) is satisfied, note that if X ∈ Bn and Φn(X)(0)↓= m, then either some
Ck with k 6= n is assigned to location m, in which case Φn(X) /∈ Am by
property (iv), or Cn is assigned to location m, in which case it is relocated
and Am = ∅, hence again Φn(X) /∈ Am. This concludes the proof of the
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lemma. �

Theorem 3.2 P is not a Heyting algebra.

Proof. The proof builds on a scheme also used by Sorbi in his proof that M

is not a Heyting algebra [21, Theorem 5.4] (the situation here being more
complicated because single sets are replaced by Π0

1 classes).
Let A and Bn be as in Lemma 3.1, and let B =

∏
n∈ω Bn. We claim that

the set {
C ∈ P : A× C ≤M B

}

does not have a largest (in fact, not even a maximal) element. Suppose that
A× C ≤M B via Ψ. Define

B′ =
{
X ∈ B : Ψ(X)(0) = 1

}
,

i.e. B′ consists of everything in B that is mapped to the C-side. Clearly
B′ ∈ P, and it is easily checked that B ≤M B′ (via the identity) and C ≤M B′.
Also, we have A×B′ ≤M B. By item (iii) in Lemma 3.1, there exists n such
that Bn ⊆ B′ (namely, if Ψ = Φn then Ψ has to send all X ∈ Bn to C). Now
consider B′ −Bn. Normally the difference of two Π0

1 classes need not be Π0
1,

but in this case it is because all the Bn are neatly separated in B. Since
A ≤M Bn by item (ii) in Lemma 3.1, we also have A × (B ′ − Bn) ≤M B
because the elements that got sent to Bn can be sent on to A. On the other
hand, B′ − Bn 6≤M B′ because of Bn ⊆ B′ and item (i) in Lemma 3.1. So
B′ − Bn is strictly bigger than B′, hence strictly bigger than C, and as we
have seen it still caps with A below B. Hence C was not a maximal element
with this property. �

4 Logic, Π0
1 classes, and PA-complete sets

The original motivation for studying the Medvedev lattice was to give a
computational semantics for the intuitionistic propositional calculus IPC.
We first make precise what is meant by this. In section 1 we have already
defined the operations ×, +, and → on M. We can also define a negation
operator ¬ by defining ¬A = A → 1 for any Medvedev degree A. More
generally, given any Brouwer algebra L (such as M) with join denoted by
+ and meet by ×, we can evaluate propositional formulas as follows. An
L-valuation is a function v : Form → L from formulas to L such that for
all formulas α and β, v(α ∨ β) = v(α) × v(β), v(α ∧ β) = v(α) + v(β),

9



v(α → β) = v(α) → v(β), v(¬α) = v(α) → 1.2 Write L |= α if v(α) = 0 for
any L-valuation v. Finally, define

Th(L) =
{
α : L |= α

}
.

Now since the operations on the Medvedev lattice were supposed to give
an interpretation for the intuitionistic propositional connectives, one would
of course hope that Th(M) would equal intuitionistic propositional logic
IPC. Indeed it is easy to verify that IPC ⊆ Th(M). However Medvedev
himself already observed that for every A ∈ M we have that either ¬A = 0

or ¬A = 1, hence that always ¬A × ¬¬A = 0. That is, M satisfies the
weak law of the excluded middle ¬α∨¬¬α, and hence is strictly larger than
IPC. In fact, we have the following result:

Theorem 4.1 (Medvedev [12], Jankov [6], Sorbi [22])3 Th(M) is the de-
ductive closure of IPC and the weak law of the excluded middle (also known
as De Morgan, or Jankov logic).

Although Theorem 4.1 shows that the Kolmogorov/Medvedev approach does
not work directly, the ideas can still be used to interpret IPC. A very natural
idea, from an algebraic point of view, is to look at factors of M, i.e. to study
M modulo a filter or an ideal. Given a Brouwer algebra L and an ideal I
in L, L/I is still a Brouwer algebra. If G is a filter in L then L/G is not
necessarily a Brouwer algebra, but if G is principal then L/G is again a
Brouwer algebra. In such a factorized lattice G plays the role of 1. E.g. if
G is the principal filter in M generated by the degree D then negation in
M/G can be defined by ¬A = A → D.

Now it is quite easy to find a factor M/G of M such that Th(M/G) is
classical propositional logic. (Take G the principal filter generated by 0 ′, the
degree containing the set of all nonrecursive functions. This is the unique
nonzero minimal degree of M. Note that 0′ = 1 in M/G, so that M/G has
exactly the elements 0 and 1, corresponding to the classical truth values 1
and 0, respectively.) In general, the theory of Th(M/G) is determined by the
algebraic properties of the element that generates the principal filter G. For

2Note the upside-down reading of ∧ and ∨ when compared to the usual lattice theoretic
interpretation, see also footnote 1.

3Medvedev [12] actually proved that the positive fragments of Th(M) and IPC coincide.
Jankov proved that IPC+¬α∨¬¬α is the largest propositional calculus that is conservative
over IPC with respect to positive formulas. The theorem follows from these results, since
the weak law of the excluded middle holds in M. The result also follows directly from the
embedding result in Sorbi [24].
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example, whether the weak law of the excluded middle holds in Th(M/G)
is related to whether the element that generates G is join-reducible in M.
(For more information see [24, 27].) Of course, what we really would like
is a factor of M that captures IPC. That such a factor indeed exists is the
content of the following beautiful theorem.

Theorem 4.2 (Skvortsova [20]) There exists a principal filter G such that
Th(M/G) equals IPC.

Now what about the logic of P? First note that the definitions of ×
and + are unproblematic, since they are computable operators, so when
restricted to Π0

1 classes they yield again Π0
1 classes. But this is not the case

for the implication operator →. On the face of it the definition of A → B in
M is Π1

1 in A and B. Although it is currently open whether P is indeed not
a Brouwer algebra it seems unlikely that this is the case. Hence we make
the following

Conjecture 4.3 P is not a Brouwer algebra.

That P is not a Heyting algebra was proved in section 3. Sorbi [21]
proved that M is not a Heyting algebra. He also proved in [21] that the
Muchnik lattice Mw is both a Brouwer and a Heyting algebra, and that
Th(Mw) is the De Morgan logic IPC + ¬α ∨¬¬α, just as for M. In [23] he
proved that the theory of the dual of Mw is also De Morgan logic.

If P does not admit an → operator, it does not make sense to ask what
its propositional theory is. But we can go to a larger structure, like M,
where → does exist. Note however that in M we work with subsets of ωω

and in P with 2ω. First we note that as far as the logic of these structures
is concerned this does not make a difference. Denote by M0,1 the lattice of
Medvedev degrees of subsets of 2ω. (This is a Brouwer algebra in much the
same way as M. Theorem 1.1 is proved in the same way, except that for the
functions n̂f have to be replaced by 1n̂0̂f , for example.)

Fact 4.4 • Th(M0,1) = IPC + ¬α ∨ ¬¬α.

• There exists a principal filter G ⊆ M0,1 such that Th(M0,1/G) = IPC.

Proof. The first item follows by inspection of Sorbi’s proofs in [23]. The
second item follows by inspection of Skvortsova’s proof [20]. Both authors,
like Medvedev, work in ωω. The big difference with 2ω is of course that the
latter is compact, but for these proofs this difference is immaterial. �
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Let PA be the class of PA-complete sets. Simpson [18] showed that the
Medvedev degree of PA is the top element of P. For brevity let us write
Th(M/PA) for Th(M/G), where G is the principal filter generated by PA.
Now we can ask the following

Question 4.5 What is Th(M0,1/PA) ? In particular, is it equal to IPC ?

We close by making a number of remarks regarding this question.

1. If indeed Th(M0,1/PA) = IPC this would give a natural example of a
filter satisfying Theorem 4.2. It would be very interesting to find such
natural examples.

2. Note that Th(M0,1/PA) contains IPC and that it is included in IPC +
¬α∨¬¬α since PA is a closed set [25]. It follows that Th(M0,1/PA) is
strictly less than IPC + ¬α ∨ ¬¬α since the top element of M0,1/PA
splits by Binns result [2], so that the weak law of the excluded middle
does not hold in it, cf. [23, Theorem 4.3].

3. Skvortsova [20, Remark 2] proved that for every Muchnik degree A ∈
M, Th(M/A) contains the Kreisel-Putnam formula

(¬p → q ∨ r) → (¬p → q) ∨ (¬p → r), (2)

which shows that these theories are strictly larger than IPC. Now it is
not immediately clear whether [PA] is a Muchnik degree: Although it
is known by a result of Solovay (cf. [14, p511]) that the Turing degrees
of PA sets are upwards closed, PA is itself not upwards closed. But
of course [PA] might contain some other upwards closed set. Proposi-
tion 4.6 below shows that this is not the case.

4. By Proposition 4.7 below PA is effectively homogeneous. It follows
from this and Lemma 6 in Skvortsova [20] that the degree of PA itself
satisfies

(p → q ∨ r) → (p → q) ∨ (p → r), (3)

where p is interpreted by the degree of PA and q and r by arbitrary
Medvedev degrees.

Proposition 4.6 [PA] is not a Muchnik degree.

Proof. N.B. this result holds both for M and for M0,1. We have to show
that [PA] does not contain a set that is upwards closed. So let A be up-
wards closed under Turing reducibility. We show that PA 6≤M A. Fix any
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computable functional Φ, and suppose that PA ≤M A via Φ. Since A is
upwards closed it is in particular dense in the usual topology on 2ω. From
this it follows that for every X ∈ 2ω,

Φ(X) total =⇒ Φ(X) ∈ PA.

Because A is dense and a subset of the domain of Φ, we can construct
a computable X such that Φ(X) is total by looking for larger and larger
segments on which Φ is defined. But then Φ(X) is a computable element of
PA, contradiction. �

For any finite string σ and any mass problem A let Aσ denote {f ∈ A : f A

σ}. A is called effectively homogeneous [20] if Aσ ≤M A in a uniform way,
i.e. if there is a partial recursive function ϕ that is defined for all σ such that
Aσ 6= ∅ and such that in this case ϕ(σ) is a code of a computable functional
mapping A into Aσ.

Proposition 4.7 PA is effectively homogeneous.

Proof. We think of theories such as PA as coded by binary strings. Let
X C Y denote that theory Y faithfully interprets X, meaning that there
is a computable function f such that X ` ϕ ⇔ Y ` f(ϕ). First we note
that for any finite string (theory) σ that is consistent with PA it holds that
PA + σ C PA. This holds in fact effectively and uniformly in σ: There is a
computable function f such that for every PA-consistent string σ and every
first-order formula ϕ,

PA + σ ` ϕ ⇐⇒ PA ` f(σ, ϕ).

Given an initial segment σ of a set in PA, and given A ∈ PA, define A′ A σ
by putting ϕ into A′ if and only if f(σ, ϕ) ∈ A. Then A′ ∈ PA and A′ A σ.
This works uniformly for all A ∈ PA, so PAσ ≤M PA. �
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