
On the Learnability of Hidden Markov Models

Sebastiaan A. Terwijn�

Vrije Universiteit Amsterdam, Department of Mathematics and Computer Science,
De Boelelaan 1081a, 1081 HV Amsterdam, the Netherlands,

terwijn@cs.vu.nl

Abstract. A simple result is presented that links the learning of hidden
Markov models to results in complexity theory about nonlearnability of
finite automata under certain cryptographic assumptions. Rather than
considering all probability distributions, or even just certain specific ones,
the learning of a hidden Markov model takes place under a distribution
induced by the model itself.

Keywords. Pac-learning, hidden Markov models, complexity.

1 Introduction

Hidden Markov models (HMM’s for short) are a widely used tool for describing
processes, ranging from speech recognition to topics in computational biology.
In many situations where a process can be described by a HMM, one tries to
infer from data produced by the process (e.g. spoken text or products from a
chemical reaction) a HMM describing that process. In this paper we address the
computational complexity of such general learning tasks. We will use Valiants
[13] model of pac-learning to talk about efficient learning (see [1,10] for an intro-
duction to this model). In the early 1990’s, interesting connections were proven
between assumptions on which the security of public-key cryptography systems is
based and hardness results for pac-learning various natural classes. E.g., Kearns
and Valiant [9] proved that under the Discrete Cube Root Assumption, say-
ing roughly that it is impossible to efficiently invert functions that occur in the
RSA cryptosystem, the class of polynomial size finite automata is not efficiently
pac-learnable. More precisely, let ADFAp(n)

n denote the class of finite automata
of size p(n) that accept only words of length n. (ADFA stands for acyclic de-
terministic finite automata.) Then (under suitable cryptographic assumptions)
there is a polynomial p such that ADFAp(n)

n is not efficiently pac-learnable. Pac-
learnability can be characterized in terms of a measure of complexity of the
concept space, the Vapnik-Chervonenkis dimension (VC-dimension), see Blumer
et al. [4]. A concept class of VC-dimension d can be pac-learned by an algo-
rithm taking samples of size linear in d. So when for a parametrized concept
� Supported by a Marie Curie fellowship of the European Union under grant no. ERB-

FMBI-CT98-3248. Most of this research was done while the author was working at
the University of Munich.

P. Adriaans, H. Fernau, and M. van Zaanen (Eds.): ICGI 2002, LNAI 2484, pp. 261–268, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

262 Sebastiaan A. Terwijn

class C =
⋃

n Cn the VC-dimension of Cn is polynomial in n, the class can be
pac-learned using polynomial size samples. If such a class C does not admit an
efficient pac-algorithm, irrelevant of how hypotheses are represented (as long
as they are polynomial time evaluatable), it is called inherently unpredictable.
Since the class ADFAp(n)

n has polynomial VC-dimension the result of Kearns and
Valiant shows that it is inherently unpredictable.

Below we will consider in an analogous way classes of polynomial size acyclic
HMM’s, and link a nonlearnability result for finite automata of Kharitonov to a
specific task of learning HMM’s. The problem of learning HMM’s is defined not in
terms of arbitrary probability distributions (as is usual in the pac model, which
is therefore sometimes referred to as “distribution free”) but in terms of the
distributions induced by the HMM’s themselves. So we consider a distribution
specific learning problem, where every HMM has to be identified from examples
generated according to its own likelihood distribution.

We now describe the nonlearnability result for finite automata that we will
use. Blum integers are integers of the form p · q, where p and q are primes
congruent to 3 modulo 4. The cryptographic assumption used in the result is
that factoring Blum integers is hard. We refer to Kearns [8, p 105-108] for a
precise statement and a discussion of this assumption.

The following result follows from Kharitonovs results in [11] using the reduc-
tions from Pitt and Warmuth [12], see also [10].

Theorem 1. (Kharitonov [11]) Assuming that factoring Blum integers is hard,
there is a polynomial p such that the class ADFAp(n)

n is inherently unpredictable
under the uniform distribution.

2 Hidden Markov Models

In this section we discuss hidden Markov models (HMM’s). HMM’s can be used
to describe mechanisms in a diversity of fields. A HMM can be thought of as a
probabilistic automaton with a finite number of states, with fixed probabilities
for going from one state to another, and in which for every state there are
probabilities for outputting certain symbols. Usually, we only see these output
symbols, and the states are hidden from us. Over time, the HMM thus generates
an infinite sequence of output symbols, adding a symbol at every time step. In
the next formal definition we use the notation of Clote and Backofen [6]. It will
be convenient to work with the alphabet Σ = {0, 1}.
Definition 1. A hidden Markov model (HMM) is a tuple M = (Q, π, a, b),
where Q = 1, . . . ,m is a set of states, π is a vector of initial state probabilities,
a is a matrix of transition probabilities, and b is a matrix of output probabilities:

πi = Pr[q0 = i]
ai,j = Pr[qt = j|qt−1 = i]
bi,k = Pr[ot = k|qt = i], k ∈ {0, 1}

On the Learnability of Hidden Markov Models 263

such that
∑m

i=1 πi = 1, and for every i,
∑m

j=1 ai,j = 1 and bi,0 + bi,1 = 1. Here
q0 is the initial state, and qt is the state of the system at time t. ot is the symbol
that is output when M is in state qt. The likelihood Lw(M) of a binary word
w is defined as the probability that M generates w, i.e. the probability that for
every t < |w|, in state qt the output symbol ot is equal to the t-th bit wt of w.
The likelihood of a sample S is defined as LS(M) =

∏
w∈S Lw(M). The size of

a HMM M is defined in a straightforward way as size(π) + size(a) + size(b). We
also allow HMM’s to have final states, i.e. states without outgoing transitions.
For a polynomial p, denote the class of HMM’s of size p(n) that generate only
strings of length n by HMMp(n)

n .

We prove two easy lemmas for later reference.

Lemma 1. Let T ∈ IN and let p ∈ QT be a fixed path (i.e. p is a sequence of T
states in Q). Then

∑
|w|=T Pr[w|p,M] = 1.

Proof. Note that
∑

|w|=T Pr[w|p,M] =
∑

|w|=T

∏T−1
i=0 bp(i),wi

. We prove the
lemma by induction on T .

T = 1: bp(0),0 + bp(0),1 = 1.
T + 1: ∑

|w|=T+1

Pr[w|p,M] =
∑

|w|=T

Pr[w|p�T,M]bp(T),0 +

∑
|w|=T

Pr[w|p�T,M]bp(T),1

= bp(T),0 + bp(T),1 = 1,

where the second equality follows by the induction hypothesis. �

Lemma 2.
∑

p∈QT Pr[p|M] = 1.

Proof. Induction on T .
T = 1:

∑
p∈QT Pr[p|M] =

∑
p∈Q π(p) = 1.

T + 1:
∑

p∈QT+1

Pr[p|M] =
∑

p∈QT

(
Pr[p|M]

∑
q∈Q

ap(T−1),q

)

=
∑

p∈QT

Pr[p|M],

and this last expression equals 1 by induction hypothesis. �

Every deterministic finite automaton (DFA) G can be represented by a HMM
M as follows. Split every state q in G into two states q0 and q1. We want to make
sure that after every transition labeled with 0 with certainty an output bit 0 in M
is output, so for every 0-transition to q in G we make a corresponding transition
to q0 in M , and we give q0 output probability 1 for 0 and 0 for 1. Similarly, for

264 Sebastiaan A. Terwijn

every 1-transition to q in G we make a corresponding transition to q1 in M , and
we give q1 output probability 1 for 1 and 0 for 0. If a state in M has two outgoing
transitions we give both probability 1/2, and if it has one it gets probability 1.
The start state of G is removed and replaced by suitable initial probabilities in
M .

For M defined in this way we have w ∈ L(G) ⇔ Lw(M) > 0. (Here L(G)
is the language associated with G, i.e. the set of words accepted by G.) When
we identify H with the set {w : Lw(M) > 0} then we see that M represents
G. We note that the likelihood Lw(M) is computable in polynomial time by
the forward method [5,6]. Since the class of DFA’s is inherently unpredictable,
irrelevant of which polynomially evaluatable hypotheses representation is used, it
follows immediately from the nonlearnability results for finite automata quoted
in Section 1 that the class of polynomial size HMM’s is not efficiently pac-
learnable:

Fact 2 The class of polynomial size HMM’s has polynomial VC-dimension.
Hence (under the Discrete Cube Root Assumption) it is inherently unpredictable.

Below we will prove that a much more specific learning task is not feasible
(assuming that factoring Blum integers is hard).

3 Learning Hidden Markov Models

We can associate several learning tasks with the class of HMM’s. The first well-
known task is to maximize the likelihood:

HMM Likelihood Problem. Given n, the number of states in an unknown
HMM M , and a sample S of observation sequences generated by M , determine
a HMM H on n states such that LS(H) is maximal.

The most widely used method to attack the HMM Likelihood Problem is the
Baum-Welch method [3], also called the forward-backward method. This algo-
rithm adjusts by iteration the parameters of a given HMM so as to increase the
likelihood of an observation sequence. The algorithm works in polynomial time,
i.e. every iteration step can be computed efficiently, but no general analysis of
its rate of convergence is known.

For a HMM M , define
DM (w) = Lw(M).

For any fixed length n, DM is a probability distribution on Σn, as the next
proposition shows. We will call DM the probability distribution induced by M .

Proposition 1. For any n,
∑

|w|=nDM (w) = 1.

On the Learnability of Hidden Markov Models 265

Proof. Using the Lemmas 1 and 2 we have
∑

|w|=T

DM (w) =
∑

|w|=T

Lw(M)

=
∑

|w|=T

∑
p∈QT

Pr[w|p,M] Pr[p|M]

=
∑

p∈QT

Pr[p|M]
∑

|w|=T

Pr[w|p,M]

=
∑

p∈QT

Pr[p|M]

= 1. �

HMM Learning Problem. Let p be a fixed polynomial and let U be the uni-
form distribution on Σn. Given n and p(n), the number of states in an unknown
HMM M , ε, δ < 1/2, and a sample S ⊆ Σn of observation sequences of length n
generated by M , determine a HMM H on p(n) states such that with probability
1−δ, error(H) < ε. Here error(H) := PrDM [M−H] + PrU[H−M]. Here M−H
denotes the set of strings in Σn that are generated by M but not by H .

Note that this is more specific than in the general pac-model, since each target
concept has its own probability distribution, namely the one that it induces. This
seems to reflect practical learning situations in a more natural way. After all,
when we see the products of some unknown mechanism, we are most likely to see
those products that the mechanism is most likely to generate. A solution to the
HMM Learning Problem requires a (possibly randomized) algorithm that pac-
learns any HMM M on the basis of positive examples only, which are sampled
according to the induced probability distribution DM . The error is measured
according to DM on the positive examples and to the uniform distribution U on
the negative examples. We note that, if the choice of U for the negative examples
seems too arbitrary, it follows from the results of Kharitonov that we could
have chosen any other nontrivial distribution here (see [11] for the definition
of ‘nontrivial’). The next theorem shows that, although the HMM Learning
Problem is much more specific than the general problem of pac-learning HMM’s,
this problem is still not feasible. That an algorithm L for the HMM Learning
Problem runs in polynomial time means that there is a polynomial p such that
L runs in time p(n, 1/ε, 1/δ), where n is the size of the target concept, and ε

and δ are the error and confidence parameter, respectively. Recall that HMMp(n)
n

denotes the class of HMM’s of size p(n) that generate only strings of length n.

Theorem 3. Assuming that factoring Blum integers is hard, the HMM Lear-
ning Problem is not solvable in polynomial time. (That is, there is a polynomial
p such that the HMM learning problem for HMMp(n)

n is not solvable in polynomial
time.)

Before proving Theorem 3 we prove two auxiliary results.

266 Sebastiaan A. Terwijn

Theorem 4. Let C =
⋃

n Cn be a graded concept space, and suppose Cn is not
efficiently pac-learnable under the uniform distribution U over Σn (for both the
positive and the negative examples). Then Cn is also not efficiently pac-learnable
when we use for every c ∈ Cn the distribution Dc defined by

Dc(w) =
{

0 if w 	∈ c
1

||c|| if w ∈ c.

(||c|| is the cardinality of c), and the error of an hypothesis h is defined as
PrDc [c− h] + PrU[h− c].

Proof. Suppose L is an algorithm that pac-learns every c ∈ C under the distri-
bution Dc, with error defined as in the theorem, and that L works in time p for
some polynomial p. Then we can pac-learn C under the uniform distribution as
follows. Let ε and δ be the given error and confidence parameters. We sample
under the uniform distribution and simulate L on the positive examples. We
need p(n, 1/δ, 1/ε) hits from c to do this. We show that it is enough to sample
m = (2/ε)(4 log(1/δ) + p(n, 1/δ, 1/ε)) examples under the uniform distribution.
There are two cases.
Case 1. The weight of c is very small: PrU[c] < ε, and among the m examples
there are less than p(n, 1/δ, 1/ε) positive ones. Output ∅. Since PrU[c] < ε the
error is less than ε.
Case 2. PrU[c] ≥ ε. When we view the sampling of the m examples as m in-
dependent Bernoulli trials, each with success of hitting c at least ε, a suitable
Chernoff bound1 gives us that

Pr[# hits in c < p(n, 1/δ, 1/ε)] ≤ Pr[# hits in c <
1
2
εm]

≤ e−εm/8

≤ e−
ε
8

2
ε (4 log 1

δ)

= δ.

So with probability at least 1 − δ, at least p(n, 1/δ, 1/ε) of the m examples are
labeled positively, and we can simulate L on these examples. This gives with
probability at least 1 − δ an hypothesis h with PrDc [c − h] + PrU[h − c] < ε.
Since PrDc [c− h] ≥ PrU[c− h] we have in total that PrU[(h− c) ∪ (c − h)] < ε
with probability at least (1 − δ)2. This shows that C is pac-learnable under the
uniform distribution, since we could have set the confidence parameter δ to δ2 at
the beginning of the proof, thus obtaining the good hypothesis h with confidence
at least 1 − δ. �

Theorem 5. For every G in ADFAp(n)
n there is an M in HMMO(p(n))

n such that
for every w ∈ Σn it holds that w ∈ L(G) ⇔ Lw(M) > 0 and Lw(M) > 0 ⇒
Lw(M) = 1/‖L(G)‖.
1 If S is the number of successes in a series of m independent Bernoulli trials with

probability of success p, then we use that Pr[S < (1 − γ)pm] ≤ e−mpγ2/2 for any
0 ≤ γ ≤ 1.

On the Learnability of Hidden Markov Models 267

Proof. Define M from G as in the discussion preceding Fact 2, except for the
transition probabilities in M which are defined as follows. Without loss of gen-
erality, all paths in G end in an accepting state. We assign to every transition in
M going from node q to node q′ the probability k/l, where l is the total number
of transitions that can be followed from q (i.e. its outdegree) and k is the total
number of paths that can be followed from q′. By induction on the length of
the paths, i.e. induction on n, one can check that in this way every path in M
defined from a path in G gets the same nonzero probability, and all other paths
get probability zero. It is easy to check that M satisfies the statement of the
theorem. �

Proof of Theorem 3. Suppose algorithm L solves the HMM Learning Problem
in polynomial time. Given a finite automaton G in ADFAp(n)

n , and ε, δ, let M be
as in Theorem 5. Then L outputs in polynomial time and with probability 1− δ
an hypothesis H with PrDM (M −H) + PrU(H −M) < ε. But then, since DM

is uniform on M , by Theorem 4, we can pac-learn M under the uniform distri-
bution. Now given H and w ∈ Σn, one can compute in time O(np(n)2) whether
Lw(H) > 0 using the forward method (see e.g. [5,6]). This means that, for any
polynomial p, we can pac-learn ADFAp(n)

n under the uniform distribution using
the polynomially evaluatable hypothesis class HMMO(p(n))

n . But this contradicts
Theorem 1. �

Note that all HMM’s used in the proof are polynomial size, so that (by Fact 2) we
can say that the nonlearnability is not caused by a nonpolynomial VC-dimension
of the class of HMM’s under consideration. Also note that we have in fact proved
a result about stochastic DFA’s (stochastic regular grammars).

Acknowledgment. We thank Peter Clote for introducing us to hidden Markov
models and for helpful discussions.

References

1. M. Anthony and N. Biggs, Computational learning theory: an introduction, Cam-
bridge University Press, 1992.

2. P. Baldi and Y. Chauvin, Smooth on-line learning algorithms for hidden Markov
models, Neural Computation 6 (1994) 307–318.

3. L. E. Baum, An inequality and associated maximization technique in statistical
estimation for probabilistic functions of a Markov process, Inequalities 3, 1972,
1–8.

4. A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, Learnability and
the Vapnik-Chervonenkis dimension, J. of the ACM 36(4), 929–965, 1989.

5. E. Charniak, Statistical Language Learning, MIT Press, 1993.
6. P. Clote and R. Backofen, Computational molecular biology: an introduction, Wiley,

2000.
7. O. Goldreich, S. Goldwasser, and S. Micali, How to construct random functions, J.

of the ACM 33(4) (1986) 792–807.

268 Sebastiaan A. Terwijn

8. M. J. Kearns, The computational complexity of machine learning, MIT Press, 1990.
9. M. J. Kearns and L. G. Valiant, Cryptographic limitations on learning boolean

formulae and finite automata, J. of the ACM 41(1) (1994) 67–95.
10. M. J. Kearns, U. V. Vazirani, An introduction to computational learning theory,

MIT Press, 1994.
11. M. Kharitonov, Cryptographic hardness of distribution-specific learning, Proc. 25th

ACM Symp. on the Theory of Computing, 372–381, ACM Press, N.Y., 1993.
12. L. Pitt and M. K. Warmuth, Prediction-preserving reducibility, J. Computer and

System Sci. 41(3) (1990) 430–467.
13. L. G. Valiant, A theory of the learnable, Communications of the ACM 27(11) (1984)

1134–1142.

	Introduction
	Hidden Markov Models
	Learning Hidden Markov Models

