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Abstract. We study the model-theoretic aspects of a probability logic
suited for talking about measure spaces. This nonclassical logic has a
model theory rather different from that of classical predicate logic. In
general, not every satisfiable set of sentences has a countable model, but
we show that one can always build a model on the unit interval. Also,
the probability logic under consideration is not compact. However, using
ultraproducts we can prove a compactness theorem for a certain class of
weak models.

1. Introduction

Probability logic is an area in which formal logic is combined with probabil-
ity theory. There is a large range of possible motivations for doing so, coming
from various viewpoints in mathematics, computer science, and philosophy.
As in classical logic, the main mathematical challenges in this subject spring
from the interplay between the syntax (the logical formalisms) and their se-
mantics (the models). Roughly, the various approaches to the subject (some
of which are surveyed in Halpern [8]) fall into two categories: those that con-
sider probability distributions over classes of models (i.e. “probabilities over
models”), and those that consider models each with their own probability
distribution (i.e. “models with probabilities”). Historically, the majority of
the literature on probability logic falls in the first category. Our work below
falls into the second category. As examples of work in the first category
we can mention the famous papers Carnap [5], Gaifman [7], and Scott and
Krauss [18]. (In these papers probabilities are assigned to formulas, which
is the same as assigning probabilities to classes of models defined by them.
In Howson [11] this work is discussed further, and the proposal is made to
move away from formal languages altogether.) However, also probabilistic
logics from the area of model checking, such as PCTL and its variants [9],
fall in this category. In this context the models are infinite traces of finite
state systems, and the probabilities on the transitions of the system define
a probability measure on the space of traces.

Examples of work in the second category include H. Friedman’s quantifier
Q (meaning “almost all” in the sense of measure theory), see Steinhorn [19],
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as well as the work of Keisler and Hoover [15]. The logic LAP from [15] con-
tains probability quantifiers of the form Px > r, where r ∈ [0, 1], with the
intended meaning “true for at least measure r many x”. To avoid problems
with projections of measurable sets, LAP does not have the classical existen-
tial or universal quantifier. Keisler’s Problem 1 [15, p555] asks to “develop
a form of LAP which has the universal quantifier”, which, in the presence
of classical negation, is of course the same as having the classical existential
quantifier.

Jaeger [12] studies an extension of classical predicate logic with probability
quantifiers, and also contains a discussion on related work by other authors
such as Bacchus and Halpern. Just as the logic studied below, Jaeger’s logic
is motivated by inductive probabilistic reasoning. Measure quantifiers also
naturally occur in descriptive set theory, see e.g. Kechris [14, p114]. We use
the behavior of these quantifiers on analytic sets in section 5.

Valiant [22] introduced a logic related to his own model of probabilistic
induction, the famous pac-model. Since its introduction in 1984, this model
has become one of the cornerstones of computational learning theory, see
[13] for an introduction. Though the logic studied below is also motivated
by the pac-model, Valiant’s setup is completely different from ours. Valiant
considers only finite models, subsumed in his definition of a scene, and he
considers learning certain rules from scenes. Accuracy of learning is defined
by probability distributions over scenes, so that this work falls in the first
category described above.

In Terwijn [20] a probabilistic logic was introduced that is, like Valiant’s
logic, related to probabilistic induction and the pac-model. Unlike Valiant’s
logic however, this logic falls in the models-with-probabilities category. Also,
the semantics of this logic is not restricted to finite models, but allows ar-
bitrary measure spaces to serve as models. The language of the logic is
identical to that of classical predicate logic, except that the interpretation of
the universal quantifier is probabilistic. Since the language carries a param-
eter ε for the amount of uncertainty with which formulas are evaluated, we
will refer to it as ε-logic. This ε-logic is paraconsistent, and combines in a
natural way probabilistic universal quantifiers with classical existential ones.
This can be seen as a possible answer to Keisler’s question quoted above. In
section 2 we repeat the definition of ε-logic, and briefly discuss some of its
properties. In the subsequent sections, we develop some of its model theory.

The paper is structured as follows. First, in section 2 we introduce ε-logic
and discuss some of its basic properties. Next, in section 3 we discuss the
appropriate class of models, called ε-models. After that, in section 4 we show
that there are satisfiable sentences that are not satisfiable in any countable
model, but we also prove a downward Löwenheim-Skolem Theorem for ε-
logic in which “countable” is replaced by “of cardinality of the continuum”.
In section 5 we refine this result and show that every satisfiable sentence is
in fact satisfied by a model on the unit interval together with the Lebesgue
measure. Section 6 continues with the problem discussed in the preceding
section, by discussing what the exact value of the Löwenheim number (the
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smallest cardinality for which every satisfiable sentence has a model of that
cardinality) is in ε-logic. Next, in section 7 we present a technical result
that gives many-one reductions between satisfiability in ε0-logic and ε1-logic
for different ε0, ε1. Finally, in section 8 we show that compactness fails for
ε-logic, but that we can recover a weak notion of compactness using an
ultraproduct construction.

Our notation from logic is standard. We denote the natural numbers by
ω. For unexplained notions from measure theory, we refer the reader to
Bogachev [4], and for notions from descriptive set theory to Kechris [14].
The relevant background for model theory can be found in Hodges [10].

2. ε-Logic

In this section, we will repeat the definition of the probabilistic logic from
Terwijn [20]. This logic was partly motivated by the idea of what it means
to “learn” an ordinary first-order statement ϕ from a finite amount of data
from a model M of ϕ, in a way that is similar to learning in Valiant’s pac-
model [13]. In this setting, atomic data are generated by sampling from
an unknown probability distribution D over M , and the task is to decide
with a prescribed amount of certainty whether ϕ holds in M or not. On
seeing an atomic truth R(a), where R is some relation, one knows with
certainty that ∃xR(x), so that the existential quantifier retains its classical
interpretation. On the other hand, inducing a universal statement ∀xR(x)
can only be done probabilistically. Thus, there is a fundamental asymmetry
between the interpretation of the existential quantifier and the interpretation
of the universal quantifier. As in the pac-model, it is important that the
distribution D is unknown, which is counterbalanced by the fact that success
of the learning task is measured using the same distribution D. (In the
pac-setting this is called “distribution-free learning”.) In [20] it was shown
that ordinary first-order formulas are pac-learnable under the appropriate
probabilistic interpretation, given in the definition below. In this paper the
focus will be on the model theory of this logic, and no background on pac-
learning is required any further.

Definition 2.1. Let L be a first-order language, possibly containing equal-
ity, of a countable signature. Let ϕ = ϕ(x1, . . . , xn) be a first-order formula
in the language L , and let ε ∈ [0, 1]. Furthermore, let M be a classical first-
order model for M and let D be a probability measure on the universe of M .
Then we inductively define the notion of ε-truth, denoted by (M ,D) |=ε ϕ,
as follows (where we leave the parameters implicit).

(i) For every atomic formula ϕ:

(M ,D) |=ε ϕ if M |= ϕ.

(ii) We treat the logical connectives ∧ and ∨ classically, e.g.

(M ,D) |=ε ϕ ∧ ψ if (M ,D) |=ε ϕ and (M ,D) |=ε ψ.
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(iii) The existential quantifier is treated classically as well:

(M ,D) |=ε ∃xϕ(x)

if there exists an a ∈M such that (M ,D) |=ε ϕ(a).
(iv) The case of negation is split into sub-cases as follows:

(a) For ϕ atomic, (M ,D) |=ε ¬ϕ if (M ,D) 6|=ε ϕ.
(b) ¬ distributes in the classical way over ∧ and ∨, e.g.

(M ,D) |=ε ¬(ϕ ∧ ψ) if (M ,D) |=ε ¬ϕ ∨ ¬ψ.

(c) (M ,D) |=ε ¬¬ϕ if (M ,D) |=ε ϕ.
(d) (M ,D) |=ε ¬(ϕ→ ψ) if (M ,D) |=ε ϕ ∧ ¬ψ.
(e) (M ,D) |=ε ¬∃xϕ(x) if (M ,D) |=ε ∀x¬ϕ(x).
(f) (M ,D) |=ε ¬∀xϕ(x) if (M ,D) |=ε ∃x¬ϕ(x).

(v) (M ,D) |=ε ϕ→ ψ if (M ,D) |=ε ¬ϕ ∨ ψ.
(vi) Finally, we define (M ,D) |=ε ∀xϕ(x) if

Pr
D

[
a ∈M | (M ,D) |=ε ϕ(a)

]
> 1− ε.

We make some remarks about the definition of ε-truth. Observe that
everything in Definition 2.1 is treated classically, except for the interpretation
of ∀xϕ(x) in case (vi). Instead of saying that we have (M ,D) |=ε ϕ(a) for
all elements a ∈M , we merely say that it holds for “many” of the elements,
where “many” depends on the error parameter ε. The treatment of negation
requires some care, since we no longer have that (M ,D) |=ε ¬ϕ implies that
(M ,D) 6|=ε ϕ (though the converse still holds, see Terwijn [20, Proposition
3.1]). The clauses for the negation allow us to push the negations down to
the atomic formulas.

Note that both (M ,D) |=ε ∀xϕ(x) and (M ,D) |=ε ∃x¬ϕ(x) can hold,
for example if ϕ(x) holds on a set of measure one but not for all x. Thus,
the logic defined above is paraconsistent. This example also shows that for
ε = 0 the notion of ε-truth does not coincide with the classical one. Note
also that even though both ϕ and ¬ϕ may be satisfiable, they cannot both
be ε-tautologies, as at most one of them can be true in a model with only
one point.

We have chosen to define ϕ → ψ as ¬ϕ ∨ ψ. We note that this is weaker
than the classical implication. The classical definition would say that ψ holds
in any model where ϕ holds. Using an atomic inconsistency as falsum, we
would thus obtain a classical negation. Since ∃ expresses classical existence,
we would then also obtain the classical universal quantifier ∀, and our logic
would become a strong extension of classical predicate logic, which is not
what we are after.

The case for ε = 1 is pathological; for example, all universal statements
are always true. We will therefore often exclude this case.

Definition 2.2. Let L be a first-order language of a countable signature,
possibly containing equality, and let ε ∈ [0, 1]. Then an ε-model (M ,D) for
the language L consists of a classical first-order L-model M together with
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a probability distribution D over M such that:

(1) For all formulas ϕ = ϕ(x1, . . . , xn) and all a1, . . . , an−1 ∈M , the set

{an ∈M | (M ,D) |=ε ϕ(a1, . . . , an)}
is D-measurable (i.e. all definable sets of dimension 1 are measurable).

(2) All relations of arity n are Dn-measurable (including equality, if it is
in L) and all functions of arity n are measurable as functions from
(M n,Dn) to (M ,D) (where Dn denotes the n-fold product measure).
In particular, constants are D-measurable.

We remark that condition (2) does not imply condition (1), because even
if a set is measurable, its image under a projection need not be measurable.
The definition of ε-model is discussed in more detail in section 3.

Definition 2.3. A sentence ϕ is an ε-tautology or is ε-valid (notation: |=ε ϕ)
if for all ε-models (M ,D) it holds that (M ,D) |=ε ϕ. Similarly, we say that
ϕ is ε-satisfiable if there exists an ε-model (M ,D) such that (M ,D) |=ε ϕ.

Note that all ε-models are necessarily nonempty because they are prob-
ability spaces. From Proposition 2.5 it follows that for ε 6 ε′ and for a
suitable class of models, every ε-tautology is an ε′-tautology. In [20] it was
proven that the inclusion is strict when ε < ε′.

Example 2.4. Let Q be a unary predicate. Then ϕ = ∀xQ(x) ∨ ∀x¬Q(x)
is a 1

2
-tautology. Namely, in every 1

2
-model, either the set on which Q holds

or its complement has measure at least 1
2
. However, ϕ is not an ε-tautology

for ε < 1
2
. Furthermore, both ϕ and ¬ϕ are classically satisfiable and hence

ε-satisfiable for every ε; in particular we see that ϕ can be an ε-tautology
while simultaneously ¬ϕ is ε-satisfiable.

In many proofs it will be convenient to work with formulas in prenex
normal form. We may assume that formulas are in this form by the following:

Proposition 2.5 (Terwijn [20]). Every formula ϕ is semantically equivalent
to a formula ϕ′ in prenex normal form; i.e. (M ,D) |=ε ϕ ⇔ (M ,D) |=ε ϕ

′

for all ε ∈ [0, 1] and all ε-models (M ,D).

3. ε-Models

Our definition of ε-model slightly differs from the original definition in [20].
We require more sets to be measurable in our ε-models than in the original
definition, where the measurability condition was included in the truth def-
inition. However, we need this stronger requirement on our models to be
able to prove anything worthwhile, in fact, (1) in Definition 2.2 is already
implicit in most proofs published in earlier papers.

We now discuss condition (2) in Definition 2.2. This is a natural assump-
tion: When we are talking about probabilities over certain predicates we
may as well require that all such probabilities exist, even if in some cases
this would not be necessary. To illustrate this point we give an example of
what can happen without it.
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Example 3.1. The following example is based on the famous argument
of Sierpinski showing that under the continuum hypothesis CH there are
unmeasurable subsets of the real plane. Let D be a measure on the domain
ω1 defined by

D(A) =

1 if A = ω1 with the exception of at
most countably many elements,

0 if A is countable.

It is easy to check that D is a probability measure. Let < be the usual order
relation on ω1. Then we have

(ω1,D) |=0 ∀x∀y(x < y)

since for every x ∈ ω1 the vertical section {y | x < y} has D-measure 1.
Similarly,

(ω1,D) 6|=0 ∀y∀x(x < y)

since for every y ∈ ω1 the horizontal section {x | x < y} has D-measure 0.
Note that the relation {(x, y) ∈ ω 2

1 | x < y} is not D2-measurable: Since
all its vertical sections {y | x < y} have D-measure 1, and all its horizontal
sections {x | x < y} have D-measure 0, D2-measurability of the relation <
would contradict Fubini’s theorem. That in general universal quantifiers do
not commute under a probabilistic interpretation was already remarked in
Keisler [15]. In fact, it is easy to give a three-element example of a model
M such that (M ,D) |= 1

3
∀x∀yR(x, y) but not (M ,D) |= 1

3
∀y∀xR(x, y). So

in this respect condition (2) does not help anyway.

We point out that the choice to impose condition (2) or not does make a
difference for the resulting probability logic: Let

lin = ∀x∀y(x 6 y ∨ y 6 x) ∧ ∀x∀y∀z(x 6 y ∧ y 6 z → x 6 z)

be the sentence saying that 6 is a total preorder (not necessarily antisym-
metric).

Proposition 3.2. For every ε > 0, the sentence

ϕ = ¬lin ∨ ∃x∀y(y 6 x)

is an ε-tautology if and only if we impose condition (2) in Definition 2.2.

Proof. Let ε > 0. Without (2) we can construct a countermodel for ϕ as
follows. Consider ω1 with the measure D from Example 3.1. Then since
every initial segment of ω1 has measure 0, clearly (ω1,D) 6|=ε ϕ.

Now suppose (2) holds. Let (M ,D) be an ε-model with ε > 0. We show
that ϕ is an ε-tautology. When (M ,D) |=ε ¬lin then we are done. When
(M ,D) 6|=ε ¬lin then we have classically M |= lin so 6 really is a linear
preorder in M . Suppose that

(3) ∀x Pr
D

[
y ∈M | x 6 y

]
> ε.
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Suppose further that

∀x0∃y > x0 Pr
D

[
[x0, y]

]
>

1

2
ε

where [x0, y] is the interval between x0 and y in M . We may assume that
for every y ∈ M there exists a z ∈ M with z 66 y; otherwise y is clearly a
maximal element and we are done. Then we also have

∀x0∃y > x0 Pr
D

[
[x0, y]

]
>

1

2
ε

(where y > x0 denotes x0 6 y∧y 66 x0). But then we can find infinitely many
intervals [y0, y1], [y1, y2], . . . with yi < yi+1 of measure at least 1

2
ε, which are

disjoint by the transitivity of 6. This is a contradiction. So, choose x0 such
that ∀y > x0 PrD

[
[x0, y]

]
< 1

2
ε and consider the set

(4)
{

(x, y) ∈M ×M | x, y > x0 ∧ x 6 y
}
,

i.e. the restriction of the relation 6 to elements greater than x0. Then,
similarly as in Example 3.1, all vertical sections of (4) have measure > ε and
all horizontal sections have measure < 1

2
ε, so by Fubini’s theorem the set (4)

is not D2-measurable. But then, since (4) is the intersection of sets defined
using 6, the relation 6 itself is not measurable, contradicting (2). So (3) is
false, and hence there is an x ∈ M such that at least 1− ε of the weight is
to the left of x. Hence (M ,D) |=ε ϕ. �

After these considerations we take the standpoint that it is natural to assume
the measurability condition (2) in Definition 2.2. As we will see below, for
the discussion of compactness it is useful to consider a weaker notion of
ε-model, where we drop the condition (2) from the definition:

Definition 3.3. If M is a first-order model and D is a probability measure
on M such that for all formulas ϕ = ϕ(x1, . . . , xn) and all a1, . . . , an−1 ∈M ,
the set

{an ∈M | (M ,D) |=ε ϕ(a1, . . . , an)}
is D-measurable, we say that (M ,D) is a weak ε-model.

4. A Downward Löwenheim-Skolem Theorem

In this section, we will prove a downward Löwenheim-Skolem theorem for
ε-logic. We will see that it is not always possible to push the cardinality
of a model down to being countable, as in classical logic. In many ways,
countable ε-models are analogous to finite classical models, as exemplified
by the following result:

Theorem 4.1. (Terwijn [21]) Let ϕ be a sentence. Then the following are
equivalent:

(i) ϕ classically holds in all finite classical models,
(ii) (M ,D) |=ε ϕ for all ε > 0 and for all ε-models (M ,D) such that M

is countable.
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Definition 4.2. We will call a measure ν on a σ-algebra B of subsets of N a
submeasure of a measure µ on a σ-algebra A of subsets of some set M ⊇ N
if for every B ∈ B there exists an AB ∈ A such that B = AB ∩ N and
µ(AB) = ν(B).

To motivate this definition, let us first consider the special case where
AB = B for every B ∈ B . In this case, we have that ν(B) = µ(B) for every
B ∈ B . In other words, ν is just the restriction of the measure ν to the µ-
measurable set N . However, requiring N to be a measurable subset of M is
too restrictive for the constructions below. Our definition of submeasure also
allows us to restrict µ to certain non-µ-measurable sets N , by allowing us
some freedom in the choice of the set AB. The precise method of constructing
such submeasures N will become clear in the proof of Theorem 4.6.

Definition 4.3. An ε-submodel of an ε-model (M ,D) is an ε-model (N ,E)
over the same language such that:

• N is a submodel of M in the classical sense,
• E is a submeasure of D.

We will denote this by (N ,E) ⊂ε (M ,D).

Definition 4.4. An elementary ε-submodel of an ε-model (M ,D) is an ε-
submodel (N ,E) such that, for all formulas ϕ = ϕ(x1, . . . , xn) and sequences
a1, . . . , an ∈ N we have:

(N ,E) |=ε ϕ(a1, . . . , an)⇔ (M ,D) |=ε ϕ(a1, . . . , an).

We will denote this by (N ,E) ≺ε (M ,D).

The next example shows that there are satisfiable sentences without any
countable model.

Example 4.5. Let ϕ = ∀x∀y(R(x, y)∧¬R(x, x)). Then ϕ is 0-satisfiable; for
example, take the unit interval [0, 1] equipped with the Lebesgue measure
and take R(x, y) to be x 6= y. However, ϕ does not have any countable
0-models. Namely, if (M ,D) |=0 ϕ then for almost every x ∈M the set

Bx = {y ∈M | (M ,D) |=0 ¬R(x, y) ∨R(x, x)}

has measure zero. Since x ∈ Bx, the set
⋃
x∈M Bx equals M , and therefore

has measure 1. But if M is countable it is also the union of countable many
sets of measure 0 and hence has measure 0, a contradiction.

Note also that ϕ is finitely ε-satisfiable (i.e. ε-satisfiable with a finite
model) for every ε > 0.

Using the reduction from Theorem 7.1, we now also find for every rational
ε ∈ [0, 1) a sentence ϕε which is only ε-satisfiable in uncountable models.

Example 4.5 shows that we cannot always find countable elementary sub-
models. However, we can find such submodels of cardinality 2ω, as we will
show next.
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Theorem 4.6. (Downward Löwenheim-Skolem theorem for ε-logic) Let L
be a countable first-order language, possibly containing equality, but not con-
taining function symbols. Let (M ,D) be an ε-model and let X ⊆ M be of
cardinality at most 2ω. Then there exists an ε-model

(N ,E) ≺ε (M ,D)

such that X ⊆ N and N is of cardinality at most 2ω.

Proof. We start by fixing some model-theoretic notation. For basics about
types we refer the reader to Hodges [10]. For an element x ∈M , let tp(x/M )
denote the complete 1-type of x over M , i.e. the set of all formulas ϕ(z) in
one free variable and with parameters from M such that (M ,D) |=ε ϕ(x).
Clearly the relation tp(x/M ) = tp(y/M ) defines an equivalence relation on
M . The idea is to construct N by picking one element from every equivalence
class of a finer equivalence relation. We will show that we can do this in
such a way that we need at most 2ω many points. Furthermore, this finer
equivalence relation induces a natural submeasure E of D on N , which will
turn (N ,E) into the desired ε-submodel.

Let R = R(x1, . . . , xn) be a relation. By Definition 2.2 we have that RM is
a Dn-measurable set. We can view the construction of the product σ-algebra
on M n as an inductive process over the countable ordinals: we start with
n-fold products or boxes of D-measurable edges, for successor ordinals α+ 1
we take countable unions and intersections of elements from α (we could also
take complements, but this is not necessary) and for limit ordinals λ we take
the union of sets constructed in steps < λ. Now the product σ-algebra is
exactly the union of all the sets constructed in this way.

In particular, we see from this construction that RM can be formed using
countable unions and intersections of Cartesian products of at most count-
ably many D-measurable sets. This expression need not be unique — so, for
each relation R, pick one such expression t and form the set ∆R consisting
of the D-measurable sets occurring as edges of Cartesian products in this
expression. Let ∆ be

⋃
R ∆R (where the union includes equality, if it is in

the language) together with {cM } for every constant c.
Since ∆ is countable, we can fix an enumeration B0, B1, . . . of it. For each

a ∈ 2ω define

Ea =
⋂
ai=1

Bi ∩
⋂
ai=0

(M \Bi).

Then we can check that points in Ea are equivalent, in the sense that for
all x, y ∈ Ea we have that tp(x/M ) = tp(y/M ). Namely, first we check
that for any n-ary relation R and z1, . . . , zn−1 ∈ M , RM (x, z1, . . . , zn−1) ⇔
RM (y, z1, . . . , zn−1). This follows by induction on the construction of RM

from ∆. The equivalence for arbitrary formulas from the 1-types then follows
by induction over formulas in prenex normal form.

From each nonempty Ea, pick one point xa, and define

N = X ∪ {xa | a ∈ 2ω}.
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Clearly, N has cardinality at most 2ω. Finally, for each D-measurable A
such that

(5) ∀a ∈ 2ω∀x, y ∈ Ea(x ∈ A⇔ y ∈ A),

we define E(A∩N ) = D(A). We claim that (N ,E) (with relations restricted
to N ) satisfies the required properties.

First, observe that E is well-defined. Namely, let A 6= C be D-measurable
sets satisfying (5), say x ∈ A and x 6∈ C. Let a ∈ 2ω be such that x ∈ Ea.
Then xa ∈ A, but xa 6∈ C. So A ∩ N 6= C ∩ N . Also, E is a probability
measure since D is.

Next, we prove that (N ,E) ≺ε (M ,D). It is clear that N is a submodel of
M and that E is a submeasure of D. We prove that (N ,E) is an elementary
ε-submodel. We use formula-induction on formulas in prenex normal form
to show that, for all sequences b1, . . . , bn ∈ N and for every formula ϕ =
ϕ(x1, . . . , xn), we have

(N ,E) |=ε ϕ(b1, . . . , bn)⇔ (M ,D) |=ε ϕ(b1, . . . , bn).

For propositional formulas, this is clear. For the existential case, observe
that

(N ,E) |=ε ∃xψ(x, b1, . . . , bn)

clearly implies that this also holds in (M ,D). For the converse, assume

(M ,D) |=ε ∃xψ(x, b1, . . . , bn).

Let x ∈ M be such that (M ,D) |=ε ψ(x, b1, . . . , bn), and let a ∈ 2ω be
such that x ∈ Ea. Then, as explained above, x and xa are equivalent, so we
also have (M ,D) |=ε ψ(xa, b1, . . . , bn). Using the induction hypothesis, we
therefore find (N ,E) |=ε ψ(xa, b1, . . . , bn). Since xa ∈ N this implies that
(N ,E) |=ε ∃xψ(x, b1, . . . , bn).

For the universal case, let ϕ = ∀xψ(x, x1, . . . , xn). Let

B = {x ∈M | (M ,D) |=ε ψ(x, b1, . . . , bn)},
C = {x ∈ N | (N ,E) |=ε ψ(x, b1, . . . , bn)}.

Then by induction hypothesis we have

C = {x ∈ N | (M ,D) |=ε ψ(x, b1, . . . , bn)}
= B ∩N .

From this and the fact that B satisfies (5), we see that E(C) = D(B), and
hence

(M ,D) |=ε ∀xψ(x, b1, . . . , bn)⇔ (N ,E) |=ε ∀xψ(x, b1, . . . , bn).

This concludes the induction.
It remains to check that (N ,E) is an ε-model (see Definition 2.2). For

every formula ϕ = ϕ(x1, . . . , xn) and every sequence a1, . . . , an−1 ∈ N we
have

Bϕ := {an ∈ N | (N ,E) |=ε ϕ(a1, . . . , an)}
= {an ∈M | (M ,D) |=ε ϕ(a1, . . . , an)} ∩N
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and since the right-hand side is the intersection of N and a D-measurable
set satisfying (5), it follows that Bϕ is E -measurable. That relations in N
are measurable follows directly from the construction; for constants c use the
fact that {c} ∈ ∆ and therefore there exists an a ∈ 2ω such that Ea = {c}.

Thus, we see that (N ,E) is an elementary ε-submodel of (M ,D). �

Remark 4.7. The proof given above uses the full measurability condition (2)
from Definition 2.2. We remark that one can also prove the theorem without
using that the relations are measurable, by following the proof of Keisler [15,
Theorem 2.4.4]; in that case the language is also allowed to contain function
symbols. However, we need the proof above to be able to derive Theorem 5.8
below.

By varying ε, we can easily see that in fact the following strengthening of
Theorem 4.6 holds.

Theorem 4.8. (Downward Löwenheim-Skolem theorem for variable ε) Let
L be a first-order language as above. Let A ⊆ [0, 1], let (M ,D) be an ε-
model for all ε ∈ A and let X ⊆M be of cardinality at most 2ω. Then there
exists an ε-model (N ,E) such that (N ,E) ≺ε (M ,D) for all ε ∈ A, such
that X ⊆ N and such that N is of cardinality at most 2ω.

Proof. This can be shown using the same proof as for Theorem 4.6. �

5. Satisfiability and Lebesgue measure

The construction from the proof of Theorem 4.6 produces an unknown
probability measure on 2ω. However, we can say a bit more about the
σ-algebra of measurable sets of E in that proof: for example, that it is
countably generated. We will use this and other facts to show that every
ε-satisfiable set Γ of sentences has an ε-model on [0, 1] equipped with the
Lebesgue measure. This model need not be equivalent to the original model
satisfying Γ; the new model will in general satisfy more sentences.1

We cannot directly show that the measure space of the given model is
isomorphic to [0, 1] with the Lebesgue measure — we need to make some
modifications to the model first. As a first step, we show that each set ε-
satisfiable set Γ of sentences is satisfied in some Borel measure on the Cantor
set 2ω (with the usual topology). For this, we need the following auxiliary
result.

Proposition 5.1. Let M be a first-order model that is a Polish space, and let
D0 be a Borel probability measure on M such that all relations and functions
are Dn

0 -measurable. Then all definable sets are analytic. In particular, if we
let D be the completion of D0, then (M ,D) is an ε-model for every ε ∈ [0, 1].

Proof. Since every relation is Dn
0 -measurable, it is in particular Borel and

therefore analytic. We now verify that every definable set is analytic, using

1This can happen even if Γ is already complete, i.e. if for every sentence ϕ at least one
of ϕ ∈ Γ and ¬ϕ ∈ Γ holds: because of the paraconsistency of the logic, it could happen
that both ϕ and ¬ϕ hold in our new model, while only one of them is in Γ.
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induction over the number of quantifiers of a formula in prenex normal form
(see Proposition 2.5). Clearly, this holds for propositional formulas. For
the existential quantifier, use that projections of analytic sets are analytic
(which is clear from the definition of an analytic set, see e.g. Kechris [14,
Definition 14.1]), and for the universal quantifier, this fact is expressed by
the Kondô-Tugué theorem (see Kechris [14, Theorem 29.26]).

Since all definable sets are analytic, in particular the definable sets of
dimension 1 are analytic and hence D-measurable (see e.g. Bogachev [4,
Theorem 1.10.5]). This proves the second claim (see Definition 2.2). �

Proposition 5.2. Let L be a countable first-order language not containing
function symbols. Let Γ be an ε-satisfiable set of sentences. Then there exists
an ε-model (M ,D) on 2ω which ε-satisfies Γ such that D is the completion
of a Borel measure. Furthermore, the relations in M can be chosen to be
Borel.

Proof. Fix an ε-model ε-satisfying all sentences from Γ and apply Theo-
rem 4.6 (with X = ∅) to find a model (N ,E). Let ∆ = {B0, B1, . . . } and
Ea be as in the proof of Theorem 4.6, that is,

Ea =
⋂
ai=1

Bi ∩
⋂
ai=0

(X \Bi).

By construction of N , each Ea contains at most one point of N , namely xa.
So, the function π : N → 2ω mapping each xa ∈ N to a is injective.2

Now, define the subsets Cn ⊆ 2ω by

Cn = {a ∈ 2ω | an = 1}.
Then {Cn | n ∈ ω} generate the Borel σ-algebra of 2ω and we have π−1(Cn) =
Bn. Thus, Cn can be seen as an enlargement of Bn.

Next, let R(x1, . . . , xn) be an n-ary relation (different from equality).
Write RN as an infinitary expression using countable unions and intersec-
tions of Cartesian products of E -measurable sets from {B ∩ N | B ∈ ∆R}
(see the definition of ∆R and E in the proof of Theorem 4.6); say as the ex-
pression t(B0, B1, . . . ). Then we define RM by t(C0, C1, . . . ). Furthermore,
we define each constant cM to be π(cN ).

Finally, define a probability measure D0 on the Borel sets of M = 2ω by

D0 = E ◦ π−1.
Let D be the completion of D0. Then Proposition 5.1 tells us that (M ,D)
is an ε-model. Now it is easy to see that for all propositional formulas
ϕ(x1, . . . , xn) and all x1, . . . , xn ∈ N we have that N |= ϕ(x1, . . . , xn) if
and only if M |= ϕ(π(x1), . . . , π(xn)). For the atomic formulas not using
equality, this follows from the definition of the relations, and for equality
this follows from the injectivity of π. For general formulas in prenex normal

2The idea of sending each xa to a ∈ 2ω also appears in Bogachev [4, Theorem 9.4.7],
albeit in a different context. However, there only the case in which the function π is also
surjective is discussed, the nonsurjective case being irrelevant in that context.
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form, we can now easily prove the implication from left to right, i.e. that
(N ,E) |=ε ϕ(x1, . . . , xn) implies that (M ,D) |=ε ϕ(π(x1), . . . , π(xn)). Note
that for universal quantifiers, going from N to M , the set on which a formula
holds can only increase in measure, and for existential quantifiers, there are
at least as many witnesses in M as in N . It follows from this that in
particular (M ,D) satisfies Γ. �

Next, we show that we can eliminate atoms.

Definition 5.3. Let µ be a measure and let x be a measurable singleton. We
say that x is an atom of µ if µ({x}) > 0. The measure µ is called atomless
if it does not have any atoms.

Often a different notion of atom is used in the literature, in which an atom
is a measurable set A of strictly positive measure such that every measurable
subset of A either has measure 0 or the same measure as A. However, in
Polish spaces such as 2ω these two notions coincide, as can be seen in e.g.
Aliprantis and Border [1, Lemma 12.18].

Note that there are at most countably many atoms, since there can only
be finitely many atoms of measure > 1

n
for every n ∈ ω.

Definition 5.4. Let (M ,D) and (N ,E) be two ε-models over the same
language. Then we say that (M ,D) and (N ,E) are ε-elementary equivalent,
denoted by (M ,D) ≡ε (N ,E), if for all sentences ϕ we have

(M ,D) |=ε ϕ⇔ (N ,E) |=ε ϕ.

Lemma 5.5. Let L be a first-order language not containing equality or func-
tion symbols. Let (M ,D) be an ε-model such that D is the completion of
a Borel measure D0. Then there exists an atomless ε-model (N ,E) such
that E is the completion of a Borel measure E0 and (N ,E) ≡ε (M ,D).
Furthermore, if M is Polish, then so is N .

Proof. We first show how to eliminate a single atom of D0. Let x0 be an
atom, say of measure r. Let N be the disjoint union of M and [0, r]. We
define a new measure E0 on N by setting, for each D0-measurable B ⊆ M
and Borel C ⊆ [0, r],

E0(B ∪ C) = D0(B \ {x0}) + µ(C),

where µ denotes the Lebesgue measure, restricted to Borel sets. Then clearly,
x0 is no longer an atom (since it now has measure zero). The interpretation
of constants in N is simply defined by cN = cM .

Define a function π : N →M by

π(x) =

{
x if x ∈M ,

x0 if x ∈ [0, r].

We now define the relations on N by letting

RN (x1, . . . , xn)⇐⇒ RM (π(x1), . . . , π(xn))
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for every relation R. To simplify notation, in the following we write ~x =
x1, . . . , xn and π(~x) = π(x1), . . . , π(xn).

Let E be the completion of E0. To show that (N ,E) ≡ε (M ,D) we prove
the stronger assertion that for all formulas ϕ and for all ~x ∈ N ,

(6) (N ,E) |=ε ϕ(~x)⇐⇒ (M ,D) |=ε ϕ(π(~x)),

so that this holds in particular for all sentences ϕ. We prove (6) by formula-
induction on ϕ in prenex normal form. We only prove the universal case;
the other cases are easy. So, let ϕ = ∀yψ(y, ~x). To prove (6) it suffices to
show that

Pr
E

[
b ∈ N | (N ,E) |=ε ψ(b, ~x)

]
= Pr

D

[
a ∈M | (M ,D) |=ε ψ(a, π(~x))

]
for all ~x ∈ N . Now by induction hypothesis,

Pr
E

[
b ∈ N | (N ,E) |=ε ψ(b, ~x)

]
= Pr

E

[
b ∈ N | (M ,D) |=ε ψ(π(b), π(~x))

]
= Pr

E

[
b ∈M | (M ,D) |=ε ψ(π(b), π(~x))

]
+ Pr

E

[
b ∈ [0, r] | (M ,D) |=ε ψ(π(b), π(~x))

]
= Pr

D

[
a ∈M \ {x0} | (M ,D) |=ε ψ(a, π(~x))

]
+ Pr

D

[
x0 | (M ,D) |=ε ψ(x0, π(~x))

]
= Pr

D

[
a ∈M | (M ,D) |=ε ψ(a, π(~x))

]
Finally, using the remark below Definition 5.3, we can iterate this con-

struction a countable number of times, eliminating the atoms one by one. It
should be clear that the limit model exists and satisfies the theorem. �

The next theorem shows the connection between Borel measures on 2ω

and the Lebesgue measure.

Definition 5.6. Let (X,A , µ) and (Y,B , ν) be measure spaces. (X,A , µ)
and (Y,B , ν) are isomorphic if there exists an isomorphism from X to Y ,
that is, a bijection f : X → Y such that f(A) = B and µ ◦ f−1 = ν.

Theorem 5.7. (Kechris [14, Theorem 17.41]) Let D be an atomless Borel
probability measure on a Polish space. Then it is isomorphic to [0, 1] with
the Lebesgue measure restricted to Borel sets.

Putting together everything we have found, we reach the theorem an-
nounced at the beginning of this section.

Theorem 5.8. Let L be a countable first-order language not containing
equality or function symbols. Let Γ be an ε-satisfiable set of sentences. Then
there exists an ε-model on [0, 1] with the Lebesgue measure which ε-satisfies
Γ. Furthermore, all relations in the new ε-model can be chosen to be Borel.



MODEL THEORY OF MEASURE SPACES AND PROBABILITY LOGIC 15

Proof. By Proposition 5.2 we know that Γ has an ε-model (M ,D) on 2ω

with D the completion of a Borel measure and with Borel relations. By
Lemma 5.5 we may assume that M is atomless. By Theorem 5.7, (M ,D)
is isomorphic to [0, 1] with the Lebesgue measure, by a Borel isomorphism.
Note that isomorphisms preserve ε-truth, so the induced model on [0, 1] is
ε-elementary equivalent to M . �

Note that Theorem 5.8 fails for languages with equality, since then a sen-
tence such as ∃x∀y(x = y) expresses that there is an atom of measure at
least 1−ε. For languages with equality we have the following more elaborate
result:

Theorem 5.9. Let L be a countable first-order language not containing func-
tion symbols. Let Γ be an ε-satisfiable set of sentences. Then there exists an
ε-model (M ,D) which ε-satisfies Γ such that:

(i) M is based on [0, r] ∪X for some r ∈ [0, 1] and a countable set X,
(ii) D is the Lebesgue measure on [0, r],
(iii) all relations in M are Borel.

Proof. As in the proof of Theorem 5.8, by Proposition 5.2 we know that Γ
has an ε-model (N ,E) on 2ω with E the completion of a Borel measure and
with Borel relations. We can separate N into a countable set of atoms X
and an atomless part Y . Let r be the E -measure of the atomless part. If
r = 0, then observe that we can apply the classical Downwards Löwenheim-
Skolem Theorem to find a countable submodel M of N containing X, and
then (M ,E � M ) can be easily verified to satisfy the requirements of the
theorem. If r > 0, then by Theorem 5.7 we know that (Y, 1

r
E) is isomorphic

to [0, 1] with the Lebesgue measure, so (Y,E) is isomorphic to [0, r] with
the Lebesgue measure. As in Theorem 5.8, this induces an ε-elementary
equivalent model on [0, r] together with the atoms X. �

6. The Löwenheim Number

At this point we may ask ourselves how tight Theorem 4.6 is. The Löwen-
heim number of a logic is the smallest cardinal λ such that every satisfiable
sentence has a model of cardinality at most λ. For every ε, let λε be the
Löwenheim number of ε-logic, i.e. the smallest cardinal such that every ε-
satisfiable sentence has an ε-model of cardinality at most λε. The next
theorem parallels Corollary 2.4.5 in Keisler [15]. MA is Martin’s axiom from
set theory, see Kunen [16].

Theorem 6.1. Let ε ∈ [0, 1) be rational. For the Löwenheim number λε of
ε-logic we have

(i) ℵ1 6 λε 6 2ℵ0,
(ii) If Martin’s axiom MA holds then λε = 2ℵ0.

Proof. The first part was already proven above, in Example 4.5 and Theo-
rem 4.6. For the second part, assume that MA holds. Let ϕ be the sentence
from Example 4.5. Let κ < 2ω and assume ϕ has a model of cardinality κ.
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We remark that any model of ϕ has to be atomless. Therefore, if we now
use the construction from Proposition 5.2, we find a model (M ,D) which
ε-satisfies ϕ and where D is the completion of an atomless Borel measure.
Furthermore, if we let π and (N ,E) be as in the proof of this proposition,
the set π(N ) is a set of cardinality at most κ, so by MA it has measure 0
(see Fremlin [6, p127]). But then

E(N ) = D ◦ π(N ) = 0,

a contradiction. �

Theorem 6.1 shows that we cannot prove in the standard set-theoretic
framework of ZFC such statements as λε = ℵ1, because this is independent
of ZFC. Namely under CH we have that λε = ℵ1 by item (i), and under
MA we have λε = 2ℵ0 by item (ii), and MA is consistent with 2ℵ0 > ℵ1,
see Kunen [16, p278]. (Note that this does not exclude the possibility that
λε = 2ℵ0 could be provable within ZFC.) So in this sense Theorem 4.6 is
optimal.

7. Reductions

In this section we discuss many-one reductions between the sets of ε-
satisfiable formulas for various ε. Recall that a many-one reduction between
two sets A,B of formulas is a computable function f such that for all formulas
ϕ we have that ϕ ∈ A if and only if f(ϕ) ∈ B. The reductions we present
below are useful, e.g. in our discussion of compactness in section 8, and also
for complexity issues not discussed here.

In what follows we will need to talk about satisfiability of formulas rather
than sentences. We will call a formula ϕ(x1, . . . , xn) ε-satisfiable if there
is an ε-model (M ,D) and elements a1, . . . , an ∈ M such that (M ,D) |=ε

ϕ(a1, . . . , an).

Theorem 7.1. Let L be a countable first-order language not containing func-
tion symbols or equality. Then, for all rationals 0 6 ε0 6 ε1 < 1, there exists
a language L ′ (also not containing function symbols or equality) such that
ε0-satisfiability in L many-one reduces to ε1-satisfiability in L ′.

Proof. We can choose integers a > 0, n, and m 6 n so that ε0 = 1− a
m

and

ε1 = 1 − a
n
, and hence m

n
= 1−ε1

1−ε0 . Let ϕ(y1, . . . , yk) be a formula in prenex

normal form (see Proposition 2.5). For simplicity we write ~y = y1, . . . , yk.
Also, for a function π we let π(~y) denote the vector π(y1), . . . , π(yk). We
use formula-induction to define a computable function f such that for every
formula ϕ,

(7) ϕ is ε0-satisfiable if and only if f(ϕ) is ε1-satisfiable.

For propositional formulas and existential quantifiers, there is nothing to
be done and we use the identity map. Next, we consider the universal quan-
tifiers. Let ϕ = ∀xψ(~y, x). The idea is to introduce new unary predicates,
that can be used to vary the strength of the universal quantifier. We will
make these predicates split the model into disjoint parts. If we split it into
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just the right number of parts (in this case n), then we can choose m of these
parts to get just the right strength.

So, we introduce new unary predicates X1, . . . , Xn. For 1 6 i 6 n, define

Yi(x) = Xi(x) ∧
∧
j 6=i

¬Xj(x).

Then the predicates Yi define disjoint sets in any model.
We now define the sentence a-n-split by:∧

I⊆{1,...,n},#I=a

∀y
(∨
i∈I

Yi(y)
)
,

where #I denotes the cardinality of I. Then one can verify that in any model,
if the sets Xi are disjoint sets of measure exactly 1

n
(and hence the same holds

for the Yi), then a-n-split is ε1-valid. Conversely, if a-n-split holds, then the
sets Yi all have measure 1

n
by Lemma 7.2 below. In particular we see that,

if a-n-split holds, then the Yi together disjointly cover a set of measure 1.
Now define f(ϕ) to be the formula

a-n-split ∧
∧

i1,...,im

∀x
(
(Yi1(x) ∨ · · · ∨ Yim(x)) ∧ f(ψ)(~y, x)

)
where the conjunction is over all subsets of size m from {1, . . . , n}. (It will
be clear from the construction that f(ψ) has the same arity as ψ.) Thus,
f(ϕ) expresses that for any choice of m of the n parts, f(ψ)(x) holds often
enough when restricted to the resulting part of the model.

We will now prove claim (7) above. For the implication from left to right,
we will prove the following strengthening:

For every formula ϕ(~y), if ϕ is ε0-satisfied in some ε0-model (M ,D), then
there exists an ε1-model (N ,E) together with a measure-preserving surjective
measurable function π : N → M (i.e. for all D-measurable A we have that
E(π−1(A)) = D(A)) such that for all ~y ∈ N we have that

(N ,E) |=ε1 f(ϕ)(~y) if and only if (M ,D) |=ε0 ϕ(π(~y)).

We prove this by formula-induction over the formulas in prenex normal
form. For propositional formulas, there is nothing to be done (we can simply
take the models to be equal and π the identity). For the existential quantifier,
let ϕ = ∃xψ(x) and apply the induction hypothesis to ψ to find a model
(N ,E) and a mapping π. Then we can take the same model and mapping
for ϕ, as easily follows from the fact that π is surjective.

Next, we consider the universal quantifier. Suppose ϕ = ∀xψ(~y, x) is ε0-
satisfied in (M ,D). Use the induction hypothesis to find a model (N ,E)
and a measure-preserving surjective measurable function π : N → M such
that for all ~y, x ∈ N we have that

(N ,E) |=ε1 f(ψ)(~y, x) if and only if (M ,D) |=ε0 ψ(π(~y), π(x)).

Now form the model (N ′,E ′) consisting of n copies N1, . . . ,Nn of (N ,E),
each with weight 1

n
. That is, E ′ is the sum of n copies of 1

n
E . Let π′ : N ′ →

M be the composition of the projection map σ : N ′ → N with π. Relations
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in N ′ are defined just as on N , that is, for a t-ary relation R we define
RN ′

(x1, . . . , xt) by RN (σ(x1), . . . , σ(xt)). Observe that this is the same as
defining RN ′

(x1, . . . , xt) by RM (π′(x1), . . . , π
′(xt)). We interpret constants

cN ′
by embedding cN into the first copy N1. Finally, we let each Xi be true

exactly on the copy Ni.
Then π′ is clearly surjective. To show that it is measure-preserving, it is

enough to show that σ is measure-preserving. If A is E -measurable, then
σ−1(A) consists of n disjoint copies of A, each having measure 1

n
E(A), so

π−1(A) has E ′-measure exactly E(A).
Now, since (N ′,E ′) satisfies a-n-split, we see that

(8) (N ′,E ′) |=ε1 f(ψ)(~y)

is equivalent to the statement that for all 1 6 i1 < · · · < im 6 n we have

(9) Pr
E ′

[
x ∈ N ′ | (N ′,E ′) |=ε1 (Yi1(x)∨ · · · ∨ Yim(x))∧ f(ψ)(~y, x)

]
> 1− ε1.

By Lemma 7.3 below we have that (N ′,E ′) |=ε1 f(ψ)(~y, x) if and only if
(N ,E) |=ε1 f(ψ)(σ(~y), σ(x)). In particular, we see for every 1 6 i 6 n that

Pr
E ′

[
x ∈ N ′ | (N ′,E ′) |=ε1 Yi(x) ∧ f(ψ)(~y, x)

]
=(10)

1

n
Pr
E

[
x ∈ N | (N ,E) |=ε1 f(ψ)(σ(~y), x)

]
.

It follows that (9) is equivalent to
m

n
Pr
E

[
x ∈ N | (N ,E) |=ε1 f(ψ)(σ(~y), x)

]
> 1− ε1.

The induction hypothesis tells us that this is equivalent to
m

n
Pr
E

[
x ∈ N | (M ,D) |=ε0 ψ(π(σ(~y)), π(x))

]
> 1− ε1

and since π is surjective and measure-preserving, this is the same as

Pr
D

[
x ∈M | (M ,D) |=ε0 ψ(π(σ(~y)), x)

]
>

n

m
(1− ε1) = 1− ε0.

This proves that (N ′,E ′) |=ε1 f(ϕ)(~y) if and only if (M ,D) |=ε0 ϕ(π′(~y)).
We have not yet explained why (N ′,E ′) is actually an ε1-model. However,

by Theorem 5.8 we may assume the relations on the original model M to
be Borel, and it is easily seen that our construction of successively making
copies keeps the relations Borel. So, from Proposition 5.1 we see that the
models (N ,E) and (N ′,E ′) are in fact ε-models for every ε.

To prove the right to left direction of (7) we will use induction to prove
the following stronger statement:

If (M ,D) is an ε1-model and ~y ∈ M are such that (M ,D) |=ε1 f(ϕ)(~y),
then we also have (M ,D) |=ε0 ϕ(~y).3

In particular, if f(ϕ) is ε1-satisfiable, then ϕ is ε0-satisfiable. The only
interesting case is the universal case, so let ϕ = ∀xψ(~y, x). Let ~y ∈ M

3As explained above, we may assume (M ,D) to be an ε0-model.
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be such that (M ,D) |=ε1 f(ϕ)(~y). Assume, towards a contradiction, that
(M ,D) 6|=ε0 ϕ(~y). Then

Pr
D

[
x ∈M | (M ,D) 6|=ε0 ψ(~y, x)

]
> ε0

and by the induction hypothesis we have

(11) Pr
D

[
x ∈M | (M ,D) 6|=ε1 f(ψ)(~y, x)

]
> ε0.

But by taking those m of the Yi (say Yi1 , . . . , Yim) which have the largest
intersection with this set we find that

Pr
D

[
x ∈M | (M ,D) |=ε1 (Yi1 ∨ · · · ∨ Yim)∧ f(ψ)(~y, x)

]
<
m

n
(1− ε0) = 1− ε1

which contradicts our choice of (M ,D). �

Lemma 7.2. Let a, n ∈ ω, a > 0, and let D be a probability measure.
Let Y1, . . . , Yn be disjoint D-measurable sets such that for all subsets I ⊆
{1, . . . , n} of cardinality a the union

⋃
i∈I Yi has measure at least a

n
. Then

all Yi have measure exactly 1
n

.

Proof. Assume there exists 1 6 i 6 n such that Yi has measure < 1
n
. De-

termine a sets Yi with minimal measure, say with indices from the set I.
Then, by assumption, D(

⋃
i∈I Yi) >

a
n
. But at least one of the Yi with i ∈ I

has measure strictly less than 1
n
, so also one of them needs to have measure

strictly greater than 1
n
. However, D(

⋃
i 6∈I Yi) 6

n−a
n

, so there is a Yj with

j 6∈ I having measure 6 1
n
. This contradicts the minimality. So, all sets

Yi have measure at least 1
n

and since they are disjoint they therefore have

measure exactly 1
n
. �

Lemma 7.3. Let (N ′,E ′) and (N ,E) be as in the proof of Theorem 7.1
above. Then for every formula ζ(x1, . . . , xt) in the language of M , for every
ε ∈ [0, 1] and all x1, . . . , xt ∈ N ′ we have that (N ′,E ′) |=ε ζ(x1, . . . , xt) if
and only if (N ,E) |=ε ζ(σ(x1), . . . , σ(xt)).

Proof. By induction on the structure of the formulas in prenex normal form.
The base case holds by definition of the relations in N ′. The only in-
teresting induction step is the one for the universal quantifier. So, let
ζ = ∀x0ζ ′(x0, . . . , xt) and let x1, . . . , xt ∈ N ′. Using the induction hypothe-
sis, we find that the set A = {x0 ∈ N ′ | (N ′,E ′) |=ε ζ

′(x0, . . . , xt)} is equal
to the set {x0 ∈ N ′ | (N ,E) |=ε ζ

′(σ(x0), . . . , σ(xt))}, which consists of n
disjoint copies of the set B = {x0 ∈ N | (N ,E) |=ε ζ

′(x0, σ(x1), . . . , σ(xt))};
denote the copy of B living inside Ni by Bi. Then

D(A) =
n∑
i=1

E ′(Bi) =
n∑
i=1

1
n

E(B) = E(B)

from which we directly see that (N ′,E ′) |=ε ζ(x1, . . . , xt) if and only if
(N ,E) |=ε ζ(σ(x1), . . . , σ(xt)). �

Next we show that we have a similar reduction in the other direction, i.e.
from a bigger ε0 to a smaller ε1.
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Theorem 7.4. Let L be a countable first-order language not containing func-
tion symbols or equality. Then, for all rationals 0 < ε1 6 ε0 6 1, there exists
a language L ′ (also not containing function symbols or equality) such that
ε0-satisfiability in L many-one reduces to ε1-satisfiability in L ′.

Proof. The proof is very similar to that of Theorem 7.1. There are two main
differences: the choice of the integers a, n and m, and a small difference in
the construction of f (as we shall see below). We can choose integers a, n
and m such that ε1 = 1− a

n
and m

n
= ε0−ε1

ε0
. The case a = 0 is trivial, so we

may assume that a > 0. We construct a many-one reduction f such that for
all formulas ϕ,

ϕ is ε0-satisfiable if and only if f(ϕ) is ε1-satisfiable.

Again, we only consider the nontrivial case where ϕ is a universal formula
∀xψ(~y, x). We define f(ϕ) to be the formula

a-n-split ∧
∧

i1,...,im

∀x
(
Yi1(x) ∨ · · · ∨ Yim(x) ∨ f(ψ)(~y, x)

)
where the conjunction is over all subsets of size m from {1, . . . , n}. So, the
essential change from the proof of Theorem 7.1 is that the conjunction of
Yi1(x) ∨ · · · ∨ Yim(x) and f(ψ)(~y, x) has become a disjunction.

The remainder of the proof is now almost the same as for Theorem 7.1.
In the proof for the implication from left to right, follow the proof up to
equation (8), i.e.

(N ′,E ′) |=ε1 f(ϕ)(~y).

Again this is equivalent to the statement that for all 1 6 i1 < · · · < im 6 n
we have

(12) Pr
E ′

[
x ∈ N ′ | (N ′,E ′) |=ε1 Yi1(x) ∨ · · · ∨ Yim(x) ∨ f(ψ)(~y, x)

]
> 1− ε1.

Similar as before, using Lemma 7.3, we find that this is equivalent to

m

n
+
n−m
n

Pr
E

[
x ∈ N | (N ,E) |=ε1 f(ψ)(σ(~y), x)

]
> 1− ε1.

Again, using the induction hypothesis and the fact that π is measure-pres-
erving we find that this is equivalent to

Pr
D

[
x ∈M | (M ,D) |=ε0 ψ(π(σ(~y)), x)

]
>

n

n−m

(
1− ε1 −

m

n

)
=
ε0
ε1

(
−ε0ε1 + ε1

ε0

)
= 1− ε0.

This proves that (N ′,E ′) |=ε1 f(ϕ)(~y) if and only if (M ,D) |=ε0 ϕ(~y).
For the converse implication, we also need to slightly alter the proof of

Theorem 7.1. Assuming that (M ,D) |=ε1 f(ϕ)(~y), follow the proof up to
equation (11), where we obtain

(13) Pr
D

[
x ∈M | (M ,D) 6|=ε1 f(ψ)(~y, x)

]
> ε0.
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Define

η = Pr
D

[
x ∈M | (M ,D) |=ε1 f(ψ)(~y, x)

]
and take those m of the Yi (say Yi1 , . . . , Yim) which have the smallest inter-
section with this set. Note that by (13) we have η < 1 − ε0. Then we find
that

Pr
D

[
x ∈M | (M ,D) |=ε1 Yi1 ∨ · · · ∨ Yim ∨ f(ψ)(~y, x)

]
6
m

n
+
(

1− m

n

)
η =

ε0 − ε1
ε0

+
ε1
ε0
η

<
ε0 − ε1
ε0

+
ε1
ε0

(1− ε0) = 1− ε1.

which contradicts our choice of (M ,D). Note that the last inequality holds
because ε1 6= 0. �

8. Compactness

We start this section with a negative result, namely that in general ε-logic
is not compact. This results holds for rational ε different from 0 and 1. The
case ε = 1 is pathological, and the case ε = 0 will be discussed elsewhere.

First, we prove a technical lemma.

Lemma 8.1. Let (M ,D) be an ε-model, let R(x, y) be a binary relation and
let δ > 0. Then for almost all y there exists a set Cy of strictly positive
measure such that for all y′ ∈ Cy:

Pr
D

[
u ∈M | RM (u, y)↔ RM (u, y′)

]
> 1− δ.

Proof. It suffices to show this not for almost all y, but instead show that for
all δ′ > 0 this holds for at least D-measure 1− δ′ many y.

We first show that we can approximate the horizontal sections of RM

in a suitable way, namely that there exist a finite number U1, . . . , Un and
V1, . . . , Vn of D-measurable sets such that:

(14) Pr
D

[
y ∈M

∣∣∣Pr
D

[
u ∈M | (u, y) ∈ RM4

( n⋃
i=1

Ui × Vi
)]
6
δ

2

]
> 1− δ′.

(Here 4 denotes the symmetric difference.) To show that this is possible,
determine Ui and Vi such that

(15) Pr
D

[
RM4

( n⋃
i=1

Ui × Vi
)]

<
δδ′

2
.

Observe that such an approximation exists: this obviously holds for relations
RM that are a rectangle U × V , and the existence of an approximation is
preserved under countable unions and complements. (This is usually part of
a proof of Fubini’s theorem.)
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Now assume that (14) does not hold for these Ui and Vi. Then we have

Pr
D

[
y ∈M

∣∣∣Pr
D

[
u ∈M | (u, y) ∈ RM4

( n⋃
i=1

Ui × Vi
)]

>
δ

2

]
> δ′.

But then we see that

Pr
D

[
RM4

( n⋃
i=1

Ui × Vi
)]
>
δδ′

2

by taking the integral, contradicting (15).
We now show that for almost all y there exists a set Cy of strictly positive

measure such that for all y′ ∈ Cy we have that

(16) Pr
D

[
u ∈M | (u, y) ∈

n⋃
i=1

Ui × Vi ↔ (u, y′) ∈
n⋃
i=1

Ui × Vi
]

= 1.

Note that the Vi induce a partition of M into at most 2n many disjoint parts
Yj (by choosing for each i 6 n either Vi or its complement, and intersecting
these). But each such Yj has either measure zero (so we can ignore it), or Yj
has strictly positive measure and for all y ∈ Yj we can take Cy = Yj. Then
it is clear that (16) holds.

Call the set of measure 1−δ′ elements y from (14) M ′. The same argument
used to prove (16) can be applied to M ′, using the partition Yj ∩M ′ of M ′.
For y ∈M ′ this gives the same conclusion (16), but with the extra property
that Cy ⊆M ′.

Finally, the lemma follows by combining (14) and (16): For every y ∈M ′,
by (14) its sections with RM and the approximation differ by at most δ

2
.

By (16) and the previous remark there is Cy ⊆ M ′ of positive measure
such that for every y′ ∈ Cy the sections of y and y′ with the approximation

agree almost everywhere. Again by (14) the sections of y′ with RM and the
approximation differ by at most δ

2
. Hence the sections of y and y′ with RM

differ by at most δ
2

+ δ
2
. �

Theorem 8.2. For every rational ε ∈ (0, 1), ε-logic is not compact, i.e.
there exists a countable set Γ of sentences such that each finite subset of Γ
is ε-satisfiable, but Γ itself is not ε-satisfiable.

Proof. The example we use is adapted from Keisler [15, Example 2.6.5]. Let
R be a binary relation. Using the reductions from Theorem 7.1 (observing,
from the proof of that theorem, that we can apply the reduction per quan-
tifier), we can form a sentence ϕn such that ϕn is ε-satisfiable if and only if
there is a model satisfying:
For almost all y (i.e. measure 1 many), there exists a set Ay of measure
at least 1 − 1

n
such that for all y′ ∈ Ay the sets By = {u | R(u, y)} and

By′ = {u | R(u, y′)} both have measure 1
2
, while By ∩ By′ has measure 1

4
(in

other words, the two sets are independent sets of measure 1
2
).

Then each ϕn has a finite ε-model, as illustrated in Figure 8.1 for n = 4:
for each x (displayed on the horizontal axis) we let R(x, y) hold exactly for
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those y (displayed on the vertical axis) where the box has been colored grey.
If we now take for each Ay exactly those three intervals of length 1

4
of which

y is not an element, we can directly verify that ϕn holds.

Figure 8.1. A model for ϕ4 on [0, 1].

However, the set {ϕn | n ∈ ω} has no ε-model. Namely, for such a model,
we would have that for almost all y, there exists a set Ay of measure 1 such
that for all y′ ∈ Ay the sets By and By′ (defined above) are independent
sets of measure 1

2
. Clearly, such a model would need to be atomless and

therefore cannot be countable. But then we would have uncountably many
of such independent sets By. Intuitively, this contradicts the fact that R
is measurable in the product measure and can therefore be formed using
countable unions and countable intersections of Cartesian products.

More formally, Lemma 8.1 tells us that in any ε-model with a binary
relation R, for almost all y there exists a set Cy of strictly positive measure
such that for all y′ ∈ Cy the sets By and By′ agree on a set of measure
at least 7

8
. Since necessarily Ay ∩ Cy = ∅ this shows that Ay cannot have

measure 1. �

Next, we will present an ultraproduct construction that allows us to par-
tially recover compactness, which is due to Hoover and described in Keisler
[15]. This construction uses the Loeb measure from nonstandard analysis,
which is due to Loeb [17]. The same construction as in Keisler is also de-
scribed (for a different logic) in Bageri and Pourmahdian [2], however, there
the Loeb measure is not explicitly mentioned and the only appearance of
nonstandard analysis is in taking the standard part of some element. Below
we will describe the construction without resorting to nonstandard analysis.
To be able to define the measure, we need the notion of a limit over an ultra-
filter. This notion corresponds to taking the standard part of a nonstandard
real number.

We refer the reader to Hodges [10] for an explanation of the notions of
ultrafilter and ultraproduct.

Definition 8.3. Let U be an ultrafilter over ω and let a0, a1, · · · ∈ R. Then
a limit of the sequence a0, a1, . . . over the ultrafilter U, or a U-limit, is an
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r ∈ R such that for all ε > 0 we have {i ∈ ω | |ai − r| < ε} ∈ U. We will
denote such a limit by limU ai.

Proposition 8.4. Limits over ultrafilters are unique. Furthermore, for any
bounded sequence and every ultrafilter U, the limit of the sequence over U
exists.

Proof. First assume that we have an ultrafilter U over ω and a sequence
a0, a1, . . . in R that has two distinct limits r0 and r1. Then the sets{

i ∈ ω | |ai − r0| < 1
2
|r0 − r1|

}
and {

i ∈ ω | |ai − r1| < 1
2
|r0 − r1|

}
are disjoint elements of U; so, ∅ ∈ U, which contradicts U being a proper
filter.

Now, assume the sequence a0, a1, . . . is bounded; without loss of generality
we may assume that it is a sequence in [0, 1]. We will inductively define a
decreasing chain [bn, cn] of intervals such that for all n ∈ ω we have {i ∈ ω |
ai ∈ [bn, cn]} ∈ U.

First we let [a0, b0] = [0, 1]. Next, if {i ∈ ω | ai ∈ [bn, cn]} ∈ U, then either{
i ∈ ω | ai ∈

[
bn,

bn+cn
2

]}
∈ U

or {
i ∈ ω | ai ∈

[
bn+cn

2
, cn
]}
∈ U.

Choose one of these two intervals to be [bn+1, cn+1].
Now there exists a unique point r ∈

⋂
n∈ω[bn, cn], and it is easily verified

that this is the limit of the sequence. �

Using these limits over ultrafilters, we show how to define a probability
measure on an ultraproduct of measure spaces. As mentioned above, this
construction is essentially due to Loeb [17], but we describe it on ultraprod-
ucts instead of using nonstandard analysis.

Definition 8.5. Let U be a nonprincipal ultrafilter on ω and let D0,D1, . . .
be a sequence of finitely additive probability measures over sets X0, X1, . . . .
Then we let

∏
i∈ωXi/U denote the ultraproduct, and for a sequence a =

a0, a1, . . . with ai ∈ Xi we let [a] denote the element of
∏

i∈ωXi/U corre-
sponding to the equivalence class of the sequence a0, a1, . . . .

For each sequence A = A0, A1, . . . with each Ai a Di-measurable set we
will call the set

[A] =
{

[a] ∈
∏
i∈ω

Xi/U | {i ∈ ω | ai ∈ Ai} ∈ U
}

a basic measurable set. If we let ∆ be the collection of all basic measurable
sets, then we define the ultraproduct measure to be the unique measure E
on σ(∆) such that for all basic measurable sets:

Pr
E

([A]) = lim
U

Pr
Di

(Ai).

Note that E is a σ-additive measure, even if the Di are only finitely additive.
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Proposition 8.6. The ultraproduct measure exists and is well-defined.

Proof. We need to verify that E , as defined on the Boolean algebra of basic
measurable sets, satisfies the conditions of Carathéodory’s extension theorem
(see e.g. Bogachev [4, Theorem 1.5.6]). Thus, we need to show that, for any
disjoint sequence [A0], [A1], . . . of nonempty basic measurable sets such that⋃
j∈ω[Aj] is a basic measurable set, we have that

Pr
E

(⋃
j∈ω

[Aj]
)

=
∑
j∈ω

Pr
E

([Aj]).

In fact, we will show that if the [Aj] are disjoint and nonempty, then
⋃
j∈ω[Aj]

is never a basic measurable set.
Namely, let [Aj] be as above and assume

⋃
j∈ω[Aj] is a basic measurable set.

Without loss of generality, we may assume that
⋃
j∈ω[Aj] =

∏
i∈ωXi/U. We

will construct an element of
∏

i∈ωXi/U which is not in
⋃
j∈ω[Aj], which is a

contradiction. Observe that, because all the [Aj] are disjoint and nonempty,
the set

⋃n
j=0[A

j] will always be a proper subset of
∏

i∈ωXi/U. So, for each

n ∈ ω, fix [xn] 6∈
⋃n
j=0[A

j]. For every m ∈ ω, let Im ∈ U be the set

{i ∈ ω | xmi 6∈
⋃m
j=0A

j
i}. Furthermore, let kn ∈ ω be the biggest m 6 n such

that n ∈ Im, and let it be 0 if no such m 6 n exists.
Now define xi as xkii . We claim that [x] 6∈

⋃
j∈ω[Aj]. Namely, let m ∈ ω.

Then, for every n > m with n ∈ Im we have kn > m, so we see that
xn 6∈

⋃m
j=0A

j
n. In particular, we see that xn 6∈ Amn for every n ∈ Im \

{0, 1, . . . , n − 1}. However, since U is nonprincipal, this set is in U, so we
see [x] 6∈ [Am]. �

We can now define a model on the ultraproduct in the usual way, however,
we cannot guarantee that this is an ε-model, since we will see that we merely
know that all definable subsets of M of arity 1 are measurable. We thus only
obtain a weak ε-model (see Definition 3.3). To even achieve this, we need to
extend the measure to all subsets of the model first, at the cost of moving to a
finitely additive measure. The final measure that we obtain is still σ-additive
though.

Theorem 8.7. (Tarski) Every finitely additive measure D on a Boolean
algebra of subsets of X can be extended to a finitely additive measure D ′ on
the power set P(X).

Proof. See Birkhoff [3, p. 185]. �

Definition 8.8. Let ε ∈ [0, 1], let U be a nonprincipal ultrafilter over ω
and let (M0,D0), (M1,D1), . . . be a sequence of finitely additive weak ε-
models, where each Di is defined on all of P(Mi) (e.g. using Theorem 8.7).
We then define the ultraproduct of this sequence, which we will denote by∏

i∈ω(Mi,Di)/U, to be the classical ultraproduct of the models Mi, equipped
with the ultraproduct measure. More precisely, we define it to be the model
having as universe

∏
i∈ω Mi/U, where for each relation R(x1, . . . , xn) we
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define the relation on
∏

i∈ω(Mi,Di)/U by

R([a1], . . . , [an])⇔
{
i ∈ ω | RMi(a1i , . . . , a

n
i )
}
∈ U,

and we interpret function symbols f(x1, . . . , xn) by

f([a1], . . . , [an]) = [fM0(a10, . . . , a
n
0 ), fM1(a11, . . . , a

n
1 ), . . . ].

In particular, constants c are interpreted as

c = [cM0 , cM1 , . . . ].

We can now show that a variant of the fundamental theorem of ultraprod-
ucts, or  Loś’s theorem, holds for this kind of model.

Theorem 8.9. For every formula ϕ(x1, . . . , xn) and every sequence of ele-
ments [a1], . . . , [an] ∈

∏
i∈ω(Mi,Di)/U, the following are equivalent:

(i)
∏

i∈ω(Mi,Di)/U |=ε ϕ([a1], . . . , [an]),
(ii) for all ε′ > ε, {i ∈ ω | (Mi,Di) |=ε′ ϕ(a1i , . . . , a

n
i )} ∈ U,4

(iii) there exists a sequence ε0, ε1, . . . with U-limit ε such that {i ∈ ω |
(Mi,Di) |=εi ϕ(a1i , . . . , a

n
i )} ∈ U.

In particular, if {i ∈ ω | (Mi,Di) |=ε ϕ(a1i , . . . , a
n
i )} ∈ U, then we have∏

i∈ω(Mi,Di)/U |=ε ϕ([a1], . . . , [an]).

Proof. Before we begin with the proof we note that for any formula ψ, if
ε0 6 ε1 and (Mi,Di) |=ε0 ψ, then also (Mi,Di) |=ε1 ψ. This can be directly
shown using induction over formulas in prenex normal form, together with
the fact that we have assumed every subset of Mi to be Di-measurable (see
Definition 8.8).

We first prove the equivalence of (ii) and (iii). If (ii) holds, let

δi = inf
{
ε′ > ε | (Mi,Di) |=ε′ ϕ([a1], . . . , [an])

}
if this set is nonempty, and 0 otherwise. Note that this set is U-almost
always nonempty, as can be seen by applying (ii) with an arbitrary ε′ >
ε. Furthermore, (ii) also tells us that the sequence δi converges to ε with
respect to U. Now, the sequence 1

2i
converges to 0, so that the sequence

εi = min(δi +
1
2i
, 1) also has U-limit ε. By definition of δi, we now have that

(iii) holds for the sequence ε0, ε1, . . . .
Conversely, assume that (iii) holds and fix ε′ > ε. Because the sequence

ε0, ε1, . . . has U-limit ε, we know that {i ∈ ω | |εi− ε| < ε′− ε} ∈ U. Using
(iii) we therefore see that also

{i ∈ ω | |εi − ε| < ε′ − ε} ∩ {i ∈ ω | (Mi,Di) |=εi ϕ(a1i , . . . , a
n
i )} ∈ U

and using the observation above we directly see that this set is contained in
{i ∈ ω | (Mi,Di) |=ε′ ϕ(a1i , . . . , a

n
i )}, so the latter set is also in U and we

therefore see that (ii) holds.

4Here we also consider ε′ > 1, which is interpreted in the same way as in Definition 2.1.
Of course, this is not necessary if ε < 1, since ε′-truth is equivalent to 1-truth when ε′ > 1.
However, this way ε = 1 is also included.
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Next, we simultaneously show the equivalence of (i) with (ii) and (iii) using
induction over formulas ϕ in prenex normal form. For propositional formulas,
this proceeds in the same way as the classical proof. For the existential case,
we use formulation (iii): using the induction hypothesis, we know that∏

i∈ω

(Mi,Di)/U |=ε ∃xψ([a1], . . . , [an], x)

is equivalent to saying that there exists an [an+1] ∈
∏

i∈ω(Mi,Di) and a
sequence ε0, ε1, . . . with U-limit ε such that for U-almost all i ∈ ω we have
that (Mi,Di) |=εi ψ(a1i , . . . , a

n
i , a

n+1
i ), which is in turn equivalent to saying

that for the same sequence ε0, ε1, . . . we have for U-almost all i ∈ ω that
(Mi,Di) |=εi ∃xψ(a1i , . . . , a

n
i , x).

Finally, consider the universal case. By definition,∏
i∈ω

(Mi,Di)/U |=ε ∀xψ([a1], . . . , [an], x)

is equivalent to

Pr
E

({
[an+1]

∣∣∣ ∏
i∈ω

(Mi,Di)/U |=ε ψ([a1], . . . , [an+1])
})
> 1− ε.

By induction hypothesis, we know that this is equivalent to

Pr
E

( ⋂
ε′>ε

{
[an+1]

∣∣∣ {i ∈ ω | (Mi,Di) |=ε′ ψ(a1i , . . . , a
n+1
i )} ∈ U

})
> 1− ε.

Because we can restrict ourselves to the (countable) intersection of rational
ε′, this is the same as having for all ε′ > ε that

(17) Pr
E

({
[an+1]

∣∣∣ {i ∈ ω | (Mi,Di) |=ε′ ψ(a1i , . . . , a
n+1
i )} ∈ U

})
> 1− ε.

Observe that the set in (17) is precisely the basic measurable set[
{an+1

i ∈Mi | (Mi,Di) |=ε′ ψ(a1i , . . . , a
n+1
i )}

]
,

where we once again use that every subset of Mi is Di-measurable. So, using
the definition of the ultraproduct measure (Definition 8.5), (17) is equivalent
to having for every δ > 0 that{
i ∈ ω

∣∣ Pr
Di

({
an+1
i ∈Mi

∣∣ (Mi,Di) |=ε′ ψ(a1i , . . . , a
n+1
i )

})
> 1− ε− δ

}
∈ U.

But this holds for all ε′ > ε and all δ > 0 if and only if we have for all ε′ > ε
that{

i ∈ ω
∣∣ Pr

Di

({
an+1
i ∈Mi

∣∣ (Mi,Di) |=ε′ ψ(a1i , . . . , a
n+1
i )

})
> 1− ε′

}
∈ U.

which is in turn equivalent to having for all ε′ > ε that

{i ∈ ω | (Mi,Di) |=ε′ ∀xψ(a1i , . . . , a
n
i , x)} ∈ U.

This completes the induction. �

Corollary 8.10. The ultraproduct is a weak ε-model.
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Proof. For every formula ϕ = ϕ(x1, . . . , xn) and parameters [a1], . . . , [an−1]
in
∏

i∈ω(Mi,Di)/U, Theorem 8.9 tells us that the subset of
∏

i∈ω(Mi,Di)/U
defined by ϕ and the parameters [a1], . . . [an−1] is exactly⋂
ε′>ε,ε′∈Q

{
[an] ∈

∏
i∈ω

(Mi,Di)/U | {i ∈ ω | (Mi,Di) |=ε′ ϕ(a1i , . . . , a
n
i )} ∈ U

}
which is a countable intersection of basic measurable sets, and therefore
measurable. �

We remark that this construction, in general, does not yield an ε-model.
For example, if we have a binary relation R(x1, x2) and on each model
(Mi,Di) the relation R consists of the union of two ‘boxes’ (Xi×Yi)∪(Ui×Vi),
then we would need an uncountable union of boxes of basic measurable sets
to form R in the ultraproduct model. This is, of course, not an allowed
operation on σ-algebras.

A more formal argument showing that the ultraproduct construction does
not necessarily yield ε-models is that this construction allows us to prove
a weak compactness result in the usual way. If this would always yield an
ε-model, this would contradict Theorem 8.2 above.

Theorem 8.11. (Weak compactness theorem) Let Γ be a countable set of
sentences such that each finite subset is satisfied in a weak ε-model. Then
there exists a weak ε-model satisfying Γ.

Proof. Let A0, A1, . . . be an enumeration of the finite subsets of Γ. For each
Ai, fix a weak ε-model (Mi,Di) satisfying all formulas from Ai. Then the
filter on ω generated by{

{i ∈ ω | (Mi,Di) |=ε ϕ} | ϕ ∈ Γ
}

is a proper filter, so we can use the ultrafilter lemma (see e.g. Hodges [10,
Theorem 6.2.1]) to determine an ultrafilter U on ω containing this filter.
If U is principal, then there exists an n ∈ ω with {n} ∈ U and therefore
(Mn,Dn) satisfies Γ. Otherwise we form the ultraproduct (where we note
that we may assume every subset of Mi to be Di-measurable by Theorem 8.7,
provided we only assume that Di is finitely additive). It then follows from
Theorem 8.9 and Corollary 8.10 that this ultraproduct is a weak ε-model
that satisfies every ϕ ∈ Γ. �

9. Future research

There are various open questions about the model theory of ε-logic, of
which we want to mention a few. One open question was already mentioned
in section 6: what is the Löwenheim number λε of ε-logic?

Another interesting question is if Craig interpolation holds for ε-logic,
and similarly for related properties such as Beth definability and Robinson
consistency. The study of these is especially interesting, because even though
one can easily derive one from the other in classical logic, those proofs often
use compactness in an essential way. Since our logic is not compact, it could
be the case that some of these properties hold for ε-logic, while others do



MODEL THEORY OF MEASURE SPACES AND PROBABILITY LOGIC 29

not. For a discussion of these properties for various extensions of first-order
logic see for example Väänänen [23].
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