
Extensional Set Learning∗

Sebastiaan A. Terwijn†

Mathematisches Institut
Ludwig-Maximilians-Universität München

Theresienstraße 39
D-80333 München, Germany

terwijn@rz.mathematik.uni-muenchen.de

January 5, 2000

Abstract

We investigate the model recBC of learning of r.e. sets, where
changes in hypotheses only count when there is an extensional dif-
ference. We study the learnability of collections that are uniformly r.e.
We prove that, in contrast with the case of uniformly recursive collec-
tions, identifiability does not imply recursive BC-identifiability. This
answers a question of D. de Jongh. In contrast to the model of recur-
sive identifiability, we prove that the BC-model separates the notions
of finite thickness and finite elasticity.

1 Introduction

In this paper we consider a model of learning where two hypotheses about
the data under consideration are considered equal when they denote the
same object, i.e. when they are extensionally the same. This model was first
defined for identification of functions in Feldman [6], Barzdin [3]. The first
reference for this model in the context of set learning (learning from text)
seems to be Osherson and Weinstein [14]. The model, and similar ones, have
appeared in the literature under various names (e.g. in Osherson et al. it is

∗An extended abstract of this work appeared in Proceedings of the Twelfth Annual
Conference on Computational Learning Theory (COLT ’99), University of California at
Santa Cruz, July 7-9, 1999.

†The author holds a TMR Marie Curie fellowship of the European Union under grant
no. ERB-FMBI-CT98-3248.

1



called extensional identification), but the term dominantly used seems to
be behaviorally correct learning. We will follow this use of terminology, and
speak of BC-learning in the sequel.

The classes of recursive functions that can be recursively BC-identified
were characterized by Wiehagen (see Odifreddi [13]). In the context of set
learning, Baliga, Case, and Jain [2, Corollary 2] proved that every iden-
tifiable uniformly recursive class is already recursively BC-identifiable. De
Jongh and Kanazawa [9] gave a characterization of the uniformly r.e. classes
that are identifiable by a recursive function. This result is completely gen-
eral in the sense that every class that is recursively identifiable is included
in a recursively identifiable uniformly r.e. class (Fulk [8], this is called “r.e.-
boundedness”).

The notion of finite thickness was introduced by Angluin [1]. She proved
that for uniformly recursive collections, finite thickness implies recursive
identifiability. Wright [20], corrected in Motoki et al. [12], proved that the
same holds with the weaker hypothesis of finite elasticity.

In this paper we concentrate on the case of uniformly r.e. classes. We
prove that, in contrast to the uniformly recursive case, there are identifiable
uniformly r.e. classes that are not recursively BC-identifiable. This answers
a question of Dick de Jongh. Furthermore, we prove that for finite-to-1 enu-
merable classes finite thickness implies recursive BC-identifiability, whereas
finite elasticity does not. De Jongh and Kanazawa [9] proved that for 1-1-
enumerable classes, finite thickness implies recursive identifiability. At the
end of Section 5 we give an example of a 2-1-enumerable class with finite
thickness that is not recursively identifiable.

It should be pointed out that no complete characterization of the recur-
sively BC-identifiable classes is known. The proof of Fulks result quoted
above yields that every recursively BC-identifiable class is Σ0

2-bounded, so
perhaps this is the natural area to look for a characterization. On the other
hand, Fulks result may also hold for recursively BC-identifiable classes.1

(This might serve as a motivation for concentrating on uniformly r.e. clas-
ses.)

1Kurtz and Royer [11] outlined a proof, which is currently still incomplete, that every
recursive BC-learner 𝜑 can be transformed into a prudent recursive 𝜑′ that identifies at
least as much as 𝜑 does. (A learner is prudent if it only outputs codes of sets that it can
identify.) Since the set of hypotheses of a prudent recursive learner is a learnable and
uniformly r.e. class, this would imply that every recursively BC-learnable class is included
in a uniformly r.e. class that is recursively BC-learnable.

2



2 Basic definitions

Our recursion-theoretic notation follows Soare [18]. 𝜔 is the set of natural
numbers. ⟨. , .⟩ is some standard recursive bijection from 𝜔2 to 𝜔. 𝜔<𝜔 and
𝜔𝜔 are the sets of finite and infinite strings of natural numbers. We will
mostly identify a string 𝜎 with the set rng(𝜎) = {𝑛 : ∃𝑚(𝜎(𝑚) = 𝑛)}. This
will never cause confusion. Let 𝜆 be the empty string. For a string 𝜎 ∈ 𝜔<𝜔

and a set 𝑋 ∈ 𝜔𝜔 we write 𝜎ˆ𝑋 for the infinite string defined by

𝜎ˆ𝑋(𝑛) =

{
𝜎(𝑛) if 𝑛 < ∣𝜎∣
𝑋(𝑛− ∣𝜎∣) otherwise.

For a string 𝜎, 𝜎↾𝑘 denotes initial segment of 𝜎 of length 𝑘. By 𝜔[𝑛] we
denote the 𝑛-th section {⟨𝑖, 𝑛⟩ : 𝑖 ∈ 𝜔} of 𝜔. We use the following standard
notation from computability theory. 𝑊𝑒 is the 𝑒-th recursively enumerable
(r.e.) set, 𝜑𝑒 is the 𝑒-th partial recursive function, and𝑊𝑒,𝑠 and 𝜑𝑒,𝑠 are their
𝑠-step finite approximations. A class ℒ of r.e. sets is uniformly recursive
[uniformly r.e.]2 if there is a recursive [r.e.] set 𝐴 ⊆ 𝜔 such that ℒ =
{{𝑛 : ⟨𝑛, 𝑖⟩ ∈ 𝐴} : 𝑖 ∈ 𝜔}.

Definition 2.1 A learner is a (possibly partial) function 𝜑 : 𝜔<𝜔 → 𝜔. Let
𝐿 be an r.e. set. A text 𝑡 for 𝐿 is a (not necessarily recursive) element of 𝜔𝜔

such that rng(𝑡) = 𝐿. The initial segment of length 𝑛 of 𝑡 is denoted by 𝑡𝑛.
The learner 𝜑 identifies 𝐿 if for every text 𝑡 for 𝐿, lim𝑛→∞ 𝜑(𝑡𝑛) = 𝑒 exists
and 𝑊𝑒 = 𝐿. A function 𝜑 identifies a class ℒ of r.e. sets if it identifies every
𝐿 ∈ ℒ. A class ℒ of r.e. sets is identifiable if there is some (not necessarily
recursive) function 𝜑 that identifies ℒ.

Definition 2.2 A learning function 𝜑 BC-identifies 𝐿 if for every text 𝑡
for 𝐿 we have that for almost every 𝑛, 𝜑(𝑡𝑛) is defined and is a code for 𝐿.
Again, a class ℒ is BC-identifiable if there is a learner that identifies every
element of it. We define recBC = {ℒ : ℒ is recursively BC-identifiable}.

That is, in the BC-model of learning we do not require that the learner con-
verges to a single code, but instead we require only semantical convergence,
i.e. that the outputs of the learner all code the same r.e. set from some point
onwards. Note that Definition 2.2 is only interesting when we restrict the
class of learning functions, since for the unbounded case BC-identification
collapses to ordinary identification. Also note that although in this paper

2In the computational learning theory literature the less precise term indexed family is
sometimes used for this.

3



our main interest is in classes that are uniformly r.e., the above definitions
do not mention enumerations.

3 Extensional learning of r.e. sets

In this section we will prove that there are identifiable uniformly r.e. classes
(in fact, classes identifiable with oracle 𝐾) that cannot be recursively BC-
identified. That there are identifiable classes that are not in recBC can
be proved by a cardinality argument: By Osherson et al. [15, Prop. 4.1A]
there are continuously many identifiable classes whereas recBC is of course
countable.

Theorem 3.1 There exists a uniformly r.e. class of recursive sets that is
identifiable but not recursively BC-identifiable.3

Proof. We define such a class ℒ as follows. For every potential recursive
learner 𝜑𝑒 we define a class of recursive sets ℒ𝑒 that 𝜑𝑒 cannot BC-identify.
We then define ℒ to be

∪
𝑒 ℒ𝑒. To ensure that ℒ is identifiable we separate

the strategies by letting all the elements of ℒ𝑒 be subsets of 𝜔[𝑒]. This will
guarantee that there is a learner (as it happens, of Turing-degree 0′) that
identifies ℒ.

The classes ℒ𝑒 are uniformly enumerated in stages as follows. (We si-
multaneously construct an r.e.-indexing of the classes ℒ𝑒 along with an enu-
meration of their elements.) At every stage 𝑠+ 1 we have defined an initial
segment 𝜎𝑒,𝑠 (not necessarily of length 𝑠) of a particular ‘diagonal set’ 𝑉𝑒

in ℒ𝑒. Elements enumerated in 𝑉𝑒 at some later stage must be larger than
𝑠. This makes 𝑉𝑒 recursive. While enumerating 𝑉𝑒 we may decide to put
additional sets of the form 𝜎𝑒,𝑠ˆ𝜔

[𝑒] into ℒ𝑒.
Stage 𝑠 = 0. Set 𝜎𝑒,0 = 0⟨0,𝑒⟩−11. (Hence, seen as a finite set, 𝜎𝑒,0 equals

{⟨0, 𝑒⟩}.
Stage 𝑠+1. At this stage 𝜎𝑒,𝑠 is defined. Put 𝜎𝑒,𝑠ˆ𝜔

[𝑒] into ℒ𝑒 by starting
an enumeration of it in this and all the next stages. See whether there exists
a triple ⟨𝜏, 𝑡, 𝑥⟩ ≤ 𝑠+ 1 such that

(1) 𝜎𝑒,𝑠 ⊑ 𝜏 ⊏ 𝜎𝑒,𝑠ˆ𝜔
[𝑒]

3Makoto Kanazawa and Carl Smith noted (June 1996) that the theorem has an analog
for function learning which can be proved in the same way. A referee pointed out that one
can strengthen the theorem by considering the notions of mind-change and learning with
anomalies. (We will consider anomalies in Section 6.) Another referee pointed out that
the class from the proof of Theorem 3.1 is also not learnable from recursive text. This
also contrasts the uniformly recursive case.

4



(2) 𝜑𝑒,𝑡(𝜏)↓
(3) 𝑥 ≥ ∣𝜏 ∣ and 𝑥 ∈ 𝑊𝜑𝑒(𝜏),𝑡 − 𝜏 .

Note that the notation 𝜎 ⊑ 𝜏 implies that 𝜏 , interpreted as a (characteristic
sequence of a) set, contains no new elements smaller than the largest element
of 𝜎. If such 𝜏 , 𝑡, and 𝑥 exist define

𝜎𝑒,𝑠+1 = ((𝜎𝑒,𝑠ˆ𝜔
[𝑒])↾𝑥)0.

Otherwise, define 𝜎𝑒,𝑠+1 = 𝜎𝑒,𝑠. This ends the construction of ℒ𝑒.
The point of (2) and (3) above is that if 𝜑𝑒 is to identify 𝜎𝑒,𝑠ˆ𝜔

[𝑒], it has
to conjecture this set on the basis of some finite 𝜏 ⊐ 𝜎𝑒,𝑠, and in particular
it should conjecture that some 𝑥 ∈ 𝜔[𝑒] is in the set without having seen
this evidence, i.e. 𝑥 ≥ ∣𝜏 ∣. When we see a point where such a conjecture is
made we diagonalize subsequently by extending 𝜏 in another way, namely
by avoiding 𝑥.

So ℒ𝑒 looks like this: Either it contains the finite set 𝑉𝑒 and a finite
number of sets of the form 𝜎𝑒,𝑠ˆ𝜔

[𝑒], or it contains the (possibly infinite) set
𝑉𝑒 and infinitely many sets of the form 𝜎𝑒,𝑠ˆ𝜔

[𝑒]. These two cases are analyzed
below. From the construction it is clear that the ℒ𝑒 are r.e.-indexable in
a uniform way, so ℒ =

∪
𝑒 ℒ𝑒 is uniformly r.e. It is also easy to see that

every ℒ𝑒 is identifiable (for example by using Theorem 5.1). Since we have
separated the strategies by putting every element of ℒ𝑒 in 𝜔[𝑒] we also have
that ℒ is identifiable too. Finally, to show that ℒ cannot be BC-identified
by any recursive function it suffices to show that 𝜑𝑒 does not BC-identify
its subcollection ℒ𝑒.

Case 1. The collection ℒ𝑒 is infinite. Then 𝑉𝑒 =
∪

𝑠 𝜎𝑒,𝑠 is an infinite
set, and 𝜑𝑒 cannot identify it: At infinitely many stages triples ⟨𝜏, 𝑡, 𝑥⟩ are
found, and these force 𝜑𝑒 to extensionally change its hypothesis when fed
the enumeration of 𝑉𝑒. After all, if 𝜑𝑒 extensionally sticks to its hypothesis
after such a triple is found, the construction guarantees that 𝑥 is not in 𝑉𝑒

whereas 𝑥 is in 𝑊𝜑𝑒(𝜏). Hence, in that case 𝜑𝑒 does not BC-identify 𝑉𝑒. But
if 𝜑𝑒 infinitely often extensionally changes its mind it does not BC-identify
𝑉𝑒 either.

Case 2. The collection ℒ𝑒 is finite. Then there is a least stage 𝑠+1 such
that at no later stage a triple ⟨𝜏, 𝑡, 𝑥⟩ is found. But this means that 𝜑𝑒 does
not BC-identify 𝜎𝑒,𝑠ˆ𝜔

[𝑒]: If it did, then for sufficiently large initial segments
𝜏 ⊏ 𝜎𝑒,𝑠ˆ𝜔

[𝑒], 𝜑𝑒(𝜏) would be defined and the sets 𝑊𝜑𝑒(𝜏) would all be equal

to 𝜎𝑒,𝑠ˆ𝜔
[𝑒]. Taking one such 𝜏 and choosing 𝑡 and 𝑥 large enough would

5



give us a triple ⟨𝜏, 𝑡, 𝑥⟩ satisfying (1), (2), and (3) above, contradicting our
assumption. □

The previous result contrasts with the following theorem of Baliga, Case,
and Jain, that implies that in Theorem 3.1 we cannot have ‘uniformly re-
cursive’ instead of ‘uniformly r.e.’

Theorem 3.2 (Baliga, Case, and Jain [2, Corollary 2]) Every identifiable
uniformly recursive class is already recursively BC-identifiable.

Finally, we note that the class ℒ constructed in the proof of Theorem 3.1
is 1-1-enumerable (see Definition 5.2). Also, from the proof it can be seen
that ℒ can be 1-1-enumerated in such a way that for any two codes from
the 1-1-enumeration it is decidable whether for the sets coded by them one
is included in the other.

4 Oracles

In this section we make some remarks on learning with oracles.
If ℒ is recursively identifiable then it is trivially in recBC. The reverse

implication does not hold by the standard counterexample

{𝐾 ∪ {𝑥} : 𝑥 ∈ 𝜔}. (1)

This class is known to be not recursively identifiable (Osherson et al. [15,
Lemma 4.2.1C]), and it is easy to see that it is in recBC (after seeing 𝜎, con-
jecture 𝐾 ∪𝜎. This is sometimes called ‘hard wiring’ 𝜎 into the hypothesis.)

Proposition 4.1 If ℒ is in recBC then ℒ is identifiable by a function that
is 𝐾-computable.

Proof. Suppose that 𝜑 recBC-identifies ℒ. Without loss of generality 𝜑
is total. Define the learning function 𝑓 inductively as follows. Let 𝑓(𝜆) be
arbitrary, and if 𝑓(𝜎) is defined then let 𝑓(𝜎ˆ𝑛) equal 𝑓(𝜎) unless there exists
𝑘 ≤ ∣𝜎∣ such that 𝑊𝜑(𝜎ˆ𝑛)(𝑘) ∕= 𝑊𝑓(𝜎)(𝑘). In that case let 𝑓(𝜎ˆ𝑛) = 𝜑(𝜎ˆ𝑛).
That is, we let 𝑓 follow the hypotheses of 𝜑, but we do not change to a
new hypothesis unless we have seen that it is really a new one. For this
last purpose we use 𝐾. It is clear that 𝑓 is 𝐾-computable. If 𝑓 changes an
hypothesis this means that at some point 𝜑 made an extensional change.
Since 𝜑 makes only finitely many extensional changes on every ℒ-text we
have that 𝑓 converges on every ℒ-text. The limit of 𝑓 has to be correct,

6



for otherwise we would find a difference with 𝜑’s hypotheses at some point
(note that in the definition of 𝑓 we really look at extensional differences). □

Since it is easy to see that the class from the proof of Theorem 3.1 is
identifiable recursively in 𝐾, we have the following strict implications:

recursively identifiable

⇓
recursively BC-identifiable

⇓
𝐾-recursively identifiable

Note that the second implication is optimal, because the example (1) above
is in recBC, and if 𝐴 is a set such that (1) is 𝐴-recursively identifiable then
𝐾 ≤𝑇 𝐴 ([15]). The first implication is not optimal since there are nonrecur-
sive oracles 𝐴 such that 𝐴-recursive identifiability is equivalent to recursive
identifiability (Pleszkoch et al. [16], Slaman and Solovay [17] proved this
for function learning. The results obtained there also hold for set learning,
Kummer and Stephan [10, Theorem 10.5]). We do not know a characteriza-
tion of those oracles 𝐴 for which 𝐴-recursive identifiability implies recursive
BC-identifiability.

5 Positive examples

We will make use of the following fundamental characterization of identifi-
able classes:

Theorem 5.1 (Angluin [1])4 A collection of r.e. sets ℒ is identifiable if and
only if for all 𝐿 ∈ ℒ there is a finite 𝐷 ⊆ 𝐿 such that for every 𝐿′ ∈ ℒ with
𝐷 ⊆ 𝐿′ it holds that 𝐿′ ∕⊂ 𝐿.

Definition 5.2 Let ℒ be a collection of r.e. sets.

(i) (Angluin [1]) ℒ has finite thickness if for every finite 𝐷 ∕= ∅ the
collection {𝐿 ∈ ℒ : 𝐷 ⊆ 𝐿} is finite.

4The quoted theorem is actually an easier version of Angluins theorem, with the com-
putability aspects stripped off.

7



(ii) (Motoki et al. [12]) ℒ has infinite elasticity if there is an infinite
sequence 𝑠0, 𝑠1, . . . of numbers and an infinite sequence 𝐿0, 𝐿1, . . . of
languages in ℒ such that for every 𝑛 ∈ 𝜔 it holds that {𝑠0, . . . , 𝑠𝑛} ⊆ 𝐿𝑛

and 𝑠𝑛+1 ∕∈ 𝐿𝑛. ℒ has finite elasticity if it does not have infinite
elasticity.

(iii) ℒ is finite-to-1 enumerable if there is a recursive function 𝑓 such
that ℒ = {𝑊𝑓(𝑖) : 𝑖 ∈ 𝜔} and for every member 𝐿 ∈ ℒ there are
at most finitely many 𝑖 such that 𝐿 = 𝑊𝑓(𝑖). (Note that this finite
number may depend on 𝐿.) Similarly, ℒ is 1-1-enumerable if it has
an enumeration in which every set has only one code.

Angluin [1] proved that for uniformly recursive collections, finite thickness
implies recursive identifiability. Wright [20], corrected in [12], proved that
the same holds with the weaker hypothesis of finite elasticity. We now
proceed by proving that for finite-to-1 enumerable classes the BC-model of
learning separates these two notions.

Theorem 5.3 If ℒ is finite-to-1 enumerable and has finite thickness then
it is recursively BC-identifiable.5

Proof. Suppose ℒ = {𝑊𝑓(𝑖) : 𝑖 ∈ 𝜔} has finite thickness and that 𝑓 is a
finite-to-1 enumeration of ℒ. Write 𝐿𝑖 for 𝑊𝑓(𝑖) and 𝐿𝑖,𝑠 for 𝑊𝑓(𝑖),𝑠. We
define a computable BC-learner 𝜑 for ℒ. We first describe our strategy from
the viewpoint of a single 𝐿𝑖. In the informal description we assume that we
are seeing finite parts 𝑡𝑛 of a text 𝑡 and that we are defining 𝜑(𝑡𝑛), where
this definition depends on 𝜑(𝑡𝑚), 𝑚 < 𝑛. We will also refer to 𝑡𝑛 as the
stage of the construction. The idea is that, at stage 𝑡𝑛, we look whether
𝑡𝑛 ⊆ 𝐿𝑖,𝑛. If not, we do not choose 𝑖 as an hypothesis. Now if later in the
construction, that is when we are defining 𝜑(𝑡𝑚) for some 𝑚 > 𝑛, we find
out that at stage 𝑡𝑛 we were wrong, i.e. 𝑡𝑛 ⊆ 𝐿𝑖 but 𝑡𝑛 ∕⊆ 𝐿𝑖, 𝑛, we correct
this by choosing 𝑖 as hypothesis at stage 𝑡𝑚. To avoid too much changes
between good and bad hypotheses, if we conjecture 𝑖 at stage 𝑡𝑛 we will
block all 𝐿𝑗 , 𝑗 ∕= 𝑖 by not allowing 𝑗 as an hypothesis until we have seen
that 𝐿𝑗,𝑛 ⊆ 𝑡. So we do not go back to an abandoned hypothesis 𝑖 unless
we have seen that 𝑡𝑛 ⊆ 𝐿𝑖 and 𝐿𝑖,𝑛 ⊆ 𝑡, where 𝑡𝑛 is the last stage at which
𝐿𝑖 was blocked. If a blocked 𝐿𝑖 satisfies these requirements we unblock it

5Alternative proofs of this theorem using results from the literature were suggested to
us by Makoto Kanazawa and two referees. Also, the proof below actually yields a stronger
conclusion, namely what is called in [15] bounded extensional identifiability (BEXT), where
the learners hypotheses end in a finite set of indices.

8



and say that it is free. To give every set a chance of coming back into the
game we do not block a set if it is already blocked. Now if 𝑡 is a text for
𝐿𝑖 then in the construction we will infinitely often conjecture 𝑖, hence any
𝐿𝑗 ∕= 𝐿𝑖 will be blocked infinitely often. After some point 𝐿𝑗 will then be
blocked forever, because either 𝑡 ∕⊆ 𝐿𝑗 or 𝐿𝑗 ∕⊆ 𝑡 and hence no large 𝑛 are
found such that both 𝑡𝑛 ⊆ 𝐿𝑗 and 𝐿𝑗,𝑛 ⊆ 𝑡. Hence, since by finite thickness
of ℒ there are only finitely many 𝐿𝑗 ’s in the game, after some point the only
𝑗’s that will be conjectured are those with 𝐿𝑗 = 𝐿𝑖. To make sure that we
hit the set of right hypotheses we let every one of a finite (but beforehand
unknown) number of 𝐿𝑗 ’s have its turn, thereby allowing them to block other
hypotheses. This we do by switching hypothesis as often as possible. After
some time, the only hypotheses that are unblocked are the correct ones, and
we end up switching only between right hypotheses.

We now proceed by giving the formal description of the construction.
First we define some useful terminology. Write 𝝈 − 1 for 𝜎↾(∣𝜎∣ − 1). At
stage 𝜆 all 𝐿𝑗 are free. 𝐿𝑗 is blocked at stage 𝜎 if 𝐿𝑗 is free at 𝜎 − 1 and
𝜑(𝜎) ∕= 𝑗, or if 𝐿𝑗 is blocked at 𝜎 − 1 and is not unblocked at 𝜎. 𝐿𝑗 is
unblocked at 𝜎 if if it is blocked at 𝜎 − 1 and for the unique 𝜏 ⊏ 𝜎 − 1 of
maximal length such that 𝐿𝑗 is free at 𝜏 we have

𝜏 ⊆ 𝐿𝑗,∣𝜎∣ and 𝐿𝑗,∣𝜏 ∣ ⊆ 𝜎.

𝐿𝑗 is free at 𝜎 if it is free at 𝜎 − 1 and it is not blocked at 𝜎, or if 𝐿𝑗 is
blocked at 𝜎 − 1 and unblocked at 𝜎. Note that 𝐿𝑗 is always either blocked
or free at a stage 𝜎, and not both.

We now define 𝜑(𝜎) inductively. Let 𝜑(𝜆) be arbitrary, say 0. Given 𝜎
with 𝑛 = ∣𝜎∣ > 0, suppose that 𝜑(𝜎↾𝑘) has been defined for all 𝑘 < 𝑛. Let
𝜑(𝜎) be the smallest 𝑗 ≤ 𝑛 for which

(1) 𝜎(0) ∈ 𝐿𝑗,𝑛,

(2) 𝐿𝑗 is free at 𝜎,

(3) 𝑗 ∕= 𝜑(𝜎 − 1),

and let 𝜑(𝜎) = 𝜑(𝜎− 1) if such 𝑗 does not exist. This ends the construction
of 𝜑.

Clearly 𝜑 is recursive. To verify that 𝜑 BC-identifies ℒ, suppose that 𝑡
is a text for 𝐿 ∈ ℒ. We have to prove that for almost every 𝑛, 𝜑(𝑡𝑛) is a
code for 𝐿. By finite thickness of ℒ there are only finitely many 𝐿′ ∈ ℒ such
that 𝑡0 ∈ 𝐿′. Because we only choose 𝜑(𝑡𝑛) = 𝑗 if 𝑡0 ∈ 𝐿𝑗 , and because ℒ is
finite-to-1 enumerable, there are only finitely many codes that can possibly

9



be a value of 𝜑 on 𝑡. We will argue that the wrong ones among these are all
eliminated after some point.
Lemma. Every wrongly selected hypothesis is blocked later.
Proof of Lemma. Suppose 𝐿𝑖 = 𝐿, 𝜑(𝑡𝑛) = 𝑗, and 𝑊𝑗 ∕= 𝐿. Claim: There
exists 𝑡𝑘 ⊐ 𝑡𝑛 such that 𝐿𝑖 is free at 𝑡𝑘. Namely, suppose that 𝐿𝑖 is blocked
at 𝑡𝑛+1. Let 𝜏 ⊑ 𝑡𝑛 be of maximal length such that 𝐿𝑖 is free at 𝜏 . If 𝑘 is
minimal such that 𝜏 ⊆ 𝐿𝑖,𝑘 and 𝐿𝑖,∣𝜏 ∣ ⊆ 𝑡𝑘 then 𝐿𝑖 is free at 𝑡𝑘. This proves
the claim. By the claim and (2) and (3) in the definition of 𝜑 it cannot be
the case that 𝜑(𝜎) = 𝑗 for all 𝜎 with 𝑡𝑛 ⊑ 𝜎 ⊑ 𝑡𝑘 because there is at least
one other free hypothesis (namely 𝑖). Hence 𝐿𝑗 is blocked at some point
after 𝑡𝑛. This proves the lemma.

We now argue that after some point such a wrong 𝐿𝑗 cannot recover from
being blocked. Suppose for a contradiction that some 𝐿𝑗 ∕= 𝐿 is selected
infinitely often, that is, 𝜑(𝑡𝑛) = 𝑗 for infinitely many 𝑛. Then 𝐿𝑗 is free
at infinitely many stages 𝑡𝑛, and by the above lemma, 𝐿𝑗 is also blocked at
infinitely many stages. By the definition of “unblocked” we then have that
𝑡𝑠 ⊆ 𝐿𝑗 and 𝐿𝑗,𝑠 ⊆ 𝑡 for infinitely many 𝑠, hence 𝐿𝑗 = 𝐿, contradicting our
assumption.

Recapitulating, we have that every wrong 𝐿𝑗 is selected only finitely
often as an hypothesis. Since by (1) and finite thickness only finitely many
𝐿𝑗 ’s are considered during the whole construction, we have that after finitely
many steps 𝜑(𝑡𝑛) is always a code for 𝐿. □

In contrast to the previous theorem, we have

Theorem 5.4 There is a 1-1 enumerable identifiable collection ℒ that has
finite elasticity and that is not recursively BC-identifiable.

Proof. It suffices to check that the collection ℒ of Theorem 3.1 has finite
elasticity. This holds because elements from different subcollections ℒ𝑒 are
disjoint, and the ℒ𝑒 themselves have finite elasticity: 𝑉𝑒 is included in all
other elements of ℒ𝑒, and every set in ℒ𝑒 different from 𝑉𝑒 includes all but
a finite number of the sets in ℒ𝑒. □

We give an example showing that in general, in Theorem 5.3 we cannot
strengthen the conclusion to recursive identifiability. The collection consist-
ing of

𝐿2𝑒 = {⟨𝑒, 𝑥⟩ : 𝑥 ∈ 𝑊𝜋0(𝑒)}
𝐿2𝑒+1 = {⟨𝑒, 𝑥⟩ : 𝑥 ∈ 𝑊𝜋1(𝑒)}

10



(𝑒 ∈ 𝜔, 𝜋0 and 𝜋1 projection functions) has finite thickness and is 2-1-
enumerable, hence is in recBC. We see that there are classes in recBC
for which the inclusion problem is Π0

2-complete. This ℒ is not recursively
identifiable because then the Π0

2-complete set {𝑒 : 𝑊𝑒 = 𝜔} would be 𝐾-
computable: Using the recursive learner for ℒ first 𝐾-compute a locking
sequence for 𝜔 and then 𝐾-decide whether this locking sequence is a subset
of 𝑊𝑒. Then 𝑊𝑒 = 𝜔 if and only if this is the case.

The converse of Theorem 5.3 fails because it is relatively easy to con-
struct a uniformly recursive identifiable collection which has infinite elas-
ticity. Note that the example constructed in the proof of Theorem 3.1 is
1-1-enumerable, and that it does indeed not have finite thickness, in ac-
cordance with Theorem 5.3. We do not know whether the hypothesis of
finite-to-1 enumerability in Theorem 5.3 is necessary6. It was proved in de
Jongh and Kanazawa [9] that if we strengthen the hypothesis in Theorem 5.3
to 1-1-enumerability we may conclude recursive identifiability rather than
recursive BC-identifiability.

6 Extensional learning with anomalies

Osherson and Weinstein [14] also introduced the model of BC-identification
with finitely many errors. In this section we make some comments on this
model. For sets 𝑉 and 𝑊 we write 𝑉 =𝑛 𝑊 to denote that 𝑉 equals 𝑊
with the possible exception of at most 𝑛 points. 𝑉 =∗ 𝑊 denotes that there
is an 𝑛 such that 𝑉 =𝑛 𝑊 .

Definition 6.1 A function 𝜑 BC𝒏-identifies a set 𝐿 if 𝜑 on any text for
𝐿 outputs in the limit only codes 𝑒 that satisfy 𝑊𝑒 =

𝑛 𝐿. The model BC∗

is defined similarly, with =𝑛 replaced by =∗.

Note that in general (no computability restraints on the learner) BC𝑛-
identifiability is the same as identifiability with finitely many errors, so that
the definition only becomes interesting if we restrict our attention to smaller
classes of learners, such as the computable ones. The next theorem shows
that we have a strict hierarchy.

6Note added in proof (July 20, 1999): Frank Stephan proved that the hypothesis is
necessary. Namely he proved that there is a uniformly r.e. class ℒ that has finite thickness
and that is not recBC-identifiable.

11



Theorem 6.2 (Osherson et al. [15], Case and Lynes [4]) There exists a
uniformly recursive class ℒ that is recursively BC∗-identifiable but not BC𝑛-
identifiable for any 𝑛. Also, for every 𝑛 > 0 there is a uniformly recursive
class ℒ𝑛 that is recursively BC𝑛-identifiable but not BC𝑛−1-identifiable.

Proof. In Osherson et al. [15, Prop. 6.3.3A] it is proved that the collection
ℒ = {𝜔−𝐷 : 𝐷 finite} is recursively BC∗-identifiable (always output a code
for 𝜔) but not identifiable (ℒ does not satisfy the condition of Theorem 5.1).
One can show that ℒ is also not identifiable with a fixed number of errors.
Case and Lynes [4] showed that ℒ𝑛 = {𝜔 − 𝐷 : ∥𝐷∥ ≤ 2𝑛} is recursively
BC𝑛-identifiable but not BC𝑛−1-identifiable. □

Note that the ℒ from Theorem 6.2 is not identifiable. The proof of
Theorem 3.1 generalizes to show that

Theorem 6.3 There exists a uniformly r.e. class of recursive sets that is
identifiable but not recursively BC𝑛-identifiable for any 𝑛.

Proof. In the proof of Theorem 3.1, instead of looking in Stage 𝑠 + 1 for
triples ⟨𝜏, 𝑡, 𝑥⟩, look for triples ⟨𝜏, 𝑡, �⃗�⟩ where �⃗� is a vector of ever increasing
length rather than a single number. □

Let 𝐾 be the Halting Problem. The next fact is easily proved using
Shoenfields Limit Lemma [18].

Fact 6.4 If a class is 𝐾-recursively BC∗-identifiable then it is recursively
BC∗-identifiable.

The next result shows that Theorem 6.3 is the best possible, namely that
we cannot improve it from

∪
BC𝑛 to BC∗. The proof is a slight extension

of the proof of [19, Theorem 3.1]. For the sake of completeness we include
it.

Theorem 6.5 Let ℒ be an identifiable class that is uniformly r.e. Then ℒ
is recursively BC∗-identifiable.

Proof. Let 𝑓 be a recursive function indexing ℒ, i.e. ℒ = {𝑊𝑓(𝑖) : 𝑖 ∈ 𝜔}. We
define a 𝐾-recursive learner 𝑀 that 𝐾-recursively BC-identifies ℒ. Given a
finite piece of text 𝜎, we define the program 𝑀(𝜎) as follows. Define 𝐼0 to
be the set of all 𝑖 ≤ ∣𝜎∣ such that 𝑖 ∈ rng(𝑓), and 𝜎 ⊆ 𝑊𝑖. Note that 𝐼0 is
𝐾-computable. 𝑀(𝜎) will enumerate all numbers that are enumerated by

12



all sets in 𝐼0, throwing out some indices of 𝐼0 every now and then. Define
𝐼 =

∩
𝑡 𝐼𝑡, where the sets 𝐼𝑡 are inductively defined by

𝑖 ∈ 𝐼𝑡+1 ⇔ 𝑖 ∈ 𝐼𝑡 ∧ (∀𝑗 < 𝑖)[𝑗 ∕∈ 𝐼𝑡 ∨𝑊𝑖↾𝑡 ⊆ 𝑊𝑗↾𝑡].

Now the program 𝑀(𝜎) is defined by

𝑊𝑀(𝜎) = {𝑥 : (∃𝑡)(∀𝑖 ∈ 𝐼𝑡)[𝑥 ∈ 𝑊𝑖]}.
To verify that 𝑀 BC-identifies ℒ note that by Angluins theorem 5.1 for
every 𝑖 ∈ rng(𝑓) there is a finite set 𝐷 such that for all 𝑗 ∈ rng(𝑓) with
𝐷 ⊆ 𝑊𝑗 the following holds:

∙ if 𝑗 < 𝑖 then 𝑊𝑗 ⊇ 𝑊𝑖,

∙ if 𝑗 > 𝑖 then 𝑊𝑗 ∕⊂ 𝑊𝑖.

Therefore whenever 𝐷 ⊆ 𝜎 ⊆ 𝑊𝑖 and ∣𝜎∣ > 𝑖 then 𝑖 ∈ 𝐼 and for every 𝑗 ∈ 𝐼
it holds that 𝑊𝑗 ⊇ 𝑊𝑖. So 𝑊𝑀(𝜎) = 𝑊𝑖 for almost all prefixes 𝜎 of a text
for 𝑊𝑖. Hence 𝑀 BC-identifies ℒ. Since 𝑀 is 𝐾-recursive, it follows with
Fact 6.4 that ℒ is recursively BC-identifiable. □

Acknowledgments. The question whether every identifiable uniformly r.e.
collection is recursively BC-identifiable was posed to me by Dick de Jongh
in Amsterdam, May 1996. I solved it (in the negative) and soon thereafter
learned of the positive answer for uniformly recursive classes when John Case
was visiting Amsterdam. I thank Dick de Jongh for introducing me to the
subject. I thank John Case, Dick de Jongh, Bill Gasarch, Makoto Kanazawa,
Carl Smith, and two anonymous referees for discussions, comments, and
corrections.

References

[1] D. Angluin, Inductive inference of formal languages from positive data, Infor-
mation and Control 45 (1980) 117–135.

[2] G. R. Baliga, J. Case, and S. Jain, Synthesizing enumeration techniques for
language learning, 9th Conference on Computational Learning Theory, 1996

[3] J. M. Barzdin, Two theorems on the limiting synthesis of functions, Latv. Gos.
Univ. Uče. Zap. 210 (1974) 82–88.

[4] J. Case and C. Lynes, Machine inductive inference and language identification,
9th International Colloquium on Automata, Languages and Programming,
Lecture Notes in Comp. Sci. 140, 107–115, Springer-Verlag, 1982.

13



[5] J. Case and C. Smith, Comparison of identification criteria for machine in-
ductive inference, Theoretical Computer Science 25 (1983) 193–220.

[6] J. Feldman, Some decidability results on grammatical inference and complexity,
Information and Control 20 (1972) 244–262.

[7] L. Fortnow, W. Gasarch, S. Jain, E. Kinber, M. Kummer, S. Kurtz, M.
Pleszkoch, T. Slaman, R. Solovay, F. Stephan, Extremes in the degrees of
inferability, Annals of Pure and Applied Logic 66 (1994) 231–276.

[8] M. Fulk, Prudence and other conditions on formal language learning, Infor-
mation and Computation 85 (1990) 1–11.

[9] D. de Jongh and M. Kanazawa, Angluin’s theorem for indexed families of
r.e. sets and applications, 9th Annual Conference on Computational Learning
Theory, 1996.

[10] M. Kummer and F. Stephan, On the structure of degrees of inferability, Journal
of Computer and System Sciences 52 (Special Issue COLT’93) 214–238, 1996.

[11] S. A. Kurtz and J. S. Royer, Prudence in language learning, 2nd Annual
Workshop on Computational Learning Theory, 206–219, University of Calif.,
Santa Cruz, 1989.

[12] T. Motoki, T. Shinohara, and K. Wright, The correct definition of finite elas-
ticity: Corrigendum to identification of unions, In the 4th Annual Workshop
on Computational Learning Theory, p. 375, San Mateo, Calif., Morgan Kauff-
mann, 1991.

[13] P. Odifreddi, Inductive inference of total functions, in: Computability, Enu-
merability, Unsolvability. Directions in Recursion Theory, S. B. Cooper, T.
A. Slaman, S. S. Wainer (eds.), London Math. Soc. Lecture Note Series 224,
(1996) 259–288.

[14] Osherson and Weinstein, Criteria of language learning, Information and Con-
trol 52 (1982) 123–138.

[15] Osherson, Stob, and Weinstein, Systems that learn, Bradfort– The MIT Press,
Cambridge, Massachusetts, 1986.

[16] M. G. Pleszkoch, W. Gasarch, S. Jain, and R. Solovay, Learning via queries
to an oracle, manuscript 1990. Shorter version, by Gasarch and Pleszkoch,
appeared in 2nd Annual Workshop on Computational Learning Theory, 214-
229, 1989.

[17] T. A. Slaman and R. Solovay, When Oracles do not help, 4th Annual Confer-
ence on Computational Learning Theory, 379–383, 1991.

[18] R. I. Soare, Recursively enumerable sets and degrees, Springer-Verlag, 1987.

14



[19] F. Stephan and S. A. Terwijn. The complexity of universal text-learners, to
appear in Information and Computation. Preliminary version in: B. S. Chlebus
and L. Czaja (eds.), Proceedings of the Eleventh International Symposium on
Fundamentals of Computation Theory (FCT ’97), Lecture Notes in Computer
Science 1279, 441–451, Springer-Verlag, 1997.

[20] K. Wright, Identification of unions of languages drawn from an identifiable
class, 2nd Annual Workshop on Computational Learning Theory, 328–333,
University of Calif., Santa Cruz, 1989.

15


