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CHAPTER 1

INTRODUCTION

In this thesis we discuss some questions from recursion theory relating to mea-
sure and randomness. In this chapter we introduce and discuss some material
that is needed in the subsequent chapters. Section 1.6 contains a brief descrip-
tion of the contents of the thesis.

1.1 COMPUTABILITY

The origins of recursion theory, or computability theory, can be traced to the
eighteenth century, or even further back, but the subject really took off dur-
ing the 1930’s through the work of Gédel, Church, Kleene, Post, and Turing.
They gave various precise definitions of the intuitive notion of algorithmically
computable function. They proved that all of these definitions were in fact equiv-
alent, i.e., that they defined the same class of functions, thus providing a firm
basis for a mathematical theory of computability: recursive function theory. The
most important formalizations include the class of recursive functions (Kleene
[35]) and that of functions computable by a Turing machine (Turing [77]). The
notion of recursive function is now one of the cornerstones of the area of math-
ematical logic. The next era of recursion theory started with the seminal paper
by Post [68]. Here numerous notions which play an important role in modern
recursion theory were introduced. In particular it stated the problem which
became known as Posts problem: are there any r.e. Turing-degrees that are dif-
ferent from 0 (the degree of the recursive sets) and 0’ (the degree of the halting
problem)? The positive answer, independently found by Friedberg and A. A.
Muchnik entailed the discovery of a diagonalization technique, the finite injury
priority method, that would prove to be of great importance in the subsequent
development of the subject.

With the growth of computer science came an interest in developing a math-
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ematical theory of functions computable not only in theory but also in prac-
tice. Thus from the 1960s onward the theory of feasible computation developed:
complexity theory. Here the classes P of sets computable deterministically in
polynomial time and NP of sets nondeterministically computable in polynomial
time were defined. Today it is still unknown whether these classes are equal or
not. The setting for Chapter 2 will be complexity-theoretic.

Of the many applications of recursion theory we mention here only one:
the application to the old problem of formalizing the notion of randomness.
Although measure theory may serve as a foundation for probability theory, it
does not answer the question of what a random individual object is. Indeed, in
the context of Lebesgue measure, no individual object is different from another
since every single real has measure zero. Still, we feel that the outcome of one
hundred tails when we flip a coin one hundred times is very special, even if the
probability for this outcome is the same as that of any other outcome. The
viewpoint that every attempt of formalizing the notion of randomness must fail
has been expressed by several mathematicians in this century. In general, of
course, no absolute notion of randomness exists. For example, R. von Mises [63]
started a line of research in which an infinite binary sequence A is called ‘random’
(a ‘Kollektiv’) with respect to a class of functions if for every subsequence B
of A specified by one of the functions from the class it holds that in the limit
B has the same number of zeros and ones. If the class of selection functions is
countable this notion is nontrivial. Although von Mises’ notion is flawed in a
sense (Ville [78]), it points the way by having in its definition a class of functions
as a parameter that specifies how random random objects should be. What class
of functions should we choose? Recursion theory provides us with a canonical
answer: The class of recursive functions is a natural choice (Church). After
all, if a mathematical object has an internal regularity of a kind that can not
be described in an effective way then it will seem random when any kind of
computable analysis is applied to it. The Church-Turing thesis thus provides
an argument for this choice. In 1966, Martin-Lof [59] proposed a definition
of randomness, measure-theoretic in nature, that did not suffer from the same
defects as von Mises’ concept. This concept would prove to be important in
various ways. We will say more about it in Chapters 4 and 5. In Section 1.5 we
introduce random sets in the context of effective measure theory.

We now review some of the basic definitions from recursion theory. For
the larger part our notation follows Soare [72]. The set of natural numbers is
denoted by w, the rational numbers by Q, and the real numbers by R. We use
the notation QT and RT for the sets of positive rationals and reals, respectively.
3z and V*°z denote “there are infinitely many ” and “for all but finitely many
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z”, respectively. We will work mostly in Cantor space, the class of subsets of
w, denoted by 2. An element of 2 is called a set or a real. As this notation
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suggests, we identify a set A with its characteristic function x4 : w — {0,1}.
That is, A(z) =1ifz € A and A(z) =0 if z ¢ A. We fix a recursive pairing
function (.,.) : w X w = w and define the n-th section of the set A by

A" = {(z,n) : (z,n) € A}.

For A € 2¥, A denotes the complement, w — A, of A; A A B is the symmetric
difference of the sets A and B. The join of A and B is defined by

A®B={2n:ne€ A}U{2n+1:n € B}.

The empty set is denoted by @), and the cardinality of A is denoted by || A]|.

The set of finite strings of zeros and ones is denoted by 2<“. The empty
string in 2<“ is denoted by A. For elements v,w € 2<“| |w| is the length of w, vw
or v"w denotes the concatenation of v and w, and w™ is the n-th iteration of w.
The (i+ 1)-th bit of the string v is denoted by v(7), so v = v(0)v(1) ... v(|v|—1).
The notations v C w, v C w denote that v is a (proper) prefix of w. Also, w C A
denotes that w is an initial segment of (the characteristic sequence of) the set A.
wA (or w"A) is the concatenation of the finite string w with the infinite binary
sequence A. Aln = A(0)A(1)... A(n — 1) is the initial segment of length n of
A. For a function f : w — w, fIn denotes the string f(0)f(1)... f(n — 1), and
if f is partial then (f[n)] denotes that this string is defined. The range of f is
denoted by rng(f). For a string w € 2<“ we have the basic open set

Cwo={A€2”:wC A}.

1.1.1. DEFINITION. A set X C 2<% is called prefiz-free if any two elements of
X are incomparable, i.e. if for every o and 7 in X, 7 [Z 0.

Subsets of 2¥ are called classes, and for a class A we have the dual class co-A =
{A: A€ A} and the complement A° = {A: A & A} of A.

We fix a standard numbering {@e }ecw of the partial recursive functions. As
an alternative notation for ¢, we sometimes use {e}. By ¢, s(z) = y we denote
that the e-th Turing program computing on z halts within s computation steps
and outputs y. We write ¢, s(z) | if such a y exists and ¢.(z) | if such s and
y exist. Similarly, we write @ () 1 if the computation ¢.(z) does not halt
within s steps, and we write ¢, (x) 1 if ¢ ()1 for every s. A recursive function
is a partial recursive function that halts on every input. The e-th recursively
enumerable (r.e.) set is defined by W, = dom(y.). We fix a canonical coding
of the finite sets and denote the n-th finite set by D,,; the number n is called
the canonical code of the finite set D,. The notions of (partial) recursiveness
and recursive enumerability relativize to an arbitrary set A by giving the Turing
programs access to the information coded in A. If the bit A(z) is used in
the computation {e}?(y) we say that = is queried. The use u(4;e,z) of a



4 Chapter 1. Introduction

computation {e}*(x) is defined to be 1 + the maximal number used in the
computation (including all the queries) if it halts, and oo otherwise. Similarly
for {e}2(z) and the corresponding use function u(A4;e,z,s). The e-th function
partial recursive in A is denoted by (,0;34 or {e}A. The halting problem is the set

K = {e: {e}(e)4}.

The jump A’ of A is K4, the halting problem relative to A. We sometimes use
the alternative notation (' for K. The the n-th iterated jump of A is denoted
by A,

We will make use of the following recursive reducibilities (A and B are ar-
bitrary sets of natural numbers):

o One-one reducibility: A <; B if there is a recursive one-one function f
such that z € A & f(z) € B.

o Many-one reducibility: A <,, B if there is a recursive function f such that
z€ A& f(x) €B.

o Truth-table reducibility: Let X be a set variable. A truth-table condition
is a propositional formula built from atomic formulas of the form n € X,
for n € w. Clearly such formulas can be coded by natural numbers in an
effective way. Now A <y B if there is a recursive function f such that
z € A & B satisfies truth-table condition f(z).

o Bounded truth-table reducibility: A truth-table reduction f is called a
bounded truth-table reduction if there is a number m, called the norm of
the reduction, such that for every z the truth-table condition f(z) contains
at most m numbers. A <p;; B denotes that A reduces to B via a bounded
truth-table reduction.

o Weak truth-table reducibility: A <, B if there is code e and a recursive
function f such that A = {e}? and the use function u(B;e, ) is bounded

by f(z).
o Turing reducibility: A <7 B if there is a code e such that 4 = {e}5.

For a reducibility r» € {1,m, btt, tt,wtt, T}, A|.B denotes that the sets A and
B are r-incomparable, i.e. that A £, B and B £, A. The r-upper cone and
r-lower cone of A are defined by

ASr {B: A<, B}
<A = {B:B<, A}

The r-degree of A is defined deg, (4) = ST AN AS".
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As usual, the classes of the arithmetical hierarchy are denoted by X, II,,
and A,,. In particular, A, is the class of sets computable in the halting problem
K, 3 is the class of r.e. sets, also denoted by RE, and A; is the class of recursive
sets, also denoted by REC.

In Chapter 2 we use the length-lexicographic ordering < of the set of binary
words X*. The n-th word in this ordering is denoted by z,. In this ordering,
z < y if y is longer than z, or if |y| = |z| and z comes lexicographically before
y. A time bound t is a recursive, time-constructible function satisfying t(n) > n
for almost every n. For a time bound ¢ we have the class DTIME(%) of sets
computable in time O(t), i.e. sets computable by a Turing machine for which
the running time on input z, is bounded by f(|zy|) for a function f € O(t). We
will use the complexity classes

P = | JDTIME(n")
c>1

E = |JDTIME@2™)
c>1

E, = |JDTIME(2™)
c>1

We will use the following polynomial reducibilities (A and B are arbitrary sets
of words)

o Polynomial many-one reducibility: A <%, B if there is a function f € P
such that z € A & f(z) € B.

o Polynomial bounded truth-table reducibility: A Szl:tt B is defined as btt-

reducibility above, with f polynomial time computable.

o Polynomial bounded truth-table reducibility of norm k: A <} .. B if

A Szgtt B by a reduction of norm k. (For the definition of norm see

the definition of btt-reducibility above.)

o Polynomial truth-table reducibility: A <! B defined as tt-reducibility
above, with f polynomial time computable.

o Polynomial Turing reducibility: A <!, B if there is a code e such that
A = MB, where M, is the e-th polynomial time machine.
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1.2 MEASURE

We give the definition of Lebesgue measure on 2¥. Although 2 and the real
unit interval I = [0, 1] are not homeomorphic, 2 is isomorphic to I in a measure-
theoretic sense. Cantor space has as basic opens the sets C,, = {A : w C A},
w € 2<% Every C, is given a measure u(Cy) = 2-1wl. The Borel sets of
2“ are obtained by closing the class of basic open sets under the operations of
complementation and countable union. The definition of y uniquely extends to
a measure on the Borel sets, that is, a function on the Borel sets taking values
in [0, 00| that is countably additive (or o-additive): for every disjoint sequence
of Borel sets {B,} we have p(|JB,) = >_ u(B,). This measure y on the Borel
sets in turn extends to a measure defined on the class of sets of the form BA N,
where B is Borel and A is a subset of a Borel set of measure zero. This is the
class of Lebesgue measurable sets (often shortened to ‘measurable sets’), and the
measure y defined on it by p(B A N) = p(B) is called the Lebesgue measure.
The Lebesgue measure is complete, i.e. if X is a measurable set, u(X) = 0, and
Y C X then )Y is also measurable and p())) = 0. It has the following property:
For every measurable class X,

p(X) =inf{pul) : X CU AU open}. (1.1)

In the next section a different definition of the notion of measure zero will be
given that will be useful for our further studies.

For a measurable class A, instead of p(A) we sometimes write Pr(A). For
two measurable classes A and B with Pr(B) # 0, we define the conditional
probability of A given B by

Pr(AnN B)
Pr(A|B) = ————
For a set X C 2<% of initial segments we simply write p(X) for p( U C,). Note
zeX
that if X is prefix-free then p(X) = Z 212,
zeX

1.3 MARTINGALES

Martingales were invented by P. Levy, and first applied to the study of ran-
dom sequences by J. Ville [78]. Later J. L. Doob used martingales in the study
of stochastic processes, making the concept of martingale well-known. In the
following, rather than giving the most general definition of martingales, we im-
mediately give the special case of the definition that will be used throughout
this thesis.
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1.3.1. DEFINITION. A function d : 2<% — R* is a martingale if for every w €
2<% d satisfies the averaging condition

2d(w) = d(w0) + d(w1l) (1.2)
Similarly, d is a supermartingale if d satisfies

2d(w) > d(w0) + d(w1) (1.3)
and d is a submartingale if d satisfies

2d(w) < d(w0) + d(w1l) (1.4)
1.3.2. DEFINITION. A (super)martingale d succeeds on a set A if

limsupd(Aln) = oo.
n—oo
We say that d succeeds on a class A C 2 if d succeeds on every A € A. The
class of all sets on which d succeeds is denoted by S[d].

From (1.3) one immediately sees that for a (super)martingale d and every
v C w it holds that d(w) < 2*I=*ld(v). Similarly, we have

1.3.3. LEMMA. Let d be a (super)martingale. For any string v and any prefiz-
free set X C {z :v C z} it holds that 2_|”|d(v) > Z 2_|m|d(m).
zeX

PROOF. It suffices to prove this for finite X (Bolzano-Weierstrass). Use induc-
tion on the cardinality of X. The base step || X|| = 1 is immediate from (1.3).
Suppose the lemma holds for all X of cardinality n. Let X be prefix-free and of
cardinality n+1. Choose w of maximal length such that X C {z : w C z}. Then
both Xo ={z € X : wOC z} and X; = {# € X : wl C z} have cardinality less
than or equal to n. It follows by induction hypothesis that

w|—|T 1 wl|—|z 1 wl|—|z
Zg\ =eld(e) = 52 |wO Hd(l-)_l_522| =l d(a)

reX x€Xo z€X1
1
< E(d(wO) + d(wl))
< d(w).

Since any v with X C {z : v C z} satisfies v C w and by (1.3) it holds that
d(w) < 21*/~I?ld(v) the lemma follows by multiplying the above equations with
9—|w| O

The following result is sometimes called “Kolmogorov’s inequality for mar-
tingales”.
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1.3.4. LEMMA. (Ville [78]) Let d be a (super)martingale and define S*[d] =
{z € 2<% : d(z) > k}. Then pu(S*[d]) < d(N\)k 1.

PROOF. Let X C S¥[d] be prefix-free such that p(X) = pu(S*[d]). By Lemma
1.3.3 we have

ken(X) =k 27 <3 " o7Fld(z) < d().

z€X z€X O

1.3.5. DEFINITION. (Lutz [50]) A density system is a function d : wx 2<% — Rt
such that for every k € w the function di(w) = d(k,w) is a martingale and
di(X\) < 27F. The set covered by dy, is

Sldy] = {A €2¥: (3w A)dy(w) >1]}.
We say that a class A is covered by d if A C (¢, S [dk]-

1.3.6. THEOREM. (Ville [78]) For any class A C 2 the following statements
are equivalent:

(i) A has Lebesgue measure zero,
ii ere exists a density system that covers
ii) Th sts a density system that A,
iii ere exists a martingale that succeeds on
iii) Th st tingale that d A,
(iv) There exists a supermartingale that succeeds on A.

PROOF. (i)=(ii). Suppose p(A) = 0. By (1.1) there are open sets Uy, C 2¢ such
that A C N, Uy and p(lUy) < 27F_ Define the martingales dj, by

di(w) = Pr(Ug|Cy).

Then di(w) = 1 if Cyp C Uy, so Uy C Stdy]. Also, dp(A) = Pr(Uy) < 27k and
A C Ny Ur €N Stdk], so the di, form a density system that covers A.
(ii)=(iii). Let {dk }rew be a density system. Define

d(w) = 2P doi (w).
k=0

Then d(w) < ), 2kt =2" « oo and it is easy to check that d is a martingale.
Furthermore, if dy (w) > 1 then d(w) > 2¥dyi (w) > 2%, So if A C e, S*[d]
then d succeeds on A.
(iii)=(iv). Immediate.
(iv)=(i). Suppose that the supermartingale d succeeds on A. Then the sets
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S*[d] = {z € 2<¥ : d(z) > k} determine open sets that have measure smaller
than d(A\)k~! by Lemma 1.3.4, so A has measure zero by (1.1). O

The next result shows that if we linearly transform the betting percentages
d(wi)/d(w) of a martingale d then the resulting martingale covers the same sets
as d.

1.3.7. PROPOSITION. Let d be any martingale and let k € w. Let d' be the

martingale defined by d'(\) = d()\) and

d(wi) _

) T k-1 ‘
k

d' (wi) = d (w).

Then S[d'] = S[d].
PROOF. From the inequality 1+ z < e” follows

LEMMA. Let {ay }new be a sequence of reals. Then

m m
lim su o, = oo & limsu o, — 1) = occo.
mepH n mePZ( n—1)

Now suppose that A € S[d]. Let o; = d(Al(i + 1))/d(Ali). Then limsup,,

o0 = 00, so by the lemma limsup,, Y ;" (a; — 1) = co. But then also

lim sup,, > %= L = o, hence, again by the lemma, limsup,, ]I, %’H
= 00, which means that A is in S[d']. Since the reverse implications in this

argument hold too it follows that S[d'] = S[d]. O

The previous result immediately yields the following

1.3.8. COROLLARY. (cf. Schnorr [73, Satz 13.4]) Let € > 0 be any real number.
For every martingale d there exists a martingale d of the same complezity as
d (modulo a linear factor) with S[d'] = S[d] such that for every w € 2<% and
i € {0,1} it holds that d'(wi)/d (w) € [1 —€,1 +€].

1.4 SOME ELEMENTARY THEOREMS

A measurable set A C 2* has density d at X if lim, p(ANC rn)2” = d. Define
#(A) = {X € 2 : A has density 1 at X}. Note that A has density 0 at each
point of ¢(A°).

We now prove a classical theorem of Lebesgue. The proof is essentially the
proof given in Oxtoby [67, p17]. The proof below is somewhat simpler because
the basic open sets C; have a more specific form than an arbitrary real interval.

1.4.1. THEOREM. (Lebesgue Density Theorem) If A is measurable then so is
¢(A), and p(AALPH(A)) = 0.
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PROOF. It suffices to show that A—¢(.A) is a null set since ¢(A)—A C A°—p(A°)

and A€ is measurable. Define for every positive rational &
B.={X € A:liminfu(ANC _, )2" <1—¢}.
n— oo X ["

Then A — ¢(A) = |, Be, hence it suffices to prove that every B is a null set.
Suppose for a contradiction that for B = B, we have that the outer measure
p*(B) := inf{pl) : BC U AU open} > 0. Then there exists G D B open with
p(G)(1 —¢e) < p*(B). Define

I={z€2%:C, CGApANGC,) < (1—e)27"l},

Then

(i) for any X € B, I contains X [n for infinitely many n, and

(ii) if {z;}scw is a sequence of elements of I such that C,, NCy,, = @ for i # j,
then p*(B —J, Cz;) > 0.
The first statement holds since G is open and the second statement holds because
p(BNU; Ca,) < 3 m(ANC,) < 34(1— )27 < (1 —e)pu(G) < p*(B). Now
construct a sequence {z; }ic, as follows. Let z1 in I be arbitrary, and if z;, 1 <n
are defined let I,, = {z € I : C, disjoint with Cy,,7 < n}. I, is infinite by (i) and
(ii). Define z,,11 € I, such that 2 lent1] > d, /2, where d,, = sup{Z*‘z‘ cx € I}
Let X € B—J;Cs;- X exists by (ii). By (i), let € I be such that X € C;.
Let k be the smallest number with C, N C,, # 0. Note that k exists since
otherwise Cy, is disjoint from every C,, and hence 2=l <d; <2- 2~ 1=l for every
i, contradicting that p(|J; Cy;) < 1. For k it holds that 2-lel < dp | < 227 Ikl
whence that |z| > |zi|, and thus C, C C,, because C; N Cy, # 0. But this
contradicts X & |J; Co,- O

Next we prove a classical theorem from computability theory: Sacks’ theorem
on the measure of upper cones.

1.4.2. THEOREM. (Sacks [71]) For every nonrecursive set A € 2* the upper
cone

AST ={B:A<r B}
has measure zero.

PROOF. Let A be an element of 2 such that u({B : A <7 B}) # 0. Note
that this set is measurable hence must have positive measure. We will show
that A is recursive. For two classes C and D define u(C|D) = u(C N D)/u(D)
and for a formula P write p(P(B)) for u({B € 2¥ : P(B)}). Since {B: A <r
B} = U,{B : A = {e}?} has positive measure there exists e € w such that
p({B : A = {e}B}) > 0. Tt follows from Theorem 1.4.1 that there is a point
X € 2% such that A has density 1 at X. From this follows the existence of
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a o € 2<% such that u(A = {e}?|C,) > 3/4. Using o we can compute A as
follows. For any z € w the sets T;, = {7 J o : {e}"(z) |= n} are uniformly
r.e., so we can enumerate T, = |J, T, s until we find n with Z’TETn . p(r) > 3/4.
Then A(z) = n. ’ O

Next we prove Kolmogorov’s 0-1 law for measurable sets. As Sacks’ theorem
above, it can be proved directly, but it also follows very quickly from Lebesgue’s
density theorem.

1.4.3. DEFINITION. E C 2¥ is a tailset if A is closed under finite variances, i.e.,
ifv € 2<% and X € 2% are such that vX € E then wX € E for every string w of
length |v|.

1.4.4. THEOREM. (Kolmogorov’s 0-1law) If A C 2¥ is a measurable tailset then
either pu(A) =0 or pu(A) = 1.

PROOF. Suppose p(A) > 0. By Theorem 1.4.1, choose X € A such that
A has density 1 at X. Let ¢ € (0,1) be arbitrary. Choose n large enough
such that p(ANC, rn)Z" > 1 —¢e. Because A is a tailset we then have that
p(ANCy)2" > 1 — ¢ for any w of length n. So p(A) > 1 —e. Since £ was
arbitrary it follows that u(A) = 1. O

1.5 RESOURCE BOUNDED MEASURE THEORY

Classical measure theory, as introduced above, allows one to make mathematical
assertions of a quantitative nature, like ‘almost every infinite binary sequence
has the same limiting frequency of zeros and ones’. However, Lebesgue mea-
sure is too coarse to make such assertions about countable classes, since by o-
additivity every countable class has measure zero. Still, it is possible to use the
concepts from measure theory to give meaning to statements like ‘almost every
recursive binary sequence has the same limiting frequency of zeros and ones’.
The key to this is to use more constructive versions of the classical measure,
and require for example only that constructive infinite unions of small classes
are small again, rather than arbitrary countable unions. It may then happen
that a countable class is not small in a constructive sense, and that the use
of constructive measure inside this class gives the desired definitions, provided
that the class is natural enough. From the 1960’s onward, this approach has
been taken by several authors (including Schnorr [73], Freidzon [23], Mehlhorn
[61], Lisagor [48], Lutz [49, 50]), making use of various constructive measures.
Constructive measure theory had been developed before in the broader context
of constructive mathematics within the various schools of constructivism. Both
Martin-Lof [60] and Schnorr [73] used ideas going back to Brouwer. In recent
years the approach of Schnorr and Lutz in particular has become popular in
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complexity theory. Below we present Lutz’s framework, usually referred to as
resource bounded measure theory, in which the above ideas are incorporated.
(Recent survey articles of this area are [6] and [53].) Theorem 1.3.6 gives a
definition of the notion of ‘measure zero’ that is particularly easy to make con-
structive. Also, it has the advantage that the level of constructiveness, or the
‘resources’ used in the theory, is built in as a parameter in the definition in an
elegant way and can be varied over a large number of classes.

1.5.1. DEFINITION. (Schnorr [73], Lutz [49, 50]) Let A be a class of martingales.
For a class A C 2, we say that A has A-measure zero (p, (A) = 0) if there is
a martingale in A that succeeds on A. A has A-measure one (u, (A) = 1) if

pa (A9) = 0.

Since martingales are real-valued functions, and we want to use them in
a constructive context, we need a notion of computability for them. This is
provided by the next definition.

1.5.2. DEFINITION. Let d : 2<% — R* be a martingale, and let A be a class
of functions. A computation of d is a function d:wx?2<¥ - Q" satisfying
|d(w) — (z(k,w)| < 2% for every k and w. If d is in A, we say that d is a
A-martingale and that the function disa A-computation of d.

Define the function classes

all = {f:2<¥ - Q' : f is a martingale}
rec = {f €all: f has a recursive computation}
Ay = {f €all: f has a computation recursive in ('}
p = {f€all: f has a polynomial time-computation}
p2 = {f €all: (3k)[f has a computation computable in time O(2(1° ")k)]}

Note that p,)) is just p, the Lebesgue measure. For the function classes above
we will use the corresponding measures fipec, Ky, Bp,> Ha,- In addition, in
Chapter 4 we will use the measures py, , pyp , 1o, corresponding to the levels
of the arithmetical hierarchy. However, not everything that is proved below for
the former holds for the latter, so we will treat these separately.

1.5.3. DEFINITION. A constructor is a function § : 2<% — 2<% with the prop-

erty that §(xz) 3 x for every z € 2<¥. The set constructed by § is the unique set
R(8) with §™(X\) C R(6), where 6™ denotes the n-th iterate of . For a class of

functions A, R(A) denotes the class

{R(é) : ¢ is a constructor and § € A}.
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The following observations by Lutz are easily made:

R(all) = 2¢
R(rec) = REC
R(A2) = Ay
R(p) = E
R(pz) = Ep

We now come to the definition that embodies the central idea of resource
bounded measure theory, namely that one can use bounded measure theories to
investigate the internal structure of classes.

1.5.4. DEFINITION. (Lutz [49, 50]) Let A be one of the classes all, rec, A, p,
or pa. A class A C R(A) has measure zero in R(A), denoted p(A|R(A)) =0,
if py (AN R(A)) =0. A has measure one in R(A), denoted p(A|R(A)) =1, if
p(A°lR(A)) = 0.

In Theorem 1.5.6 we show that this definition is consistent.

We have already seen in Theorem 1.3.6 that for A = all it does not matter
whether we use martingales or supermartingales in our measure theory. The
following proposition shows that this holds also for the other measure theories
defined above, as well as some other robustness properties. In Chapter 4 we
will encounter a measure for which the distinction between martingales and
supermartingales is crucial.

1.5.5. PROPOSITION. Let A be one of the classes all, rec, Ao, p, or pa.

(i) For a class A, if there is a supermartingale in A that succeeds on A then
there is also a martingale in A that succeeds on A. Hence, for the def-
inition of A-measure, it does mot matter whether we use martingales or
supermartingales.

(ii) In Definition 1.3.2, it does not matter whether we write ‘limsup’ or ‘lim’.
More precisely, if for every (super)martingale that succeeds on a class A
in the lim sup-sense there is a (super)martingale that succeeds on A in the
lim-sense.

(iii) For A-measure theory, we may assume that all martingales have val-
ues in Q and that they are exactly A-computable, rather than using A-
computations for them.

PROOF. We prove (i), (ii), and (iii) all at once. Suppose d is a supermartingale
that succeeds on the class A in the lim sup-sense.
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First we transform d into a supermartingale dy that has values in (Q, that is
exactly computable in A, and that succeeds on A. Let d: w x ¥* — QF be a
A-computation of d:

VE € wVw € S*(|d(w) — di(w)] < 27F).

Define a martingale dy which succeeds on every A € C as follows: dy(w) =
djy|(w) +4 - 271, Then do(w) > d(w) + 3 -271*! and dy(w) < d(w) + 5271,
Furthermore,

d(w0) + 5 - 27171 4 g(w1) + 5. 271w
2(d(w) + 5/2 - 271%1

2(d(w) + 3 - 271
2d(

do(w0) + do(wl)

INIA NN

w)’

so dp is a martingale, and dj succeeds on every A € A because dy(w) > d(w)
and d succeeds on every A € A. Clearly, dy is computable in time A.

Secondly we transform the supermartingale dy into a martingale d; that
succeeds on at least the same sets as dy. For this we simply (inductively) define
dy (w0) = dy(w0) and dy (wl) = 2dy (w) —d; (w0). Clearly d; is a martingale, and
S[d1] 2 S[dp] because for all w, d;(w) > do(w) (this follows easily by induction
on |w| from supermartingale property of dy), so d; also succeeds on \A.

Thirdly we transform the martingale d; into a martingale ds that succeeds
on A in the lim-sense. Define da(X\) = dy(\) and

dafwi) = G (da(w) = Ldae) ~ 1]) + Lda(o) ~ 1

where | z] is the greatest natural number smaller than or equal to z, and [z| =0
when z is negative. It is easy to check that dy is a martingale and that if
limsup,, d1(Aln) = oo then also limsup, d2(Aln) = co. So we see that do
succeeds on at least the same sets as d;. Note that for every v and w with
v C w, if dy(v) > = then da(w) > |z — 1]. So if limsup,, d2(Aln) = oo then
lim,, d2(Aln) = oo, hence, if ds succeeds on a set, it does so in the lim-sense.
In conclusion; we have transformed A-supermartingale d that succeeds on
A in the lim sup-sense into the exactly A-computable martingale do with ra-
tional values that succeeds on (at least) A in the lim-sense. This proves the
proposition. O

It is now easily proved that Definition 1.5.4 is consistent:

1.5.6. THEOREM. (Lutz [49, 50]) p, (R(A)) # 0.
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PROOF. As an example we prove that p, (E) # 0. Let d be any p-martingale.
By Proposition 1.5.5 we may assume that d has values in Q and that d is exactly
p-computable, say that d € DTIME(n*). Inductively define a set A as follows:
given Alz, define A(z,) = 1 iff d((Alz,)1) < d((Alz,)0). Then clearly d does
not succeed on A, and to compute A(z,) we need n-|Aln|* = O(2*+1)1) steps,
so A € DTIME(2(k+1)n), O

We are now ready to state the definition of randomness in the context of
resource bounded measure theory.

1.5.7. DEFINITION. A set A is A-random if no A-martingale succeeds on A.
(Equivalently: if u, ({A}) #0.)

Note that rather than answering what a random sequence is, this definition gives
us a parameter that we may set ourselves, depending on the context in which
we want to use the random sets. This makes it very flexible. In Chapter 4 we
will see how this definition relates to the concept of Martin-Lof mentioned in
Section 1.1.

We may note here that A-randomness is quite strong compared to the notion
that von Mises had in mind. As an example let us consider p-randomness. It is
easy to see that if a set A is p-random, then for every infinite set B € P the set
of strings on which A and B agree has density 1/2, so A is ‘von Mises-random’
with respect to P. However, p-random sets do not exist in E, whereas Wilber
[80] has shown that sets with the above property do exist in E.

1.6 OVERVIEW

The effective measures introduced in the previous section are the central theme
of this thesis. In Chapter 2 we look at the polynomial time bounded measure y,,
and use it to investigate the quantitative structure of the exponential time class
E. In that chapter we also use generic sets, and we compare the two approaches.

In Chapter 3 we investigate a measure p, with a certain asymmetry property
which makes it suitable for the study of the class of recursively enumerable sets.
The study of the various completeness notions for this measure also sheds light
on a question not mentioning measure, namely to what extent an incomplete
set can resemble a complete set.

In Chapter 4 we study classes of martingales corresponding to the classes
of the arithmetical hierarchy. In particular we study r.e.-martingales and the
corresponding random sets that were introduced by Martin-Lof. We describe
the distribution of these sets in terms of the reduction relations commonly used
in recursion theory. We also locate the class R(r.e.) of sets constructed by
r.e.-functions in terms of the same relations. This class is the analogue of the
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classes R(A) occurring in the framework introduced above. Finally, we treat
similar questions for the measures corresponding to A,, and we prove that
these measures coincide with the measures corresponding to II,,.

In Chapter 5 we study sets that are low for the the class of Martin-Lof ran-
dom sets and the class of Schnorr random sets, respectively. Low sets are sets
that are weak in the sense that they “do not help as an oracle”. Although they
are weak in this sense, low sets can still code substantial information. In par-
ticular they can be nonrecursive. Lowness for C indicates that this information
is inaccessible to elements from C.

Finally, in Chapter 6 we consider various questions about recursive mea-
sure theory, relating to the distribution of recursively random sets, Kolmogorov
complexity, the measure of Schnorr studied in Chapter 5, partial recursive mar-
tingales, and martingales that are recursive in the halting set K.



CHAPTER 2

GENERICITY AND RANDOMNESS IN
EXPONENTIAL TIME

In this chapter we use the polynomial time bounded measure p,, introduced in
Section 1.5 to investigate the structure of the exponential time class E. Ambos-
Spies, Fleischhack and Huwig [4, 5] introduced polynomial time bounded gener-
icity concepts and used them for the investigation of structural properties of
NP (under appropriate assumptions) and E. In Section 2.2 we relate these con-
cepts to each other. In Section 2.3 we prove that the amount of genericity in a
successor (under bounded truth-table reducibility) of a generic set is bounded,
and we deduce from this a generalization of the Small Span Theorem of Juedes
and Lutz [31]. In Section 2.4 we consider polynomially random sets and derive
some basic properties, and in Section 2.5 we prove that n°t!-random sets are n°-
generic, whereas the converse fails. It follows from the results from Section 2.3
that the amount of randomness in a successor of a random set is bounded. This
contrasts with the result from Section 2.6 stating that every n°-random set in E

has nk

-random predecessors in E for any &k > 1. We apply this result to answer
a question raised by Lutz [52]: We show that the class of weakly complete sets
has measure 1 in E and that there are weakly complete problems which are not

p-btt-complete for E.

We now introduce some notation and terminology that we will use only in
this chapter. We use the notation X* instead of 2<“. 3 denotes the set {0,1}.
For a set of strings A, A=" denotes the set of strings in A of length n. Similarly
we have the set AS™. We use the words ‘problem’ and “anguage’ as synonyms
for ‘set’, i.e. for subsets of ¥*. < is the length-lexicographical ordering on 3*;
2, is the n'® string under this ordering. For a string z € X*, z 4+ 1 denotes the
<-successor of z. For A C ¥* and z € ¥* we let Alz denote the finite initial
segment of A below z, i.e. Alz = {y:y < zAy € A}, and we identify this initial

17
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segment with its characteristic string, i.e. Alz, = A(z)... A(2,_1) € &* . For
the calculations below it is crucial to note that

27l — 1 < |Alz| < 2o+t 1, (2.1)

whence O(|Alz|¢) = O(2°2]) for any ¢ > 1. The lower case letters ¢, k, n always
denote elements of w.

2.1 GENERIC SETS

Ambos-Spies, Fleischhack, and Huwig [4, 5] introduced different types of re-
source bounded genericity. Here we shortly review one of their concepts which
is closely related to resource bounded measure (see [8]).

2.1.1. DEFINITION. (Ambos-Spies et al. [5]) A condition is a set C C ¥*. A
language A meets the condition C if, for some string z, Alz € C. C is dense
along A if

(3*z € ¥*)(3i € ¥)[(Alz)i € C;

and C is dense if C is dense along all languages. A language A is C-generic
if A meets every condition C' € C which is dense along A. We say that A is
t(n)-generic if it is DTIME(¢(n))-generic.

This genericity concept was introduced by Ambos-Spies, Fleischhack and
Huwig in [5]. Of the three types of genericity concepts introduced there, here
we consider only the second type. In [5], C-generic sets were called C-2-generic
sets. For deterministic time classes we abbreviate DTIME(t(n))-generic by t(n)-
generic and we call a condition C € DTIME(¢(n)) a t(n)-condition.

A condition C should be viewed as a finitary property P of languages, where
C contains all finite initial parts X [z of languages such that all languages Y
extending X [z have the property P. So a language A has the property P if and
only if A meets C. The class C is dense along A if and only if in a construction of
A along the ordering <, where at stage s of the construction we decide whether
or not the string z; belongs to A, there are infinitely many stages s such that
by appropriately defining A(z;) we can ensure that A has the property P (i.e.
Al(zs + 1) € C). Finally, in case of a t(n)-condition, the complexity for the
correct choice for A(z;) is t(n)-time bounded in |A[z], i.e., by (2.1), ¢(2")-time
bounded in the length of z;. So a t(n)-generic set will have all finitary properties
P of time complexity t(n) (relative to the length n of the initial segment) which
can be ensured in a construction of the above type infinitely often.

In the following we will mainly consider n°-generic sets (¢ > 1) which are
adequate for analyzing the structure of E. We start, however, with some more
general results.



2.1. Generic sets 19

2.1.2. PROPOSITION.

(i) Let C and D be classes such that C C D. Then any D-generic set is C-
generic. In particular, if t and t' are recursive functions such that t(n) <
t'(n) almost everywhere then any t'(n)-generic set is t(n)-generic.

(ii) For any recursive function t, the complement of a t(n)-generic set A is
also t(n)-generic.

PROOF. The first part is immediate by definition. The second part follows from
closure of DTIME(t(n)) under flipping strings. (That is, if A € DTIME(¢(n))
then so is the set {w : w € A}, where w(i) = 1 — w(7) for every 7 < |w|.) O

In [5] Ambos-Spies, Fleischhack and Huwig have shown that there are sparse
P-generic sets in DTIME(2"2). By a simple modification of this proof we obtain
a strong general existence theorem for t(n)-generic sets.

2.1.3. THEOREM. Lett(n), t'(n) and f(n) be nondecreasing functions on w such
that t(n) and t'(n) are time-constructible, t(n),t'(n) > n, f(n) is polynomial
time computable with respect to the unary representation, and the range of f is
unbounded. Let B be a set in DTIME(t'(n)). Then there is a t(n)-generic set
A such that

A € DTIME(2" L (# (n) + n2t(27 1) log t(27T1)))

and for anyn >0
(A A B)NE=" < f(n).

PROOF. We construct a t(n)generic set A with the required properties in stages,
where at stage s we decide whether or not z; € A. By means of a standard uni-
versal machine we may fix a recursive enumeration {C, : e € w} of DTIME(¢(n))
such that

C ={0°1z:z € C.} € DTIME(e - t(|z|) log(t(|z])) + e)- (2.2)
Then to ensure that A is ¢(n)-generic it suffices to meet the requirements
R. : C. dense along A = A meets C,

for all numbers e € w. Simultaneously with A we enumerate a list Sat of the
indices of the requirements which are satisfied by diagonalization and we let
Sats be the part of Sat enumerated by the end of stage s (Sat_; = 0). So, by
the end of stage s — 1, Alz, and Sat,_; are given.

Stage s. We say that the requirement R, requires attention (at stage s) if

e < f(|zs]), e & Sats_1 and
Ji € B [(Alz)i € C.). (2.3)
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Distinguish the following two cases.

Case 1: Some requirement requires attention. Fix the least e such that R,
requires attention and fix i < 1 minimal with (A[z,)i € C,. Let A(z;) =i and
Sats = Sats_1 U {e} and say that R, receives attention.

Case 2: Otherwise. Let A(z;) = B(zs) and let Sats = Sats_1.

This completes the construction. To show that A is t(n)-generic, first note that
every requirement receives attention at most once and that Satg contains the
indices of the requirements which received attention by the end of stage s. So, by
a straightforward induction, every requirement requires attention only finitely
often. Hence if C, is dense along A, (2.3) will hold at infinitely many stages s,
whence R, will eventually receive attention, thereby ensuring that A meets Ce.
So every requirement R, is met whence A is ¢(n)-generic.

Moreover, at a stage s with |z;| = n, only a requirement R, with e < f(n)
may receive attention. So Case 1 can apply to at most f(n) such stages, whence,
by definition of A in Case 2, |[(A A B) N{z € ¥* : |z| = n}|| < f(n) will hold.

It remains to show that A € DTIME(2"T1(#(n) + t"(n))), where t"(n) =
n2t(2"*1) logt(2"*1). Fix any string z, of length n. Then, by (2.1) it holds that
s < 2" whence it suffices to show that, given Alz; and Sats_1,A(zs) and Sat,
can be computed in t'(n) + t"(n) steps. To do so, without loss of generality
assume that f(n) < n. Moreover, since f(n) can be computed in poly(n) steps,
we may assume that f(n) is given. Then t"(n) steps suffice to decide whether
Case 1 applies to stage s and if so to perform the corresponding action: Since,
by assumption, Alz, and Sat, ; are given, it suffices to check for each of the n
numbers e < |z4| and for i < 1 whether (Alz)i € C. which, by (2.2), can be
done in O(n-t(2"*1) logt(2"+1)) steps for each such e. Finally, since Case 2 can
be performed in #'(n) steps this implies the claim. O

2.1.4. COROLLARY. There is a sparse n°-generic set in DTIME(2(¢+2)m),
PROOF. Apply Theorem 2.1.3 to t(n) = n¢, t'(n) = f(n) =n and B = (). Since
2" (n, + n2(27T1) ¢ log (27 H1)°) < 2(c+2)m

almost everywhere, this yields an n¢-generic set A € DTIME(2(C+2)") with

lANE="] <.
O

As the following theorem shows, Theorem 2.1.3 provides an almost optimal
lower bound on the time complexity of ¢(n)-generic sets.

2.1.5. THEOREM. Let A be t(n)-generic. Then A ¢ DTIME(t(2")). In partic-
ular, there is no n°-generic set in DTIME(2°").
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PROOF. For a contradiction assume that A € DTIME(¢(2")). Then, by (2.1),
C={X[(z+1): A(z) # X(z)}

is a t(n)-condition which is obviously dense. So, by #(n)-genericity, A meets C.
By definition of C this implies that A(z) # A(z) for some z, a contradiction. O

The argument in the proof of Theorem 2.1.5 is typical for showing that a
generic set has a certain property. In the following we give two further examples:
we prove that generic sets are incompressible under many-one reductions and
bi-immune. Here as in the following we will restrict ourselves to n®genericity.

A function f: ¥* — 3* is almost 1-1 if the collision set of f,

COLL; ={z € Z*: Jy <z (f(z) = f(y)},

is finite. f is consistent with a set A if, for all z,y € ¥*, A(z) # A(y) implies that
f(z) # f(y). Then A is C-incompressible if, for any f € FC which is consistent
with A, f is almost 1-1. Again we abbreviate DTIME(¢(n))-incompressible by
t(n)-incompressible and we write p-incompressible for P-incompressible. Note
that A <,, B via f € C implies that f is consistent with A. So, for C-
incompressible A, any C-m-reduction from A is almost 1-1.

2.1.6. THEOREM. Let A be n°-generic (c > 2). Then A is 2= incompres-
sible.

PROOF. Fix f € FDTIME(2(¢~1)") such that f is consistent with A. To show
that f is almost 1-1, define

C={Xl(z+1): Iy <=[f(z) = fy) A X(z) # X(y)]}.

Then C is an n®condition. Moreover, by consistency of f with A, A does not
meet C. So, by n®genericity of A, C' is not dense along A. By definition of C,
it follows that the collision set of f is finite. O

It is easy to show that any 2°"-incompressible set A is 2°"-bi-immune, i.e.,
ANB # § and AN B # § for any infinite B € DTIME(2°") (see [12]). So
Theorem 2.1.6 implies that any n‘-generic set is 2(¢"D bi-immune (¢ >2). By
a direct argument we can slightly improve this result:

2.1.7. THEOREM. Let A be n®generic (c > 2). Then A is 2°"-bi-immune.

PROOF. By Proposition 2.1.2 it suffices to show that A is 2°*-immune, i.e., that
AN B # ( for any infinite B € DTIME(2"). So fix such a set B. Define

C={Xl(z+1): X(z) = B(z) = 1}.
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Then, by (2.1), C is an n°-condition which, by infinity of B, is dense. Hence A
meets C which, by definition of C, implies that A N B # (. O

One can also apply ngenericity to separate the standard polynomial time
reducibilities between p-one-one and p-bounded-truth-table (see [41]). As a
corollary we obtain that n®generic sets cannot be p-btt-complete for E.

2.1.8. THEOREM. Let A be n-generic (c > 2).
(i) AdA L A
(i) A«P, A
(iii) A 22, A, where Ay ={z: {z,x+1,... .z +k}NA#D} (k>1)
)

(iv) A, 5. A, where A, = {0*1z : z € A}

PROOF. The proof is very similar to the proof of the corresponding facts for
the tally p-generic sets (see Ambos-Spies, Fleischhack, and Huwig [4, Theorem
5.9]). As an example we prove item (ii). Suppose that A <}, A via f € P. Let
C={XNz+1):Fy,z<z(f(y) =2AX(y) = X(2))}. Then C € P and C is
dense, so A meets C. It follows that A does not p-m-reduce to A via f. O
Note that, for any set A, A®@ A <h, A, A <P . A Ay Sifk+1)—tt A, and A4, <%, A.
So we can mutually distinguish p-1, p-m, p-1-tt, p-(k + 1)-tt (k¢ > 1), p-btt and
p-tt reductions to n®-generic sets:

2.1.9. COROLLARY. Let A be n®-generic (¢ > 2). There are sets By, Bo, By
(k > 1) and By such that

(i) By <h, Abut By €1 A
(ii) By <¥_,, A but By &5, A
)

(iii) Bsp < ,Abut By L5, A (k>1)

(k+1)-tt

(iv) By <b A but By €8, A

2.1.10. COROLLARY. Let A be n®-generic (c > 2). Then A is not p-btt-complete
for E.

PROOF. Assume that A € E. Then, for A, as in Theorem 2.1.8, A, € E but
A, ﬁpl;tt A. So A is not p-btt-complete for E. O

We conclude this section with the observation that Corollary 2.1.10 is opti-
mal. Given f : w — w we say that A is p-f(n)-tt-reducible to B if there is a
p-tt-reduction from A to B for which the number of oracle queries on inputs of

length n is bounded by f(n).
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2.1.11. THEOREM. Let f: w — w be nondecreasing, unbounded and polynomial
time computable with respect to the unary representation. There is an n®-generic
set A which is complete for E under p-f(n)-tt-reductions (¢ > 1). In particular,
there is an n®-generic set A which is p-tt-complete for E.

PROOF. Fix a p-m-complete set C' for E. We will use the following transitivity
law for p-m- and p-f(n)-tt-reductions: Since a p-m-reduction increases the size
of the input only by a polynomial factor and since f is nondecreasing, for any
sets X, Y, Z,

X< YAY <P Z=X<h 2.

— f(logn)-tt (n)-tt

Hence it suffices to show that there is an n°generic set A € E with

C Sp}(logn)_tt A. Let B ={zy : |z| = |yl Az € C}. Then, by Theorem 2.1.3,
there is an n°-generic set A € E such that

I(AAB)N{z € ¥*: |z| = 2n}|| < 1/3- f(logn).

Hence z € C if and only if ||AN F,|| > 2/3- f(log(|z|)), where F, consists of the
lexicographically first f(log(|z|)) strings zy with |z| = |y|. So C is p-f(logn)-
tt-reducible to A. O

2.1.12. REMARK. As the results of this section show, the n®generic sets per-
tain to diagonalizations over the levels of the linear exponential time hierarchy
E =J,>; DTIME(2°"). So, since a set is P-generic if and only if it is n®-generic
for all ¢ > 1, P-generic sets relate to diagonalizations over E. In particular, by
Theorem 2.1.5, no set in E is P-generic. In fact, by Theorems 2.1.6 and 2.1.7,
P-generic sets are E-incompressible and E-bi-immune. On the other hand, by
Theorem 2.1.3, P-generic sets can be found in all sufficiently closed, smooth
deterministic time classes properly containing E. E.g., as shown already in [5],
there are P-generic sets in the class DTIME(2"2). In an analogous way, the
2(log ")C-generic sets pertain to the levels DTIME(2"°) of the polynomial expo-
nential time hierarchy E,. E.g., by Theorem 2.1.5, there is no 2log ")C—generic set
in DTIME(2"), and the proofs of Theorems 2.1.6 and 2.1.7 can be easily mod-
ified to show that 2(°87)°_generic sets are DTIME(Z"C_I)—incompressible and
DTIME(2"")-bi-immune (¢ > 2). On the other hand, by Theorem 2.1.3, there
are 20°8™)°_generic sets in DTIME(2"" ™). So, for Py = Uy DTIME(2(8™)%),
the Py-generic sets relate to diagonalizations over Es just as the P-generic sets
relate to diagonalizations over E. In particular, observe that the proof of The-
orem 2.1.11 can be easily modified to show that, for any function f as there
and for any ¢ > 1, there is a 2(1°87)°_generic set (hence a P-generic set) which is
complete for Eo under p-f(n)-tt-reductions.
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2.2 GENERICITY AND MEASURE

In this chapter, we say that a class A has t(n)-measure zero if there is a martin-
gale d : ©* — Q7 that is exactly computable in time O(t(n)) such that d suc-
ceeds on A. (This is justified by Proposition 1.5.5.) Throughout, ¢(n) : w — w
will be a recursive, time constructible function satisfying ¢(n) > n for almost
every mn.

To show that the class of n°random sets has p-measure 1 we need a weak
version of o-additivity for the ¢(n)-measure.

2.2.1. DEFINITION. (Lutz) A class X is a t(n)-union of the t(n)-measure 0
classes A;, i € w, if X = |J;, &; and there exists a #(n)-computable function
d:wx¥* — QF such that for every 4, d;(z) = d(i,z) is a martingale and d;
succeeds on every problem in X;.

By Proposition 1.5.5 (iii) this definition is equivalent to Lutz’s definition (see
e.g. [50, p 231]). The next lemma is a generalization of Lutz’s A-Ideal Lemma
for arbitrary time bounds A = O(t(n)) ([50, Lemma 3.10]).

2.2.2. LEMMA. If X is a t(n)-union of the t(n)-measure 0 classes X;, i € w,
then X has nt(2n)-measure 0.

PROOF. By assumption there exists a t(n)-computable function d : wx3* — Q*
such that for every 7, d; is a martingale and d; succeeds on every problem in A;.

Without loss of generality we may assume that d;(A) = 1 for every i. Define
d :¥* - R" by

d(w) = 27"d;(w).
=0

Note that by the martingale property of the d; and the assumption that
d;(\) = 1, di(w) < 2/*| for every i, so this sum is convergent. Now d' is a
martingale because all the d; are, and d'(w) > 27%d;(w), so d' succeeds on X; for
every 1, hence d' succeeds on X. We show that d’ is nt(2n)-computable. Define

kt|wl

dp(w) = ) 27 d;(w).
i=0

Then
d(w) —dp(w) = > 27d;(w)
i=k+|w|+1

Z g—itlw| — gk

IN
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(The inequality holds since dj(w) < 2! . d;(A) = 2/*1). Since clearly dy(w) €
FDTIME(n t(2n)), it follows that the sequence {di(w) : k € w} is an nt(2n)-
computation of d’. O

2.2.3. THEOREM. For any c > 1, the class of n®-generic sets has n°t3-measure

1, hence p-measure 1.

PROOF. Fix c and let {C. : e € w} be a recursive enumeration of DTIME(n®)
such that

C ={0°1z:z € C.} € DTIME(e - |z|° - log(|z|) + €) (2.4)

holds. Let C. = {X : C. is dense along X and X does not meet C.} and let
C = .>¢Ce. Then C is the class of languages which are not n®-generic. So, by
Lemma 2.2.2, it suffices to define an n°T2-computable function d such that, for

e € w, d. i1s a martingale which succeeds on every language in C.. For z with
|z| < 2€¢ let d(e,z) = 1 and, for z with |z| > 2° and for 7 < 1, let

0 ifzi € Conz(l—1i) ¢ C,
d(e,zi) = ¢ 2d(e,z) ifz(l—1)€CeAmiéC,
d(e,z)  otherwise.

Then each d. is a martingale. Moreover, it easily follows from (2.4) that d is
n°t2-computable. So it only remains to prove that each d, succeeds on the
languages in C.. Fix e and X € C.. Then C, is dense along X but X does not
meet C,. By the latter, X [z & C, for all , whence d(e, X|z) # 0 for all z. Tt
follows that d(e, X [2,) is nondecreasing in n. So it suffices to show that there
are infinitely many z such that d(e, X [(z + 1)) = 2d(e, X Iz), i.e., by definition
of d, such that, for some i < 1, X[(z + 1) = (X[z)i, (X[z)(1 — i) € C. and
(Xz)i & C,. But this is immediate by definition of C,. O

By Theorem 2.2.3, any property shared by all n®generic sets (for some ¢ > 1)
occurs with p-measure 1. E.g., from Theorem 2.1.6 and Theorem 2.1.7 we may
conclude that the classes of 2°"-incompressible sets and 2*-bi-immune sets have
p-measure 1. This was first shown by Juedes and Lutz [31] and Mayordomo [57]
respectively, using direct arguments. Though, in general, the direct proof that a
property P has p-measure 1 uses the same ideas as showing that any n°-generic
set (for some c¢) has this property, the latter may turn out to be less complex,
since it suffices to consider single requirements. In particular in more involved
arguments this simplified machinery can help to keep down the combinatorial
complexity of proofs. In the next section we will give an example for this.

2.2.4. REMARK. By duplicating the above argument we can show that, for any
¢, the class of the 2(087)° -generic sets has ps-measure 1, hence measure 1 in Es.
In particular, the class of P-generic sets has pa-measure 1 and measure 1 in Es.
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2.3 GENERICITY ABOVE A GENERIC SET

For a polynomial time bounded reducibility <¥ the lower and upper span of a
set A are defined by P,(A) = {B : B < A} and P71(A) = {B : A <} B},
respectively. The intersection of the upper and lower span of A is the p-r-degree
of A: degP(A) = {B : B = A}. Juedes and Lutz [31] have shown that, for any
set A € E, the upper span of A or the lower span of A under p-m-reducibility
has measure 0 in E. Hence deg? (A) has measure 0 in E for any set A € E. So,
in particular, the class of p-m-complete problems for E has measure 0 in E.

Here we first deduce the Small Span Theorem for p-m-reducibility from The-
orem 2.2.3 and a theorem on the distribution of the n°generic sets under p-m-
reducibility which we will prove next. Then, by extending this theorem to
bounded truth-table reductions, we generalize the Small Span Theorem to these
reductions.

2.3.1. THEOREM. Let A and B be sets such that A <}, B, A is n®-generic and
A € DTIME(2%") where c,d > 2. Then B is not n%*1-generic.

PROOF. Fix f € FP such that A <, B via f and let D = {z : |f(z)| > |z|}.
Note that, by Theorem 2.1.6, A is p-incompressible whence f is almost 1-1. This
easily implies that D is infinite. So the condition

C={XNy+1):3aflz| < |y| A f(z) = y A A(z) # X (y)]}

is dense. Moreover, as one can easily check, C € DTIME(n*!) and, since
A <% B via f, B does not meet C. So B is not n%*!-generic. O

Note that the main step in the above proof shows that, f or any p-incompres-
sible A € DTIME(2%*) and for any B with A <}, B, B is not 2(¢t1)"_bi-immune.
The first proof of this fact is due to Lindner [47].

2.3.2. COROLLARY. (Small Span Theorem of Juedes and Lutz [31]) Let A € E.
Then (i(Pm(A)[E) = 0 or pp(Py, ' (A)) = u(P,' (A)|E) = 0.

PROOF. If there is no n2-generic set in P,,,(A)NE then we have that u(P,,(A4)|E)
= pp(Pm(A) NE) = 0 by Theorem 2.2.3. Otherwise, fix A’ and d > 2 such that
A" is n2-generic, A’ <h, A, and A’ € DTIME(2%"). Since P,;!(A) is contained in
P, 1(A") it follows from Theorem 2.3.1, that P,1(A) does not contain any nd+!-
generic set. So, again by Theorem 2.2.3, u,(P,,1(A)) = u(P, (4)|E)=0. O

Lutz [51] raised the question whether the Small Span Theorem generalizes
to the weaker polynomial reducibilities. Lindner [47] proved the Small Span
Theorem for p-1-tt-reducibility. So the positive character of p-m-reducibility
is not necessary for the theorem. This still left the question what happens for
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reducibilities which may use more than one query. Here we prove the Small
Span Theorem for p-k-tt-reductions for any k > 1, i.e. for reductions where the
number of queries does not depend on the input. Below we use the notation
h(g1,-.. ,gx) for p-k-tt-reductions. Here h : ¥* x ¥¥ — ¥ and g; : ¥* — *
are polynomial time computable functions, and A Si—tt B via h(g1,--- ,9%)
if A(z) = h(z,B(g1(x)),...,B(gr(x))) for every z. Note that this is just a
more explicit version of the definition given on page 5. Given h we define
hz(a1,... ,a;) = h(z,a1,... ,ar). The main step in the proof below is an ana-
logue of Theorem 2.3.1 for p-k-tt-reducibility.

2.3.3. THEOREM. Let A and B be sets such that A Si—tt B for some k > 1, A

is n°-generic for some ¢ > 2, and A € DTIME(2%) for some d > 2. Then B is

(k+1)(d+1)

not n -generic.

For the proof of this theorem we need an incompressibility concept for p-k-
tt-reductions and some more technical tools.

2.3.4. DEFINITION. The collision set of a p-k-tt-reduction h(g1,... ,gx) is de-
fined by

COLLpg,,...,q) =
{re ¥y <zlgi(z) =g1(y) A... AN gr(z) = gr(y) A hy = hyl}.

The reduction h(g1,... ,gx) is almost 1-1 if COLLyg, .. g4.) is finite. We say
that h(g1,...,gr) is consistent with a language A if

Vr,y € X*[(g1(z) = 91(y) A - Agr(z) = g(y) A ha = hy) — A(z) = A(y)]-

A language A is p-k-tt-incompressible if any p-k-tt-reduction h(gy, ... , gr) which
is consistent with A is almost 1-1.

Note that A <¥_,. B via h(g1,... ,gx) implies that h(gi,... ,gx) is consistent
with A, whence for p-k-tt-incompressible A, h(g1,... ,gx) is almost 1-1. As we
show next, p-k-tt-incompressibility coincides with p-incompressibility. So, by
Theorem 2.1.6, n°-generic sets are incompressible under p-k-tt-reductions.

2.3.5. LEMMA. For any k > 1, A is p-k-tt-incompressible if and only if A is
p-incompressible.

PROOF. Since any p-m-reduction may be viewed as a p-k-tt-reduction, obviously
any p-k-tt-incompressible set is p-incompressible. For a proof of the nontrivial
direction, let A be p-incompressible and fix any p-k-tt-reduction h(gi,... ,gx)
which is consistent with A (k > 1). We have to show that h(g1,... ,gx) is almost
1-1. Let

A= {(he, 91(2), ... ,gr(z)) 1 z € A}
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Since h(gi,...,gx) is consistent with A it holds that A <, A’ via f(z) =
(ha,g1(z),...,gk(z)). So, by p-incompressibility of A, f is almost 1-1, whence
h(g1,-.. ,gx) is almost 1-1 too. O

For technical convenience, in the following we assume that all p-k-tt-reduc-
tions are in a normal form, where the queries are listed in decreasing order and
redundant queries are replaced by : A p-k-tt-reduction h(gy, ... ,gx) is normal
if, for any € £*, there is some ¢ < k such that, for 1 < j < i, g;(z) > g;+1(z)
and, for j > i, gj(z) = 0. It is easy to show that for any p-k-tt-reduction
there is an equivalent normal p-k-tt-reduction. For a normal p-k-tt-reduction
h(g1,-.- ,9k), the rank of h(gy,...,gx) is defined to be the greatest number
r € {1,... ,k} such that

3%z € ¥¥(|z| < (k + 1)lgr(2)])-
(If no such r exists then the rank of A(g1,...,gx) is 0.)

2.3.6. LEMMA. Let h(g1,... ,9x) be a normal p-k-tt-reduction which is almost
1-1. Then the rank of h(g1,-.. ,gx) is greater than 0.

PROOF. Fix n such that 2" > 22" and no z with |z| > n is in the collision
set of h(g1,...,gxr). It suffices to show that, for some z with |z| = (k + 1)n,
lg1(z)| > n. Let

BC,, = {(o,y1,--- ,yr) : «is a k-ary Boolean function and,
for 1 <i<k,y; €3 and |y;| < n}.
Since h(gi, ... ,gk) is normal, for any z with |g;(z)| < n it holds that
(he,g1(z),... ,9k(z)) € BC,. So, since, by choice of n, h(g1,... ,gx) is 1-1 on

{z € ¥* ! |z| = (k + 1)n}, the existence of an z with the desired properties will
follow from

IBCull < [l{e € =7 : |a| = (k + D)n}|| = 24+Dm,
This holds since there are 2n—1 strings of length less than n and 22k—ary Boolean
functions, whence by choice of n, | BCy|| < 22" . 2"k < 2m . (2M)k = 2(k+1)n
We are now ready to prove Theorem 2.3.3.

PROOF OF THEOREM 2.3.3. Fix a normal p-k-tt-reduction h(gy,... ,gx) from A
to B of minimal rank, say r. Note that, by Lemma 2.3.5, h(g1,-.. , gx) is almost
1-1 whence, by Lemma 2.3.6, » > 0. We first show that there are infinitely many
strings z satisfying

|| < (k+ 1)lga(z)] A
ha(0,B(g2(2)), .. , B(gk(z))) # ha(l,B(g2(2)),--. ,Blgk())). (2-5)
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For a contradiction assume that (2.5) fails for almost all strings z, and fix n
such that no string z with |z| > n has this property. Define a p-k-tt-reduction
h'(gi,--- ,4g,) as follows. For z with n < |z| < (k + 1)|g1(z)| let

(gi(l‘), ,g;c(fl?)) = (92(27)3--- agk(m)am)
and
R (g1, 5 dk) = he(0,51, .., jk—1)

(fOI‘ any Jji,...,Jjk € S)’ and let (gi(ﬂ)), ’g;c(x)) = (gl(x)a ,gk(-'L')) and
hy = h, otherwise. Note that in the first case,

ha (B(g1 (), B(ga(2)),- - - , B(gk()))
= hw(O,B(QQ(iﬂ)),--- 1B(gk(x)))
= ha(B(g1(x)), B(g2(x)),- .. , B(gr(z))),

where the second equality follows from failure of (2.5). So A <?_, B via

Shott
h'(gi,--. ,g;). Moreover, this reduction is normal, and, for almost all z with
lz| < (k+ 1)|g1(z)|, h'(g},--. ,9g) is obtained from h(gi,...,gr) by eliminat-
ing the greatest query gi(z). So the rank of h'(g},... ,g;) is 7 — 1, contrary to

minimality of r. So (2.5) holds infinitely often. Hence the condition

C={Xly+1:3z[|z| < (k+1)|y| Agi(z) = yA
he (X (91(2)), - .- , X (gk(2))) # A(2)]}

is dense. Moreover, C € DTIME(n(k + 1)(d + 1)) and, since A <}_ B via
h(g1,... ,9%), B does not meet C. So B is not n(*+1(4+1)_generic. O

2.3.7. COROLLARY. (Small Span Theorem for <P ) Let A € E and k > 1.

Then p(Py_y;(A)|E) = 0 or pp((Pyyy(A)) = u((Py(A)[E) = 0.
PROOF. This is shown as Corollary 2.3.2 using Theorem 2.3.3 in place of The-
orem 2.3.1. O

2.3.8. COROLLARY. FEwery p-k-tt-degree in E. and NP has p-measure zero.

PROOF. Immediate by Corollary 2.3.7, since deg}_,,(4) = P,_,,(A)NP;,(A). O

We do not know whether Corollary 2.3.7 can be extended to p-btt-reducib-
ility. Note that in Theorem 2.3.3 the polynomial bound on the genericity for
the successors (under p-k-tt-reducibility) of the n‘-generic set A € E grows with
k so that we do not get a polynomial bound for the successors under all btt-
reductions. Recently, Burhrman and van Melkebeek [16] have proved that for
any o < 1,

1y ({A € Blps, (Pt (4)) # 0}) = 0.

From this follows the following Small Span Theorem:
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2.3.9. THEOREM. Let <P_,, denote a polynomial time truth table reducibility that
asks only s(n) queries, where s(n) is asymptotically smaller than n° for every
€ > 0. Then for any set A it holds that py,(Py(A) NE2) =0 or pp, (P,_1(A))
= 0.

An interesting consequence of Corollary 2.3.7 is that, for any k& > 1, the
class of p-k-tt-hard languages for E has p-measure 0. (Likewise, from Theo-
rem 2.3.9 it follows that the class of <?_,,-hard sets for E5 has pa-measure 0.) A
corresponding result for generic sets follows from Theorem 2.3.3.

2.3.10. COROLLARY. Let A be n®* 1) _generic (k > 1). Then A is not E-hard
under p-k-tt-reductions. Hence, the class of E-hard languages under p-k-tt-
reducibility has p-measure 0.

PROOF. By Corollary 2.1.4 there is an n?-generic set in DTIME(2%"), whence,
by Theorem 2.3.3, no p-k-tt-hard set for E can be n®**1)_generic. O

Though Corollary 2.3.10 does not settle the question whether the class of
the p-btt-hard languages for E has p-measure 0, we obtain two partial results:
First, by Corollary 2.3.10, no P-generic set is p-btt hard for E, whence, by
Remark 2.2.4, the class of p-btt-hard problems for E has ps-measure 0. The
second partial result concerns the complete sets. Here, p-measure-0 result follows
immediately from Corollary 2.1.10 and Theorem 2.2.3:

2.3.11. THEOREM. pp(A : A p-btt-complete for E) = 0.

By using a different method, Buhrman and Mayordomo [15] independently
proved a weaker version of the latter two results, namely that the class of the
p-btt-complete languages for E has ps-measure 0.

The question whether there are Small Span Theorems for the weak p-red-
ucibilities, namely polynomial truth-table (p-tt) and polynomial Turing (p-T)
reducibility, and the more specific question whether the classes of E-hard prob-
lems under these reducibilities have p-measure 0 seem to be much more fun-
damental. By Theorem 2.1.11 our approach by generic sets fails for the weak
reducibilities. Moreover, as observed already by Lutz, these questions may de-
pend on the relation between E and BPP: For the classical measure y, Bennett
and Gill [14] have shown that u(Py'(A)) = 1 if and only if A € BPP while
Ambos-Spies [2] has shown that p(P,,}(A)) = 1 if and only if A € P. Moreover,
Ambos-Spies [2] and, independently, Tang and Book [74] extended these results
to the intermediate reducibilities by showing that p(P;*(A)) = 1 if and only if
A € BPP while u(P,,/(A)) = 1 if and only if A € P. Since u(C) = 1 implies
that C does not have p-measure 0, these results imply that, assuming E C BPP,
the Small Span Theorem fails for p-tt-reducibility and p-Turing-reducibility and
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the classes of the E-hard sets under these reducibilities do not have p-measure 0.
Moreover, Heller [26] has constructed an oracle relative to which Eo = BPP. So
a proof of the Small Span Theorem for the weak p-reducibilities would require
nonrelativizable techniques.

2.4 RESOURCE BOUNDED MEASURE AND RANDOMNESS
As in Definition 1.5.7 we define

2.4.1. DEFINITION. A set A is t(n)-random if no ¢(n)-martingale succeeds on
A.

Note that a set A is t(n)-random if and only if A does not belong to any class
of t(n)-measure 0, that is, if and only if the singleton {A} does not have t(n)-
measure 0. By Proposition 1.5.5 (iii) it suffices to consider martingales with
rational values, which are not just approximable but ezactly computable within
the given time bound. This observation simplifies the construction of random
sets.

The existence of recursive ¢(n)-random sets can be shown by diagonaliza-
tion: Let {d. : e € w} be a recursive enumeration of the t(n)-martingales
d:¥* — Q" with d(\) = 1 (for a martingale d which succeeds on a problem
we may assume that d is normed: d(X) = 1). Define A(X) = 0 and, for w # A,
A(w) =1 & f((Alw)0) > f((Alw)1), where

v

Flw) =" 27%d;(w).
=0

Then, as one can easily check, f is bounded on A whence, by definition of f,
any d; is bounded on A, so that by Proposition 1.5.5 (iii) A is t(n)-random.

2.4.2. THEOREM. The class of t(n)-random sets has n3 t(2n)logt(2n)-measure
one.

PROOF. Let f : w x ¥* — QT be a universal function of the class of the
unary t(n)-computable functions g : ¥* — Q. We may assume that f €
FDTIME(n t(n)logt(n)). For any e, define a martingale d. as follows.

L) = ey
d,(wi) = {f(e,'wz) if f(e,w0) + f(e,wl) < 2d(w)

de(w)  otherwise

Obviously, if f., where f.(z) = f(e,z), is a martingale then d. = f.. So
{de : e € w} is an enumeration of all ¢(n)-martingales, i.e. the function d
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with d(e,z) = de(z) is a universal function of the ¢(n)-martingales and, by def-
inition, d € FDTIME(n?t(n)logt(n)). Let X, = {A C ©* : d, succeeds on A}
and X = J,,, Xe. Then X is an (n?¢(n) log t(n))-union of the (n?t(n) log t(n))-
measure 0 classes X,, whence, by Lemma 2.2.2, p,34(2n) 10gt(2n)(X) = 0. Since,
by Proposition 1.5.5 (iii), the class of ¢(n)-random sets is the complement of X,
it has (n3t(2n) logt(2n))-measure 1. O

2.4.3. COROLLARY. The class of n°-random sets (c > 1) has n°"-measure 1,
hence p-measure 1.

Lutz and others also studied the class Eo = DTIME(2poynomial) p [50] it is
shown that the natural measure on this class is the ps-measure, where ps is the
class consisting of all the functions 2r(0gn) 1 a polynomial. By the same proof
as above we see that

2.4.4. COROLLARY. The class of p-random sets has n'°8™-measure 1, hence pa-
measure 1.

Note that by Theorem 1.5.6, if 4(C|E) = 1 then CNE # 0, and if u(C|E2) = 1
then C N Ey # (0. So Corollaries 2.4.3 and 2.4.4 imply

2.4.5. COROLLARY. (i) For any ¢ > 1, the class of n®-random sets has measure
1 in E. In particular there is an n°-random set in E.

(ii) (Lutz [50]) The class of p-random sets has measure 1 in Ey. In particular
there is a p-random set in Es.

Note that, for time bounds ¢ and ¢’ such that t'(n) < ¢(n) almost everywhere,
any t(n)-random set is t'(n)-random. So any p-random set is n-random, and
any n‘-random set is n®-random, for any ¢’ < c. Conversely, by diagonalization
we can show that there are n°-random sets which are not n°*!-random (for any
¢ >1). So these concepts of randomness give rise to a proper hierarchy.

Also note that the existence results for n°-random and p-random sets in
Corollary 2.4.5 can be easily extended to the general case: If in the construc-
tion of a t(n)-random set A described above (after Definition 2.4.1) we use
an enumeration of the t(n)-martingales as in the proof of Theorem 2.4.2, then
A € DTIME(#(2"*1)) for #'(n) = n*t(n)logt(n).

Some further basic properties of random sets are stated in the following
lemma.

2.4.6. LEMMA. Let A be a t(n)-random set. Then the following hold:

(i) The complement A of A is t(n)-random.

(ii) A is dense, i.e., there exists an € > 0 such that |AS"| > 2™ for almost
every n.
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PROOF. To prove (i), suppose that the ¢(n)-martingale d succeeds on A. Then
d' defined by d'(w) = d(w) succeeds on A, where W is the unique string of length
|w| such that w(:) =1 — w(i) for i < |w].

For a proof of (ii), it suffices to show that the class of nondense sets has n-
measure 0, since t(n) > n a.e. n. Define the n-martingale d : ¥* — Q" by
d(A) =1, d(w0) = 3/2 - d(w), and d(wl) = 1/2 - d(w). If B is a nondense set
then |B<,| < 2" for infinitely many n. However, [E<"| = 2" — 1, so

limsupd(Blz,) > lim ((3/2)%" ' —12"" . (1/2)2"") = .
Note that many more much stronger properties than the above can be proven
(such as the various stochastic properties from probability theory, or such as
the Weak Stochasticity Theorem from [54]), but we will not need these in the
sequel.

2.5 RESOURCE BOUNDED GENERICITY AND RANDOMNESS

Theorem 2.2.3 shows that many properties which occur with p-measure 1 are
shared by all n°-generic sets (¢ > 2). Generic sets are designed to be universal for
standard resource bounded diagonalization arguments. In such a diagonalization
argument, a single diagonalization step corresponding to one of the subrequire-
ments has to be performed only once and only under the proviso that there are
infinitely many chances to do so. Though, in general, this easily implies that
the action for a single requirement will be performed infinitely often (provided
there are infinitely many chances to do so), we cannot say anything about the
frequency with which the opportunities are taken. The latter contrasts with
a typical measure one construction where we have to take the majority of the
opportunities. To illustrate this difference we consider the density of a set. We
have shown already that a generic set can be sparse (Corollary 2.1.4). How-
ever, as first observed by Lutz and Mayordomo [54], the class of sparse sets has
p-measure 0. To see this consider the n?-martingale d : £* — Q7 defined by
d(A) =1, d(z0) = 3/2-d(z), and d(z1) = 1/2-d(z). Then it is easy to see that
d succeeds on any sparse set, in fact on any set which is not exponentially dense
(cf. Lemma 2.4.6 (ii)).

Though this example points out limitations of the generic set approach to
p-measure 1-results, we would like to emphasize that the generic sets help us to
distinguish between those properties that can be forced by standard diagonaliza-
tions and those which require a measure diagonalization argument. Moreover,
this example also shows that the assumption that a class C contains an n¢-generic
set is weaker than the assumption that C has nonzero p-measure. This observa-
tion might be of particular interest when studying the structure of NP assuming

that NP is sufficiently large. Lutz defines that NP is not small if p,(NP) # 0,
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and in [55] he and Mayordomo proved that under this non-smallness hypothesis
p-T-completeness and p-m-completeness for NP do not coincide. By Corol-
lary 2.1.9 this result already follows from the (apparently weaker) assumption
that NP contains an n?-generic set.

Moreover, the relations between resource bounded genericity and measure
which we explored here for the polynomial case hold for arbitrary time (and
space) bounds. In particular, as shortly indicated in Remarks 2.1.12 and 2.2.4
already, we obtain corresponding results for the ps-measure analysis of Eo by
Lutz.

The next theorem shows that the approach using random sets is a refinement
of the method of using generic sets. The proof is essentially the same as the
proof of Theorem 2.2.3 showing that the n°-generic sets have p-measure 1.

2.5.1. THEOREM. Let A be n°T'-random. Then A is n°-generic. Hence any
p-random set is p-generic.

PrROOF. Let C € DTIME(n®) be a condition which is dense along A. To show
that A meets C, define d : 3* — Q" by d(\) =1 and, for w in ¥* and 7 < 1,

0 if wie CAw(l—i)¢gC
dwi) =< 2d(w) fw(l—4i)eCAwigC

d(w) otherwise

Then d € FDTIME(nt!) is a martingale whence, by n°"!-randomness of A,
limsup,, d(Alz,) < oco. By density of C along A and by definition of d this
implies that A meets C. O

The converse of Theorem 2.5.1 fails: by Lemma 2.4.6, any n-random set is
dense whereas by Corollary 2.1.4 there exist sparse n°-generic sets. Intuitively,
the difference between t(n)-genericity and t(n)-randomness can be described as
follows: Both concepts are universal for ¢(n)-bounded diagonalizations. In case
of genericity, however, we only require that, for any single condition, if there
are infinitely many chances to meet the condition then the condition has to be
met at least once, or (as one can easily check) equivalently, infinitely often. In
case of randomness this does not suffice; here a majority of the chances has to
be taken.

In Sections 2.1 and 2.2 numerous properties of the n°-generic sets were
proven. By Theorem 2.5.1 these properties are shared by all n“tl-random sets.
For instance, in Section 2.1 we showed that n®generic sets are not p-btt-complete
for E and that p-generic sets are not p-btt-hard for E, and in Section 2.3 that
the genericity of successors of n®generic sets in E is limited (¢ > 2). So we
obtain the corresponding results for n°-random sets:



2.6. Randomness below a random set 35

2.5.2. COROLLARY. (i) If A is n®-random (c > 3), then A is not p-btt-complete
for E.
(ii) If A is p-random, then A is not p-btt-hard for E.

2.5.3. COROLLARY. Let A and B be sets such that A <V, B, A is n®-random
and A € DTIME(2¢"), where c,d > 3. Then B is not n%t!-random.

Corollary 2.5.3 shows that, for any n°-random set A € E there is a bound on
the polynomial randomness of the successors of A (under p-m-reducibility). The
reason for this is the following: If A <%, B via f, then, by n?-randomness, f
cannot compress A, so that f(A) contains an infinite 2(d+)n_computable subset
of B. An n%tl.random set, however, does not have such easy infinite parts.

2.6 RANDOMNESS BELOW A RANDOM SET

Here we will contrast the preceding result on the limitations on randomness of
the successors of an exponential time computable n°random set by showing
that any such set has predecessors of arbitrarily high polynomial randomness.

2.6.1. THEOREM. Let A be an n?-random set. For any k > 1 there is an n*-
random set Ay, with Ay, <b, A. In fact, there is a p-random set A, with Ay, <b,
A. Also, for any k > 1, there is a 20gm)* _random set By, <b, A. If, moreover,
A € E then Ay, and Ao can be chosen so that A, € E and Ao, € DTIME(2"),
and if A € Eo then By can be chosen to be in Es.

The idea underlying the proof of Theorem 2.6.1 is the following. If we restrict
the domain D of a random set A then, relative to this domain, A N D remains
random. So if we take the restriction of A to some polynomially scattered
domain D and polynomially compress A N D by mapping D onto ¥* then, for
the compressed version Ap of AN D, time complexity and randomness increase
by a polynomial factor but still Ap can be reduced in polynomial time to AN D
and hence to A. The formal proof of Theorem 2.6.1 requires the following lemma,
which uses the idea above in a slightly more general form.

2.6.2. LEMMA. Let A be nt(n)-random for a nondecreasing function t with

t(n) >n a.e. , and let f : w — w be a nondecreasing time constructible function.
Then

Ap = {z: 070201z € A} is ¢(2/08() 1)) random.

PROOF. Define t'(n) = #(2/18(™-1)) and let d : ©* — Qt be a #/(n)-
computable martingale. We will show that d does not succeed on Af. To
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prove this it suffices, by nt(n)-randomness of A, to define an n ¢(n)-martingale
d such that

d succeeds on A ;= d succeeds on A.

For the definition of d we will use _the following notation: For a string
XT(0/0=D1z), let X[z be defined by X(y) = X (0/(¥D1y) for y < z. Now d

is defined by induction as follows:
1. d()) = d()),
2. For y = 0/(=D 1z and i < 1, d((XIy)i) = d((X Iz)i),
3. For y not of the form 07(*D1z and i < 1, d((X y)i) = d(X Iy).

Since d is a martingale, a straightforward induction on |z| shows that
d((X2)0) 4+ d((X 12)1) < 2d(X )
and, by definition of Ay and cz, fori <1
d(Al (0= 12)i) = d((A1z)s).

So d is a martingale which succeeds on A if d succeeds on A;. It remains to
show that d is computable in time nt(n). By induction, it suffices to show
that, given d(}),...,d(Xly), the value of d(X[(y + 1)) can be computed in
O(t(|XI(y+1)])) steps. Now fix any y and let m = | X [(y +1)|. Since f is time
constructible the time required for the decision whether or not y is of the form
07(=D12 is polynomial in the length of y, hence, by equation (2.1) on page 18
and t(n) > n, linear in ¢(m). So it suffices to analyze the cases 2. and 3. in
the definition of d individually. The case 3. is trivial by induction hypothesis.
For a proof of the case 2. fix z € ©* and i < 1 such that y = 0/(*D1z and
(X1(y+1))(y) = i. Then, by definition of d, d(X (y + 1)) = d((X Iz)i), whence
it suffices to show that d(()A(: [£)i) can be computed in O(t(m)) steps. Now it
follows from |y| = f(|z|) + |z| + 1 and the monotonicity of ¢ that

tm) =t(| XMy + 1)) > (2% (by equation (2.1))
— g2/ (=D+ll+1y
> g2/ (D)
= /(2
> ¢(|(Xz)i]) (by equation (2.1)).

Since d is t/(n)-computable this implies that d((X[z)i) can be computed in
O(t(m)) steps. This completes the proof of Lemma 2.6.2. O
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PROOF OF THEOREM 2.6.1. Let ¢(n) = n and let A be n?-random. Fix k € w
and define fo(n) = k-n, fi(n) = (n+1)log(n+1), and fo(n) = n*+1. Tt is easy
to see that for : < 2,

Ap, = {z: 072012 € A4} <2 A

Now define Ay, = Af,, Ao = Ay,, and By, = Ay,. Then by Lemma 2.6.2, Ay is
27k.nk-random, hence n*-random, A, is n1°81°8"_random, hence p-random, and
By is 2(1"3(")_1)k+1-random, hence 2(°8™)" yandom. For a proof of the second
part fix ¢ such that A € DTIME(2°"). Then, as one can easily check, Ay €
DTIME(2:+1)e") ¢ E and Ao, € DTIME(2¢(n+Dog(n+1)+1)y « DTIME(2"").

If A is in DTIME(2™) then B, € DTIME(2""**?) c E,. O

It follows from Theorem 2.6.1 that classes that are closed under <%, -reduc-
tions, like NP, UP, PP, or PSPACE, contain an n?-random set if and only if
they contain a p-random set if and only if they contain a 2018 n)*_random set.

2.7 RANDOM SETS ARE WEAKLY COMPLETE

In this final section we apply our results on random sets to study the weakly
complete problems in E and E;. We first review this concept of Lutz [51, 52].
For any set A, let P, (A) = {B : B <}, A}. Then A is weakly hard for E if
u(Prn(A)|E) # 0; if moreover A € E then we say that A is weakly complete
for E. Weak completeness for Es is defined in the same way, using ps and FEs
instead of p and E. Lutz [52] showed that there is a weakly complete set in E
which is not p-m-complete for E. To show this Lutz introduced a quite involved
new diagonalization technique which he calls martingale diagonalization. Our
results on random sets provide an elementary proof of this fact and yield stronger
results.

2.7.1. THEOREM. (i) A is weakly hard for E if and only if P,,(A) NE contains
an n%-random set.
(i) A is weakly hard for By if and only if P, (A)NEy contains an n%-random

set.

PROOF. (i) If A is weakly hard for E then P,,(A) N E contains an n?-random
set by Corollary 2.4.5 (i). Now suppose that P,,(A4) N E contains an n?-random
set. Then, by Theorem 2.6.1, P,,(A) NE contains an n*-random set for every

k € w. But this means that there is no nf-martingale which succeeds on every

set in P,(A) N E, whence u,({B : B <, A} NE) # 0. Assertion (ii) follows
from Corollary 2.4.5 (ii) and Theorem 2.6.1 with a similar argument. O

2.7.2. COROLLARY. Let A € E (E3) be n%-random. Then A is weakly complete
for E (Eo).
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PROOF. Immediate from Theorem 2.7.1. O

Corollary 2.7.2 can be strengthened a little bit as follows.

2.7.3. THEOREM. Let A € Ey be n2-random. Then P,,(A) is not pa-measurable
mn E2.

PrROOF. By Corollary 2.7.2, (P (A)) # 0. By Theorem 2.4.6 (i), A is also

n?-random, hence by Lemma, 2.6.2, the set

A= {aclO‘””‘CJr1 1z € A}

is 2!°¢°"_random. Since A =P, A, and because by Theorem 2.1.8 (ii) it holds
that A £%, A, we have that A #b, A. Hence there is no 2!°8° "-martingale
that succeeds on Ey — F;,(A). Because ¢ was arbitrary it follows that p, (Ez —
Pp(A)) # 0, so py, (Pm(A)|E2) # 1. So Pp(A) has neither measure zero nor
measure one in Eg, and it follows from an effective version of Theorem 1.4.4

(Lutz [49, Thm 5.15]) that P,,,(A) is not measurable in Ey O

In contrast to Corollary 2.7.2, note that for any k > 1 there are n*-generic sets
in E which are not weakly complete for E. This follows from the fact (Theorem
2.1.4) that for every k there are sparse n*-generic sets in E, and the result of
Lutz and Mayordomo [54] that for sparse sets A, p,(Pm(A4)) = 0. (This last
result holds because a set that p-m-reduces to a sparse set is either compressible
or sparse, and Juedes and Lutz [31] proved that the class of compressible sets has
p-measure zero, and we already noted that the class of sparse sets has p-measure
Zero.

Juedes and Lutz [32] proved the following relation between completeness for
E and E;. We now show how Corollary 2.5.3 and Theorem 2.7.1 can be used to
give a very direct proof of their result.

2.7.4. COROLLARY. (Juedes and Lutz [32]) (i) If A is weakly complete for E
then A is also weakly complete for Eo.
(ii) There exists a set A € E which is weakly complete for Eo but not for E.

PROOF. (i) Since E is contained in Es, this is immediate by Theorem 2.7.1.

(ii) By Corollary 2.4.5 (ii), let B € Eg be p-random, and by padding B,
let A € E be a set with A =5, B. Then A is weakly complete for Ey by
Theorem 2.7.1. However, by Corollary 2.5.3, P,,(A) N E does not contain any

n?-random set, so by Theorem 2.7.1 A is not weakly complete for E. O

By Corollary 2.7.2, we can extend Lutz’s theorem on the existence of proper

weakly complete sets from p-m-reducibility to p-btt-reducibility:

2.7.5. COROLLARY. There is a weakly complete set for E which is not p-btt-
complete for E.
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PROOF. By Corollary 2.4.5 there is an n?-random set A in E and, by Corol-
lary 2.7.2 and Corollary 2.5.2, A is weakly complete but not p-btt-complete
for E. O

We do not know whether there are weakly complete sets which are not p-
tt-complete or even not p-T-complete. As our final result shows, however, to
prove this it suffices to show that the classes of incomplete sets under these
reducibilities in E do not have p-measure 0.

2.7.6. COROLLARY. p,({A: A weakly complete for E}) # 0. In fact,
p({A : A weakly complete for E}|E) = 1. Similarly, for the measure in Eg we
have p({A : A weakly complete for Eq}|Eq) = 1.

ProoF. By Corollary 2.7.2 this follows from Corollary 2.4.5 and the fact that
every p-random set is n2-random. O

Juedes [29] independently proved the first part of Corollary 2.7.6 (namely that
the weakly complete sets for E do not have p-measure 0) using Lutz’s martingale
diagonalization technique.






CHAPTER 3

MEASURE ON THE RECURSIVELY
ENUMERABLE SETS

In this chapter we investigate a measure for the class of recursively enumerable
sets RE. We define a class a of As—martingales that mimic the asymmetry
of the r.e. sets in such a way that for the resulting measure p, it holds that
tq(RE) # 0 and pq(REC) = 0. We shall see that p, does not satisfy an effective
analogue of the o-additivity, so that pg4 is not an effective measure in the proper
sense. However, it seems implausible that such a measure would exist, apart
from trivial solutions such as measures induced by classes consisting of just one
martingale, or classes constructed by direct diagonalization!. So instead of g
we consider its closure under finite unions zi,. We study the weak completeness
notions corresponding to this finitely additive measure and obtain a complete
picture of the relations between these and the ordinary completeness notions.
The proofs have also consequences for a question that is not related to measure
theory, namely to what extent an incomplete set can resemble a complete set.
This is discussed in Section 3.3.

3.1 'THE CLASS OF MARTINGALES a

3.1.1. DEFINITION. The class a C Ay (‘a’ for ‘asymmetric’) consists of all mar-
tingales d : 2<“ — Q such that

11t is possible to construct by direct diagonalization a class of martingales A C Ay such
that every martingale in A covers REC, but no martingale in A covers RE. Namely, for every
nonrecursive r.e. set A, construct with help of the oracle (' a martingale d4 that covers REC
but not A, by letting d4 bet on a 0 only if the next bit of A is a 1, and conversely. Since every
recursive set differs from A infinitely often we can still let d4 cover REC. Let A consist of all
the d4.

41
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(i) there is a recursive function f : w X 2<“ — QN [0, 2] such that for every

w,

— f(s,w0) is monotonic nondecreasing in s and
(3s)(Vt 2 s)[f (¢, w0) = d(w0)/d(w)],
— f(s,wl) is monotonic nonincreasing in s and

(3s)(Vt > 8)[f(t,wl) = d(wl)/d(w)]

(ii) d is oblivious [7], that is, for every w,v € 2<% such that |w| = |v| it holds
that d(w0)/d(w) = d(v0)/d(v) and d(wl)/d(w) = d(v1)/d(v).

So for a martingale d € a the betting percentages d(wi)/d(w) are monotonically
recursively approximable, from below if ¢ = 0 and from above if i = 1. Fur-
thermore, the martingale d only bets on elements separately, without respect
to previous outcomes. It is so to say ‘oblivious’ to what happened previously.
Oblivious martingales were introduced by Ambos-Spies et al. in [7].

3.1.2. DEFINITION. We denote the measure induced by the class a by pg. So
pa(A) = 0 if there is a martingale d € a such that A C S[d], where

Sld] ={A: liyzri)s;pd(Afn) = 00}.

The closure of p, under finite unions is denoted by fig. So fig(.A) = 0 if there
exist martingales dy,... ,d; € a such that A C Ule S[d;].

We say that A has measure zero in RE if 4(A N RE) = 0, and that A has
measure one in RE if i,(A°NRE) = 0.

3.1.3. PROPOSITION. The ‘measure’ uq is not closed under finite unions. Hence
fia 7 fa. Even pg[RE # fia[RE.

PROOF. Let dy and d; be the a—martingales defined by

We prove that for every martingale d € a there exists an r.e. set A such that
A € S[dy)US[d1]—S[d]. Let I,, = [3",3" " —1], so that |I,| = 3-3,.,, |Im|- Let
d € a. Define A by the following r.e. procedure: As long as the approximation
to [T;cz, d(0°71)/d(0%) is smaller than [];c; d(0°1)/d(0%) let A N I, be empty,
and let AN I, = I, otherwise. Now A is an r.e. set because d is in a, and we
claim that A satisfies the proposition.

Firstly, A ¢ S[d]: It is enough to prove that d does not grow on A on every inter-
val I,,. Fix n and suppose that for i € I,,, d(0°1)/d(0%) = 1+ 7e;, 7; € {—1,1},
g; € [0,1]. Since [J(1 + 7e:) [I(1 — me;) = [1(1 — &;2) < 1 it holds that at least
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one of the products [[(1+ 7;¢;), [[(1 — 7¢;) is smaller than 1, which means that
d does not grow on either the all-zero extension or the all-one extension of A[3"
on I,,. Since A on I,, was defined accordingly it follows that A ¢ S[d].

Secondly, A € S[dy] U S[d1]: Note that if AN I, = () then do(Al3"T!) >
(1/2)°(3/2)* where ¢, = Y., |Im|. Hence if AN I, = () for infinitely
many n then dy succeeds on A. Likewise, if A NI, = I, for infinitely many
n then d; succeeds on A. Since one of these must be the case it follows that

A € S[dp] U S[d1]. O

To prove that REC has measure zero in RE we will need an r.e. set such that
no recursive method can guess more than half of its elements. Does the halting
set K have this property? A little reflection shows that this depends on the
numbering of the recursive functions. It is possible to construct a numbering
with all the usual properties such that K becomes very easy, from a probabilistic
point of view. However, as we shall see in the proof of the next lemma, given
any Godel numbering it is possible to construct an r.e. set with the desired
property. In Section 3.3 we will have more to say about the question how much
an incomplete set can resemble a complete set.

3.1.4. LEMMA. There exists an r.e. set M such that for every A € Il;,
< Al = .
i <n: AG) = MG _

n—o0o n

0

PROOF. Let {We}ec, be the standard recursive enumeration of the r.e. sets
and let V, = W,. Enumerate M in stages as follows. Given the part M, of
M constructed at stage s we reserve the next (s — 1)|M;| bits to make ||{i <
s|My| : Vs(i) = M(3)}|| < |M;|. Enumerate an element at one of these reserved
positions if and only if this element is co-enumerated in V. This guarantees that
M differs from Vj in this reserved block of length (s — 1)| M| at every position,
so we have ||{1 < s|Ms| : V5(i) = M (%) }||/s|Ms| < 1/s. Because every II; set A
has infinitely many codes s the r.e. set M is equal to the complement of A on
infinitely many of the reserved intervals. O

Lynch [56] proved that there is a creative set M such that Lemma 3.1.4 holds for
all A € REC. This answered a question posed by Meyer. Since being creative
is equivalent with being m-complete, and because the set M from Lemma 3.1.4
is easily seen to be m-complete, Lemma 3.1.4 can be seen as a strengthening of
Lynch’s result.

3.1.5. LEMMA. For every class A C 2% it holds that if there is an r.e. set M
and an € > 0 such that for every A € A,

liming S 7 AG) = M 1

n—o0 n 2

g, (3.1)

then pq(A) = 0.
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PROOF. Let 6§ € (0,1) be a rational number. Define a martingale d by
(- )dw) i ¢ M
d(w0) = { (14 &)d(w) if [w| € M
d(wl) = 2d(w)— d(w0).
One can easily check that d is a martingale in a. Note that d(wz) = (1 — §)d(w)

if and only if M(|w|) = i. It follows that A is a set satisfying (3.1) if and only
if for infinitely many n it holds that

1
i <n:d(Aln+1)/d(Aln) =1 -8} < (5 —e)n. (3.2)
Because (1 — 6)*"(1 + 6)™ grows to infinity if and only if @ < a5 = %,
A € S[d] if and only if for infinitely many n,
Hi<n:d(Aln+1)/d(Aln) =1 -6} _ _as

n as+1

1
- 1— log(1—4) (33)

log(1+39)

Since the limit for § | 0 of the right-hand side is 1/2, by (3.2) and by taking
d small enough we can ensure that (3.3) holds for all A € A, and hence that
A C S[d]. O

3.1.6. THEOREM. (i) pq(RE) #0
(i) pa(REC) = pqo(Il;) = 0.

PROOF. To prove (i) let d be a martingale in a. Let f be the function approxi-
mating the betting percentages of d, as in Definition 3.1.1. Define an r.e. set V
generated by the following algorithm. Enumerate x in V if there is an s such
that f(s,0°"!) > 1. Then

zeV & (3s)[f(s, 0T > 1]
& d(0%th)/d(0%) > 1 (f monotonic)
& d(VIiz+1)0)/dVIz+1)>1 (|[VIz+1| = |0%| and d

is oblivious).

So d bets on ‘z € V' if and only if z € V', hence d does not succeed on V. Since
V is r.e. it follows that pq(RE) # 0.

For (ii), let M be the r.e. set from Lemma 3.1.4. Then M witnesses that the
class II; satisfies the condition of Lemma 3.1.5, hence pq(II1) = 0. Since REC
is a subset of II; we have immediately that pq(REC) = 0 also. O

Since we actually want to use ji, rather than p4, because the last one is not
finitely additive, we need a result that is stronger than Theorem 3.1.6, namely
we need that fis(RE) # 0. We prove this now.
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3.1.7. LEMMA. Leta; € R, 1 <1 <k, be such that Z§:1 a; < k, and for every i
let 0 < e <1and 7 € {—1,1}. Then Zle(l + Tigi)a; < k or Zle(l -
Tiei)a; < k.

PROOF. Suppose that Zle(l + 7iei)a; > k. Then Y mie;a; > k— Y a; >0, so
Z(l — Tiei)ai = Za‘i — ZTi‘fiai <k- ZTiEiai < k. O

3.1.8. THEOREM. jiq(RE) # 0, that is, RE is not contained in any finite union
Uz 1 S[di] of success sets of a-martingales d;.

PROOF. Let d;...d; be g—martingales. For every d;, let f; satisfy Defini-
tion 3.1.1 (with d; instead of d). Without loss of generality we may assume that
for every i, d;(A) = 1 and

(Vs)(Yw)[fi(s, w0) + fi(s,wl) = 2]. (3.4)

Note that then for every w > A it holds that

|w|
d;
o) = o IR 40
n=1 ?
|w|

= Sli;roloni(s,wfn—i—l).
=1

Define df(w) = H ", fi(s,wln + 1). We will enumerate an r.e. set X such that
for every initial segment ¢ C X and every s and k we have Zle di(0) < k. This
guarantees that none of the d; grows to infinity on X. We will in fact require
that this holds for any o = X, the part of X constructed by stage s, at every
stage of the construction.

Stage s = 0. Set Xo = (). Note that S d;(X,[0) = 33, di(\) < k.

Stage s + 1. At this stage X, is given, containing only elements less than or
equal to s and such that Z;C:l d¢(Xslz) < k for every z < s+ 1. Without
loss of generality there is at most one x < s + 1 such that fi(s, Xslz + 1) #
fi(s +1,X Iz + 1). If there is no such z then do nothing, i.e. set X1 = X,
and proceed to the next stage.

Otherwise, if z < s+ 1 is such that f;(s, X,z + 1) # fi(s + 1, X [z + 1),
let 7; € {—1,1} and &; € QN [0,1] be the unique numbers such that 1 + 7;¢; =
fi(s+1,(X,[z)0). Note that by (3.4) we have that f;(s+1, (X [2)1) = 1—7¢;.

If z € X, then fi(s +1,Xslz+1) < fi(s, Xslz +1) so S35, a1 (X, 12') <
Zz 1 d§(X12") for every 2’ < s+ 1. Do nothing and proceed to the next stage.

If z & X; and

k
> dTH (X 2)0) = Y (1 + e di (X lz) > k
i=1 i
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enumerate z in X, that is, set X;11 = X;U{z}. By Lemma 3.1.7 we then again
have that Zi-c:l dz‘?+1 (Xsp1lz+1) = Zle(l —7;6;)d$(Xs1z) < k. This concludes
the construction of the r.e. set X = J, X;.

Since the sum of the martingales d;, ¢« < k, is bounded on X none of these

martingales succeeds on X, hence X is not an element of U?:l S|d;]. O

Although Theorem 3.1.8 shows that it is safe to use iy instead of pq on RE
we cannot use the closure of y, under effective unions. Namely, RE is contained
in a recursive infinite union of a-null sets: Consider first the following strategy
of covering the r.e. set We. Initially set f(w0) = 0 and f(wl) = 2 for every w.
When n is enumerated in W, redefine f(w0) = 0 and f(wl) = 2 for all w of
length n, and set f(v) =1 for all v of length smaller than n that have not yet
been redefined. This f defines an a—martingale d that succeeds on W, if W, is
infinite. Furthermore, the definition of d depends on e in a uniform way. That
is, there is a recursive sequence of a—martingales d. such that for each e, if W, is
infinite the martingale d. succeeds on W,. This shows that RE is contained in
a recursive infinite union of success sets of a—martingales, because there is also
an a-martingale that succeeds on all the finite sets.

3.2 WEAKLY COMPLETE SETS

3.2.1. DEFINITION. Let <, be a reducibility relation. An r.e. set A is weakly
r-complete for RE if fi,(S"ANRE) # 0.

3.2.2. THEOREM. There exists a weakly m-complete set in RE that is not btt-
complete (and hence not m-complete).

PROOF. We first prove the existence of an r.e. set A satisfying uq(S™A) # 0 that
is not m-complete. Fix an enumeration {d,} of all the (approximations of) a-
martingales and an enumeration of all partial recursive m-reductions f,,. (Note
that we can not recursively list all total reductions, but this will not harm us
since in the proof we diagonalize against every f, that is defined on sufficiently
large initial segments.) We construct r.e. sets A and B such that B £,, A, hence
A is not m-complete, and such that for every d,, the set

Ay, ={z: (z,n) € A}

is not in S[d,]. Since the sets A,, clearly m-reduce to A this last property
guarantees that for every a—martingale d there is a set m-below A on which d
does not succeed, hence A is weakly m-complete. In the construction of A and
B we satisfy the requirements

Rony1: (32)[B(z) # A(fn(2))]-
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Let us first look at the strategies for satisfying these requirements in isolation.
The even requirements can be satisfied as in the proof of Theorem 3.1.6 (i),
i.e. by always choosing the ‘minimal side’ of the martingale. For martingales
in @ this is an r.e. process. The odd requirements can be satisfied by choosing
a witness z € w. If during the construction we see at some stage that f,(z) ]
(fn is defined on z) we diagonalize as follows: If there exists z < z such that
fn(2)d= fn(z) then we define B(z) = 1 — B(z). This guarantees that f,, is not
an m-reduction from B to A and moreover leaves the A-side free, that is, we do
not have to make a commitment for A(f,(z)). Otherwise, if f,(z) = y, we set
B(z) =0 if y was already enumerated in A, and otherwise we set B(z) = 1 and
restrain y from being enumerated in A. Only in this very last case do we make a
commitment for A(y), namely, in order for the diagonalization to be successful
we are not allowed to enumerate y into A at a later stage of the construction.

Now these two strategies for satisfying the even and the odd requirements,
respectively, may be in conflict with each other. The witnesses for the odd
requirements are chosen from from different k-sections of w in order to separate
the actions for the odd requirements as much as possible. The even requirements
are already tolerant among each other because they refer to disjoint sections of A.
The idea for resolving the conflict between the Ry, and Ray,1 is the following.
If we enumerate y into A for the sake of Ry,,, thereby injuring Ra, 1, we give up
the old witness for R, 1 and pick a fresh one. But we do not injure Ry, 1 as
soon as Ry, wants to do this. We only do it when we gain enough by this action,
namely if the enumeration of y brings down the value of d,,, on A substantially.
We then argue that if Ra,11 is injured very often by some Ra,, it will finally
get an opportunity to be satisfied.

We give the R,, the natural priority ranking, i.e. R, has higher priority than
R, if and only if n < m.

Before we give the construction we define the following two notions. To
initialize Ron 1 at stage s means to give up its current witness z, ; and to
pick a fresh witness z,, ;11 € w™ that is bigger than any number used in the
construction so far. If Ry, 1 is initialized we say that the previous actions taken
for it are injured. The requirement Ra, 1 requires attention at stage s if for its
current witness z, s the value f,(z, ) is defined. In the construction we will
use numbers &, € QN [0,1] such that [[>° 1+, < oc and [[[251+ &, = 0
for every n. Fix any such recursive sequence (e.g. €, = 1/n?) and fix a recursive
sequence of k, € w such that (1 —&,)* < 1/2.

Stage s = 0. Set Ay =0, By = 0. Define z,, o = (0,n) for every n.

Stage s > 0. At stage s we consider all Ry, with 2m < s. In addition we
consider one odd requirement Roy,1, where n < s is minimal such that Rg,41
requires attention at s. (If n does not exist we consider only even requirements.)
Suppose that such n exists and that f,(z,s) =y € wlnl,

(a) If there is a z < x,, s such that f,(z) =y then define B(z,,) =1 — B(z).
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(b) If the number y was used before by some requirement Ro,/11 < Rap4+1 then
initialize Ro,t1. (This separates the actions for the odd requirements and will
make the proof easier.)

If neither (a) nor (b) holds do the following.

(c) If As(y) = 1 restrain z,, ; from B during the rest of the construction, thereby
satisfying Ropy1.

(d) If As(y) = 0 and n < m we diagonalize by enumerating z, , into B, i.e. we
set Bs(zn,s) = 1, and we say that y is restrained (indicating that we would like
to keep y out of A during the rest of the construction).

(e) If As(y) =0 and m < n we guess that we will never have to put y into A so
we put =, ; into By, and again we restrain y.

So far for the action taken at s for the odd requirements. We now describe the
action for the even requirements. For every Rs,, with 2m < s:

(f) If (z,m) < s is unrestrained define A,,(z) =1 if and only if

dm (07)

——>1
dm (wal) >

i.e. A;({z,m)) = 1 if and only if the approximation to dy,(0%)/d,(0*~1), after
running s steps, is bigger than 1.

(g) If (z,m) < s is restrained by Ra, 1 (there can be at most one odd require-
ment restraining (z,m), since if there were two the one of lower priority would
be initialized by (b)), 2m < 2n+1, and Ra, 1 was initialized not more than &,
times by Ray, then enumerate (z,m) into A if and only if

dm (07)

—>1 n-
dm(O“*1)> + €

In case (x,m) is enumerated into A initialize Rg,41. If Ro,y1 was initialized by
Ry, more than k,, times we keep (z,m) out of A.

(h) If (z,m) < s is restrained by Ra,+1 and 2n+ 1 < 2m we do nothing, i.e. we
keep (z,m) out of A.

This ends the description of the construction. The theorem follows from the
following two lemma’s.

LEMMA 1 Fach Rgy,11 requires attention only finitely often and is eventually
satisfied.

PrOOF. By induction assume that all Ra, 11 < Ropy1 are satisfied by the
end of stage s. If f,, is not total then Ra,,1 is vacuously satisfied, so assume
that f, is total. If f, is not injective then it is not an m-reduction from B
to A by step (a). So assume in addition that f, is 1-1. Suppose that Rop1
is initialized only finitely often. This means that at the last stage ¢t at which
R3y, 41 was initialized a witness z,; was chosen such that the diagonalization
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Bi(znt) # At(fn(znt)) was never injured later. Hence in this case Ronpyq is
satisfied. It remains to show that Ro,11 cannot be initialized infinitely often.
Suppose for a contradiction that Rg,41 is initialized infinitely often. This can
only happen because of the actions taken for the requirements Ry, < Rg,41 or
because of step (b). But because f, is 1-1 the latter can happen only finitely
often. It follows that there must be at least one Ra,, < Ra,4+1 that initializes
Roy, 41 infinitely often. But this is impossible by (g). Lemma 1 0O

LEMMA 2 Fach Ra,, is satisfied.

PrOOF. Fix m. By steps (f), (g), and (h) of the construction, A,, diagonal-
izes against d,, directly, unless a restrained (z,m) is encountered. If (z,m)
is restrained by Ra,t1 < Ram then Ray,, is not allowed to enumerate (z,m)
into A by step (h). However, there are only finitely many odd requirements of
priority higher than Rs,,, and since these act only finitely often by Lemma 1
they can increase the value of d,, on A,, by only a constant. If (z,m) is re-
strained by Ra,y1 with 2m < 2n + 1 then Rs,, may only enumerate (z,m) if
4, (0%)/dn (0571) > 1 + ¢, and Ra,;1 was not initialized by Ry, more than k,
times. If Ry, indeed initializes Roy 1 k, times and wants to enumerate (z,m)
restrained by Rg,41 it may not do so, so d,, might double its value on = & A,,.
However, Rgy,y1 is initialized k, times, at the stages s1,...sy, say, so for z;
with (z;,m) = fn(n,s;) it holds that d,,(0%)/d,, (0% 1) > 1 + &,, so on these
points d,,, is diminished by at least (1 — ¢,,)* < 1/2, which is small enough to
compensate for the possible doubling of d,;, on .
If there are infinitely many Rg,4+1 with 2m < 2n 4+ 1 such that Rg,41 re-
strains some (z,m) that is never enumerated into A then d,, can gain at most
II,2o 1+ en, which is a finite amount.
Summarizing, Re,, lets A,, diagonalize against d,,, and is frustrated in this ac-
tion by the higher priority odd requirements only finitely often, and if it is in
conflict with some lower priority requirement it does not immediately injure it
but waits until there is some compensation for the injury, so that after finitely
many injuries to the same lower priority requirement this gets a chance to be
satisfied by ‘injuring’ the higher priority requirement, which is not really injured
because of the compensation that was built up in the previous stages.

Lemma 2 O

This concludes the proof of the existence of r.e. sets A with ug(S™A) # 0
that are not m-complete. We now indicate the modifications one can make
to the construction above to obtain a weakly m-complete r.e. set that is not
btt-complete. We have to improve on two things. Firstly, we have to use i
rather than p,. This can be taken care of using Lemma 3.1.7, just as in the
proof of Theorem 3.1.8. The strategy for the n-th row of A is now, instead of
diagonalizing against one martingale, to keep the sum of a finite number of a-
martingales bounded. Apart from some horrible changes in notation the proof
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does not change essentially. Secondly, we have to make A btt-incomplete rather
than just m-incomplete. This we can do by changing the numbers k,, used in
the proof above. If we are diagonalizing against a btt-reduction using ¢ queries,
then we need compensation for a potential loss of (1/2)¢ rather than just 1/2
as above. So if Ra,41 diagonalizes against c-tt-reduction f, then we define k,
such that (1 —e,)* < (1/2)°. This concludes the proof of Theorem 3.2.2. [

Theorem 3.2.2 is optimal in the sense that there does not exist a weakly m-
complete set that is not tt-complete, as we prove in Theorem 3.4.4.

Theorem 3.2.2 shows that there exist r.e. sets that are weakly m-complete
but not btt-complete. The next theorem shows that the two notions are incom-
parable. We first prove a lemma that will be useful later.

3.2.3. LEMMA. Define the intervals I, = [5™,5™t1). Suppose that for the class
A and r.e. set M it holds that

2
(VA € A)(3*°m)[AN T, and M N I, differ on at least §|Im| points|.

Then pq(A) = 0.

PrOOF. If A differs from M on I, on at least %‘Im| points then A differs from M
on the initial segment [0, 5™ ") on at least 2(5™F? —5™) = $5™ > $5™*! points.
So if A is as in the lemma then A satisfies the condition of Lemma 3.1.5. O

3.2.4. THEOREM. There exists an r.e. set that is bit-complete but not weakly
m-complete.

PROOF. Fix the intervals I = [5{»®) 5{%2)+1) Let {f,}ncw be an enumeration
of all partial m-reductions. We use a finite injury construction to build r.e. sets
A and M such that

re K & {<$50>a <ma 1)5 <Ia 2>} nA 7’é (Z)
and such that all the requirements

R, : fntotal = 3%°z[f, }(A)NI? and M NI
differ on at least %|I£| points]

are satisfied. The first condition guarantees that A is 3-tt-complete, and the
requirements guarantee that there exist a martingale in a that succeeds on <™ A
by Lemma 3.2.3. We split the requirements R,, into

Ringzy: fn total = Jy > z(||(f., 1(A) NL)A MO > %|I;|)

To initialize Ry, ) at stage s means to pick y; > z such that Ij; was not yet
used in the construction. The requirement Ry, .y is satisfied at stage s if at
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some previous stage action was taken for R, ;) and R, .y was not initialized
later. We now describe the construction for A and M.

Stage s = 0. Set Ag = My = (. Assign to every R, 2y some yo > z, say
Yo = <n, :E)

Stage s+ 1. Choose the highest priority requirement R, ;) (i.e. the one with the
lowest index (n,z)) that is not satisfied at s and such that for the y, assigned
to R, . at a previous stage fy, [5(ms)+1 is defined. Initialize all lower priority
requirements. Say that z € w is relevant if f,(u) = (z,4) for some 7 < 2 and
u € I, or if z was already relevant at a previous stage. For z relevant not in use
for any higher priority requirement choose 7 < 2 such that the set of pre-images
it ({(z,4)) NIy ={u €I} : fu(u) = (2,1)} is minimal in size. We use this (z, 1)
for coding K, that is, we enumerate (z,7) into A; if and only if z € K; — K;_1,
and in this case we initialize all lower priority requirements at stage ¢. Define
M on I as follows. If f,(u) = v, enumerate u € I} into M if and only if
As(v) = 0. This ends the description of the construction.

To see that K <p; A it suffices to observe that every z € w is declared to be
relevant at some stage of the construction (because there exists an m-reduction
[n such that whenever R, , is initialized and Iy is assigned to fn, fn con-
verges on I,/ to the smallest z that was not yet relevant), and hence that one
of {(z,0), (z,1),(z,2)} is enumerated into A as soon as z is enumerated into K.
Since this is the only way that elements may enter A, {(z,0),(z,1),(z,2)} N A
is empty if z &€ K.

We now prove by induction that R, . is satisfied. Suppose that all higher prior-
ity requirements R,;, < Ry, . are satisfied at all stages ¢t > s. Suppose that f, is
total (otherwise Ry, 2 is trivially satisfied) and that Ry, ) is not yet satisfied at
s. Let t > s be the first stage such that K;(z) = K(z) for all the relevant z that
are in use for the requirements Ry, < R, ;) and such that f, (I;Lt) is defined, I,
the interval assigned to R, ,y at stage t. Then R, , is never initialized after ¢,
because this could only happen if either some higher priority requirement acted,
which by assumption none of them does, or if some relevant z in use by a higher
priority requirement is enumerated in K. Now M; differs from f,!(A;) on all
the elements of I,;,. This can only change later if some z is enumerated into K,
for a relevant z that is in use by Ry, ) at stage ¢. But (z,1) is enumerated in
A for i < 2 only if ||f;1((z,4))| is minimal among || £, 1({(z, O)|, £ 1({z, 1),
and ||f1({2,2))]]. Tt follows that if {21,...,2;} is the set of numbers relevant
for Ry, .y at t (so k < |I,]), and if (zj,4;) are enumerated into A after stage
t, then || U§:1 o {75,450 < %|I;t| Hence M differs from f;1(A) on at least
2/3-rd of the elements of I;, and Ry, ;) is satisfied at all stages t' > 1. O
Note that Theorem 3.2.4 improves on the known result that there is a btt-
complete set that is not m-complete (Young [81]). Likewise, the next theorem
improves on the result of Post [68] that there is a tt-complete set that is not
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btt-complete.

3.2.5. THEOREM. There ezists an r.e. set that is tt-complete but not weakly
btt-complete.

PROOF (SKETCH). The proof is actually the same as that of Theorem 3.2.4, ex-
cept for some minor changes which we now describe. Instead of coding z € K on
one of the three elements (z,0), (z,1), (z,2), when dealing with a c-tt-reduction
we now want to code z on one of (z,4), i < 3c. One obtains the simplest con-
struction when for every z € K, one codes z on one of the numbers (z,1i), 7 < z.
For a relevant z we pick i such that {u € I}} : (2,i) is in the query set of f,(u)}
is minimal in size. The rest of the argument remains virtually unchanged. O

We summarize the content of Theorems 3.2.2, 3.2.4, and 3.2.5 in the following
diagram. ‘w-r’ stands for ‘weakly r-complete’, and no other implications hold
than the ones indicated. The implication w-btt — tt will be proved in Section 3.4.

m

btt — w-btt —

NS

3.3 ON THE STRUCTURAL DIFFERENCE BETWEEN COM-
PLETE AND INCOMPLETE R.E. SETS

It is a natural question to ask how much the characteristic sequence of an in-
complete set can look like that of a complete set. On how many bits should the
incomplete set differ from the complete set in order to stay incomplete? As we
will see this depends very much on the completeness notion under consideration.
First we make precise what we mean by “A resembles M”. Define the function
Res : 2¥ x 2¥ — [0,1] by

Res(A, M) = lim inf IS A0 = MO

n— o0 n

So Res takes real values from [0,1], and the higher Res(A, M), the more A
resembles M. Lynch [56] proved that for some Gddel numberings ¢ the halt-
ing set Ky becomes very easy: There exist ¢ and a recursive set A such that
Res(A, Ky) = 1. She also showed that there is an m-complete set C such that for
all recursive sets A it holds that Res(A,C) = 0 (which we improved from REC
to IT; in Lemma 3.1.4), and used this to show that there is a Gdel numbering
¢ such that Res(A,K,) = 0 for any recursive A. Furthermore, she showed that
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for any recursive real r € [0, 1] there is a Godel numbering ¢ such that there is
a recursive set A with Res(A, Ky) = r and that no recursive set can do better.

In this section we consider sets that are incomplete with respect to the
various reducibilities, rather than just the recursive sets. As everywhere in this
thesis, the results in this section are independent of the Gédel numbering chosen.

3.3.1. THEOREM. For every bitt-complete r.e. set M there exists an r.e. set
A <pyt M such that Res(A, M) = 1.

PROOF. Let M be a btt-complete r.e. set. We imitate Posts original construction
of a simple set. Let Q = {e? : e € w}. Define the partial recursive function v
by letting 1(e) be the first element enumerated into W, that is bigger than
4e?. Clearly A = (M — Q) Urng(¢) is an r.e. set that intersects every infinite
r.e. set W,. Furthermore, since below n at most %\/ﬁ elements of rng(¢y) are
enumerated into A and | M — QN[0,n]|| > v/n, the complement of A is infinite,
and we have for every n

i < nsAl) =M@Y, n=3va—va

n

Hence A satisfies Res(A,M) = 1, and A is simple, and therefore not btt-
complete (Post [68]). O

So for m- and btt-reducibility an incomplete set can look very much like a
complete set. The next theorem shows that we cannot have Theorem 3.3.1 for
tt-reducibility.

3.3.2. THEOREM. There exists an m-complete r.e. set M such that for any set
A satisfying Res(A, M) > % it holds that M <y A.

PROOF. Inductively define a recursive series of disjoint successive intervals I,
such that |J, I =w and |I| > e- )
M by

i<e |Ii|- Now define the m-complete r.e. set

(Vz € L)[M(z) = K(e)].

If A is a set that satisfies the condition of the theorem then there exists € > 0 such
that Res(A, M) > 3 +e. Then A disagrees with M on at most (3 —¢) >, |1

points of |J;, i, so in particular A disagrees with M on at most (3 —¢) >, | L]

points of I.. Let ep be so large that for all e > ep it holds that e > (21—5 —1).
Then we have that for all e > ey,

1
1> e 31> (o =) Y 1T

i<e i<e
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By multiplying with ¢ and adding (% —¢)|I.| we obtain

1 1
SHel > (5 =€) Y Il.

i<e

It follows that A disagrees with M on less than 3|I.| points of I, hence we can
decide ‘e € K’ by asking about the majority of the values A(z), for z € I.. This
constitutes a tt-reduction from K to A. O

As a corollary to the proof of Theorem 3.4.1 in the next section we have the
following result.

3.3.3. THEOREM. There exists an m-complete r.e. set M such that for all r.e.
sets A with A <y M it holds that Res(A, M) = 0.

So for the complete set M from Theorem 3.3.3, no T-incomplete set can resemble
M even a little bit.

3.4 'THE WEAK COMPLETENESS NOTIONS FOR THE WEAK
REDUCIBILITIES

In this section we prove the coincidence of the weak completeness notions with

the ordinary completeness notions for the weak reducibilities T, wtt, and tt. We
actually prove that the set of incomplete r.e. sets is of measure zero in RE.

3.4.1. THEOREM. (i) pa({A: (3B r.e. not T-complete)|A <r B]}) = 0.

(ii) pa({A: 3B r.e. not wit-complete (A <y B)}) = 0.

PROOF. For a proof of (i) fix the intervals I,, = [3",3"*! — 1]. We define an r.e.
set M in such a way that for every e,d € w,

(1) {d}"e not total
or

(2) (me)[{d}We N I(e,d,m) =Mn I(e,d,w)]
or

3) K <p W..
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The theorem then follows from Lemma 3.1.5. We define M on I, 4, as follows.
As long as = € K, or {d}"=+ is not defined on all of Iie,q.0) We let M be empty

on Ii. q.). If a stage s is found such that z € K and {d}ZVe’S fI(e,d,@ J then we
define M on I, 4, to be the complement of {d}Wes. We now verify that for
every e and d one of (1), (2), or (3) holds. Suppose {d}"* is total.

First assume that for infinitely many = € K, if s is the least stage such
that z € K, and {d}ZVe,s fI<e,d,z> J, and v is the use of this computation, then
Weslu = Welu. Then M on Ii 4,y is the complement of {d}s “* = {d}""* so
(2) is satisfied.

In the complementary case, for almost every x € K it holds that if s is the
least stage such that z € K and {d}fVe’s ”(e,d,m) | with use u then W, lu #
Welu. We then can reduce K to W, as follows. Given z, by totality of {d}"e
there exists an s such that {d}}:ve’s fI(e,d,@ J, with use u say. With oracle W,
compute ¢ > s such that W, ; lu = W,lu. Then =z € K if and only if z € K,: If
z enters K at stage t/, then by assumption W, y lu # W,lu, hence t' < t. This
procedure works for almost every z, so K <p W,.

The proof of item (ii) is very similar to the proof just given, so we describe
only the essential changes. Instead of considering all reductions {d}"¢ we now
consider pairs ({d}"<, ¢.) consisting of a (possible) Turing-reduction and a po-
tential recursive bound on its use function. The analogues of (1) and (3) above
are

(1) ({d}"=, ) is not a wtt-reduction
(31) K Swtt We-

As soon as we find that ¢, is not such a bound we discard the pair. Now
the proof proceeds along the same lines as above, but now, if we are dealing
with a true wtt-reduction, if W, changes below the use u and the computation
{d}We ”(e,d,c,m) becomes defined again later, the use u of this new computation
is the same as the old one. Hence, in order to decide K as above, we only have
to query W, on elements below ¢.(z). That is, if for almost every z € K, if =
enters K at stage s then W, g loe(x) # Welpe(z). So K <yis We. (This is called
‘Yates permitting’, see Soare [72, V.3]. The element z is only allowed to enter
K if the set W, permits it by changing below ¢.(z) later.) O

3.4.2. COROLLARY. For any r.e. set A,
(i) either po(STA) =0 or K <7 A,
(ii) either pa(S*tA) =0 or K <yyu A.

PROOF. Immediate from the theorem. O
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3.4.3. COROLLARY. For any r.e. set A,
(i) A is weakly T-complete < A is T-complete,

(ii) A is weakly wtt-complete < A is wit-complete,

PROOF. The implications from right to left follow from Theorem 3.1.6 (i).
For the reverse implications, if r € {wtt, T} and A is not r-complete, then by
Corollary 3.4.2 the r-lower cone of A has a—measure zero, so in particular the
r-lower cone intersected with RE has a—measure zero. Hence A is not weakly
r-complete. O

3.4.4. THEOREM. [iq({W, : W, not tt-complete }) = 0. Hence every r.e. set is
weakly tt-complete if and only if it is tt-complete.

PROOF. Fix the intervals I¢ = [5{&) 5(¢m+1) We define two a-martingales dy
and d; such that {W, : W, not tt-complete} C S[dp]| U S[d;]. Define the r.e. set
My by

négK = MoﬂI;:(b
neK = MynI;=1I;.

and define the r.e. set M; by

MlﬂIf;:

0 if [Wen I3l <1/3-|I5]
WesNIS for s minimal such that [|[W,,NI5|| > 1/3-|I5].

Define the corresponding martingales (i € {0,1})

B 1/2 - di(w) if [w| & M;
di(w0) = { 3/2-di(w) if lw| € M;
di(wl) = 2d;(w) — di(w0).

As before we have that d; € a. We now distinguish the following cases.

(a) 3°n(1/3 || < [IW. N IZ]| < 2/3 - |I2).

In this case M; differs from W, on IS on more than 2/3-rd of the elements, for
infinitely many n. Hence d; succeeds on W, by (the proof of) Lemma 3.2.3.
(b) Veon([We N IE[| < 1/3- |I5| V [We N IT]| > 2/3 - |I7)).

In this case W, satisfies either

(b1) Fn((n & K AW, 0I5 > 2/3-[TS) V (n € K A [W, AT < 1/3-|15))
or

(b2) Von((n ¢ K = [W.NI2l| < 2/3- [IE) An € K = W IEl| > 1/3-|I2).
In case (b1) the martingale dy succeeds on W,. By (b) the case (b2) is equivalent
to
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(b2') von((n & K = |[WeNIg|| < 1/3-[I7)A(n € K = [[WeNI|| = 2/3-|I7])).

In this case we have that K <y W, via a finite variant of the tt-reduction
neK & |WenIZ|| >2/3-|IF)| 0

Combining the results of this section with those of Section 3.2 we get the
following complete picture of the completeness notions:

m = it Y= H = wit ~——= T
w-m ——— -btt ——— w-it w-wtt w-T

For proofs of the strictness of the implications in the first row we refer to

Odifreddi [64, p341].

3.5 CobpING

There are several theorems on the measure of upper cones of sets. (We will dis-
cuss this topic in Section 6.1.) For example, for every set not in P the p-m-upper
cone of this set has Lebesgue measure zero (Ambos-Spies), and for every nonre-
cursive set in Ay the Turing-upper cone has Ay—measure zero (Theorem 6.2.1).
The corresponding fact for a—measure in RE is not true: For every a—martingale
we can code a set in the upper cone of a given set on which the martingale does
not succeed.

3.5.1. THEOREM. For every r.e. set C and every a—martingale d, there ezists
an r.e. set A such that C <,, A (even C <; A) and A & S[d].

PROOF. Define the set

_d(0™*)
V={zecw: (0 > 1}.

Note that V is r.e. We consider four cases. In each of these cases we will argue
that there exists an infinite recursive set X such that, if we diagonalize outside
of X with A against d, like in Theorem 3.1.6 (i), we can safely code C on X,
ie. if X = {zg <21 < ...} thenn € C & z, € A. Note that this gives a
one-one-reduction from C to A.

Case I. The set V is infinite and [ [,y dgzmT:)l) = 00. In this case V contains an
infinite recursive subset X as described above: We can wait for the recursive
approximation to dgzmT:)l) from below to grow bigger than 1, and since the ap-
proximation is monotone we have a secure lower bound on its value. Since we
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are in Case I we know that this event occurs infinitely often and, moreover, that
the product of the betting values becomes arbitrarily large, so we can diagonal-
ize against d until its value is certainly below 1/2 (and maybe smaller when we
approximate better), so that we can safely code a bit from C. In the worst case
d doubles its value on this particular bit, but since its value was guaranteed to
be smaller than 1/2 it is still bounded by 1.

Case II. The set V is infinite and Hmev ﬂd%l < oco. In this case we can let X

be any infinite recursive subset of V.

Case III. The set V is finite and

d(Ow—i—l) 1
Vn)(3 V[——>1— =]
(v) (G ¢ V) [~ > 1= 23]
In this case we recursively choose an increasing sequence z,, such that for every
n this z, satisfies the formula, and we let X consist of all these z,. Since
[Tnew (14 1/n?) is finite we can use X for coding without any danger of letting
d grow to infinity on X.
Case IV. The set V is finite and
d(0®t1) 1
In)Ve g V)[——— <1— —].
This case is similar to Case I. In this case we know with certainty that if we use
z for diagonalizing against d that we win at least 1 + #, for some fixed n. So
if (1— n—lz)m < 1/2 then we can just let X be equal to {mz : z € w}. O

It follows from Theorem 3.5.1 that a Small Span Theorem, like the one for
btt-reducibility in E or for Turing-reducibility in As, fails for m-reducibility
in RE (and hence also fails for all the weaker reducibilities). Namely, by Theo-
rem 3.2.2, take any weakly m-complete set that is not m-complete. By definition
of weak completeness this set has an m-lower cone of non-zero measure, and by
Theorem 3.5.1 the same holds for its upper cone.

Recall that an r.e. set is simple if it has infinite complement and intersects
every r.e. set. At this point we cannot prove that the simple sets do not have
[Jq—measure zero, but we can prove that this holds for the class consisting of all
simple sets plus all finite sets:

3.5.2. THEOREM. For each martingale d € a there exists a simple set S and a
finite set D such that S ¢ S[d] or D ¢ S[d]. In fact, the class of all simple sets
plus all finite sets is not of g—measure zero.

PROOF (SKETCH). We first sketch the proof that no a—martingale succeeds
simultaneously on all simple sets and all finite sets. Suppose that d € a succeeds
on every finite set. Recall that with an r.e. set we can diagonalize against a
a—martingale (as in the proof of Theorem 3.1.6(i)). The following observations
are sufficient for the proof.
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(i) For any initial segment w, we can make the value of d arbitrarily high by
appending to w sufficiently many zeros.

(ii) Under (i), we can see when we have appended enough zeros, by the using
the recursive approximation of d (cf. Definition 3.1.1(i)).

Now the strategy for constructing A simple with A ¢ S[d] is the following. If W,
appears to be infinite and we want to enumerate an element z € W, into A, the
martingale d may grow on A because it bets on z. By (i) and (ii) above, we can
compensate this by ‘waiting’ long enough, that is, by appending a large interval
of zeros I to the finite part of A constructed so far, until we see that d has grown
big on I, and subsequently by diagonalizing against d on the interval I. The
large gain that d has on I is thus turned into a big loss for d on I, compensating
for the possible gain of d on z. A moment of thought will convince the reader
that (i) and (ii) give us enough control to make A simple and simultaneously
keep the value of d on A bounded by 2d(\).

Virtually the same proof gives the improvement of y,—measure to fig—mea-
sure. O

Finally we note that the e-generic sets of Jockusch [28] have a—measure zero:
If A is e-generic, or even just weakly e-generic, then

3°n(AN [n,n?] = [n,n?),

so the martingale d; that always bets 3/2 of its capital on the 1-side succeeds
on A.






CHAPTER 4

ARITHMETICAL MEASURE

In this chapter we develop arithmetical measure theory along the lines of Lutz
[50]. This yields the same notion of “measure 0 set” as considered before by
Martin-Lof, Schnorr, and others. We prove that the class of sets constructible
by r.e.-constructors, a direct analogue of the classes Lutz devised his resource
bounded measures for in [50], is not equal to RE, the class of r.e. sets, and we
locate this class exactly in terms of the common recursion-theoretic reducibilities
below K. We note that the class of sets that bounded truth-table reduce to K
has r.e.-measure 0, and show that this cannot be improved to “truth-table.”
For As-measure the borderline between measure zero and measure nonzero lies
between weak truth-table reducibility and Turing reducibility to K. It follows
that there exists a Martin-Lof random set that is tt-reducible to K, and that no
such set is btt-reducible to K.

4.1 R.E.-MEASURE

4.1.1. DEFINITION. Let A be a countable set recursively isomorphic to w. Let
B be a countable set totally ordered by <p such that (B,<p) is recursively
isomorphic to (w,<). A function f : A — B is recursively enumerable (r.e.)!
if the set {(z,y) : y <p f(z)} is an r.e. set. Similarly, f is co-r.e. or Iy if

{(z,y) : f(z) <py}isre.

In Chapter 1 (page 12) we defined the class of martingales all. Define the class
of martingales

re.={f€all: fisr.e}.

'R.e.-functions have also been called enumerable, semi-computable (not to be confused with
the notion of semi-recursiveness), and limitwise monotonic.

61
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Throughout this chapter, the standard notion of a recursively enumerable func-
tion will play an important role. Note that a function f is r.e. if and only if
there exists a recursive approximation fs such that for all z, fs(z) < fsy1(x)
and (3s)(Vt > s)[fi(z) = f(z)]. We will often make use of this last fact, namely
that the recursive approximation f; actually attains its limit. Clearly a function
which is both r.e. and co-1.e. is recursive. As before, the class of (total) recursive
functions is denoted by rec.
We will make use of the following characterization of <j.

4.1.2. LEMMA. (Carstens [18]) For every A € 2¥, A <y K if and only if there
exist recursive functions g and h such that for every x € w, lim, g(s,z) = A(x)

with [{s : g(s,z) # g(s + 1,z)}| < h(zx).

For r € {m,btt, tt,wtt, T}, <* A denotes the class of sets that are r-reducible to
the set A.

Yin, I, and A, denote the classes from Kleene’s arithmetical hierarchy.
They are also used to denote the corresponding function classes, defined in
Section 4.4.

Recall that a supermartingale is a function d : 2<% — RT with the property

d(w0) + d(wl) < 2d(w)

for every w € 2<%. Functions with this property are called supermartingales, as
opposed to martingales which have the property d(w0) + d(wl) = 2d(w). Lutz
[50, p239] remarks that for the classes that he considers it makes no difference
whether one uses supermartingales or martingales. In our setting it will make a
huge difference. We will consider supermartingales which are (approximable by)
r.e.-functions, and one can easily check that r.e.-martingales with the property
d(w0) + d(wl) = 2d(w) are always recursive in the value d()). The difference is
then clear from Corollary 4.3.2.

4.1.3. DEFINITION. A supermartingale d is an r.e.-supermartingale if there is
an r.e.-function d : w x 2<* — Q% such that

(Vk € w)(Vw € 2<9)[|d(w) — d(k,w)| < 27F].
The function d is called an . e.-computation of d.

Now a class A has r.e.-measure zero, denoted p, . (A) = 0, if there exists an
r.e.-supermartingale that succeeds on A. A has r.e.-measure one if A= {X :
X ¢ A} has r.e.-measure zero.

The following lemma is proved in exactly the same way as Proposition 1.5.5

(iii).
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4.1.4. LEMMA. Let d be an r.e.-supermartingale. Then there is a supermartin-
gale d : 2<% — QT which is r.e. such that S[d] D S[d].

Having defined r.e.-measure using the approach of Lutz [50] we now prove
that this yields the same notion of measure as considered before by Martin-Lof,
Schnorr, and others. The proof is a simple extension of the work of Schnorr [73].

4.1.5. DEFINITION. (Martin-Lof [59], Kautz [34]) A class A of Lebesgue mea-
sure 0 is 2 -approzimable if there is a recursive sequence of X¢-classes {Si}ticw
with 4(S;) < 27% and A C (), Si. A set A is n-random if {A} is not -
approximable. The 1-random sets are also called Martin-Lof random. A se-
quence of classes S; as above is called a sequential test.

Schnorr [73, Satz 5.3] calls a martingale g subcomputable (“subberechen-
bar”) if it has a recursive approximation g, satisfying gs(w) < gs+1(w) for every
s € wand w € 2<% and such that lim gs(w) = g(w). Note that in this def-
inition it is not required that there is an s € w such that gs(w) = g(w). The
equivalence of items (i) and (ii) in the next theorem was proved by Schnorr 73,
Satz 5.3]

4.1.6. THEOREM. For a class A C 2%, the following statements are equivalent.
(i) A is Xq-approzimable,
(ii) there is a subcomputable martingale that succeeds on A,

(i) o0, (4) = 0.

PROOF. (i)=(ii). Suppose that {S;}ic. is a sequential test. Without loss of
generality we may assume that the S; are prefix-free. For every w € 2<% define
the martingale
olwi—lzlif 5 Cw
fw(lz) =¢ 1 fwCz
0 otherwise.

Define the martingale Fs,(z) = ), s, fw(z), and note that Fgs, is subcom-
putable since S; is r.e. Finally, define the martingale F(z) =Y, Fs;(z). F'is
again subcomputable because all the Fs, are, and because the S; are prefix-free
we have F(z) < Y, u(S;) < Y5;27¢ < co. Clearly, if A is in infinitely many S;
then F' succeeds on A.

(ii)=(iii). Given a subcomputable martingale g with recursive approximation
gs, we define an r.e.-supermartingale d with S[d] D S[g] as follows. Define d
through a recursive approximation ds: For every w € 2<%, dy(w) = 0, and
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if gor1(w) > dg(w) — 27171 then put dyi1(w) = gog1(w) +27I, and put
ds11(w) = ds(w) otherwise. It is immediate from the definition of d, that
(Vw € 2<¢)(3s)(Vt > 3)[ds(w) = ds(w)],
hence dg(w) reaches a limit d(w) after a finite number of steps. It holds for
every w € 2<% that g(w) +2 "1 < d(w) < g(w) 42~ I, hence it follows from
the martingale property of g that
d(w0) +d(wl) < g(w0) + g(wl) +2 -2 (wH+D)

= 2(g(w) +27 1Y)

< 2d(w),
whence d is indeed an r.e.-supermartingale.
(iii)=(i). Suppose that p, . (A) = 0. By Lemma 4.1.4 we may assume that
there is an r.e.-function d that is a martingale and that succeeds on A. Define
Si ={z:d(z) > 2’“}. Then x(S;) < 27% by Lemma 1.3.4, and S; is clearly r.e.,
s0 {Si}icw is a sequential test. Moreover, if A € S[d] then for every i there is
an z such that Alz € S;. O

4.1.7. COROLLARY. A class A has r.e.-measure 0 if and only if A does not
contain a Martin-Lof random set.

PROOF. From the existence of a universal Martin-Lof-test (Martin-Lof [59], see
Theorem 5.1.3) it follows that

tro ({A €2 : A is Martin-Lof random}) = 1.

Note that this is stronger than merely saying that the class of Martin-Lof random
sets has Lebesgue measure 1 (Schnorr [73, Korollar 4.7]). Hence if A contains no
Martin-Lof random set then p, ., (A) = 0. The converse is true by the definition
of Martin-Lof random set. O

In particular, we can use all the known facts about Martin-Lof randomness in
the study of r.e.-measure.

4.2 THE cLASS R(r.e.)

Recall the definition of R(A) from Definition 1.5.3. Lutz [50] observed that
R(rec) = REC

Hrec (REC) # 0.

R(r.e.) is the set of all R(d) for r.e. §, the results of constructors § : 2<¥ —
2<% for which the set {(z,y) : y < 6(z)} is r.e., where < denotes the usual
lexicographic ordering on 2<%,
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4.2.1. DEFINITION. We say that A € 2% is right-limit of the infinite set of initial
segments X C 2<% if (Vo € X)[o < Al|o|] and (Vn)(Im > n)[Alm € X].

We say that o € 2<% is right-limit of the (possibly infinite) set of initial segments
X C2<¥if (Vr € X)[r C oV In(rIn < oln)].

It will be useful to have the following characterization. R(r.e.) is the class
of sets that are right-limits of r.e. sets of initial segments in 2<“. Equivalently,
A € R(r.e.) if and only if there is a recursive function ¢ : w X w — {0,1} such
that limy, ¢(k,n) = A(n), and for every k,n € w, ¢(k)In < ¢(k + 1)In and

(Vm < n)[p(k,m) = A(m)] A p(k,n) =1= A(n) =1 (4.1)

(if A is the right-limit of an r.e. set X C 2<% with recursive enumeration
{X;s}sew, we get ¢ as in (4.1) by putting ¢(k,n) = 7x(n), where 7, is the right-
limit of Xj).

From this characterization it follows immediately that RE C R(r.e.) C A,
(the second inclusion follows from the Limit Lemma [72, I11.3.3]). In the next
theorem we locate the class R(r.e.) more precisely. We denote by DRE the class
of differences W, — W, of r.e. sets (the d.r.e. sets, see [72, p57]). This is precisely
the class of sets with a recursive approximation that changes at most two times
for every argument (starting with 0).

4.2.2. THEOREM. The inclusions RE C R(r.e.) C <*K are both proper. Fur-
thermore, R(r.e.) € <K and DRE ¢ R(r.e.).

DRE C <out |
¢ <
RE SttK
< G
R(r.e.)

PROOF. Note that indeed we have the inclusion R(r.e.) C <# K by the character-
ization in Lemma 4.1.2, where we can take h(z) = 2”. That the two inclusions
RE C R(r.e.) C S#K are both proper will follow from R(r.e.) ¢ <t#K and
DRE ¢ R(r.e.), since RE C DRE ¢ Stu K C StK.

One can prove R(r.e.) € <K directly by a diagonalization construction,
but the result will also follow from Theorem 4.3.1 (iii). So we do not give a
proof here.

That DRE Z R(r.e.) follows from results in [72] that require a finite injury
argument, but it can also be proved directly, as we show now. To prove that



66 Chapter 4. Arithmetical Measure

DRE ¢ R(r.e.) we use a finite injury argument to construct a d.r.e. set A such
that for every e the requirement

R.: If p. : wxw — {0,1} is a recursive approximation of A
satisfying ¢(k)In < ¢(k+1)In for every k,n € w, then
there is an n such that condition (4.1) is not satisfied.

is satisfied. We define A as a limit of recursive sets A;, such that |{s: A;(z) #
As+1(z)}| < 2 for every z € w. For every requirement R, we will have a witness
z. satisfying it, i.e., z. is such that if (3k)(Vn < z)[p.(k,n) J= A(n)] and
ek, ze) | then A(ze) = 1 — @e(k,z.). We give the requirements a priority
ranking: R, has higher priority than Ry if e < d. A requirement Ry is injured
by a higher priority requirement R, at a given stage s if action is taken to satisfy
R, at s. Since this may cause us to undertake action several times to satisfy R,
we may have to choose several witnesses to satisfy it. So we will have witnesses
z; for R, for every stage s. Since it is crucial that the witnesses z; for R, are
not used for any other requirement, we reserve the e-th section wl® for R.. As
is typical for finite injury arguments, we will only have to pick a new witness a
finite number of times, and will be able to satisfy Ry for ever after. R, requires
attention at stage s if

(v < )(Yn < 2)[pe(t,n) b€ {0,1}], (4.2)
(V < )[ers ()1 (2 + 1) < peolt + 1) (2 +1)], and (4.3)
(Vn < &2)[pe,s(s,m) b= A, ()] (4.4)

So R, requires attention at stage s if at s all the computations . (¢,n), with
t < sand n < z{, have converged and show that ¢, up to stage s is a monotonic
approximation of Alz% 4 1, as in (4.1). Define Ay = () and z¥ = (0,e). At
stage s + 1 of the approximation, choose the least e < s such that R, requires
attention. If such e does not exist, define A;;1 = As and Iz+1 = z? for every
e. Otherwise, define Agi1(zf) = 1 — e s(s,zf), and Azpq1(z) = As(z) for all
x # x, and say that R, is active. In this case define new witnesses for the lower
priority requirements: For all d < e, xzﬂ = 23, and for all d > e, recursively
define mZ""l to be the least number in wl¥ greater than z%*!. This ends the

d—1°
description of the construction of A.

LEMMA 4.2.2.1 Suppose that R. requires attention at stage s, that Aslzt =
Alzs, (Vt > s)[zt = 28], and that . (s,25) = 1, Then R, does not require
attention at any stage t > s.
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PROOF. Suppose R, requires attention at some stage larger than s, and let ¢
be the first such stage. By (4.4) above, Ag1(zf) = 1 — @es(s,25) = 0, hence
@et(t,x5) = 0. Since by assumption Aglzé = Alz:, by (4.4)

er(t) g + 1= (Arlzg)0 < (Arlme)l = (Asl2)1 = pe,u(s) 22 + 1,

contradicting that R, requires attention at ¢. This proves Lemma 4.2.2.1. O
By induction on e we prove that every R, requires attention only finitely of-
ten, and is satisfied forever after the last stage that it required attention. In
particular A(z) = limg; A4(z) exists for every z. Suppose for e € w that after
stage s no Ry with d < e requires attention. Then in particular no Ry with
d < e is active after stage s, hence A,lzf = AlzZ, since for every ¢t > s and
f > e, z% > z% > z5. If R, never requires attention after stage s then one of
(4.2), (4.3), or (4.4) above is never satisfied for ¢ > s. Hence ¢, is not a mono-
tonic recursive approximation of A, and R, is vacuously satisfied. Now suppose
that R, requires attention at some stage greater than s, and let £ > s be the
least such stage. Then (Vn < zf)[p.+(t,n) l= A¢(n)], and by the construction
App1(zd) =1 — e s(t, z7) (note that since no Rq with d < e is active after stage
s, for every t > s, 2! = x%). If R, never requires attention after stage ¢ then it is
satisfied by the action taken at this stage. Now suppose R, requires attention at
some stage greater than ¢, and let ¢’ > t be the least such stage. Then ¢, v (t', z7)
equals 1 — @, 4(t,zf). It now follows from Lemma 4.2.2.1 that R, can never re-
quire attention at any stage later than t': since R, required attention two times
since stage s (at stage ¢t and at stage t'), @¢(z2) has taken the value 1 at one of
these stages. By Lemma 4.2.2.1, R, does not require attention after this stage.
Hence R, is satisfied forever after stage t'. From the above analysis we see in
particular that each R, is active at most two times after the last stage at which
it was injured. Since every time R, is injured a new witness is being chosen, for
every witness z., As(z.) changes at most two times. Hence A is in DRE. This

concludes the proof of DRE ¢ R(r.e.), and the proof of Theorem 4.2.2. O

4.3 THE MEASURE OF SOME BASIC CLASSES

One may now wonder what the r.e.-measure is of classes such as REC, RE, and
R(r.e.). Onme can easily prove that p,.(REC) # 0 by constructing for each
recursive martingale d a recursive set A such that d does not succeed on A:
Given Aln define A(n) = 1 iff d((Aln)1) < d((Aln)0). However, this argument
fails if d is an r.e.-supermartingale since the set A constructed as above will only
be As. The following theorem shows that indeed the analogous result is not true
at all.

Let B be the smallest Boolean algebra containing all the r.e. sets, i.e. B is the
closure of the class of r.e. sets under complementation, union, and intersection
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(B is Ershov’s Boolean, or difference hierarchy, see Odifreddi [64]). B is exactly
the “lower cone” of sets that are bounded truth-table reducible to K ([64, Prop.
I11.8.7)).

4.3.1. THEOREM. (i) p,. (RE)=0.
(i) fi.o, (S K) = 0.
(iii) gy, (R(r.e.)) # 0.

PROOF. (i) follows from the well-known fact that no Martin-Lof random set is
r.e. (In fact, every Martin-Lof random set is bi-immune [37].) (ii) follows from
(i) and the fact that for every set A in B either A or A contains an infinite r.e.
set (Jockusch and others [72, 111.3.10]).

(iii) Let d be any r.e.-supermartingale. We have to show that there is an element
of R(r.e.) on which d does not succeed. Let A be the leftmost path in 2* such
that d(Aln) < 1 for every n. Note that A exists since for any martingale d with
d(A) =1, {B Cw:Vn(d(Bln) <1} is nonempty, in fact, has positive Lebesgue
measure (cf. Lemma 6.1.2). It is easy to see, using that d is r.e., that A is the
right-limit of an r.e. set of initial segments, and hence that A € R(r.e.). O

4.3.2. COROLLARY. The measures pio. and fi, . are unequal.

PROOF. p, . (REC) = 0 by Theorem 4.3.1 (i), but p,..(REC) # 0 by Theo-
rem 1.5.6. O

Theorem 4.3.1 shows that r.e.-measure is not suited for the quantitative
study of RE, hence Lutz’s approach [50], that worked for classes like 2¥, REC,
and the linear and polynomial deterministic exponential time and space classes,
does not work here.

It follows from Theorem 4.3.1 that if A is r.e. then p, , ({A}) = 0. (For an
individual r.e. set A it even holds that p,..({A}) = 0 since every infinite r.e.
set contains an infinite recursive subset.) The converse is certainly not true: it
is easy to construct a martingale which succeeds on all nondense sets (i.e. sets
with a characteristic string that contains significantly more zeros than ones),
and among those are sets of arbitrary high complexity.

Corollary 4.3.2 shows that the approach using martingales d with the prop-
erty d(w0) + d(wl) = 2d(w) instead of our supermartingales with the weaker
property d(w0)+d(wl) < 2d(w) does indeed make a difference (cf. the discussion
at page 62).

It follows from Theorem 4.4.4 that p, . (Az2) # 0. A is exactly the “lower
cone” of sets that are Turing reducible to K, the halting set. In our notation:
Ay = STK. Results on the measure of cones form a classical topic in the
intersection of measure theory and computability theory. As a corollary to
Theorem 4.3.1 we have a stronger result than p, . (STK) # 0, saying that for
truth-table reducibility the lower cone <#* K does not have r.e.-measure 0.
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4.3.3. COROLLARY. p, . (S*K) # 0.

PROOF. In Theorem 4.2.2 we saw that R(r.e.) C <*K, so the result follows
from Theorem 4.3.1 (iii). O

Theorem 4.3.1 (ii), in conjunction with Corollary 4.3.3, gives a precise border
between r.e.-measure zero and r.e.-measure nonzero in terms of the common
recursion-theoretic reducibilities below K.

4.4 ARITHMETICAL MEASURE

We have the following function classes corresponding to the various levels of the
arithmetical hierarchy.

4.4.1. DEFINITION. The class of (total) ¥,-functions, n > 1, is defined to be

{f:2% > Q" : {(z,y) : f(z) >y} is Tu}.

Similarly, the class of (total) IL,-functions, n > 1, consists of {f : 2<% — Q7 :
{(z,y) : f(z) <y} is ,}. The function classes A, are defined as A,, = ¥, NII,.

Note that the X,-functions are those that are A,-approximable from below,
by a A,-function that attains its limit value. Similarly II,,-functions can be
approximated from above in the same manner. Therefore, the A,-functions
coincide with the functions computable recursively in §(%),

The measures py, , ppy , and p, , with n > 1, are defined exactly as the
measures f, o and pp.. So, for example, pp (A) = 0 if there is no super-
martingale with a computation in IT,, that succeeds on A. Again, as in the case
of rec-measure, it is clear that in the definition of p, ~we may use martingales
instead of supermartingales (Proposition 1.5.5).

Now Lemma 4.1.4 is proved exactly as before, and the proof of Theorem 4.3.1
relativizes.

4.4.2. THEOREM. For all n > 1, pg (Seu (™)) = 0.
PROOF. Relativize the proof of Theorem 4.3.1 (ii) to the oracle (™), O
4.4.3. COROLLARY. For alln > 1, ps,  # pip, -

In the next theorem we find an exact border between As-measure zero and
As-measure nonzero in terms of the reducibilities <, and <7 below K.

4.4.4. THEOREM. Let n > 2. For every A € A, it holds that p, (S**A) = 0.
Hence, for every n > 2, uAn(SW“((Z)(”_l))) =0. For everyn > 1, pp (Ayn) #0.
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PROOF. We prove that for every A € Ay it holds that p,, (Sett A) = 0. Tt suffices
to uniformly K-compute d; such that d; covers B <, A, if B = {e}A with use
bounded by ¢,, i = (e,n). Then a standard sum-argument (cf. Lemma 2.2.2)
shows that there is one martingale that succeeds on <*#A, cf. Lemma 2.2.2.
That such a sequence of martingales d; exists easily follows from the claim
that <# A is uniformly K-computable. To prove this claim we show how to
compute the z-th bit B(z) of the (e,n)-th set B in Sv#* A. First K-compute
whether ¢, (z) converges. If not, then the bound on the use ¢, is not total
and the wtt-reduction (e,n) is a fake. If ,(x) | then K-compute Alp,(z).
Finally, K-compute {e}Ar‘p"(I)(x). If this is not defined then (e, n) is again not
a wtt-reduction, and if (e,n) indeed codes a wtt-reduction we K-compute in
this fashion all the bits of B = {e}#. This proves the claim and the first part
of the theorem.

The last part, g, (Ayn) # 0, is proved exactly as iy (REC) # 0 (cf. discus-
sion preceding Theorem 4.3.1 or Theorem 1.5.6). O
Note that in the above argument it is crucial that we consider wtt-reductions
and not Turing-reductions: if a Turing-reduction to the set A becomes defined,
and later it becomes undefined because of a change in the oracle, it may happen
that if at a later stage it becomes defined again the use of this last computation
is bigger than the use of the first defined computation. Hence, for some ‘fake’
reduction, the process in the proof above may not terminate.

Note that analogous to Theorem 4.2.2 we have that ¥, C R(X,) € Apt1
and II,, € R(I1,) € A,4+1. From Theorem 4.4.4 it follows that for every n > 1,
ba,,, (B(En)) = 0and p,  (R(Il;)) = 0. In contrast to this result we have
the generalized version of Theorem 4.3.1 (iii) (the proof of the second part is
completely symmetric):

4.4.5. THEOREM. For alln > 1, py (R(Zn)) # 0 and py, (R(IL,)) # 0.

To complete the picture of inclusions, note that A, = R(A,) = R(Z,) N
R(I1,,). It follows that ¥,, € R(Il,,) since otherwise ,, C R(X,) N R(II,,) = A,
a contradiction. In particular R(%,) € R(II,). So the only inclusion relations
are A, C X, C R(Z,) € Apt1, Ap € II, € R(II,) € Apyi, and no other
inclusions hold.

In Corollary 4.4.3 we have seen that the measure induced by the function
class ¥, differs from the measure induced by A,. We now prove that, sur-
prisingly, the measure induced by II,, equals the latter. Whence the measure
Py, is stronger (more sets have measure 0) than the measure pp . The rea-
son for this asymmetry lies in the asymmetry of the supermartingale property
d(w0) + d(wl) < 2d(w), which makes ¥,-supermartingales more powerful than
II,,-supermartingales.



4.5. Notes 71

4.4.6. THEOREM. For alln > 1, pp = pp -

PROOF. We give the proof for n = 1. The proof for arbitrary n € w is obtained
by relativizing the following proof to the oracle 0(™). It suffices to prove that if a
class has I[1y-measure 0 then it has rec-measure 0. Let d be a II;-supermartingale,
with nonincreasing recursive approximation ds say. We prove that there exists
a rec-supermartingale d’ with S[d'] D S[d]. (This suffices by Proposition 1.5.5.)
Without loss of generality d(A\) = 1. Define d'()\) = 1. Suppose now that d'(w)
has been defined and that d'(w) > d(w). Choose the least s € w such that
ds(w0) + ds(wl) < 2ds(w). Note that s exists since d is a supermartingale
and (3s)(Vt > s)[di(w) = d(w)]. Define d'(wi) = ds(wi), for i € {0,1}. Then
d'(wi) > d(wi) because ds(wi) is nonincreasing in s. For d’ thus defined we have
that d’'(w0) + d'(wl) < 2ds(w) < 2d'(w), so d' is a supermartingale. Clearly d’
is recursive, and S[d'] 2 S[d] because for every w € 2<%, d'(w) > d(w). O

4.5 NOTES

Kautz [34, p26] has shown that a class A is ©¢-approximable if and only if there
is a C(»=1)_recursive sequence (rather than just recursive) of X¢-classes {S;}icw
with 4(S;) <2 % and A C ; Si- It follows that we may relativize the result of
Theorem 4.1.6 to the oracle §(" 1) to obtain

4.5.1. THEOREM. For every class A C 2¥ and every n > 1, A is X,-approxim-
able if and only if ps,_(A) = 0.

Schnorr [73, Satz 7.6] proves that there is a 1-random (Martin-L6f random)
set A in As. A natural example of such a set is Chaitins Halting Probability €2
[46, p187]. For more on Martin-Lof random sets in A see M. van Lambalgen
[42]. The results from the previous sections show

4.5.2. THEOREM. (i) There is a Martin-Léf random set in <t K.
(ii) There is no Martin-Lif random set in <h K.

PROOF. This is immediate from Corollary 4.1.7, Corollary 4.3.3 and Theorem
4.3.1 (ii). O

With a similar proof one can actually show, using Theorem 4.5.1, that for any
C € 2“, there exists a C-n-random set in <#C(™) (even in R(XE)) but not in
Sbtt(C(”))_

It is known that the Martin-Lof random set of Theorem 4.5.2 (i) cannot have
the same tt-degree as K (Bennett [13], Juedes, Lathrop, and Lutz [30]).

Note that there is not an analogue of the result p, . ({4 € 2¥ : A is Martin-
Lo6f random}) = 1 for the case of A,-measure. In fact, it is easy to see that
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pa, ({A € 29 1 Ais Ay-random}) # 1. Namely, for every A,-martingale d
there exists A € A,, such that A ¢ S[d]. Hence d does not succeed on all the
non-A,-random sets. However, the class of A,,-random sets does of course have
Lebesgue measure 1.

It follows from results of Arslanov and Kuéera [37] that if A is an r.e. set
that is Turing-incomplete then u,, (STA) = 0.



CHAPTER 5

RANDOMNESS AND LOWNESS

In this chapter we study sets that are low for the class R of Martin-Lof random
reals and the class 8§ of Schnorr random reals. A set A is low for a class C
if C = C%. In Section 5.2 we prove that there is a nonrecursive r.e. set that
is low for R, thereby answering a question raised by M. van Lambalgen and
D. Zambella. In Section 5.4 we prove that there are uncountably many sets
that are low for the class of Schnorr random reals 8. We give a purely recursion
theoretic characterization of these sets and show that they all have Turing degree
incomparable to 0/, the degree of the halting problem. This contrasts with the
case of R.

5.1 INTRODUCTION

The first three sections of this chapter are concerned with the notion of random-
ness as originally defined by P. Martin-Lof in [59]. Recall Definition 4.1.5. A
set is Martin-Lof-random, or 1-random for short, if it cannot be approximated
in measure by a Martin-Lof test. These sets have played a central role in the
study of algorithmic randomness. One can relativize this definition of random-
ness to an arbitrary oracle. Relativized randomness has been studied by several
authors. The intuitive meaning of “A is 1-random relative to B” is that A is
independent of B. A justification for this interpretation is given by M. van
Lambalgen [44]. In this introduction we review some of the basic properties of
sets which are 1-random and we state the main problem.

The e-th r.e. set W, can be both interpreted as a set of numbers W, C w
or a set of initial segments W, C 2<“. In the last case W, defines the 2(1) class
Ext(W.) = {A €2¥: (30 € W) [o C A]}. The distinction will always be clear
from the context. Instead of p(Ext(W.)) we also write u(We).

73
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5.1.1. DEFINITION. (Martin-Lof [59], Kautz [34]) A class A is E?’A—approm'm—
able if there is an A-recursive function f such that for the E(l)’A classes W]‘f‘(i)
it holds that /.L(W}%i)) <2 %and A C (), W]{%i)' A set C is Martin-Lof-random
relative to A, or A-1-random for short, if {C} is not E?’A—approximable. The
class of A-1-random sets is denoted by R4. If A is recursive we write R instead

of R4,

5.1.2. DEFINITION. A set A is low for a class C if the relativized version C4 of
C satisfies C = C*. The class of sets that are low for C is denoted by Low(C).

For example, the ordinary low sets from recursion theory are the sets that are
low for the class of T-complete sets, and a set is low for the class of recursive
sets if and only if it is recursive. For a class C, the class Low(C) consists of
the oracles that are not ‘helpful’ for C in the sense that they do not alter C.
A set A € Low(C) either contains no information that is useful for C, or the
information in it is coded in such a way that elements from C cannot retrieve
it. In this chapter we are interested in sets that are low for R and §. We first
consider the case of R. In Section 5.4 we consider the case of 8.

Motivated by the work in [42], M. van Lambalgen and D. Zambella formu-
lated the question whether there exist nontrivial examples of sets A such that
every random set is already random relative to A. (The question is first explicitly
stated in Zambella [82].) This question was raised in the context of a compar-
ison between randomness properties in classical dynamic systems (specifically,
Bernoulli sequences) and recursion theoretic randomness. A famous result of
Kamae [33] showed that the infinite binary sequences that have no information
about Bernoulli sequences (normal sequences) are precisely the sequences with
zero entropy. The question was whether a similar characterization exists for sets
that have no information about Martin-Lof random sequences. This motivates
the question whether every element of Low(R) has to be recursive.

First, it is not immediately clear that there is a 1-random set that has a
nonrecursive set Turing-below it in which it is 1-random. That this situation
at least can occur was proved by Kucera in [38] by consideration of diagonally
nonrecursive functions. He also proved that if a nonrecursive set A admits an
A-1-random set above it (which is the case when A € Low(R), cf. the proof of
Corollary 5.3.4) then A is not too complex in the sense that A is generalized
low (GLy), i.e. A® @ =1 A', see Corollary 5.3.4. In Section 5.2 we prove that
indeed the class Low(R) contains nonrecursive sets, thereby answering the above
question.

Next we prove some facts that will be useful later. A recursive sequence
of %29 classes such as in Definition 5.1.1 is called a sequential test. The next
theorem shows that there are sequential tests that are universal in the sense
that they cover all the sets that are covered by some sequential test.
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5.1.3. THEOREM. (Martin-Lof [59]) There exists a universal sequential test.
That is, there is a recursive sequence of %) classes Uy,Us, ... such that

olUy DU D ...
o Vn (pu(lUn) <27™)
o for any XV-approzimable class A we have A C (), Un.

PROOF. For every m construct an r.e. set U, C 2<% as follows. For every
e > n, U, enumerates all the elements of Wicy() (where we take this set to be
empty if {e}(e) is undefined) as long as pu(Wy.y(e)) < 27¢. Define U, = Ext(Un).
Then p(Up) < > .5,2 ¢ = 27", and if {e} defines a sequential test then for
every n there exists by padding ¢ € w (in fact, infinitely many ¢) such that
Wiery € Un (if i > n is an alternative code for e then Wiey) = Wiy € Un),
s0 (N Wieyiy € Ny, Un- O

5.1.4. DEFINITION. For every n, denote by U, the 2(1) class from the above
proof. Define P,, to be the complement of U,,.

Define the left shift T : 2¥ — 2% by T(C)(n) = C(n+1). Let T* denote the
k-iteration of T

5.1.5. LEMMA. For every C' € R there exists k € w such that T*(C) € Py.

PROOF. For a set of initial segments ¥ and a class A define 3" A ={c"A :0 €
Y A A € A}, where 0”A denotes the concatenation of o with the characteristic
sequence of A. Fix an r.e. set Uy that defines the ©{ class Uy. By induction
define U} = Uy and L{(’f L =UyuUk.

Now by ¢ = pu(Up) < 1 there is an | € w such that ¢' < 1/2, so pUf) = ¢ <
27k Tt follows that the sequence

1 21
Uo, UL, U, ...

constitutes a sequential test. Therefore, if C € R then either C & Uy, i.e. C € Py
and we are done, or for some k > 0 we have C € Z/{(’fl and C ¢ Z/{(gk+1)l. But the
latter means that T* (C) ¢ Uy for some k', so T* (C) € Py. O

When we relativize the concept of a sequential test to an oracle A it makes
no difference if we relativize the function that gives the indices of the levels of
the test or not, as the following standard lemma shows.

5.1.6. LEMMA. Let f be an A-recursive function. Then there is a recursive
function g such that Wﬁn) = Wﬁn) for every n.

PROOF. Suppose that e is a code for f, i.e. f(n) = {e}*(n) for every n. Let d be
a code of a partial recursive function such that for every oracle X, {d}* (n,z) =

{{e}*(n)}*(z). Now apply the S™-theorem to obtain g with code S}(d). O
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5.2 A NONRECURSIVE SET THAT IS LOW FOR THE MAR-
TIN-LOF RANDOM SETS

A set which is low for R is computationally weak in the sense that it cannot
detect any regularity in any l-random sequence. Clearly every recursive set is
in Low(R). This section is devoted to a proof that also nontrivial examples of
such sets exist.

5.2.1. THEOREM. There exists a nonrecursive r.e. set A that is low for R.

PROOF. We make A simple to guarantee nonrecursiveness. That is, during the
construction we want to satisfy the requirements

R,: W, isinfinite = W, NA#0.

By Theorem 5.1.3 and Lemma 5.1.6, let f be a recursive function that defines
the universal sequential test relative to X for any set X. That is, for every i, f(7)
is an index of the i-th level Wﬁi) of the universal sequential test relative to X.

So for every oracle X and every ¢ it holds that M(Wﬁi)) < 27%. Simultaneously
with A we describe a program coded by e (e > 0) such that

W{e}(e) D) Wﬁe—l—l) (5.1)

and such that /L(W{e}(e)) < 27°. By the recursion theorem we may assume that
we know the number e in advance. Note that by construction of the first level
Uy of the universal sequential test (see above) the equation (5.1) implies that
the (e + 1)-st level of the universal sequential test relative to A is included in
Uy. In particular R4 D Py. So if C' € R, then T*(C) is in Py for some k by
Lemma 5.1.5, hence T*(C) € R4, and therefore C € R*. So (5.1) guarantees
that A is low for R.

Let As denote the (finite) set of elements of A enumerated by the end of stage
s. To be able to satisfy (5.1) we want to make sure that whenever y enters A at
stage s for the sake of R,, the ‘mistake’ we have made, that is, the amount of
measure enumerated up to stage s on the basis of ‘A(y) = 07, is small, so that we
can correct it without danger of enumerating too much in total. Given y and s,

let M, be the set of all strings o € J;, W]‘A(fe—}—l),t such that for some ¢t < s with

y & Ay the computation {f(e + 1) ft (o) converges and has use bigger than y,
and such that there is no 7 £ o such that (3¢ < s)[use({f(e + 1)}:* (7)) < y].
That is, My is the set of strings o that contribute to the measure of Wy,
(this set will be defined below) on the basis of ‘A(y) = 0’, and that were not
yet enumerated (or implicitly enumerated because some initial segment was
enumerated) on the basis of some other computation before stage s that did not
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use the bit A(y). We think of M, as the potential mistake we make, which may
become a real mistake when we enumerate y into A, thereby changing the bit
A(y) from 0 to 1. Note that we do not require different mistakes to be disjoint
and that mistakes may be counted more than once. The (finite) set M, defines
a XY class of which we can compute the measure.

We say that R, requires attention at stage s if

Ay <s)lyeW, s Ay>2z AW, ,NA; =0 A p(My) < 277772 (5.2)

The construction of A is now easily described:

Stage s = 0. Define Ay = 0.

Stage s > 0. For every z < s such that R, requires attention at s, pick some y
witnessing this, say the smallest y satisfying (5.2), and enumerate y into A,.
The number {e}(e) is defined to be an index of a X¥ class such that whenever o

is enumerated into Wﬁ;rl)’s then o is enumerated into Wiey(e), 1.e., Wigy(e) 18
defined as
p— AS
Wierer = U Wiy, -
SEw

Note that when the oracle A changes, say because y enters A at stage s, no
further string is enumerated into Wy.y(.) using the ‘wrong’ bit A(y) = 0 because
of the ‘s’ occurring in the subscript.

LEMMA 1 N(W{e}(e)) <276,

PROOF. The measure of Wi} is by definition equal to the measure of W;%e +1)
plus the amounts of measure u(Mys) enumerated by ‘mistake’ because the ap-

proximation to A was changed. Because the approximation to A is only changed
for the sake of R, if this mistake is not bigger than 27272 and every R, requires
attention at most once we have

M(W{e}(e)) < 9~ (ef1) + Z 27%.97¢ 2 _9¢
zZEW
O Lemma 1

LEMMA 2 R, is satisfied for every z.

PROOF. Suppose W, is infinite and that for all y > 2z with y € W, , it holds that
u(ng) > 277.27¢72_ First observe that for every y and s there exist ¥/ > y and
s’ > s such that for every v > ¢/ and every ¢t > s’ we have Ext(M}) NExt (M) =
(). To see that 9/ and s’ exist, define the downward closure

downcl(M;) ={re2<¥:Jo¢ M;(T Co)}.
Let typ € w be so large that

{7 € downcl(My) : 3t({f(e+1) A1)} =
{r € downel(M) : It < to({f(e+ 1)} (7))}
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Consider the maximum
max{use({f(e+ 1)} (7)) : t <to AT € downcl(My) }.

Note that this maximum exists because the set downcl(M,) is finite. Now if 3/ is
chosen above this maximum and s’ > t( then for every v > ¢/ and t > s’ we have
M;Ndowncl(M;) = 0 and M; Ndowncl(M;) = 0, so Ext(M;) NExt(M;) = 0. Tt
follows from our assumption and from the above that there are infinitely many
pairs y and s such that y € W, ; with ,u(M;) > 277772 and such that all
the %Y classes Ext(Mys) are disjoint. Because for every y and s it holds that
M,; € Wiey(e) we then have p(Wiey(e)) = oo, a contradiction. So the assumption
from the beginning of our proof cannot be true, and it follows with (5.2) that
for infinite W, R, requires attention at some stage and is satisfied at that same
stage. (For finite W, the requirement R, is vacuously satisfied.) [ Lemma 2

From the construction we see that the set A is r.e. By the clause ‘y > 22’
in (5.2) it has infinite complement and by Lemma 2 it intersects every infinite
r.e. set, so A is simple. By Lemma 1 and the definition of U we have the
inclusion Wﬁe +1) C Wiepe) € Uo, so (5.1) is satisfied. This concludes the proof
of Theorem 5.2.1. O

We conclude this section with some remarks. Zambella (private communi-
cation) has shown that the use of the recursion theorem in the above proof is
not essential. It is unknown exactly how complex sets in Low(R) can be. The
nonrecursive example constructed above is still r.e. Are there sets in Low(R)
that are outside of AY? And if so, are there uncountably many such sets? In
Section 5.4 we will see that there are uncountably many nonrecursive sets that
are low for the class of Schnorr random sequences, and that these sets are all
outside of AY. This contrasts the situation for the 1-random sequences above.

5.3 SOME LIMITATIONS

In this section we make some remarks on the complexity of sets that are low for
R. Since every nonrecursive r.e. set bounds a 1-generic set we immediately have
the existence of 1-generic sets that are low for R. However, if A € Low(R) then
A cannot be 1-random, since this would imply that A is A-1-random, which is
impossible. More generally, we have

5.3.1. PROPOSITION. If A is 1-random and A <7 B then B is not A-1-random.

PROOF. M. van Lambalgen [44] (see also Kautz [34]) proved that if A is 1-
random and B is A-1-random, then A @ B is 1-random and A is B-1-random.
In particular A |7 B. O

Another limitation comes from the next theorem. We first prove a lemma.
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5.3.2. LEMMA. (Kucera [38]) For every nonrecursive set A there ezxists a func-
tion g <17 A® 0 such that for all =

p({C: (3 < 2)[{i}° 2 Alg(a)]}) < 27°.

PROOF. It is easy to see that for any o € 2<%, z, j € w it is possible to find
(/-recursively a rational number g such that

g —n({C: 3 <2)[{i}° 2a]})| <277
The lemma now follows immediately from Theorem 1.4.2. O

5.3.3. THEOREM. (Kucera [38]) If A <r B and B is A-1-random then A €
GL;.

PrROOF. Let A and B be as in the theorem. Let H be the function partial
recursive in A that on argument e outputs the least s such that {e}2(e) is
defined, and that is undefined if such s does not exist. Let {C.}cc., be a recursive
sequence of Ef—classes such that

C. — { éC L (i < e)[{s}C D AlH(e)]} ifec A’

otherwise.

It is easy to transform the recursive sequence {Ce}ecw into a recursive sequence
{Be}ecw such that for every e we have that B, C Ce, pu(B.) < 27¢, and B, = C,
whenever p(C.) < 27¢. (For the definition of B., enumerate C. as long as the
measure of Ext(C,) is smaller than 27°.) Now let g be a function satisfying the
condition of Lemma 5.3.2. We claim that for almost every e, if H(e) is defined
then H(e) < g(e). Namely, suppose that this fails. Then every set C such that
A <7 C belongs to the class B, for infinitely many e. It follows that the upper
cone AST = {C : C <p A} is %{-approximable and therefore contains no A-
1-random set, contradicting the assumption on A. So the function g dominates
the function H, and since ¢ <7 A @ () we see that A’ <7 A @ (', that is,
A e GL;. O

5.3.4. COROLLARY. If A is low for R then A € GL;.

PROOF. Since every set has a 1-random set above it ([37, 24]), if A is low for
R then in particular A has a set above it that is A-1-random, and the corollary
immediately follows from Theorem 5.3.3. O

Next we prove a limitation that shows that all (partial) functions that are of
degree that is low for R can be uniformly dominated by a function recursive in
('. First we give two definitions. We say that a function g dominates a partial
function f if there is a k € w such that whenever f(n) is defined for some n > k
it holds that g(n) > f(n). For strings 7 and o we say that 7 is to the left of o,
denoted 7 <1, o, if there is a string p such that p"0 C 7 and p"1 C o.
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5.3.5. THEOREM. There exists a function g <t (' that dominates every func-
tion in the class of partial functions {{e}* : A € Low(R)}.

PrROOF. Let R be the leftmost path in Py, Py as defined in Definition 5.1.4.
Then R is 1-random, being an element of Py, and it is easy to see that R < ('
(even R <4 (). Denote by V the set of strings to the left of R, i.e.

V= U{T € 2<¥ : 1 <y, Rli}.

€W

Note that V is an r.e. set since Uy is X9. Let {V;}scw be a recursive enumeration
of V. To every set A € 2“ and every partial A-recursive function {e}A we can
assign an A-recursive sequential test {BE’A}iEw as follows. If {e}*(7) | let 7
be the first string of length 7 to the right of the rightmost (in the sense of the
ordering <1, defined above) string of length 7 in Vieya(s) if such a string exists,

and let 7 be 0 otherwise. Now let C; 4 be the basic open set defined by the
string 7, i.e. Cf’A = {B:7C B}. If {e}*(i)1 let Cf’A be empty. Finally, let

Byt = eyt

j>i

Now define
g(i) = (least s)(V7 <1, Rli)[|7| =i — 7 € V).

We claim that g satisfies the statement of the theorem. Clearly we have g <r
R <7 {'. Let A € Low(R). Suppose that there are infinitely many 7 € w such
that {e}#(i) is defined and greater than or equal to g(i). For every such i it
holds that R € B A Tt follows that R is not A-l-random. Since A € Low(R)

we then also have that R is not 1-random, a contradiction. O

Zambella has shown, using ideas of a totally different nature, that Theo-
rem 5.3.5 can be improved considerably, namely that the values of the functions
in {{e}* : A € Low(R)} can be traced, in the sense of the next section, in a
uniform way by an r.e. trace. These ideas will be used in the next section to
characterize the degrees that are low for S.

5.4 'TRACEABILITY AND LOWNESS FOR SCHNORR’S NO-
TION

Recall that for a finite binary sequence o, we denote by C, the set of reals that
extend o. These sets form a basis of clopens for the usual discrete topology
on 2¥. With every set U C 2<“ we associate the open set User Co- When
it is convenient, we confuse U with the open set associated to it, in particular
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we write plU for the measure of the open set corresponding to U. We use the
following abbreviation for the measure conditioned to o:

p(UNCo)

U=
a pCs

We recall the definition of Martin-Lof test so that the reader can easily compare
this definition to that of Schnorr.

5.4.1. DEFINITION. A Martin-Lof test [59] is a recursive set U C w x 2<“ such
that pU, < 27", where U, = {z : (z,n) € U}. A Schnorr test [73] has in
addition the property that pU, = 27" or, alternatively, that there is a recursive
enumeration of U such that u(U, — Un,s) < 27¢ for all n and s, where U, ; are
the elements enumerated into U,, before stage s. This latter is a more flexible
notion of test but defines the same Schnorr null sets. A set of reals is Martin-
Léf/Schnorr null if it is contained in the G set

nye

newoely,

for some Martin-Lof/Schnorr test U. We concisely write (U for the null set
above. A real R € 2% is Martin-Lof/Schnorr random if it does not belong to
any Martin-Lof/Schnorr null set. We denote the set of Martin-Lof random reals
by R and the set of Schnorr random reals by §.

Martin-Lof tests give essentially only positive information and Schnorr tests
give both positive and negative information. For this reason Martin-L6f/Schnorr
randomness is sometimes called “recursively enumerable/recursive randomness”.

The definitions above relativize naturally to an arbitrary parameter. When
U is recursive in A, we shall speak of tests and null sets relative to A. The
relativized notion of randomness has first been considered by van Lambalgen
[42] in his work on formalizations of the notion of “stochastic independence”.
Some more details on effective null sets are given below as they are needed. For
a more complete account we refer the reader to the literature (e.g. [42]).

A set A is low for R/low for § if every Martin-Lof/Schnorr null set relative
to A is contained in a Martin-Lo6f/Schnorr null set. Clearly every recursive set
is low for R and 8. The existence of nonrecursive sets that are low for R was
proved in [39]. We want to prove the existence of nonrecursive sets that are low
for § and study their complexity.

We introduce some recursion-theoretic notions that we use to characterize
sets that are low for S. A set T' C w X w is called a trace if all its sections Tk
are finite. If the function mapping k to the canonical code of T is a recursive
function, we call T' a recursive trace. Let g : w — w be any function. We say
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that T traces or captures g if g(k) € T¥ for every k! A bound is a function
h : w = w that is nondecreasing and has infinite range. We say that a trace T
has bound h if | T™|| (the cardinality of T'¥]) is less than h(k) for all k. Trivially,
every recursive trace has a recursive bound, but there is no uniform recursive
bound for all recursive traces.

5.4.2. DEFINITION. A set A is recursively traceable if there is a recursive bound
h such that all (total) functions g <7 A have a recursive trace bounded by h.

The following easy fact says that all recursive bounds are essentially equivalent.
This has interesting consequences for traceable degrees.

5.4.3. PROPOSITION. Let h be a recursive bound. Suppose that every function
recursive in A has a recursive trace T with bound h. Then for an arbitrarily

small recursive bound h', every function recursive in A has a recursive trace T
with bound h'.

<¥ with a

PROOF (SKETCH). Identify in a canonical way each sequence o € w
natural number. When k < |o| we write o(k) for the k-th digit of the sequence
o. Let g <7 A. Let f be an increasing recursive function to be specified below
(roughly: an inverse of h). Let T be a recursive trace with bound h that captures
the function i — gl f(i) (the string that codes the first f(i) values of g). Let S

be the set defined by
Skl — {U(k) 1o € T[i’“]} ,

where i, is least ¢ such that |o| = f(i) > k. Clearly, S is a recursive trace. The
cardinality of SI¥! is easily computed and is bounded by h(ix). So, the faster f
grows, the slower the cardinality of S!¥] grows. It is easy to design an f that
makes S attain a given recursive bound. O

Recall the following definition.

5.4.4. DEFINITION. (Miller and Martin [62]) A set A has hyperimmune-free de-
gree if every function (total) recursive in A is majorized by a recursive function,
i.e. for every f <7 A there is a recursive function g such that Vz(f(z) < g(z)).

From Proposition 5.4.3 it follows immediately that recursively traceable degrees
are hyperimmune-free: If A is recursively traceable then every function g <7 A
is bounded by the recursive function max T'*] where T is a recursive trace of g.
(Incidentally, observe that being dominated by a recursive function is trivially

!Similar notions of approximability exist in complexity theory. For example, in [11] a set
A is called (m,n)-verbose if there exists a uniformly recursive procedure to enumerate for any
n-tuple z1...2, a set of at most m possibilities for the characteristic string A(z1)...A(z.),
one of which is correct.
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equivalent to being captured by a recursive trace, but this does not make every
hyperimmune-free degree recursively traceable, because a uniform bound may
not exist. In Section 5.5 we prove that indeed the two notions do not coincide.)
Miller and Martin’s construction of a nonrecursive hyperimmune-free degree
[62] is easily adapted to yield traceable degrees —actually, a continuum of such
degrees. The proof is postponed to Section 5.5. Finally, recall that nonrecursive
hyperimmune-free degrees are incomparable to 0’ (see e.g. [64, p495]), so the
same holds for nonrecursive recursively traceable degrees.

The next theorem gives a “measure-theoretical” characterization of recur-
sively traceable degrees that is inspired by the combinatorics used in a proof of
Raisonnier [69].

5.4.5. THEOREM. A set is recursively traceable if and only if it is low for S.

PROOF. For the “only if” direction, let A be a recursively traceable set. Let U
be a given Schnorr test recursive in A. We want to construct a Schnorr test V
such that |V D (NU. We can approximate the set U with an A-computable
function that yields the finite sets U, ;. By hypothesis, U, s (that is, the function
mapping (n, s) to the canonical code of the finite set U, s) has a recursive trace
T. This T we use to enumerate V. In order to enumerate not too much measure
into V,,, we have to make sure that the bulk of U, is approximated by U, , fast,
that is, while T is still informative. After all, the longer we wait, the worse T’
gets. The following will suffice: we require pU, ; > 27" — 27%. We also have to
fix a bound A for T' that is sharp enough.

Recapitulate. We fix a recursive trace T with bound A (for convenience this
h will be specified below) and such that U, ; € T3] for all n,s. (Finite sets
are identified with their code.) Now we prune T to eliminate elements that are
not a candidate for U, ;: define T as follows. Let T™3) be the set of those
D e Tl{m3)] guch that D is a finite subset of 2<% and

27" —275 < uD<2™ and C C D for some C € Flins—1)]

(for s = 0 the second clause is assumed to be empty). Observe that T is still a
recursive trace that captures U, ;. Finally, define

Vo = | THm and Vo= Var

s<r rew

Observe that
pVy, < 270 || 70| 4 Zg—s |
scw
So, we can make pV,, recursively converge to 0, by choosing the bound h of
|7°[™#)]| small enough. To see that pVn» recursively converges to pV;, observe
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that X R
m U 7ln:s)] Z 98, ||T[(nys)]||.

s>r s>r

Again it is just a question of choosing a bound h that is sufficiently small.

We now prove the “if” direction. Let By for k,I € w be the clopens
Bk,l:{T*lk :TE2 & |7 :l}

where 1% is a string of 1’s of length k and * denotes concatenation. Note that
uBy; = 27k for all I. Now, given a function g <7 A, we define the test U9 by
stipulating that

Ug = U Bk,g(k)'
k>n

It is easy to see that pU; can be approximated recursively in A, so UY is a
Schnorr test relative to A. By lowness of A, we can find a Schnorr test that
contains (|UY. A fortiori we can find a recursive set V' C 2<“ and a recursive
enumeration of V' such that pV; converges recursively to pV < 1/4, where V; is
the set of the elements of V' enumerated before stage s. To simplify the proof
below we also require that V satisfies a technical assumption. Namely that for
every k and [,

p(Byy — V)72 (49 (5.3)

We leave to the reader to check that, if necessary, one can always enlarge V to
some V' satisfying (5.3). (Hint. If at stage s for some (k,l) < s the difference
between the two numbers above appears to be “small”, add to V' a fraction of
By, ; that ensures that equality will never obtain. One can ensure that in the end
p(V'—V) < ¢ for an arbitrarily small ¢ and that uV’ can still be approximated
recursively.)

The construction below is simpler if we assume that p(Us — V') = 0 for some
n. So, we make this provisional assumption, and we shall eliminate it later. We
define a trace T for g (to be precise, a set T such that g(k) € T™*! for k > n, so a
trace of g is obtained immediately from 7T'). First we define T and show that it
is recursive. Then we show that there is a recursive upper bound on the largest
element of T¥]. This is enough to conclude that ||T*]|| is a recursive function
of k. Define

Tk = { l:p(Bry—V) < 2_(l+3)} (5.4)

By assumption p(Uj — V) = 0, so T traces g, with a possible exception of the
first n values. It is evident that T is recursively enumerable. We show how to
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enumerate the complement of T'. Let sy = 0 and define s;1; and ¢; such that

€
i+l >MV—E

i := u(Bry —Vg;) — 2~ (+3) and uVs
Suppose [ & T, Then ¢; > 0 for all 5. It is clear that ¢; converges to a limit ¢
and, by the assumption (5.3) above we have that ¢ > 0. So, ¢;/2 < ¢ for some i.
Therefore £;/2 < ¢;41 for some 7. So, enumerating V up to stage s;+1 we know
with certainty that [ & T¥l. So T is r.e., hence T is recursive. To show that T
is a recursive trace it remains to show that we can compute |T¥||. It suffices
to show that we can effectively find an I, such that I & T¥! for all [ > I;,. Find
a stage s such that pV, > puV — 2=¢*+2) Let I, be larger than k and larger
than the length of all strings in V;. From the definition of By ; it is clear that
Vs and By, are independent? for every I > I. This implies immediately that
p(Bry — Vi) = 27%(1 — pV;) > 27%(3/4). Consequently, we cannot have that
p(Bry—V) < 2~ (k+2) and a fortiori that p(Bry—V) < 2 (143)

Now, note that [, depends on the recursive enumeration of V' and, indirectly,
on g, so we still have to show that there is an uniform bound on | T™*!||. We
claim that ||T*!|| < 2%k for every k. Observe that (5.4) above guarantees that

1
D mBr-V) < g
1eTlx]
S0,
1
p U Bry—pV < p U (Bpy—V) < e
leTx] 1eTIk]
We obtain that )
B < —.
K U k1S 2
leTlx]

As observed above uBj; = 27% and, for k fixed, the By i’s are mutually
independent as soon as the I’s are taken sufficiently far apart. So,

[T

1-(1-27) ° < pl2- N @-Byw| <
1eTTlx]

1
5"

From the inequality above we obtain | T¥]|| < 2¥k. So, as required, we have a
recursive bound independent of g.

To complete the proof we show that the hypothesis that p(Us — V) = 0 for
some n can be weakened to: p,(Us — V) = 0 for some ¢ and some n such that
poV < 1/4. (Recall that y, is the measure conditioned to C,.) Then we show

2Sets A and B are independent if u(AN B) = pA - uB
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that this latter hypothesis is indeed true. So, suppose first that u, (U7 —V) =0
and p,V < 1/4. For a set of strings W we use the notation

Wlo ={r €2 : Cy, CExt(W)}.

We may assume that g(k) > k for every k because a trace for g(k) + k imme-
diately gives a trace for g. Clearly we can also assume that n > |o|. We claim
that ,u(Ug — V) =0 where V = V|0 and § is the translation of g defined by
k = g(k)=|o|. Namely, if I > |o| then By |0 = By;_|s- Since g(k) > k and
n > |o| we have that Ug|o = UZ, so u(US — V) = pe(US — V) = 0. This proves
the claim. Now, it is clear that ,uV < 1/4 has also a recursively approximable
measure. So the proof given above is valid when V and § are substituted for V
and g and ensures the existence of a recursive trace for g. But from a trace of
g we immediately obtain a trace for g.

Now, suppose that no o and n exist such that p,(Us—V) = 0 and p,V < 1/4.
We shall obtain a contradiction by constructing a real in (JUY9—V. Let o¢ be the
empty string and assume we have defined o, such that u, V < 1/4. By absurd
hypothesis y,,, (U7 — V) > 0, so there is a 7 € Uj such that u,, (C, — V) > 0.
In particular 7 J o, and p;V < 1. Apply the Lebesgue density theorem to
find 05,41 3 7 such that p,, V< 1/4. Let R be the real that extends all o,,’s
constructed in this way. Since C,, ., C Uy for all n we have that R € (UY. But
C,, Z V for every n, so, since V is open, R &€ V. This contradiction completes
the proof of Theorem 5.4.5. O

The following corollary contrasts with Theorem 5.2.1. It is worthwhile to
note that it is is unknown whether there are low sets for R that are not below

0.

5.4.6. COROLLARY. There are 280 many sets that are low for 8. Nonrecursive
degrees that are low for 8§ are incomparable with 0'.

PROOF. This follows immediately from the discussion below Proposition 5.4.3,
Theorem 5.4.5 above and Theorem 5.5.3 below. O

5.5 A CONTINUUM OF TRACEABLE SETS

In this section we prove the existence of nonrecursive recursively traceable de-
grees. In fact, we prove that there are uncountably many recursively traceable
degrees. We merely check that the construction of Miller and Martin [62] pro-
duces such degrees.

5.5.1. DEFINITION. A tree is a partial function T : w<“ — w<% such that

T(o)I ANTCo=T(r)| ANT(1) C T(0).
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Node o is on T if o is in the range of T. The set of infinite branches of T is
denoted by [T']. For A € [T] we also say that A is on T. That Q is a subtree of
T, denoted by Q C T', means that every node on @ is also on T'. The full subtree
of T' above a node o is the subtree of T' that consists of every string on T that
extends 0. A tree is finitely branching if every node on it has only finitely many
extensions on the tree.

In the following we will deal with finitely branching recursive trees, that is,
trees that are recursive as (total) functions, when w<“ is properly identified
with the natural numbers. Note that, being total functions, recursive trees have
no isolated branches and no finite branches. To recall the method we first prove

5.5.2. PROPOSITION. There exists a nonrecursive set that is recursively trace-

able.

PROOF (SKETCH). A (nonrecursive) sequence of perfect recursive binary trees
To2T1D...T, D... is defined in such a way that

VA € [T2](A # {e})
and

there is a recursive function f such that for every A €
[Thes1], if {e}# is total then {e}# is dominated by f.

To construct T, from Th. 1, note that one of T, 1(0) and T._1(1) must dis-
agree with {e}. If To._1(z) is such, we can let T5, be the full subtree above it. To
construct They; from 75, we first noneffectively decide whether there is a point
o € Ty, such that for all oracles A 7 o the function {e}# is not total. If this is
the case we let Tp.41 be the full subtree of Ty, above o. Otherwise, given z, we
can extend every o € Ty, to some 7 € Ty, such that {e}"(z)]. Thus we can re-
cursively define a perfect subtree The 1 of Th, for which {e}72e+1(7)(n) is defined
for every n and o of length n. If we let A be a set in the intersection [, Tr,
then the even trees force that A € REC, and the odd trees force that if {e}A is
total, then all the functions {e}? are total for B € [The;1], and these functions
are dominated by a recursive function. Also, they are recursively traced by a

trace with bound h(k) = 2*. O

Proposition 5.5.2 is now easily improved to
5.5.3. THEOREM. There are 280 recursively traceable degrees.

PROOF. We write T7 for the full subtree of 7" above 7. We construct a chain of
trees Tp O --- D Ty D ... such that the set (,[7}] is perfect and contains only
sets that are recursively traceable with bound h(k) = 2*E.
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Let Ty = 2<“. For every minimal string v of Ty, if for some 7 I v all
branches B of Tj, are such that {e}® is not total, replace T,, with T3, in
T3e. Otherwise, replace Ty, with the tree S defined by the following recursive
procedure: let Sog = {v}, then, for each maximal string in Sy enumerate in Sk
two incomparable extensions oy, 01 € Th such that {e}? (k)] for both i =0, 1.
Finally, to make (,[Ts] perfect, construct T5.yo from T5.;1 by erasing from
T5e+1 all minimal elements.

We check that all branches in (1),[T] are recursively traceable. Let v4,...,v;
be those minimal elements of Th.,; for which {e}? is total for all branches
B that extend them. By construction, {e}Z(k) attains at most 28+ different
values as B is one of the branches above (note there are 2° minimal elements in

Tyer1). Branches that do not extend one of v1,...,v;, make {e}® nontotal and
may be considered “irrelevant”. Each T5.41 is a recursive set, so all relevant
values of {e}B (k) are computable. O

Finally, we show that the notions of recursive traceability and hyperimmune-
freeness do not coincide.

5.5.4. THEOREM. If a set is recursively traceable then it is of hyperimmune-free
degree. The converse is not true in general.

PROOF (SKETCH). If a function g is recursively traced by T then clearly with T
we can compute a function dominating g by taking the maximal values in Tk,
So it follows immediately from the Definition 5.4.2 that every function recursive
in a recursively traceable set is dominated by a recursive function.

To see that the converse implication does not hold we construct a function
f such that degp(f) is hyperimmune-free and such that f is not recursively
traceable with bound h(k) = k. It then follows from Proposition 5.4.3 that f
is not recursively traceable with any bound. We construct f using the method
of Miller and Martin as described in the proof of Proposition 5.5.2. In the
current proof, we do not force with recursive binary trees as above, but with
recursive trees T such that T'(o) is finitely branching, and such that T'(o) has
at least n + 1-branches if 0| = n. Since these trees are compact, we can let
f be an element of (), T,,. Nonrecursiveness of f is forced as before with the
trees T3.. Hyperimmune-freeness is forced as before with the trees T3.11. The
only difference is that now we have to ensure that in every node we have enough
branches, whereas before finding two incompatible extensions for every node was
sufficient. The only extra ingredient in the proof is that with 75,5 we force that
if the e-th partial recursive function . defines a recursive trace 7' with bound
h(k) = k, then for every f € [T3c42|, f is not traced by 7. Since at a node
T3e+1(0), |o| = n, we have at least n+ 1 possibilities of extending the node, and
T can use only n of these possibilities (which we can compute), we can choose
for f a possible extension not covered by T'. O



CHAPTER 6

RECURSIVE MARTINGALES

In this chapter we consider various questions about recursive measure theory.
Recall that the recursive measure p... is defined using recursive martingales.
In Section 6.2 we consider the measure p,, that we already encountered in
Chapter 4. Note that p,, is defined by martingales that are recursive in 0.

6.1 REDUCIBILITY TO RANDOM SEQUENCES AND THE MEA-
SURE OF UPPER CONES

This section is devoted to the classical topic of the measure of upper cones. We
will consider the recursive measure. First we review related results about other
measures. Sacks’ Theorem 1.4.2 shows that for every set A,

AZREC & p(AST)=0.

Ambos-Spies [2] proved that for the polynomial reducibilities we have the ana-
logues

AdP & p(Asm) =0 (6.1)
A¢BPP & pu(AST)=0.

This second item is implicit in Bennett and Gill [14]. In fact, Ambos-Spies [2],
and independently Tang and Book [74] proved that

A¢P & p(ASh)=0
A¢BPP & pu(ASh)=0.

Kucera [37], and independently Gacs [24] proved that every set T-reduces to
a Martin-Lof-random set. By Corollary 4.1.7 this is equivalent to

VA €29 p, . (AST) #0.

89
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In fact, from the proofs in [37] and [24] one sees that
VA €27 piye (AS7) #0.

Bennett [13] indicated that this is not true for tt-reducibility, namely the halting
problem K does not reduce to a Martin-Lof-random set. (A precise proof of this
fact can be found in Juedes, Lathrop, and Lutz [30].)

For recursive measure the situation is different in the sense that it is not
true that a class A has rec-measure zero if and only if it contains a rec-random
set. By definition, if A contains a rec-random set then p...(A) # 0, but for
example the class REC does not have rec-measure zero and it does not contain
a rec-random set. So in the case of rec-measure, given a set A and a reducibility
<,, we can ask two questions: does the r-upper cone of A have rec-measure zero
and does A r-reduce to a rec-random set?

It is easy to see that if A is r.e. and nonrecursive and A <,, B then B is
not recursively random. Namely, in this situation B contains the infinite r.e.
set {f(z) : z € w}. But every r.e. set has rec-measure zero; if the set is finite
this is clear and if it is infinite we can wait for some large element to appear
in the enumeration. If this happens we can double our martingale value at the
one-side at that point. When we perform this action infinitely often it is clear
that we succeed in growing to infinity. The next proof is an elaboration of this
argument.

6.1.1. PROPOSITION. No nonrecursive r.e. set btt-reduces to a rec-random set.

PROOF. Suppose A is r.e. and nonrecursive and A <p; B via a reduction
f(g1...gx) of norm k. So for every z, f, is a Boolean function with k variables
and z € A if and only if f,(B(g1(z)),...,B(gr(z))) = 1. Without loss of
generality we may assume that the queries g;(z) are always strictly ordered:
g1(z) < ... < gk(z). Consider the set

G ={gk(z) : fo(B(g1(2)),.-. , Blgr(x))) = 1A
fz(B(gl(m))a ce ’B(gkfl(m))a 1- B(gk(m))) = 0}'

If G is finite then by deleting almost all queries gi(z) in the reduction we see that
actually A <(;_ ;) 4 B. Since A is nonrecursive we know that A £y_u B, hence
by minimizing k& we may assume that G is infinite. Note that if we know that
z € A and the answers to the first £ —1 queries are given then we can recursively
compute whether gi(z) € G, and if so recursively compute B(gi(z)). Using this
and the fact that A is infinite and r.e. it is easy to show that p .. ({B}) =0. O

Lutz (email August 1996) pointed out to us that from results in Juedes, Lathrop,
and Lutz [30] and Fenner, Lutz, and Mayordomo [19] it follows that K does not
tt-reduce to a rec-random set. However, it is not clear whether this result
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holds for every nonrecursive r.e. set. Note that every set wtt-reduces to a rec-
random set by the result of Kucera and Gacs quoted above, stating that every
set wtt-reduces to a Martin-Lof-random set. In Section 6.2 we will prove that
for every set A € Ay it holds that p,, (AST) = 0, from which it follows that no
nonrecursive set in Ay T-reduces to a As-random set.

We now turn to the first type of question, about the measure of upper cones.
We prove that for every set its upper cone is not small with respect to rec-
measure. This holds for all reducibilities because it holds for the strongest one,
namely 1-reducibility.

6.1.2. LEMMA. (Schnorr [73]) For any martmgale d and w € 2<%, if d(w) < 1
then p({A € Cy : Va > fu| (d(Alz) < 1)}) >

PROOF. Fix w € 2<% with d(w) < 1 and let V be the set of all v J w of minimal
length such that d(v) > 1. Then V is prefix-free, so by Lemma 1.3.3 we have

that
27wl > 91wl gy >22Hd >Z2|v|_“UC
veV veV veV
so p({A € Cy : Vz(d(Alz) < 1)}) = p(Cow — Upey Co) > 0. O

One can show that Lemma 6.1.2 is optimal, i.e. that the measure of the set in
the lemma can be arbitrarily close to 0, but we do not need this here.

By Sacks’ Theorem 1.4.2, whenever A is nonrecursive there is a martingale
that succeeds on every B with A <7 B. On the other hand, we have

6.1.3. PROPOSITION. For every set A and every martingale d there exists a set
B ¢ S[d] such that A <p B ®d.

PrOOF. We sketch this proof since this will help to understand the proof of
Theorem 6.1.5. Fix a recursive martingale d. We may assume that d()\) = 1.
We d-recursively construct a set B in stages and during this construction we
code A into B. Suppose that we are given Bg, the finite part of B constructed
by stage s, and that for this string we have that for every o C By, d(o) < 1.
We then look for the first m > |Bg|, where |B;| denotes the length of the
string B;, such that there are at least two extensions 7 1 B; of length m with
Vo C 7(d(c) < 1). By Lemma 6.1.2 such an m always exists. Now code A into
B by letting Bs1 be the leftmost such 7 if A(s) = 0 and the rightmost such 7
if A(s) = 1. Since at every stage the number m is found recursively in d the
set A can be retrieved recursively from B @ d. Furthermore, it is clear from the
definition of B that d(Bs4+1) <1 for every s, hence B ¢ S[d]. O

In particular, when d is a recursive martingale there is a set B ¢ S[d] with
A <7 B. So for every A, pio.(AST) # 0, something we knew already from
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the results of Kucera and Gacs. In the following theorem we improve this from
Turing-reducibility to one-one-reducibility. (Recall that a one-one-reduction is
an injective many-one-reduction.)

6.1.4. LEMMA. Suppose {w; : i < n} is a finite set of initial segments with
d(w;) <1 for every i. Then there exist m € w and extensions v; J w; such that
|vi| = m, d(v;) <1, d(v;0) <1, and d(v;1) < 1.

PROOF. If d(w) < 1 then by Lemma 6.1.2, u({A € Cy, : Vz(d(Alz) < 1)}) > 0.
Hence, by the Lebesgue Density Theorem there exist A; € Cy,, such that

lim p({A€Cypp:Vz 2 |wi|(d(Alz) < 1)})2™ = 1.

Let m be so large that u({A € Cy.p,, : V& > |wi|(d(Alz) < 1)})2™ > 1/2 for
every i < n. Then Vi < n(d(4;Im) < 1Ad((4;Im)0) < 1Ad((4;Im)0) <1). O

The next theorem shows that for every set the rec-measure of even the smallest
upper cone is not zero.

6.1.5. THEOREM. For every A € 2%, p..(ASt) # 0.

PROOF. Let A be arbitrary and let d be a recursive martingale. Without loss
of generality we may assume that d(A) = 1. Code A into B such that B ¢ S|d]
as follows. Let ng = 1. Suppose ng is defined. By Lemma 6.1.4 we can define
ns4+1 to be the smallest m such that

Yw € {0, 1}"S+1(d(w) <1-3vJw(vl=mA
d(v) <1Ad(v0) <1Ad(vl) <1)).

Now define B as follows. Blng = \. Let B[ns_H be the first string v J Blng+1
of length ns41 such that d(z) < 1 for z € {v,v0,v1}. Define B(nsy1) = A(s).
From this definition it is clear that Vz(d(Blz) < 1), so B ¢ S[d]. Also, A <;
B since s € A & ngy1 € B and by recursiveness of d the sequence {n;} is
recursive. O

In Section 6.2 we prove the analogue of Sacks’ theorem for measure in Ay,
namely that for nonrecursive sets A in Ay the As-measure of AST is zero. The
next proposition shows that this is not true for <}, and E. We do not know
whether the analogue of (6.1) holds for measure in E, i.e. whether for every set
A € E it holds that A ¢ P & u(A<"|E) = p,(AS» NE) = 0.

6.1.6. PROPOSITION. There ezists A € E — P such that p, (AS7m) #£ 0.
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PROOF. Define the sum-martingale

d(z) =) 27%di(x),

t€w
where {d;}ic, is an enumeration of the polynomial time martingales such that

d is in DTIME(nlogn). Define a set B that directly diagonalizes against d, i.e.
inductively define B by

2y € B & d((Blz,)1) < d((Bl2,)0).

Then B € DTIME(2") and pp({B}) # 0. Define A = {0" : z, € B}. Then
A€Eand A <}, B, so p,(AS™) #0. O
Allender and Strauss [1] have proved that for almost every A € E it holds that
BPPA = PA. Tt follows that if A € BPP then the p-T-upper cone of A has

measure 1 in E. Hence, if BPP # P, then there is a set A € E — P such that
u(AS5[E) = 1.

6.2 MEASURE IN A,

In this section we use martingales that are recursive in (' (like in Chapter 4).
In Theorem 1.4.2 we saw that for every nonrecursive set A the Lebesgue

measure of the class AST = {B : A <r B} is zero. We now prove that if

A is in Ay this can be improved from Lebesgue measure to As-measure. Let

Aln = {e}Pn denote that (Vz < n)[{i}P(z)]= A(z)].

6.2.1. THEOREM. For every nonrecursive set A in Ay the Ag-measure of AST
1S zero.

PROOF. Fix A as in the theorem and define for every 7 and n
Ein={B:Aln= {’L}B In},

2191 Pr(Cy|Eig,) if kn:=(the first number k such
din(o) = that 0 < ,u(é’i,k) < 272") exists,
1 otherwise.

Note that the sets &; ,, are Lebesgue measurable, being a countable intersection of
open sets. We think of them as approximations of the class AST. The functions
d; », are martingales because for any class A, Pr(Cy0|A)+Pr(Cy1]A) = Pr(Cy|A).
Furthermore, every d; , is (-approximable. We prove this after we have finished
the main argument. It follows from the approximability of the d;, that the

d(o) = 277 d; 4 0).

=0 n=0

function
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is a Ag-martingale. Note that for every o, d(o) < 217142 because by the martin-
gale property d; (o) < Q‘U‘di’n()\) < 201, We prove that d covers N, Ein- Sup-
pose that A = {i}B. Then for every n there is a 0,, C B such that C,, C Eins
hence p(€;,) > 0 for every n. From Theorem 1.4.2 it follows that for every 4,
limy, 1(&; ) = 0 (here we use that A is nonrecursive) so for every n there is a k
such that 0 < ,u(&-’k) < 2727 Tt now follows from the definition of d; n, that

) |
dq,n O_n — 2‘0’n| /’L( On — > 22’”
n(on) w(&ir,)  w(&ir,) —

So we see that

limsupd(Bln) > limsup2™"""d; (o)

n—,oo n—,oo
> lim 274 "2%" = 0.
n—oo
Hence (), &in C S[d] for every i, so d covers J; N, Ein = AST.
It remains to show that the d;, are ('-approximable. First note that for any
initial segment o the clause

(3 3 0)[Cr C Ein (6.2)

is ()/-recursive because it is equivalent to (37 J o)[A[n = {e}" In]. (We are not
quantifying over A here since Aln is just a finite string that we can ('-compute
since A is in As.) Tt easily follows from this that it is (’-decidable whether
p(&.n) > 0. With a little more effort one sees that it is (-decidable whether
p(&in) > g, for any rational number ¢. (Instead of asking about the existence of
one 7 satisfying (6.2) ask for a finite number of incomparable 7; satisfying (6.2)
such that ) |7;| > ¢.) Now the existence of k,, in the definition of d;, can be
decided recursively in (', and k,, can be @'-recursively found if it exists because
the sets &; ,, form a chain with the measure of its elements tending to zero. From
the ('-decidability of “u(&; ) > ¢” it also follows that p(Cy N E;,) and p(&in)
are (/-approximable from below for any 0. We show that if u(&;,) > 0 we
can, given k, ('-recursively find ¢ such that if we approximate a = p(Cy N E; )
and b = u(&; ) from below within error bound 27% then we have approximated
Pr(C,|&;,n) = % within error bound 27%. Find (/-recursively a rational number
e > 0 such that b > ¢ (if b = 0 there is nothing to prove). Let 7 be so large
that 27! < ¢ and i > k+ 1 — 2loge. Then —log(e — 2 %) < —log e so
i > —log(e — 27") — loge + k, hence

< gk

“ele—27) T

a a—27"

b b2

_|27b—a)
_‘Mb—2i)

This concludes the proof that the d; ,, are (-approximable, and the proof of the
theorem. O
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From Theorem 6.2.1 we immediately obtain the following effectivization of Sacks’
theorem:

6.2.2. COROLLARY. For every set A € Ay it holds that

A € REC & pu(AST|Ag) = py, (AST N Ag) = 0.
Since the degree of a set is a subset of its upper cone we also have the
6.2.3. COROLLARY. Fvery Turing degree in As has Ag-measure zero.

Another immediate corollary is that K does not T-reduce to a As-random set.
This shows that the Gacs-Kucera result that every set wtt-reduces to a Martin-
Lo6f random (=r.e.-random) set is optimal:

6.2.4. COROLLARY. No nonrecursive set in Ay T-reduces to a Ag-random set.

PROOF. By definition a set is Ag-random if no Ay-martingale succeeds on it. If
A is in Ay then by Theorem 6.2.1 there is a Ag-martingale that succeeds on all
the sets above A, hence no such set is As-random. O

It follows from Theorem 6.2.1 that two random elements of Ay are Turing-
incomparable, i.e. that the class {A € Ay : Ag|TA;} has measure one in Aj.
However, this we already knew from the fact that every Martin-Lof-random set
A has the property that Ag|rA; (see e.g. [34, Thm. III.1.4]) and the fact that
ML-RAND has r.e.-measure one.

We note that not every set in Ay has the property that p,, (ST A) = 0 since
STK = A, does not have As-measure zero. (It follows from results of Kucera
and Arslanov that if A is r.e. and Turing-incomplete then . , (STA) = 0, [37]).
We also note that not every nonrecursive set has the property that AST has
As-measure 0:

6.2.5. PROPOSITION. There exists a nonrecursive set A such that pip, (AST) s
not zero.

PROOF. For every martingale d, S[d] UREC is a nullset, so in particular it
has a nonempty complement. By taking for d a weighted sum of all the As-
martingales,

d(z) = 2{2_idi(m) : d; the i-th Ag-martingale},

one sees that there is a nonrecursive A with p,, ({A}) # 0. O

In Chapter 4, Theorem 4.4.4 we have seen that almost every set in Ay does
not wtt-reduce to K. That is, the lower wtt-cone of K has As-measure zero.
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6.3 RECURSIVE RANDOMNESS AND KOLMOGOROV COM-
PLEXITY

This section is devoted to relations between rec-randomness and Kolmogorov
complexity. For an introduction to the theory of Kolmogorov complexity we
refer the reader to Li and Vitdnyi [46]. We also follow the notation of that
book. In particular, C is the plain Kolmogorov complexity and K is the prefix-
free (self-delimiting) Kolmogorov complexity. Recall that an infinite sequence
is recursively random if no recursive martingale succeeds on it. For notational
convenience, in this section we denote the initial segment of length n of an
infinite sequence z € 2 is by z,,. We abbreviate the phrases ‘infinitely often’
and ‘almost everywhere’ by ‘i.0.” and ‘a.e.’, respectively.

In the 1970’s the following important characterization of Martin-Lof-ran-
domness (Definition 4.1.5) was proved.

6.3.1. THEOREM. (Schnorr) A sequence z € 2¥ is Martin-Léf-random if and
only if there is a constant ¢ such that K(z,) > n — ¢ for every n.

Ko [36] investigated the relations between polynomial time and space boun-
ded versions of Martin-Lof randomness. His notion of pspace-randomness is
obtained by defining a sequence to be non-pspace-random if it is covered by
a pspace-computable Martin-Lof test sufficiently fast. The extra condition on
the speed with which the set is covered is necessary, since otherwise the defined
notion equals that of Martin-Lof. The following sufficient condition for pspace-
randomness was proved by Ko.

6.3.2. THEOREM. (K.-I. Ko [36]) Let p be a polynomial. Let C*® denote the
s-space bounded generating complexity. If for all polynomials q it holds that
C%zy,) >n—p(logn) a.e. then z is pspace-random.

We now turn our attention to recursive randomness. The next lemma is anal-
ogous to Claim 2.2 [46, p122], with the time bounded Kolmogorov complexity
instead of the plain Kolmogorov complexity.

6.3.3. LEMMA. For any infinite sequence x € 2 the following are equivalent:

(i) For every recursive function t there is a constant ¢ such that
C'(zn) > n — c for infinitely many n.

(ii) For every recursive function t there is a constant ¢ such that
C'(zp|n) > n — c for infinitely many n.
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PROOF. The implication from (ii) to (i) is trivial since always C*(z|n) < C*(z).
For the other implication note that

C?(z,) < CH(xn|n) + 2 - Ct(n — C¥(zy|n)) + O(1).

For if we have a minimal program p that generates z,, given n, and a program ¢
for n — C*(z,|n), then we can reconstruct n from the length of p together with
g. If p and g run both in time ¢t then this new program takes time 2t + O(1).
Now fix any recursive t. From (i) it follows that infinitely often n — ¢ <
C?(x,) for some constant c. For all the n for which this holds we then have

< CYznln) + 2 CHn — Ct(z,|n)) + O(1)

< Clzp|n) + 2+ |n— CHzy|n)| + O(1).

Hence n — C'(zy|n) < 2 - |n — C*(zy|n)| + O(1), but this is only possible if
n — C*(z,|n) is bounded, i.e. for the infinitely many n such that the above
inequalities hold we must have that n — C*(z,|n) < ¢ for some constant ¢’. [

The characterization of Martin-Lof randomness (Theorem 6.3.1) was ob-
tained by considering prefix-complexity instead of plain Kolmogorov complexity.
We now give an ‘infinitely often’ criterion for recursive randomness. Since we
use ‘i.0.” rather than ‘a.e.” we have no need for prefix-complexity at this point.

6.3.4. THEOREM. Let z be an infinite sequence. If for every recursive function
t there is a constant c such that it holds that infinitely often C*(x,) > n—c then
x 1s recursively random.

PROOF. We prove this by contraposition. Suppose that x is a sequence that
is not recursively random. By Lemma 6.3.3 it suffices to prove that there is a
recursive ¢ such that for every constant c¢ it holds that C*(z,|n) < n —c a.e.
First we prove that for every constant c there exists a recursive function ¢ such
that C*(z,|n) < n — c a.e. At the end of the proof we show that this proof can
be made uniform. Fix ¢ and let d be a recursive martingale such that z € S|[d]
and d(A\) = 1. Without loss of generality we may assume that d(z,) > c a.e.
We have that

p({w € 2<% : w of minimal length such that d(w) > c}) < 27, (6.3)

see [73, p41]. Let M be a machine that, given ¢ and n, outputs the i-th initial
segment w of length n with d(w) > ¢, or outputs zero if such w does not exist.
Let t.(z,n) be the number of computation steps in the computation M (i,n).
Fix n such that d(z,) > c. Let 7 be such that z, is the i-th string w of length
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n with d(w) > c. Note that by (6.3) there can be at most 27¢/27" strings w of
length n with d(w) > ¢, so 1 < 2" ¢, and thus |i| < n — ¢. Therefore,
C'(znln) < il +Clc) + C(d) + | M|

< n—c+logec+ C(d) + | M|
Here by C(d) we mean the Kolmogorov complexity of a program for the recursive
martingale d. So for every c there is a recursive function ¢, such that C' (zn|n) <
n—(c—logc—b) a.e., where b = C(d) + |M|. Hence, given a constant ¢’ we can
choose ¢ so large that c—logc—b > ¢’ to obtain C'(z,|n) < n—(c—logc—b) <
n—c ae.

It is now easy to see that the above construction can be done uniformly,
yielding a function ¢ that works for all c. We simply set (i, n) = maxc<p t.(i,n)
and note that this ¢ majorizes every t.. O

Recently Lathrop and Lutz have proved the following two results relating rec-
randomness and Kolmogorov complexity. The first result shows that rec-random
sequences have very high time-bounded Kolmogorov complexity, and the second
result shows that this is no longer true in the absence of time bounds.

6.3.5. THEOREM. (Lathrop and Lutz [45]) Suppose that © € 2* is rec-random
and that t,9 : w = w are recursive functions with g nondecreasing and un-
bounded. Then K'(z,) > n — g(n) for infinitely many n.

Call a sequence z € 2¥ wultracompressible if for every nondecreasing un-
bounded recursive function g : w — w it holds that K(z,) < K(n) + g(n) for
almost every n.

6.3.6. THEOREM. (Lathrop and Lutz [45]) There ezists a rec-random sequence
x that is ultracompressible.

It would be interesting to find a precise characterization of the notion of
rec-randomness in terms of Kolmogorov complexity.

6.4 T'WO RECURSIVE MEASURES

In this section we consider two notions of measure zero used by Schnorr in [73].
The first measure is .., the notion that we have defined in Section 1.5. The
second measure, that we denote by 1,4, ‘mod’ for ‘modulated’, was introduced
by Schnorr as a more constructive version of Martin-Lo6f’s measure defined using
statistical tests (see Chapters 4 and 5). The measure u,,,q was also used by

Freidzon [23].
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6.4.1. DEFINITION. For a class A, 1,4 (A) = 0 if and only if there is a recursive
martingale d and a monotonic unbounded recursive function h such that A C

Sh[d], where

XIn)

d
Spld] = {X : limsup > 1}.

n—00 h(n) o

This is equivalent to the definition given in Definition 5.4.1, see [73, Satz 9.4,
9.5]. In [73] this definition is motivated and compared to Martin-Lo6f’s definition
of randomness.

It is immediate from the definition that p.;,,q(.A) = 0 implies that p..(A) =
0. So for the corresponding notions of rec-randomness and pi,,,q-randomness
we have that the first is stronger than the latter. Wang [79] proved that rec-
randomness is strictly stronger than p,,,q-randomness by constructing a se-
quence X and a recursive martingale d such that d succeeds on X, and such
that no recursive martingale succeeds on X recursively fast. Note that such an
X is necessarily nonrecursive, since no recursive sequence is random in either
sense. Therefore, this separation of these two notions of randomness leaves open
the question whether the measures pi... and 04 coincide on REC. The next
theorem shows that this is not the case.

6.4.2. THEOREM. There exists a subset A of REC such that p..(A) = 0 but
Hmod (‘A) # 0.

PROOF. For every number n = (e, f) recursively define a set of numbers
{{ym,2z0) : m € w} as follows. Let y§ = 2§ = n. If (y'_1,2]_1) is defined

let (y;,z) be the smallest number such that y;;, >z, and

Wm-1tl < ‘Pf,y%(zn 4

m

if this exists and let (y;, 2/ ) be undefined otherwise.
Call a number (e, f) a Schnorr-test if ¢, is a martingale with ¢.(A) = 1 and ¢y
is a monotonic unbounded function. For every Schnorr-test n = (e, f) define a
recursive set A, that escapes n: Let A,[n = @[n and define A4, (n) = 1, so that
0"1 C A, and the number n is coded in this way into the initial segment of A,,.
Since ¢, is a martingale and ¢ is unbounded we can recursively define the rest
of A, as follows. Given A,[y" ;, define A,[y", to be the (lexicographically)
first string o of length y7, such that (A4,y"_;)1 C o and

Vilym_1 <3j <l|o| =1 = @e(alj) < pe(olj+ 1))
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i.e. the martingale ¢, does not grow along o. Note that for every A,, defined in
this way we have Vi > n(yp.(Ay 1) < ¢¢(i)), hence Ate,py & Sy, lpel:

Ve(Anlyl) < we((Anly?_1)1) (e doesn’t grow)
< 2ot (Ve (w) < 21*1))
< pran (zm)d
< r(yr) (yp, > 2y, and ¢f monotonic)

Now define A = {A,, : n is a Schnorr-test} Then by the remark above there
is no Schnorr-test (e, f) such that A C Sy [pe], and hence fip,oq(A) # 0. On
the other hand, pe.(A) = 0. Namely, define a rec-martingale d that succeeds
on A as follows. Let d(A) = 1, and for w = 0"1v define d(wl) = 2d(w) if
and only if |w| € {y}}, : m € w}, and d(wl) = d(w) otherwise. In any case
define d(w0) = 2d(w) — d(w1), so that d is a martingale. Note that the sets
{yp, : m € w} are recursive uniformly in n: to test whether a number k is one
of the numbers ¥}, we only have to perform the finite number of computations
¢ k(l), where n = (e, f) and [ < k. So d is indeed recursive. Also, A C S[d]
because if A, € A then the set {y, : m € w} is infinite. O

Note that by suitably changing the usual definition of “, ()" we may assume
that the set {(e,z,s) : g s(z) ]} is actually in P, the class of polynomial time
computable sets. This implies that the set {(n,y;,) : n,m € w} used in the
proof is also in P. Since we can choose the pairing function and its inverses to be
polynomial time computable this implies that the martingale d that succeeds on
A is a p-martingale, hence that Pp (A) = 0. So we have the following stronger
version of Theorem 6.4.2:

6.4.3. THEOREM. There ezists a subset A of REC such that p,(A) = 0 but
Hmod (A) # 0.

The assertion in this theorem that A is a subset of REC can not be improved to
A C A for any of the usual subrecursive complexity classes A by the following

6.4.4. PROPOSITION. For any recursive time bound t, pi,,q (DTIME(t)) = 0.

PROOF. Fix a time bound t and let F' be a recursive function such that
A € DTIME(¢t) & FiVz(F(i,z) = A(z)).

Since DTIME(t) is dense in 2 (every initial segment is a prefix of a set in
DTIME(t)) and F is total we can, given an initial segment w, recursively find
the least 7 such that for all z < |w|, F(i,z) = w(z). Denote this i by i,,.
Define a recursive martingale d by d(\) = 1 and d(wb) = d(w) - F(iy, |w|) for
w € {0,1}* and b € {0,1}. Then d succeeds on the i-th language in DTIME(%)
faster than 2/*/=¢ for some constant ¢ (the number of steps that d was betting
on the language using the wrong index i) whence DTIME(t) C Sy [d] for the the
function h(n) = n. O
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6.5 PARTIAL RECURSIVE MARTINGALES

Partial recursive (p.r.) martingales were introduced in Fortnow et al. [22] to
study the sizes of classes arizing in the context of learning theory. We prove
that these martingales do not yield a measure.

6.5.1. DEFINITION. ([22]) A partial function m : 2<% — Q' is a partial mar-
tingale if for all o € 2<¥_ if m(00)J or m(ol)| then

o m(o)l, m(c0)], and m(cl)], and
o m(c0) +m(cl) = 2m(o).

A partial martingale m succeeds on a set A if for all z, m(Alz) is defined and
limsup,¢, m(Alz) = co. A class A has partial recursive measure zero (p.r.-
measure zero) if there is a partial recursive martingale that succeeds on every

Ae A
Define the class of self-describing sets
S={AcREC:0°1C ANA=p.}.

That is, a recursive set A is self-describing if its characteristic sequence starts
with exactly e zeros where the number e is a characteristic code for A.

6.5.2. THEOREM. ([22]) The class S does not have rec-measure zero.

PROOF. Let d be any recursive martingale. We construct a recursive set A € S
on which d does not succeed. By the recursion theorem we know a code e for A
in advance of the construction. By induction, define oy = 01 and

[ 0,0 ifd(0,0) < d(0,),
T T ol if d(opl) < d(on).

Then, if A is defined as A = |J,, op, it is easily seen that d does not succeed on
A, and by definition of oy we have A € S. O

6.5.3. THEOREM. There ezxist classes X and )Y, both of partial recursive measure
zero, such that X U)Y does not have p.r.-measure zero.

PROOF. Let Y be any class of p.r.-measure zero that does not have rec-measure
zero. For example, we can take Y = S, the class of self-describing sets. By
Theorem 6.5.2 this class does not have rec-measure zero, and it is easy to show
that ) has p.r.-measure zero. Let X be any dense class of p.r.-measure zero,
for example, let X be the success set of the martingale d defined by d(\) = 1,
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d(w0) = 3/2 - d(w), d(wl) = 1/2 - d(w). Note that every partial martingale
that succeeds on X must be total. Therefore, X' U) does not have p.r.-measure
zero, since this would imply the existence of a total recursive martingale that
succeeds on Y. O

Clearly no partial recursive martingale can succeed on all the recursive sets.
Namely, if it is not total, say it is not defined on w € 2<%, then it does not
succeed on any recursive set with prefix w. Otherwise the martingale is total
recursive, and we can diagonalize against it in the usual way. However, as we
show in the next theorem, there is not a uniform way of defining for every p.r.
martingale a recursive set on which it does not succeed.

6.5.4. THEOREM. There is no partial recursive function f such that whenever
e 18 a p.r martingale, f(e) is defined and ©f(e) 18 the characteristic function of
a recursive set with Py & S[pe]-

PROOF. Suppose f : w — w is partial recursive. There is a p.r. function
m : w x {0,1}* — Q such that for all d, mg is a p.r. martingale and if ¢y,
is total then mg4 succeeds on ¢yg). Hence there is a recursive function h such
that for all d the function ¢p4) is a p.r. martingale that succeeds on ¢yq) if
both f(d) is defined and ©y(a) is total. By the recursion theorem choose e with
®n(e) = Pe- Then @, is a p.r. martingale and if f(e) is defined then either ¢y
is not total or pg(.y € Sl O
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SAMENVATTING

In dit proefschrift bespreken we een aantal vraagstukken uit de recursietheorie
die betrekking hebben op maat en willekeurigheid. Het centrale begrip in de
recursietheorie is het begrip ‘recursieve verzameling’. Een verzameling is recur-
sief als er een algoritme bestaat om te bepalen of iets een element is van deze
verzameling. Bij het bestuderen van deelklassen van de klasse van recursieve
verzamelingen spreekt men in het algemeen van complexiteitstheorie.

In hoofdstuk 1 introduceren en bespreken we de centrale begrippen uit dit
proefschrift. In het bijzonder bespreken we enige elementaire maattheorie en de
presentatie daarvan met behulp van zogenaamde martingalen. Deze functies,
die opgevat kunnen worden als gokstrategieén, worden in een groot deel van
dit proefschrift gebruikt om constructieve maattheorie te beschrijven. Dit in
navolging van het werk van Schnorr en Lutz. In deze theorie worden diverse
begrippen uit de klassieke maattheorie constructief gemaakt door de eis op te
leggen dat ze berekenbaar zijn. De mate van berekenbaarheid fungeert hier
als een parameter A, waaraan we kunnen denken als een begrenzing op de
toegestane methoden. Hierom wordt deze vorm van constructieve maattheorie
ook wel ‘begrensde maattheorie’ genoemd.

Het doel van begrensde maattheorie is tweeledig. Ten eerste wordt het door
A voldoende strikt te kiezen mogelijk om ideeén uit de klassieke maattheorie
toe te passen op de studie van diverse complexiteitsklassen. Dit geeft informatie
over hoe de ‘meeste’ elementen van een complexiteitsklasse zich gedragen. Ten
tweede geeft het bestuderen van begrensde maattheorie inzicht in het gedrag
van willekeurige of toevals-verzamelingen. We kunnen hieraan denken als verza-
melingen die gegenereerd zijn door een toevalsproces, zoals bijvoorbeeld het
opwerpen van een munt. Een verzameling A is A-willekeurig als {A} niet maat
nul heeft in de begrensde maattheorie met parameter A. Intuitief betekent dit
dat een algoritme uit de klasse A geen regelmaat kan ontdekken in de verzame-

ling A.
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Bovenstaande ideeén worden in hoofdstuk 2 toegepast op de complexiteits-
klasse E van verzamelingen die berekenbaar zijn in exponenti€le tijd. In het
eerste deel van dit hoofdstuk worden zogenaamde generische verzamelingen
bestudeerd en gebruikt om een generalisatie te bewijzen van een stelling van
Juedes en Lutz. In sectie 2.5 worden willekeurigheid en genericiteit met elkaar
vergeleken en wordt duidelijk dat in deze context generische verzamelingen
opgevat kunnen worden als een zwakke variant van toevalsverzamelingen. In
het tweede deel van hoofdstuk 2 worden toevalsverzamelingen gebruikt om een
vraag van Lutz te beantwoorden over het bestaan van zwak volledige verza-
melingen die niet volledig zijn.

In hoofdstuk 3 wordt het ontwerp van Lutz voor begrensde maattheorie
enigszins aangepast om een maat te definiéren die geschikt is voor de studie van
recursief opsombare (afgekort r.e., voor ‘recursively enumerable’) verzamelingen.
Dit is een klasse van verzamelingen die een prominente rol speelt in de recur-
sietheorie. We bestuderen zwakke begrippen van volledigheid en verkrijgen een
volledig beeld (zie plaatje pagina 57) van de relaties tussen de verschillende
begrippen van zwakke en ‘gewone’ volledigheid. De studie van deze begrippen
heeft ook consequenties voor een vraag die het begrip maat niet noemt, namelijk
de vraag in hoeverre een onvolledige verzameling op een volledige verzameling
kan lijken. Deze vraag wordt behandeld in sectie 3.3.

In hoofdstuk 4 bestuderen we klassen van martingalen corresponderend met
de klassen uit de aritmetische hiérarchie. In het bijzonder bestuderen we de
begrensde maat gedefinieerd door voor de klasse A de verzameling van recur-
sief opsombare functies te nemen. De bijbehorende toevalsverzamelingen zijn
precies de verzamelingen die oorspronkelijk geintroduceerd zijn door Martin-
Lof als voorstel voor een algemene definitie van willekeurigheid. Het bestaan
van universele recursief opsombare verzamelingen heeft tot gevolg dat de r.e.-
willekeurige verzamelingen mooie eigenschappen hebben. We beschrijven de
distributie van deze verzamelingen in termen van de bekende reduceerbaarheids-
relaties uit de recursietheorie. We localiseren de klasse R(r.e.) van verzamelingen
die geconstrueerd worden door zogenaamde r.e.-constructoren (pagina 65). In
tegenstelling tot de klassen R(A) uit Lutz’ begrensde maattheorie komt de klasse
R(r.e.) niet overeen met een bekende klasse uit de recursietheorie. Tenslotte be-
handelen we analoge vragen voor de maten behorende bij de niveaus A, van
de aritmetische hiérarchie, en bewijzen we dat deze maten samenvallen met de
maten behorend bij de niveaus II,,.

Hoofdstuk 5 behandelt verzamelingen die ‘laag’ (low) zijn voor twee klassen
van toevalsverzamelingen: de klasse R van Martin-Lof uit hoofdstuk 4 en de
klasse 8, oorspronkelijk geintroduceerd door Schnorr als een meer constructieve
versie van R. Een verzameling A is laag voor een klasse C als voor de gerelati-
veerde versie C4 van C geldt dat C = C4. Intuitief: als A relatief C niet bijdraagt
in rekenkracht. Recursieve verzamelingen zijn trivialiter laag voor zowel R als 8.
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We bewijzen dat in beide gevallen ook niet-recursieve verzamelingen bestaan die
laag zijn. Dit toont aan dat substantiele hoeveelheden informatie op zo’'n manier
gecodeerd kunnen liggen in een verzameling dat ze niet toegankelijk zijn voor
elementen van respectievelijk R en 8. De gevallen R en § verschillen aanzienlijk.
In het geval van R construeren we een niet-recursieve, recursief opsombare lage
verzameling, en weten we niet of er zulke verzamelingen buiten As bestaan. In
het geval van 8 construeren we 2%° niet-recursieve lage verzamelingen en laten
we zien dat deze noodzakelijkerwijs buiten As moeten liggen. De resultaten voor
de verzamelingen die laag zijn voor & worden verkregen via een karakterisering
van deze verzamelingen in puur recursietheoretische begrippen, dat wil zeggen
zonder vermelding van maattheorie. Volgens deze karakterisering zijn de functies
die recursief zijn in een lage verzameling recursief traceerbaar (sectie 5.4). We
laten verder nog zien dat verzamelingen die laag zijn voor § hyper-immuun zijn,
en dat de omkering van deze bewering niet algemeen geldt.

In hoofdstuk 6, tenslotte, bespreken we kort een aantal thema’s die be-
trekking hebben op recursieve martingalen. Aan de orde komen reduceerbaar-
heid naar toevalsverzamelingen, relaties tussen recursieve willekeurigheid en Kol-
mogorov-complexiteit, de relatie tussen de maat gedefinieerd door recursieve
martingalen en de maat van Schnorr bestudeerd in secties 5.4 en 5.5, partieel
recursieve martingalen, en maat in As.
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