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Abstract

We study computational aspects of a probabilistic logic based on a
well-known model of induction by Valiant. We prove that for this
paraconsistent logic the set of valid formulas is undecidable.

1 Introduction

The probabilistic interpretation of quantifiers has a long tradition and has
been studied in many forms, often motivated by the difficulties of obtaining a
complete picture of the world outside the realm of mathematical formalisms.
We will not attempt to give an historical overview of the various approaches
in the restricted context of this brief paper, but instead confine the discussion
to those sources that are of direct relevance to it. More references to papers
concerning probability logic can be found in [6].

Valiant [10] and Terwijn [7] gave probabilistic interpretations of first-order
predicate logic based on Valiants model of pac-learning. In these interpreta-
tions universal quantification in a model M is interpreted as “many”, where
“many” refers to a given probability distribution D on M and to a given er-
ror parameter ε. These probabilistic interpretations were partly motivated by
considerations from computational learning theory. In this paper our concern
is not the induction of formulas but the study of probabilistic truth itself.
Both [10] and [7] are predated by Keisler [5] (that also surveys many results
of other researchers, notably Hoover), in which a logic is studied with es-
sentially the same probabilistic interpretation of universal quantification, but
with no other quantifiers, and with a negation that is different from the one
below. Our different interpretation of negation allows for having the classical
existential quantifier ∃ in the logic, something that Keislers logic does not
have. A logic with a measure quantifier was also introduced by H. Friedman
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(cf. Steinhorn in [1]), but this logic is even less related to ours than Keislers.
A recent study of a probabilistic logic extending classical predicate logic that
is motivated by inductive probabilistic reasoning is Jaeger [4].

We start by repeating the definition of probabilistic truth from [7]. For
unexplained measure-theoretic terminology we refer to Doob [3]. Fix a first-
order language with predicates and constants, possibly with equality, but no
function symbols. Let M be a classical model (consisting of a universe with
interpretations of the predicates in the language) and let D be a probability
measure on M, i.e. a measure such that D(M) = 1. For a D-measurable
subset X ⊆M we will sometimes write PrD

[
X

]
instead of D(X), to empha-

size that we think of these measures as probabilities. For the moment we
just assume that D is a probability measure. We will discuss an additional
property that one can impose on D in Section 2.

Given a property ϕ(x) for elements in a model M, and given an error
parameter ε, one can calculate (using Chernoff bounds, cf. [7]) how large a
sample of x’s from M should be to be able to assert with a certain confidence
1 − δ that at least 1 − ε of the x’s in M (in terms of the unknown measure
D) satisfy ϕ(x). In the context of such large samples, we want ∀xϕ(x) to
mean that this is the case, i.e. that at least 1−ε of the x’s in M satisfy ϕ(x).
In contrast, we want ∃xϕ(x) to mean that an x was found in the sample
that satisfies ϕ(x). ¬∃xϕ(x) should mean that no such x was found, which
is the same as saying that ∀x¬ϕ(x). ¬∀xϕ(x) means that not all sampled
x’s satisfy ϕ(x), that is, the sample contains an x with ¬ϕ(x), i.e. ∃x¬ϕ(x).
These considerations are reflected in the following definition. Note that we
do not model induction of formulas here; at this point we are solely interested
in probabilistic truth.

Definition 1.1. (Truth definition) Given ε ∈ [0, 1], we inductively define the
relation M |=D,ε ϕ as follows.

1. For every prime formula ϕ (i.e. ϕ atomic or the negation of an atomic
formula), M |=D,ε ϕ if M |= ϕ.

2. The logical connectives ∧ and ∨ are treated classically, e.g. M |=D,ε

ϕ ∧ ψ if it holds that M |=D,ε ϕ and M |=D,ε ψ.

3. M |=D,ε ∃xϕ(x) if there exists x ∈M such that M |=D,ε ϕ(x).

4. The case of negation is split into subcases as follows:

4.1. For ϕ atomic, M |=D,ε ¬¬ϕ if M |=D,ε ϕ. Furthermore, ¬ dis-
tributes in the classical way over ∨ and ∧, e.g. M |=D,ε ¬(ϕ ∧ ψ)
if M |=D,ε ¬ϕ ∨ ¬ψ.

4.2. M |=D,ε ¬∃xϕ(x) if M |=D,ε ∀x¬ϕ(x).

4.3. M |=D,ε ¬∀xϕ(x) if M |=D,ε ∃x¬ϕ(x).
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5. M |=D,ε ϕ → ψ if M |=D,ε ¬ϕ ∨ ψ.

6. M |=D,ε ∀xϕ(x) if PrD
[
x ∈M : M |=D,ε ϕ(x)

]
> 1− ε.

Note that in the above definition everything is treated classically, except the
interpretation of ∀xϕ(x) in Case 6. The treatment of negation requires some
care, since we no longer have thatM |=D,ε ¬ϕ implies thatM 6|=D,ε ϕ (though
the converse still holds).

Note that both M |=D,ε ∃xϕ(x) and M |=D,ε ∀x¬ϕ(x) may hold, since
the interpretation of the first is the classical one, but the interpretation of the
second is that most x’s satisfy ¬ϕ(x). That is, the logic of |=D,ε is paracon-
sistent. In [7] the above definition is motivated. In particular, the asymmetry
in the interpretation of ∃ and ∀ is motivated by an interpretation in which
the truth of first-order statements in an unknown model is established with
a given degree of confidence by taking samples from the model.

Case 5 defines A → B as ¬A ∨ B. We note that this is weaker than the
classical implication. Namely, the classical definition would say that B holds
in any model where A holds. Taking B = ⊥, where ⊥ is an inconsistency such
as ∃x(R(x)∧¬R(x)), we would thus obtain the classical negation of A. Taking
for A an existential statement, then since ∃ expresses classical existence we
would thus also obtain the classical universal quantifier ∀, and our logic would
become a strong extension of classical predicate logic, which is not what we
are after. Instead, ∃xϕ(x) → ⊥ by definition means ¬∃xϕ(x) ∨ ⊥, which is
the same as ∀x¬ϕ(x). Thus the above definition of implication takes on a
probabilistic interpretation: If we interpret ¬A by saying that A is unlikely,
then A → B holds if whenever A holds it is likely that B holds.

Note that for ε = 0 the truth definition does not coincide with the classical
one: If M |=D,0 ∀xR(x) there can still be a set of D-measure zero of x’s with
¬R(x). In the following we will exclude the pathological case of ε = 1. Note
that for ε = 1 all universal statements are always true, for example.

Proposition 1.2. (Prenex normal form) Every formula ϕ is semantically
equivalent to a formula ϕ′ in prenex normal form, that is, ϕ′ satisfies M |=D,ε

ϕ ⇔ M |=D,ε ϕ′ for all models M, D, ε.

Proof. By Case 5 in Definition 1.1 we may assume that the formula is free
of implications. Case 4 in the definition allows us to rewrite all formulas by
pushing the negations inside, so that all negations occur only directly in front
of an atomic formula. We then pull all quantifiers outside: Clearly we can
pull ∃ outside over the connectives ∧ and ∨ since ∃ has the classical meaning.
For ∀ we have to check that

ϕ ∧ ∀xψ(x) ≡ ∀x(ϕ ∧ ψ(x)) (1)

and
ϕ ∨ ∀xψ(x) ≡ ∀x(ϕ ∨ ψ(x)) (2)
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where ≡ denotes semantic equivalence, and under the usual proviso about x
not occurring free in ϕ. Indeed, for (1) we have

M |=D,ε ∀x
(
ϕ ∧ ψ(x)

) ⇐⇒ Pr
x

[
ϕ ∧ ψ(x)

]
> 1− ε

⇐⇒ ϕ ∧ Pr
x

[
ψ(x)

]
> 1− ε

⇐⇒ M |=D,ε ϕ ∧ ∀xψ(x).

The second statement is proved in exactly the same way, replacing ∧ by ∨.

Definition 1.3. We will use the following terminology: By a probabilistic
model we will mean a triple M,D, ε as above, where ε ∈ [0, 1). In this case
we also call the pair M, D an ε-model. For a given ε, a sentence ϕ is ε-
satisfiable if there are M and D such that M |=D,ε ϕ, and ϕ is ε-valid if
M |=D,ε ϕ for every M and D. Furthermore, ϕ is probabilistically satisfiable
if ϕ is ε-satisfiable for some ε < 1.

Note that all models are necessarily nonempty since they are measure spaces.
From Proposition 1.2 it is easy to see that for ε 6 ε′, every ε-valid formula is
ε′-valid. See also Proposition 3.3 below. In Section 2 we will amend Defini-
tion 1.3 by imposing an extra restriction on the probabilistic models.

Definition 1.4. Below we will use the shorthand notation ~z for a series of
variables z1, . . . , zn. Let us adopt here the convention that for a formula
ϕ(~z) with free variables ~z it holds that M |=D,ε ϕ(~z) whenever there are
~z ∈ M such that M |=D,ε ϕ(~z). So we think of unbound variables as being
existentially quantified.

2 The measurability of predicates

In Case 6 of Definition 1.1 we require in particular that the set

{
x ∈M : M |=D,ε ϕ(x)

}

is D-measurable. One can argue that it is natural to require a bit more than
this, namely that

for every k-ary predicate R occurring in ϕ the set of
k-tuples satisfying R is Dk-measurable, (3)

where Dk denotes the product measure on Mk. This is a natural assumption:
When we are talking about probabilities over certain predicates we may as
well require that all such probabilities exist, even if in some cases this would
not be necessary. The property (3) and its consequences are discussed more
extensively in [8]. Henceforth, we will assume property (3).
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3 The set of 0-valid formulas

In this section we make some preliminary remarks about the set of 0-valid
formulas. We start by repeating an easy preliminary result from [7].

Lemma 3.1. Let D be a probability distribution on M such that for all x ∈
M, D({x}) 6= 0. Then for every formula ϕ, M |= ϕ ⇐⇒ M |=D,0 ϕ.

Proof. One direction follows from the fact that classical validity implies prob-
abilistic validity, since the only difference is that the probabilistic interpreta-
tion of ∀ is weaker. For the converse direction, if D is as in the lemma and
PrD

[
x ∈ M : M |=D,0 ϕ(x)

]
= 1 then in fact (∀x ∈ M)

[M |=D,0 ϕ
]
. So

the interpretation of ∀ is in fact the classical one, and hence every formula is
interpreted classically.

Proposition 3.2. The 0-valid formulas coincide with the classically valid
formulas.

Proof. That every classically valid formula is also probabilistically valid was
already noted above. For the converse, suppose that ϕ is not classically valid.
Then there is a countable model M such that M 6|= ϕ. Since M is countable,
there is a distribution D on M such that for all x ∈ M, D({x}) 6= 0. But
then by Lemma 3.1, M 6|=D,0 ϕ. Hence ϕ is not 0-valid.

Note however that we do not have that every 0-satisfiable sentence is classi-
cally satisfiable; a counterexample is ∃xR(x) ∧ ∀x¬R(x).

Proposition 3.3. (Terwijn [7]) For all ε < ε′, the set of ε-valid formulas is
strictly included in the set of ε′-valid ones.1

Proposition 3.4. Let ϕ(~x) be a formula with free variables ~x such that for
every probabilistic model M, D and every ~x ∈M

∀ε > 0
(M |=D,ε ϕ(~x)

)
=⇒M |=D,0 ϕ(~x). (4)

If furthermore ∀~xϕ(~x) is ε-valid for every ε > 0, then ∀~xϕ(~x) is 0-valid.

Proof. By induction on the number of ∀-quantifiers it suffices to prove this

1The proof in [7] actually does not take the extra measurability condition (3) into
consideration. However an alternative proof using similar ideas of this result can be given
that also respects (3).
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for ∀xϕ(x), where ϕ(x) satisfies (4). So suppose ϕ(x) satisfies (4). Then

∀ε > 0 M |=D,ε ∀xϕ(x) =⇒ ∀ε > 0 PrD
[
x : M |=D,ε ϕ(x)

]
> 1− ε

=⇒ ∀ε > 0 PrD
[
x : M |=D,ε ϕ(x)

]
= 1

=⇒ Pr
D

( ∞⋂
n=2

{
x : M |=D, 1

n
ϕ(x)

})
= 1

=⇒ PrD
[
x : M |=D,0 ϕ(x)

]
= 1

=⇒ M |=D,0 ∀xϕ(x).

Here the second to last implication follows because ϕ satisfies (4). So if for
every ε > 0 the sentence ∀xϕ(x) is ε-valid then it is 0-valid.

Following standard notation, let ∀n∃m denote the class of L-sentences in
prenex form with at most n ∀-quantifiers followed by at most m ∃-quantifiers.
Similarly, let ∃∗ and ∀∗ denote the fragments defined by any finite number
of ∃ or ∀ quantifiers. Note that in contrast to the classical case, under the
probabilistic interpretation we do not have that for example the ∀2-fragment
is closed under conjunctions. To see this, notice that the pair of formulas
ϕ0 = ∀x∀yRxy ∧ ∀x∀y¬Ryx and ϕ1 = ∀x∀y(Rxy ∧ ¬Ryx) are not seman-
tically equivalent. One can for example prove that whereas both formulas
are 1

3
-satisfiable, ϕ0 has a finite 1

3
-model, but ϕ1 has not, cf. [8]. Hence, to

put ϕ0 in prenex form we have to rename variables and put more than two
quantifiers in the prefix.

Corollary 3.5. For every ϕ ∈ ∀∗∃∗, if ϕ is not 0-valid then there is an ε > 0
such that ϕ is not ε-valid.

Proof. It suffices to note that every formula ϕ of the form ∃~yP (~x, ~y), where
P is a propositional combination of atomic predicates, satisfies (4). This is
because if M |=D,ε P (~x, ~y) then M |=D,0 P (~x, ~y).

At this point we do not know whether Corollary 3.5 holds for all sentences
ϕ, i.e. whether

⋂
ε>0 ε-valid = 0-valid.2

2Note however that the same proof will not work, since in general (4) fails for ∃∀-
formulas. Corollary 3.5 was used in an earlier version of the proof of Theorem 4.2, in
which a reduction was built from the formulas in the ∀3∃-fragment. This fragment is
undecidable by a result of Surányi [2, Theorem 3.1.16]
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4 The undecidability of the ε-valid formulas

In this section we prove that the set of ε-valid formulas is undecidable for
every ε. Note that for ε = 0 the set of ε-valid formulas coincides with the
classically valid formulas by Proposition 3.2, and hence is Σ0

1-complete.

Definition 4.1. Given a probabilistic model M,D and a subset X ⊆ M
with D(X) > 0, we define the restriction of M to X, denoted by M¹X, as
the model with universe X obtained from M by restricting all relations to
X, and with the probability distribution on X defined by multiplying D with
a factor 1/D(X).

Theorem 4.2. For every rational ε ∈ [0, 1), the set of ε-valid formulas is
Σ0

1-hard.

Proof. Suppose that 0 < m < n and that ε = 1 − m
n
. We build a many-one

reduction from the 0-valid formulas to the ε-valid ones, i.e. we show that
there is a computable function f such that ϕ is 0-valid if and only if f(ϕ) is
ε-valid. Note that this suffices since by Proposition 3.2 the 0-valid formulas
coincide with the classically valid ones, and these are of course undecidable.

The idea of the proof is to introduce new parts X0, . . . Xn−1 into a given
model to “dilute” the meaning of the ∀-quantifiers in ϕ. We consider suitably
relativized versions ϕXi1

...Xim of ϕ relative to fractions Xi1 , . . . , Xim of m out
of the n Xi’s. In ϕXi1

...Xim the existential quantifiers range over Xi1 and
Xi2 , . . . , Xim are used to dilute the ∀ quantifiers in such a way that ϕ holds in
Xi1 with error 0 if and only if ϕXi1

...Xim holds in Xi1 ∪ . . .∪Xim with error 0.
If Xi1 ∪ . . .∪Xim has weight > m

n
then the latter holds if and only if ϕXi1

...Xim

holds in X0∪ . . .∪Xn−1 with error at most ε. The main problem is to express
all this correctly in such a way that a 0-countermodel to ϕ can be transformed
to ε-countermodel of the relativized version. The proof below would be would
be considerably simpler if we could express D(X) > m

n
. To circumvent this

technical difficulty, we resort to considering all possible combinations i1 . . . im.
Formally, given a first-order formula ϕ, let X0, . . . , Xn−1 be fresh unary

predicates, i.e. predicates not occurring in ϕ. Define the sentence

n-split = ∀x
((

X0(x) ∨ . . . ∨Xn−1(x)
) ∧

∧
i<n

[
Xi(x) ↔

∧

j 6=i

¬Xj(x)
])

that says thatM splits into n parts. Note that since n-split is purely universal
we have that M probabilistically satisfies ¬n-split if and only if it satisfies it
classically, hence if M 6|=D,ε ¬n-split then really M |= n-split classically. In
the following we use set-theoretic notation such as x ∈ X0 ∪ . . . ∪Xn−1 as a
shorthand for the formula X0(x) ∨ . . . ∨Xn−1(x). We also write D(X) > m

n

for the sentence ∀x(X(x)). (Note that since ε = 1 − m
n

this last sentence
expresses precisely this fact.) Given a sentence ϕ and a choice i1, . . . , im of

7



m different numbers from the set {0, . . . , n − 1}, define a relativized version
ϕXi1

...Xim of ϕ by recursively replacing ∃x everywhere by ∃x(Xi1(x)∧ . . .) and
all occurrences of ∀x by ∀x(

x ∈ Xi2 ∪ . . .∪Xim ∨ (x ∈ Xi1 ∧ . . .)
)
.3 For every

ϕ define

f(ϕ) = ¬n-split ∨
∨

i1...im

(
D(Xi1 ∪ . . . ∪Xim) > m

n
∧ ϕXi1

...Xim

)
.

Here the disjunction is over all choices i1 . . . im of m different numbers from
the set {0, . . . , n−1}. Now if ϕ is 0-valid and M 6|=D,ε ¬n-split then M splits
into X0 . . . Xn−1. By Lemma 4.3 there is always a choice of i1 . . . im such that
D(Xi1 ∪ . . . ∪ Xim) > m

n
. Without loss of generality D(Xi1) > 0, for if this

does not hold we can permute i1 . . . im. But then by Lemma 4.4 we have that
M |=D,ε ϕXi1

...Xim . Hence f(ϕ) is ε-valid.
Conversely, suppose that ϕ is not 0-valid, say that M 6|=D,0 ϕ. We show

that there is a modelM′,D′ such thatM′ 6|=D′,ε f(ϕ). LetM′ consist of the n
disjoint parts X0, . . . , Xn−1, where each Xi is a copy of M where in addition
every element satisfies the unary predicate Xi. The predicates on M′ are
defined exactly as inM within each given copy Xi, and are defined arbitrarily
across different copies. Under D′ we give each of X0 . . . Xn−1 weight 1

n
. The

structure of D′ on each Xi is like D on M, multiplied with the factor 1
n
,

that is, D′ is the sum of n copies of 1
n
· D. Notice that by definition M′

does not ε-satisfy ¬n-split, and that it ε-satisfies D(Xi1 ∪ . . . ∪Xim) > m
n

for
any choice i1 . . . im of m different numbers from {0, . . . , n − 1}. Given any
such choice i1 . . . im, let M′¹Xi1 ∪ . . . ∪Xim , D′′ be the restriction of M′ to
Xi1 ∪ . . .∪Xim . (Cf. Definition 4.1.) So D′′ on Xi1 ∪ . . .∪Xim is D′ multiplied
with 1/D′(Xi1∪ . . .∪Xim) = n

m
. Now suppose that M′ |=D′,ε ϕXi1

...Xim . Then
by Lemma 4.5, M′¹Xi1 ∪ . . . ∪Xim |=D′′,0 ϕXi1

...Xim . But since Xi1 is a copy
of M, this easily implies M |=D,0 ϕ: By definition of ϕXi1

...Xim , witnesses for
existential quantifiers can be found in Xi1 , and universal quantifiers hold with
D′′-measure 1 in M′¹Xi1 ∪ . . . ∪ Xim , hence also with D-measure 1 in Xi1 .
Thus we have M |=D,0 ϕ, contrary to the assumption. Hence M′ also does
not ε-satisfy ϕXi1

...Xim , and thus M′ witnesses that f(ϕ) is not ε-valid.

Lemma 4.3. Suppose that n > m > 1 and that ai ∈ R are such that

n−1∑
i=0

ai = 1.

Then there are m ai’s such that their sum is greater than or equal to m
n
.

Proof. The average over the ai is 1
n
, so the m largest of them sum up to at

least m
n
.

3If m = 1 then we replace ∀x by ∀x(x ∈ Xi1 ∧ . . .).
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Lemma 4.4. In the proof of Theorem 4.2, suppose that M 6|=D,ε ¬n-split,
that D(Xi1 ∪ . . . ∪Xim) > m

n
, and that D(Xi1) > 0. Then M |=D,ε ϕXi1

...Xim .

Proof. This follows because ϕ is 0-valid, hence it holds with error 0 inM¹Xi1 ,
which is defined since D(Xi1) > 0 (cf. Definition 4.1). Loosely speaking,
M |=D,ε ϕXi1

...Xim holds because witnesses for the existential quantifiers can
be found in Xi1 since ϕ holds in M¹Xi1 , and the universal quantifiers in
ϕXi1

...Xim are satisfied since D(Xi1 ∪ . . .∪Xim) > m
n

and the error on Xi1 is 0.
More formally, the lemma follows from the following claim. Let D′ denote
the distribution on M¹Xi1 .
Claim. If M¹Xi1 |=D′,0 ϕ then M |=D,ε ϕXi1

...Xim . The claim is proved by
formula induction. By Proposition 1.2 we may assume that ϕ is in prenex
normal form and that all negations occur directly in front of atomic predicates.
The induction step for ∃ is trivial by definition of ϕXi1

...Xim , so the only
case that requires attention is the induction step for ∀. So suppose that
ϕ = ∀xψ(x). Then

ϕXi1
...Xim = ∀x(

x ∈ Xi2 ∪ . . . ∪Xim ∨
(
x ∈ Xi1 ∧ ψ(x)Xi1

...Xim
))

. (5)

If M¹Xi1 |=D′,0 ϕ then

PrD′
[
x ∈ Xi1 : M¹Xi1 |=D′,0 ψ(x)

]
> 1.

By induction hypothesis, for every x ∈ Xi1 with M¹Xi1 |=D′,0 ψ(x) we have
M |=D,ε ψ(x)Xi1

...Xim . It then follows from D(Xi1 ∪ . . . ∪Xim) > m
n

that

PrD
[
x ∈M : x ∈ Xi2 ∪ . . . ∪Xim ∨

(
x ∈ Xi1 ∧ ψ(x)Xi1

...Xim

)]
> m

n
= 1− ε

hence M |=D,ε ϕXi1
...Xim .

Lemma 4.5. In the proof of Theorem 4.2 we have that

M′ |=D′,ε ϕXi1
...Xim =⇒M′¹Xi1 ∪ . . . ∪Xim |=D′′,0 ϕXi1

...Xim .

Proof. Again we prove this by induction on ϕ. By Proposition 1.2 we may
assume that ϕ is in prenex normal form and that all negations occur directly
in front of atomic predicates. Then all the steps in the induction are trivial,
except the case of universal quantification. So suppose that ϕ = ∀xψ(x).
Then ϕXi1

...Xim is of the form (5). Denoting ψ(x)Xi1
...Xim by ψ̂(x) we then

9



have

M′ |=D′,ε ϕXi1
...Xim =⇒

PrD′
[
x ∈M′ : x ∈ Xi2 ∪ . . . ∪Xim ∨

(
x ∈ Xi1 ∧M′ |=D′,ε ψ̂(x)

)]
> m

n
=⇒

PrD′
[
x ∈M′ : x ∈ Xi2 ∪ . . . ∪Xim∨(

x ∈ Xi1 ∧M′¹Xi1 ∪ . . . ∪Xim |=D′′,0 ψ̂(x)
)]

> m
n

=⇒
PrD′′

[
x ∈ Xi1 ∪ . . . ∪Xim : x ∈ Xi2 ∪ . . . ∪Xim∨(

x ∈ Xi1 ∧M′¹Xi1 ∪ . . . ∪Xim |=D′′,0 ψ̂(x)
)]

>
m
n

D(Xi1 ∪ . . . ∪Xim)
= 1

=⇒ M′¹Xi1 ∪ . . . ∪Xim |=D′′,0 ϕXi1
...Xim .

Here the second implication follows by the induction hypothesis.

5 Finite models and decidability

It is shown in [8] that the downward Löwenheim-Skolem theorem fails for ε-
logic: Not every infinitely ε-satisfiable sentence has a countable model. The
next result shows that countable probabilistic models are in a way analogous
to classical finite models:

Theorem 5.1. Let ϕ be a sentence. Then

∀M finite M |= ϕ ⇐⇒ ∀M countable ∀D ∀ε > 0 M |=D,ε ϕ.

Proof. (If) If M is finite and ∀ε > 0 M |=D,ε ϕ then classically M |= ϕ: If
M has n elements then take D the uniform distribution on M assigning to
every element probability 1

n
and take ε < 1

n
. Then there can be no exceptions

to ∀-statements.
(Only if) The idea is simply that if M is countable then most of the

weight under D is concentrated on finitely many elements of M. If ϕ holds
classically in all finite models, ϕ also holds on these finitely many elements.
More precisely; Fix ε > 0 and a countable probabilistic model M, D, and
suppose that ϕ is classically valid on all finite models. Let M′ ⊆M be finite
such that M′ has weight at least 1 − ε under D. Since M′ is finite we have
M′ |= ϕ. But then also M |=D,ε ϕ, since clearly all existential quantifications
from ϕ are satisfied within M, and all universal quantifications have at most
ε exceptions in weight.

Notice that it is essential that in Theorem 5.1 we exclude the case ε = 0,
since otherwise by Lemma 3.1 we would obtain all classical validities instead
of only the finitely valid sentences.
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Corollary 5.2. The set

{
ϕ : ∀M countable∀D∀ε > 0 M |=D,ε ϕ

}

is Π0
1-complete.

Proof. By Trakhtenbrot’s theorem [9] (a result that was independently ob-
tained by Craig) the set

{
ϕ : ∀M finite M |= ϕ

}
of finitely valid first-order

sentences is Π0
1-complete.

In Terwijn [8] it is proven that for fixed ε we do not have the finite model
property: There are ε-satisfiable sentences without a finite ε-model. (Cf. the
examples quoted on page 6.) Nevertheless, we make the following

Conjecture 5.3. For rational ε ∈ [0, 1), it is decidable whether ϕ is ε-satis-
fiable.

Note that a positive answer to Conjecture 5.3 does not contradict the undecid-
ability from Theorem 4.2 because, in contrast to the classical case, under the
probabilistic interpretation we do not have that ϕ is valid if and only if ¬ϕ is
not satisfiable, even if ε = 0. For example the sentence ϕ = ∃xR(x)∧∀x¬R(x)
is probabilistically satisfiable, but its negation ¬ϕ is ∀x¬R(x)∨∃xR(x), which
is even classically valid.
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