
71

10.2.2. Null geodesics. The preceding discussion was for a congruence of timelike
geodesics. We can consider the same questions for a congruence of null geodesics.
If kµ the tangent vector field for a congruence of (affinely parametrized) null geo-
desics, then this satisfies kµkµ = 0 and ∇kk = 0. We can define Θµ

ν := kµ
|ν. The

derivation of eq. (10.6) remains the same, but the significance of Θ is more subtle.
Any neighboring geodesic of a timelike geodesic is also timelike. However, not

all neighbors of a null geodesic are null. This means that the deviation between
null geodesics is more special than the deviation between timelike geodesics.

The geodesic deviation equation shows that a deviation parallel to the tangent
vector evolves trivially, and can be ignored. It also shows that we can consistently
require the deviation to be orthogonal to the tangent vector.

For timelike or spacelike geodesics, this means that we can get rid of the trivial
(parallel) part by restricting attention to deviation that is orthogonal to the geodes-
ics, but for null geodesics, the tangent vector k is orthogonal to itself. This means
that restricting to orthogonal deviation does not remove the trivial part. Effec-
tively, the space of interesting deviations between null geodesics is 2-dimensonal
— corresponding to 2 spatial directions. Geodesic deviation tells us how the shape
of a light beam evolves.

As for a timelike congruence, Θ is orthogonal to the tangent vector, kνΘµ
ν = 0 =

kµΘµ
ν. For a beam of light, Θ will be geometrically equivalent if we add multiples

of k,

Θµ
ν "→ Θµ

ν + kµuν + vµkν (10.8)

(for any vectors u and v orthogonal to k).
The expansion for a null congruence is denoted θ̂ := Θµ

µ = kµ
|µ. The derivative of

the expansion is

˙̂θ = −Rµνkµkν − Θµ
νΘν

µ.

Exercise 10.3. Check that the transformation (10.8) does not change Θµ
νΘν

µ.

To write a Raychaudhuri equation for a null congruence, we need to decompose
Θ into expansion, shear, and vorticity parts. First consider what Θ should be for
a congruence with no shear or vorticity. This is ambiguous because of the general
ambiguity in Θ. In the timelike case, δµ

ν − vµvν is a rank 3 projection orthogonal to
v. In the null case, the simplest form for Θ is proportional to Pµ

ν, where Pµν = Pνµ,
Pµ

λP
λ
ν = Pµ

ν and 0 = Pµ
νkν, and P has rank 2. This is unique up to adding a

multiple of kµkν, so any such P will give a geometrically equivalent Θ. The trace
of P is Pµ

µ = 2, so the shear and vorticity free form for Θ is 1
2θ̂Pµ

ν. This suggests the
general decomposition

Θµν = 1
2θ̂Pµν + σ̂µν + ω̂µν

where σ̂µν = σ̂νµ and ω̂µν = −ω̂νµ. The shear σ̂ has 2 geometric degrees of freedom
and the vorticity ω̂ has only 1.

This leads to the Raychaudhuri equation for an infinitesimal congruence of null
geodesics,

˙̂θ = −Rµνkµkν − 1
2θ̂

2 − 2σ̂2 + 2ω̂2. (10.9)
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The scalars σ̂2 and ω̂2 are defined as in the timelike case and only depend upon
the geometric parts of the shear and vorticity. Note that this is formally the same
as eq. (10.7), except for the factor of 1

2 instead of 1
3; this corresponds to the 2 rather

than 3 degrees of freedom for deviation.

10.3. Schwarzschild. Instead of the standard Cartesian coordinates (t, x, y, z) on
Minkowski space, we can use a system of polar coordinates (t, r,θ, φ). These are
related by

t = t

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ.

In this coordinate system, the metric is

ds2 = dt2 − dr2 − r2dσ2

where dσ2 = dθ2 + sin2 θ dφ2 is the metric for a unit sphere.
We can construct these coordinates in a way that generalizes to any spacetime

that is static, spherically symmetric, and asymptotically flat. Let M be such a space-
time.

Spherically symmetry means that there is a group of symmetries (SO(3)) which
sweeps out 2-spheres. Each of these spheres has constant intrinsic curvature. So,
we can define a function r ∈ C∞(M) such that the sphere through any given point
has area 4πr2 and circumference 2π r.

Static means that there exists a timelike Killing vector ξ which is hypersurface
orthogonal. Asymptotic flatness means that we can normalize so that ‖ξ‖2 −−−→

r→∞
1.

There exists a function t ∈ C∞(M) which is constant on the hypersurfaces orthog-
onal to ξ, and such that ξ(t) = 1. This is unique of to adding a constant.

Now, choose one of the 2-spheres of symmetry at t = 0 and parametrize it with
spherical polar coordinates θ and φ. We can extend these coordinates over the t =
0 hypersurface by requiring θ and φ to be constant along the curves perpendicular
to the 2-spheres (i.e., the radial lines). Finally, extend these coordinates over M by
requiring ξ(θ) = ξ(φ) = 0.

With these choices, ξ = ∂t. The assumption that ξ is orthogonal to the constant
t hypersurfaces means that gtr = gtθ = gtφ = 0. The assumption that θ and φ
are constant along the curves orthogonal to the 2-spheres of symmetry means that
gtθ = grθ = gtφ = grφ = 0.

So, the metric must be of the form

ds2 = α dt2 − βdr2 − r2dσ2

where α and β are functions of r alone. Asymptotic flatness and the normalization
of t mean that

α, β −−−→
r→∞

1. (10.10)

Consider the congruence of outgoing radial (constant θ and φ) null curves. Be-
cause of spherical symmetry, these are automatically geodesics. The expansion θ̂
is by definition the rate at which a tube of these geodesics expands. Using a dot to
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indicate the derivative along the geodesics, the expansion can be computed as the
derivative of the logarithm of the area 4πr2,

θ̂ = (4πr2)−1(4πr2)̇ = 2r−1ṙ.

Now assume that Tµν = 0, and thus Rµν = 0. By spherical symmetry, the spin
and shear of this family of null geodesics must vanish. So, the Raychaudhuri equa-
tion simplifies considerably to

0 = ˙̂θ + 1
2θ̂

2 = 2r−1r̈.

This means that ṙ is constant. (Equivalently, r is an affine parameter for these null
geodesics.)

Because ξ = ∂t is a Killing vector, ξµẋµ = αṫ is constant. Because these are null
geodesics, 0 = αṫ2 − βṙ2. Putting these facts together,

αβ =

(
αṫ

ṙ

)2

must be constant. By the normalization of t, this must be αβ = 1, and the metric
simplifies to

ds2 = α dt2 − α−1dr2 − r2dσ2.

The volume form is just ε = r2 dt ∧ dr ∧ Ω, where

Ω := sin θ dθ ∧ dφ.

is the volume form for a unit sphere. This is closed, and the integral of Ω over a
2-surface is the total solid angle subtended.

If we lower the index, then the Killing vector ξ becomes the 1-form ξ = α dt. Its
exterior derivative is dξ = −α ′ dt ∧ dr. If we raise the indices, then the nonvan-
ishing component is (dξ)tr = α ′. The Hodge dual is

∗dξ = α ′r2Ω

The Komar mass integral gives the mass by integrating over any of the 2-spheres
of symmetry,

M =
1

8π

∫

S2

∗dξ =
1

8π

∫

S2

α ′r2Ω = 1
2α

′r2.

Integrating α ′ gives α = C − 2M
r , but (10.10) implies C = 1. We thus obtain the

Schwarzschild metric,

ds2 =

(
1 −

2M

r

)
dt2 −

(
1 −

2M

r

)−1

dr2 − r2dσ2. (10.11)

Note that this metric is singular at r = 2M. This does not mean that the geometry
is singular there, just that the coordinate system goes bad. This coordinate system
is only good for r > 2M, 0 < θ < π, and −π < φ < π.

This metric approximately describes the geometry outside a star or any reason-
ably round astronomical object. Of course the geometry inside a star is different,
since Tµν is far from 0 there.
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10.3.1. Reissner-Nordström. We can generalize the Schwarzschild solution a little
by adding an electromagnetic field. So, consider a spherically symmetric, static
spacetime with a rotationally invariant, static electromagnetic field and no other
matter.

Let k be the tangent vector to a rotationally invariant congruence of outgoing
null geodesics. (Rotational invariance, implies that these are radial.) The compo-
nent of the Ricci tensor contributing to the Raychaudhuri equation is

Rµνkµkν = 8πTµνkµkν − 4πTµ
µkνkν = 8πTµνkµkν

= −8πFµνkνFµλk
λ + 2πFαβFαβkµkµ = −8πFµνkνFµλk

λ.

However, the vector Fµνkν is rotationally invariant (and thus radial) and orthogo-
nal to k. By “radial”, I mean some linear combination of ∂t and ∂r. A radial vector
orthogonal to k must be proportional to k — and thus a null vector. Therefore
Rµνkµkν = 0.

So, by the same argument as before, the metric is of the form,

ds2 = α dt2 − α−1dr2 − r2dσ2.

Suppose that the electromagnetic field is due to an electric charge Q, and no
magnetic monopole charge. Then for any sphere at constant r and t,

∮

S2

F = 0 and
∮

S2

∗F = Q.

By symmetry, this implies that ∗F = Q
4πΩ or equivalently, F = − Q

4πr2 dt ∧ dr.
Using Einstein’s equation, the t-t-component of the Ricci tensor is

Rtt =
Q2

4πr4
α.

Using the timelike Killing vector ξ := ∂t again,

∗(Rµνξµdxν) =
Q2

4πr2
dr ∧ Ω.

If we convert ξ into a 1-form ξµ, then

d∗dξ = (α ′r2) ′dr ∧ Ω.

Killing’s second equation (see Sec. 9.1) gives

(α ′r2) ′ =
Q2

2πr2
.

This integrates to

α ′r2 = C −
Q2

2πr
.

The Komar mass integral shows that the mass inside radius r is 1
2C − Q2

2πr, so 1
2C

is just the total mass M. So, α ′ = 2M
r2 − Q2

2πr3 . Integrating this with the normalizing
condition α(∞) = 1, gives

α = 1 −
2M

r
+

Q2

4πr2
.
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So, we find the Reissner-Nordström metric,

ds2 =

(
1 −

2M

r
+

Q2

4πr2

)
dt2 −

(
1 −

2M

r
+

Q2

4πr2

)−1

dr2 − r2dσ2.

This coordinate system is only valid for r > M +
√

M2 − Q2

4π .
This is usually written without the 4π. That corresponds to a different choice

of units in which Coulomb’s law is simplified, but Maxwell’s equations contain a
factor of 4π. With that choice α = 1 − 2M

r + Q2

r2 .
On the other hand, the most rational system of units would set Newton’s and

Coulomb’s constants equal to 1
4π. With that choice α = 1 − M

2πr + Q2

(4πr)2 .
If there is a magnetic monopole charge as well, then the electromagnetic field is,

F =
QM

4π
Ω −

QE

4πr2
dt ∧ dr

and the metric is the same, but with Q2 replaced by Q2
E + Q2

M.


