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Abstract

We study co-ideals in the core Hopf algebra underlying a quantum field theory.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction and conventions

In the following, we consider the core Hopf algebra of Feynman graphs. It is a Hopf algebra
which contains the renormalization Hopf algebra as a quotient Hopf algebra [2]. We are particu-
larly interested in the structure of Green functions with respect to this Hopf algebra.

We write G" = G" ({Q}, {M}, {g}; R) for a generic Green function, where

o r indicates the amplitude under consideration and we write E = |r| for its number of external
legs. Amongst all possible amplitudes, there is a set of amplitudes provided by the free prop-
agators and vertices of the theory. We write R for this set. It is in one-to-one correspondence
with field monomials in a Lagrangian approach to field theory. The set of all amplitudes is
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denoted by A = F UR, which defines F as those amplitudes only present through quantum
corrections.

{Q} is the set of E external momenta g; subject to the condition Zle qj =0.

{M} is the set of masses in the theory.

{g} is the set of coupling constants specifying the theory. Below, we proceed for the case of
a single coupling constant g, the general case posing no principal new problems.

R indicates the chosen renormalization scheme [2].

We also note that a generic Green function G” has an expansion into scalar functions

G = )  t(nG, ({0} {M}. (g} R). (1)
t(r)eS(r)
Here, S(r) is a basis set of Lorentz covariants 7(r) in accordance with the quantum numbers
specifying the amplitude r. For each ¢(r) € S(r), there is a projector P! onto this formfactor.
For example, in spinor quantum electrodynamics, the 1PI vertex function for the photon decay
p — eTe” into a positron—electron pair et (g)e” (—¢g) measures the quantum corrections to that
process described by a tree level vertex

Y=t )= @)

in terms of the Feynman rule @ coming from the monomial ¥ A+ in the QED Lagrangian.
At zero momentum for the photon p, computed in the momentum scheme Ryom that vertex
function can be decomposed in our notation as

GM< =YuGy, ({q’ —q},m,e; Rmom)

da. <

+ =7 Gy (9. =g} m. €& Rmom), (2)
2
with projectors
Y D 1 dop
qu = —tro %__Vu , Pyllzl_qu (3)
D—1 > D

in D dimensions and where the trace is over the Dirac gamma matrices.
For r € R, we can write

G" = ®(r)Gly,, (10}, (M), (g): R) + R" (10}, (M}, (g); R), @)

where R” ({0}, {M}, {g}; R) sums up all formfactors 7(r) but @ (r) and only contributes through
quantum corrections, and @ are the unrenormalized Feynman rules.
Each G” can be obtained by the evaluation of a series of 1PI graphs

X' (g)=1— Z g\r\m, VreR, |r|=2, 4)
E(I)~r y
E(I)~r y
r
X' (g) = M_—__ vr¢R, 7
= Y &g Smay T F (7

E(I)~r
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where we take the minus sign for |r| = 2 and the plus sign for |r| > 2. Furthermore, the notation
E(I') ~ r indicates a sum over graphs with external leg structure in accordance with r.

We write @, @ for the unrenormalized and renormalized Feynman rules regarded as a map:
H — C from the Hopf algebra to C. In a slight abuse of notation, we use the same symbol to
denote the map which assigns to an element of R the corresponding Lorentz covariant, as in

¢(/\/\<) =y,
We have
Gl = PR (X" (2) (10}, 1M}, {g); R), )

where each non-empty graph is evaluated by the renormalized Feynman rules
o) :=(1 = Rym(SE @ P'DdP)A(I) )

and 45;3(”(]1) =1, and P the projection into the augmentation ideal of H, and R the renormaliza-
tion map.
It is in the evaluation (9) that the coproduct of the renormalization Hopf algebra appears.
The above sum over all graphs simplifies when one takes the Hochschild cohomology of the
(renormalization) Hopf algebra into account:

X" (g) =8, Rl + > g7BL(X"(2)0(2)), (10)

E(y)~r; A(y)=yQI+IQy Sym([")

(— sign for |r| =2, 4 sign for [r| > 2, 8, g =1 for r € R, 0 else) with Q(g) being the formal
series of graphs assigned to an invariant charge of the coupling g:

)_(r,\r\>2

=z
0"(g) = [7] , (11)
HeeE(r) ‘/F

where X" = X" for r € R and X" = X" + I else. Also, BZ; are grafting operators which are
Hochschild cocycles (cf. Section 4 below).

Note that the existence of a unique such invariant charge depends on the existence of suitable
coideals in the renormalization Hopf algebra as discussed below.

There is a tower of quotient Hopf algebras

H4CH6C"'CHZnC"'CHcoresz (12)
obtained by restricting the coproduct to sums over graphs which are superficially divergent in
D=4,6,...,2n,...,00

dimensions. They are defined via a coproduct which restricts to superficially divergent graphs
wp(I") <0 in an even number of dimension D greater than the critical dimension D = 4.

A =T@1+1eI'+ Y  y®Il/y. (13)
PCyCrl';wp

where wp restricts to disjoint unions y = [ J; y; such that wp(y;) <0 for all y;.
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1.1. Remarks

The above algebraic structures given by this tower of Hopf algebras underly many familiar
aspects of field theory. For example, in effective field theories, one considers couplings for any
interaction in accordance with the symmetries of the theory, often suppressed by a scale which is
large compared to the scales which are experimentally observable. The set R can then exhaust the
full set A. Still, the Hopf algebra renormalizing the corresponding Green functions is a quotient
Hopf algebra of the core Hopf algebra, as some amplitudes might only demand counterterms
from a suitably high loop number onwards.

Also, in operator product expansions we effectively enlarge the set R to contain any local
amplitude which appears in the high-momentum Taylor expansion of a given amplitude in terms
of local operator insertions, and the corresponding renormalizations in this expansion form again
a quotient Hopf algebra of the core Hopf algebra.

Finally, for theories which obey a gravity power-counting, the core Hopf algebra becomes the
renormalization Hopf algebra, and the corresponding co-ideal structure [11] is suggesting hidden
renormalizability, in accordance with the recursive relations between on-shell gravity scattering
amplitudes [3].

2. The core Hopf algebra

We start by recalling the definition of the core Hopf algebra [2] (cf. also [10]) built on Feyn-
man graphs with only a scalar edge. Besides that, we allow vertices of any valence to appear. We
omit the general case involving vertices or edges of different kinds for clarity of notation.

Recall that a one-particle irreducible (1PI) graph is a graph which is not a tree and does not
become disconnected when cutting a single internal edge.

We will use the following notation for a Feynman graph:

E, I the number of external and internal lines, respectively;
Vi, the number of vertices of valence n, which sum up to the total number of vertices V;
L the number of loops.

Lemma 1. There are the following relations between these numbers:

A+E=) nVy > (n=2)V, — (E-2)=2L.

n

Proof. The first equation follows after realizing that the left-hand side counts the number of
halflines in a graphs, which are connected to V,, vertices of valence n, for each n, appearing at
the right-hand side. Moreover, subtracting twice Euler’s formula I — V + 1 = L from it gives the
second displayed equation. 0O

The above relations turn out to be quite useful later on. Let us now turn to the definition of the
core Hopf algebra.

Definition 2. The core Hopf algebra H is the free commutative algebra (over C) generated by
all 1PI Feynman graphs with counit €(/") = 0 unless I" = ¢, in which case €(¥J) = 1, coproduct,

A =T@1+1®I'+ Y yeTl/y.
WSy Cr
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where the sum is over all disjoint unions of 1PI (proper) subgraphs in I". Finally, the antipode is
given recursively by,

S(Ny=—I'— Y SWI/y. (14)

WSy Cr

Even though the graphs I" can have vertices of arbitrary valence (as opposed to the usual
Feynman graphs in renormalizable perturbative quantum field theories), the Hopf algebra struc-
ture is still well-defined. Indeed, in view of the above lemma, at a given loop order L and number
of external lines E, the maximal vertex valence that appears in the graph is finite.

The Hopf algebra is graded by loop number, since the number of loops in a subgraph y C I"
and in the graph I"/y add up to L(I"). Another multi-grading is given by the number of vertices.
In order for this to be compatible with the coproduct — creating an extra vertex in the quotient
I'/y —we say a graph I" is of multi-vertex-degree k = (k3, k4, ...) if

Vo) =ky + 64, E(I)-
One can check that this grading is compatible with the coproduct. From Lemma 1 if follows
easily that the two degrees are related via ), (m — 2)k,, = 2L.

From a physical point of view, it is not so interesting to study individual graphs; rather, one
considers whole sums of graphs with the same number of external lines. Namely, we study the
IPI Green’s functions of (5), (6), (7) as elements in H.

Regarding the above gradings, we denote the above sum when restricted to graphs with /
loops by X}’ "I=1 - Also, the restriction of X"™I"1=" to graphs with ky, + 8x. vertices of valence m
(m =3,4,...) will be written as X]E’" with k = (k3, k4, . ..) as before.

3. Hopfideals in H

In this section we address the question of how the coproduct acts on the above Green’s func-
tions X”"'=" From [15] we take the following

Proposition 3. The coproduct reads on the 1PI Green’s functions (n > 2):

Tl
A Xr Ir\—n — Xr \rl—m Vi (I") xlrl=2 () 8 '
-3 I e S
E(I)~r m

Corollary 4. The coproduct takes the following form on the 1PI Green’s functions (|r| = 2):
] Irl= xrir=m e i
r,\r _l’l r\ri=n
X ZX H[(Xr |r|= 2)m/2:| ®X
Proof. This follows easily by applying the first equation in Lemma 1, in combination with the
definition of the multigrading k,,. O

Next, we define the following ‘couplings’ Q™ in H

o Xnlri=m 1/(m=2)
m) __
Q |:(Xr |r|= 2)m/2] (m = 2)’

which, when restricted to loop order /, are denoted by Q(m).
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Proposition 5. The ideal I = (Ql(m) - Ql(")) where m,n >3 and [ > 0 is a Hopf ideal, i.e.
A)CI®H+H®I, e(I)=0, Sy cl.

Proof. From the relation ), (m —2)k,, = 2/ between the multigrading k,, by number of vertices
and the loop order /, it follows that we have

A(Xr,|r|=n) — Zxr,lrlzn(Q(3))2l ® Xl">|r|=" +I®H.
1

Indeed, modulo 7, one can replace each (Q ™) =2kn by (Q3))(m=2kn This leads precisely to
> (m —2)k,, =21 factors of 0%, Extending this to formal powers (such as 2('_n—’f2) of Green’s
functions appearing in the couplings Q) this leads to
21
A(") =Y 0"(0¥V @ 0’ + 10
I
from which the claim follows. O

This implies that the quotient H/I is a Hopf algebra in which the relations Q™ = Q™ hold;
we will also set Q = Q™). A recursive way of writing these relations is

Xr,lrl:n Xr,lrl:n—l

Xrslrl=n—1 = Xrslrl=n=2" (15)

In a non-Abelian gauge theory the above identities actually hold between the corresponding
physical amplitudes so that Feynman rules provide an element of Spec(H/I) for n = 4 and
are known as the Slavnov-Taylor identities for the couplings. Note that then countertems in a
chosen renormalization scheme furnish an element in Spec(H /). For renormalized amplitudes,
the choice of a renormalization condition for any of the vertices in R then determines Feynman
rules in Spec(H /1) for any such choice. See [6] for an excellent discussion of such choices.

We conclude this section with an expression for the coproduct on Green’s functions in the
quotient.

Proposition 6. In the quotient Hopf algebra H/I we have
AXEIENY =37 X, @ X
1

where we have denoted X; , = xrlri=n g2l

Corollary 7.

A(Xp ) = le+j,n ® (X1,n)j-
J

4. Hopf subalgebras and Dyson-Schwinger equations

Another way to describe the Green’s function is in terms of so-called grafting operators, de-
fined in terms of 1PI primitive graphs. We start by considering maps B_}; : H — Aug, with Aug
the augmentation ideal, which will soon lead us to non-trivial one co-cycles in the Hochschild
cohomology of H. They are defined as follows.
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bij(y. b, ) 1 1
Y —
B0= 2 T i o (1o

where maxf(I”) is the number of maximal forests of I, ||y is the number of distinct graphs
obtainable by permuting edges of &, bij(y, h, I") is the number of bijections of external edges
of h with an insertion place in y such that the result is I", and finally (y|h) is the number of
insertion places for & in y [9]. > indicates a sum over the linear span (I") of generators
of H.

The sum of the B}; over all primitive 1PI Feynman graphs at a given loop order and with given

residue will be denoted by Bi_” as in loc. cit. More precisely,

) 1
in Y
U P———
+ +
o SYm(y)
I(y)=l
E(y)=n

With this and the formulas of the previous section on QCD, we can prove the analog of the gauge
theory theorem as formulated in [9, Theorem 5]:

Theorem 8. Let H = H /I be the core Hopf algebra with relations Q) = O ) as before.

(1) X"hrl=n = 3700 B (X1 ).
(D ABY" (X1) = BY" (X1.0) ® 1+ (id ® B A(X0).
3 AKX = 2Pl @ X717,

where Pol; (X) is a polynomial in the X,r;,lrlzn of degree j, determined as the order j term in the

loop expansion of X""'1="Q2=2J

Proof. The first claim follows as in [9]. B_’; acts on arguments which have multiplicity (y|h) x
|h|v. We hence have to divide by this multiplicity, and by the number maxf(I") of ways to gen-
erate I". This by construction generates any graph with weight 1/Sym(/") [9]. Indeed, assume
for a moment that we label the external edges of & and internal edges of y and that we keep
those labels in the bijections which define I". Then each labeled graph is generated once, the
bijections define an operad composition and the assertion follows as in the operad-inspired proof
of Lemma 4 of [1].

For the second claim, we first enhance the result of Corollary 4 to partial sums in X""I=" over
graphs that have ‘primitive residue’ isomorphic to a fixed primitive graph y. In other words, if
X"I'I=n7 is the part of X™I"I=" that sums only over graphs that are obtained by inserting graphs
into the primitive graph y, then

A(XPIrI=nry = xri=ny @ 1 4 in,n ® (X},
=1

Here we have imposed (15) to write this in terms of the single coupling Q. Since X"I"I="7 =
Bj/_ (X1,n), a combination of this formula with Corollary 7 yields

A(BL(X1,0) = BY (X1,0) ® 1+ (id ® BY) A(X10).
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Then, summing over all primitive graphs with n external lines at loop order / gives the desired
result. O

Note that our formulation above is somewhat redundant: in the core Hopf algebra all primi-
tives have a single loop, |y | = 1. But in the given form, the results remain applicable to any of the
before-mentioned quotient Hopf algebras, where primitives appear beyond the first order still.

In fact, this proves the slightly stronger result that every BI defines a Hochschild 1-cocycle:

Proposition 9. For y a primitive graph at loop order k and residue r, we have

A(BL(X1.0)) =B (X1,) @ 1+ (id ® BY) A(Xy.0),

modulo terms obtained from insertion BY into primitives x different from y.
5. An example

Let us study ¢* theory in four dimensions and work out the 1PI vertex function to two loops.
We have

X, | X|= 1 1 1
x> 4=H+g5[><><+§+0\’]+g2[5(@ +§>)+Z<>O<]

+ other orientations + O(g3).

Let us reproduce this expansion from either the Hochschild cohomology of the renormalization
Hopf algebra or from the Hochschild cohomology of the core Hopf algebra. In the renormaliza-
tion Hopf algebra we have

X =14 By ([ 0) a7
(there is no primitive element at two-loops) with
1 - o} X
Lx _ XX §
B+X—§(B+ +Bi+By) (18)
and
X><,|><\:4
In the core Hopf algebra
XXI= =14 g (x> IXI=4 ) (20)
but now
X Ix|=4 XX,\X\:G 5
01 := X2 = [[X_’l__2]3i| =: 02, 21
where the core co-ideal implies Q1 = Q = Q. Furthermore
1 o} {
BJlr’Xz—(Bf}+Bi+B§_% —|—B%). (22)

2

The coproduct is different in the renormalization Hopf algebra and in the core Hopf algebra.
In the renormalization Hopf algebra we find



690 D. Kreimer, W.D. van Suijlekom / Nuclear Physics B 820 [FS] (2009) 682—-693

1 1 1
A’[5<<C+o>>+z©<>}=5[o+g+@\/]®[0+¢+@N1, (23)

taking the other orientations into account.
In the core Hopf algebra we find

1 1
A’C[E(@ + () + ZO@}
1 : 54 N
= 5L+ + DU b+ + 0 +2(0 ® . (24)
Let us now work out the Hochschild one-cocycles. Expanding the arguments of the By cocy-
cles to one loop and keeping the vertex functions to one loop, we have

SBxy) (25)

in the renormalization Hopf algebra and

1 X, |x|= Kol X 1=
(B Xy 1B (6T 26)

in the core Hopf algebra. Let us see in particular how the terms

1 1
760+ 00 + O 27)
are obtained in either case. We have in the renormalization Hopf algebra

bij (>, x>, X xx) =1,
bij (x>, ><x,><§) =2,

bij (3, s, Q>) =2,
x|y =3,

() =2,
maxf(x_>xx) =2,
maxf(<()) =1,

maxf(o>) =1.

The main difference is in the number of maximal forests maxf. In the renormalization Hopf
algebra, the first two terms in (27) have just one maximal forest, while the third has two, as
indicated. In the core Hopf algebra the first two terms have three maximal forests each, while the
third term has two as before.

We hence find, counting maximal forests, bijections, insertion places and orientations, as
above,

1 1 ] 1 1
EBP(ZX5[(%+§+QX]>=§(<§+Q>)+ZOO<, (28)

while in the core Hopf algebra, the situation is a bit more interesting:
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1 1 1 1
EBf)<2x5[0+§+Q¥]>=6(@+Q>)+Z©O, (29)

1 O . 1
5B (O =30+, (30)

which add up to the desired result, also confirming the cocycle property of the By maps.
6. The core ideals, unitarity and AdS/CFT

We conclude this paper with a short study of the relation between the core co-ideal / intro-
duced above and recursive relations between tree-level amplitudes, as suggested in [10].
In the above, we identified a core co-ideal conveniently summarized by the relations

Xr,|r|=n+l Xr‘|r|=n

Xrlrl=n = Xrlrl=n—1
1

riri=n _ yrlrl=j
< X =X X7 lri=2

XM=k yp =2 =2 k>2, j+k=n+2. (3l)

Note that this severely restricts possible relations between tree-level diagrams. Consider for
example at zero loops the tree graphs

To(cy) == P¢<r>v"':4q>(c1>< +H+X+7<). (32)

The projector P®):1"1=4 maps the evaluation of the tree level diagrams, for given fixed external
momenta, to complex numbers, and vanishes on none of the four terms. There must hence exist a
number ¢; such that To(c1) =0. Let T(c;) = >_ >0 Tj(c1) be the expansion obtained by a loop
expansion of any internal vertex or propagator in Tp(cy).

We can now determine c¢; from squaring the amplitude Ty(cq). This delivers (for the s-
channel)

D O S
S TS SO R
e
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This is in accordance with the co-ideal if and only if ¢c; = —1. Indeed, restricting to the one-loop
case we have in the co-ideal

2x7VI= g x =2 = xlr= (34)

which is consistent with the expansion of 7' (c1) to one-loop only at ¢; = —1. This is clearly seen
in the figure. Even the 1PI graphs in the s-channel expansion of

e (35)

come with different powers of c¢;. On the other hand, at c; = —1, summing over s, ¢, # channels
and taking symmetry factors into account, we find
erlr‘:“' _ Xr,|r|:3 1 Xr,\r|:3 (36)
1 - X7 Iri=2 :

While in the renormalization Hopf algebra one uses only the co-ideal for |r| = 4, in the core
Hopf algebra we have a generic co-ideal structure such that the celebrated BCFW recursion is
required for consistency of the Feynman rules with that co-ideal structure beyond tree-level.

Proposition 10. The relations

(37

n

b

are in accordance with the co-ideal above for suitably chosen elements in the group Spec(H /1),
defined by evaluating external particles on the mass-shell in accordance with the BCFW rules
[3-5].

Proof. We use (31). The loop expansion of the vertices and the internal propagator in each
term of (37) on the lhs is an expansion of X" JIrl=n " the expansion of the rhs is an expansion of
Xnlri=n=—j+l mX“"':f. To specify an element in the group Spec(H /I), we need to specify:

(1) choices of helicities at all external propagators, and the internal propagator which connects
the 1PI pieces,
(i) the mass-shell conditions for all external legs,
(iii) and an ordering of the external legs.

These choices, together with the Feynman rules for internal edges and vertices, then specify an
element in the group Spec(H /1) by which we evaluate those graphs. O

Note that this does not pretend we can derive the recursion (37) from our co-ideal. It merely
says that those recursions are in accordance with the most natural co-ideal in the core Hopf
algebra.
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7. Outlook

In this paper we have given the core Hopf algebra as a mathematically robust framework to
investigate many properties of Feynman rules in Spec(H /1) which emerge in the recent litera-
ture. We hope that the first steps reported here open the way to a much better understanding of
recursive relations between multi-leg and multi-loop amplitudes. This adds to recent progress in
quantum field theory, starting from an understanding of renormalization and the renormalization
group [7,8,13], to aspects of gauge theories [9,14-17], to aspects of quantum gravity [11,12].
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