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We construct 6-deformations of the classical groups SL(2, H) and Sp(2). Coacting on a
basic instanton on a noncommutative four-sphere Sg, we construct a noncommutative
family of instantons of charge 1. The family is parameterized by the quantum quotient
of SLy(2, H) by Sp,(2).

1 Introduction

Self-dual (and anti-self-dual) solutions of Yang-Mills equations have played an impor-
tant role both in mathematics and physics. Commonly called (anti-)instantons, they are
connections with self-dual curvature on smooth G-bundles over a four-dimensional com-
pact manifold M. In particular, one considers SU(2) instantons on the sphere S*.
General solutions are constructed by the ADHM method of [2] and it is known [3]
that the moduli space of SU(2)-instantons, with instanton charge k—the second Chern

class of the bundle—is a (8k — 3)-dimensional manifold M. For k = 1 the moduli space
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M, is isomorphic to an open ball in R® [11] and, in this construction, generic moduli
are obtained from the so-called basic instanton. The latter is though of as a quaternion
line bundle over P'H ~ S* with connection induced from H? by orthogonal projection.
All other instantons of charge 1 are obtained from the basic one with the action of
the conformal group SL(2, H) modulo the isometry group Sp(2) = Spin(5). The resulting
homogeneous space is M; it is also the space of quaternion Hermitean structures in H?.

The attempt to generalize to noncommutative geometry the ADHM construction
of SU(2) instantons together with their moduli space is the starting motivation behind
papers [13-15] and the present one. A noncommutative principal fibration A(S}) < A(S]),
which “quantizes” the classical SU(2)-Hopf fibration over S*, has been constructed in [14]
on the toric noncommutative four-sphere S;. The generators of A(S}) are the entries of a
projection p, which describes the basic instanton on .A(S;). That is, p gives a projective
module of finite-type plA(S;)]* and a connection V = pod on it, which has a self-dual
curvature and charge 1, in some appropriate sense; this is the basic instanton. In [15]
infinitesimal instantons (“the tangent space to the moduli space”) were constructed using
infinitesimal conformal transformations, that is elements in a quantized enveloping
algebra Uy(so(5, 1)). In the present paper, we look at a global construction and obtain the
other charge 1 instantons by “quantizing” the actions of the Lie groups SL(2, H) and Sp(2)
on the basic instanton, which enter the classical construction [1].

The paper is organized as follows. In Section 2, we recall the structure of the
SU(2)-principal Hopf fibration S] — S;. Section 3 is devoted to the construction of
0-deformations A(SLy(2, H)) and .A(Sp,(2)) of the corresponding classical groups, endowed
with Hopf algebra structures. The algebras A(S]), A(S;) are then described as quantum
homogeneous spaces of A(Sp,(2)) as illustrated at the end of the section. In Section 4,
we consider the coactions of A(SLy(2, H)) and A(Sp,(2)) on the Hopf fibration S] — S;. We
use these coactions in Section 5 to construct a noncommutative family of instantons by
means of the algebra given by the quantum quotient of .A(SLy(2, H)) by .A(Sp,(2)). This
turns out to be a noncommutative algebra generated by six elements subject to a “hyper-
boloid” relation. We finish by mentioning relations to the notion of quantum families of

maps as proposed in [20, 23] and by stressing some open problems.

2 The Principal Fibration

The class of deformations that we work with is the one of “toric noncommutative spaces”
introduced in [8] and further elaborated in [7]. In [14] a noncommutative principal

fibration A(S;) < A(S]) was introduced and infinitesimal instantons on it were



Noncommutative Families of Instantons 3

constructed in [15] using infinitesimal conformal transformations. We refer to these
latter papers for a detailed description of the inclusion A(S}) — .A(S]) as a noncommu-
tative principal fibration (with classical SU(2) as structure group) and for its use for
noncommutative instantons. Here we limit ourself to a brief description. The coordinate
algebra A(S]) on the sphere S] is the x-algebra generated by elements {z;, z; j=1,...,4}

with relations
ZjZx = AjkZkZj, z’;zk = )ijzkzj-, zj-zz = Ajkz,’gzj-, (2.1)

and spherical relation ) zjz; = 1. The deformation matrix (1) is taken so to allow
an action by automorphisms of the undeformed group SU(2) on A(S]) and so that the
subalgebra of invariants under this action is identified with the coordinate algebra A(S;)
of a sphere S}. With deformation parameter A = ¥, the x-algebra A(S}) is generated by

a central element x and elements «, 8, a*, 8* with commutation relations
af = ABa, o =rB%*a*, BFa=raB*, Ba*=ra*B, (2.2)

and spherical relation o*«a + g*8 + x*> = 1. All this (including the relation between the
deformation parameter for S) and S;) is most easily seen by taking the generators of
A(S}) as the entries of a projection, which yields an “instanton bundle” over S;. Consider

the matrix-valued function on S] given by

t
1,¢=(|1/f1>,|1/f2>)=<z1 T2 % _Z‘*>, (2.3)

Z Zy

where ¢ denotes matrix transposition, and |y1),|¥2) are elements in the right A(S])-
module C* ® A(S]). They are orthonormal with respect to the A(S])-valued Hermitean

structure (¢,n) = Zé}‘n]- and as a consequence, u*u = ;. Hence the matrix

p=uu’ = [yn) (Y1l + [Y2) (V2 (2.4)
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is a self-adjoint idempotent with entries in A(S;); we have explicitly:

14+ x 0 o
1 0 1+x —up* pwot
p=t worpen (2.5)
2 ot - l1—x 0

B* no 0 1—x
with 1 = v/A = €. The generators of .A(S?) are bilinear in those of .A(S]) and given by
o= 2(zlz§ + zzz:’;), B =2(—2z124 + 2223), X= 212} + 222 — 2325 — Z4Z},. (2.6)

The defining relation of the algebra A(S]) can be given on the entries of the matrix u in

(2.3). Writing u = (u;q), with i, j=1,...,4and a = 1, 2, one gets

UigUjb = NjiUjbUia- (2.7)
with n = (n;;) the matrix
1 1 w o
1 1 p m
n= (2.8)
wopmo 11
oopo 11

The deformation matrix (A jz) in (2.1) is just the above  with entries rearranged.
The finitely generated projective A(S})-module £ = p[A(S;)]* is isomorphic to the
module of equivariant maps from .A(S]) to C? describing the vector bundle associated via

the fundamental representation of SU(2). On £ one has the Grassmann connection
V= pOd:g—)g@A(sg)Ql(Sg), (29)

with Q(S;) a natural differential calculus on S;. There is also a natural Hodge star

operator # (see below). The connection has a self-dual curvature V2 = p(dp)?, that is,

*¢(pldp)®) = pldp)*.
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Its “topological charge” is computed to be 1 by a noncommutative index theorem. This

“basic” noncommutative instanton has been given a twistor description in [5].

The two algebras A(S]) and A(S;) can be described in terms of a deformed (a
“star”) product on the undeformed algebras A(S”) and .A(S*). Both spheres S” and S* carry
an action of the torus T?, which is compatible with the action of SU(2) on the total space
S’. In other words, it is an action on the principal SU(2)-bundle S” — S*. The action by
automorphisms on the algebra A(S*) is given simply by

ot . (x,a,B) — (X’ eZnitla’eZTtitzﬂ)’

for t = (t;,t;) € T2. Now, any polynomial in the algebra .A(S*) is decomposed into ele-
ments, which are homogeneous under this action. An element f. € A(S? is said to be

homogeneous of bidegree r = (ry, 1) € Z? if
oi(fp) = 2rilnti+rots) £

and each f € A(S?* is a unique finite sum of homogeneous elements [17]. This decompo-
sition corresponds to writing the polynomial f in terms of monomials in the generators.

Let now 6 = (0;x = —b6;) be a real antisymmetric 2 x 2 matrix (thus given by a
single real number, 0, = 0, say). The #-deformation of A(S*) is defined by replacing the

ordinary product by a deformed product, given on homogeneous elements by
i xo gs 1= @0 £ g (2.10)

and extended linearly to all elements in A(S*). The vector space .A(S*) equipped with the
product xg is denoted by .A(S;). On the other hand, the algebra .A(S”) does not carry an
action of this T2 but rather a lifted action of a double cover 2-torus [15]. Nonetheless,
the lifted action still allows us to define the algebra .A(S]) by endowing the vector space
A(S”) with a deformed product similar to the one in (2.10). As the notation suggests, these
deformed algebras are shown to be isomorphic to the algebras defined by the relations
in Equations (2.1) and (2.2).

In fact, the torus action can be extended to forms and one also deforms the exte-
rior algebra of forms via a product like the one in (2.10) on spectral components so pro-

ducing deformed exterior algebras Q(S}) and Q(S]). As for functions, these are isomorphic
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as vector spaces to their undeformed counterparts but endowed with a deformed
product.

As mentioned, the spheres S; and S] are examples of toric noncommutative man-
ifolds (originally called isospectral deformations [8]). They have noncommutative ge-
ometries via spectral triples whose Dirac operator and Hilbert space of spinors are the
classical ones: only the algebra of functions and its action on the spinors is changed.
In particular, having an undeformed Dirac operator (or, in other words, an undeformed
metric structure) one takes as a Hodge operator *, the undeformed operator on each

spectral component of the algebra of forms.

3 Deformations of the Groups SL(2, H) and Sp(2)

Our interest in deforming the groups SL(2,H) and Sp(2) is motivated by their use for
the construction of instantons on S*. Classically, charge 1 instantons are generated
from the basic one by the action of the conformal group SL(2,H) of S*. Elements of
the subgroup Sp(2) C SL(2, H) leave invariant the basic one, hence to get new instantons
one needs to quotient SL(2,H) by the spin group Sp(2) >~ Spin(5). The resulting moduli
space of SU(2) instantons on S* modulo gauge transformations is identified (cf. [1]) with
the five-dimensional quotient manifold SL(2, H)/Sp(2).

In a parallel attempt to generate instantons on .A(S;), we construct a quantum
group SL,(2, H) and its quantum subgroup Sp,(2). An infinitesimal construction was pro-
posed in [15] where a deformed dual enveloping algebra Uy(so(5, 1)) was used to generate
infinitesimal instantons by acting on the basic instanton described above.

The construction of Hopf algebras A(SLy(2, H)) and .A(Sp,(2)) is a special case of
the quantization of compact Lie groups using Rieffel’s strategy in [18], and studied for
the toric noncommutative geometries in [21]. Firstly, a deformed (Moyal-type) product xg
is constructed on the algebra of (continuous) functions A(G) on a compact Lie group G,
starting with an action of a closed connected abelian subgroup of G (usually a torus).
The algebra A(G) equipped with the deformed product is denoted by .A(Gy). Keeping the
classical expression of the coproduct, counit, and antipode on .A(G), but now on the
algebra A(Gy), the latter becomes a Hopf algebra. It is in duality with a deformation
of the universal enveloping algebra U(g) of the Lie algebra g of G. The Hopf algebra
Ulg) is deformed to Uy(g) by leaving unchanged the algebra structure while twisting the
coproduct, counit, and antipode. The deformation from Ul(g) to Uy(g) is implemented with
a twist of Drinfel'd type [9, 10]—in fact, explicitly constructed in [16] for the cases in

hand—as revived in [19].
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The deformed enveloping algebra Uy(so(5, 1)) was explicitly constructed in [15].
We now briefly discuss the dual construction for the Lie group SL(2, H). The torus T? is
embedded in SL(2, H) diagonally,

p(t) = diag (e, €*"i%2),  fort = (t;,t;) € T?,
and the group T? x T? acts on SL(2, H) by
(s,t,9) € T? x T? x SL(2,H) > p(s) - g - p(t)~! € SL(2, H). (3.1)

Similar to the case of the spheres in Section 2, any function f € A(SL(2, H)) expands in a
series f =) f; of homogeneous elements for this action of T4, but now r = (ry, 1, 3, 7a)
is a multidegree taking values in Z*. A deformed product x, is defined by an analogue of

formula (2.10) on homogeneous elements:
ﬁ X gs = eﬂi@(rlsz—rzsl+rss4—r453)ﬁgS,

and extended by linearity to the whole of A(SL(2, H)). The resulting deformed algebra
A(SLy(2, H)), endowed with the classical (expressions for the) coproduct A, counit ¢, and
antipode S becomes a Hopf algebra.

In fact, to avoid problems coming from the noncommutativity of quaternions, we

shall think of elements in H as 2 by 2 matrices over C via the natural inclusion

(8] C2

Hag=c+cj +— ( )eMatz((C), forc;,c € C.

—C O
In the present paper, we need not only the Hopf algebra .4(SLy(2, H)) but also its coaction
on the principal bundle A(S}) < A(S]), and in turn on the basic instanton connection
(2.9) on the bundle, in order to generate new instantons. Having this fact in mind we
proceed to give an explicit construction of A(SLy(2, H)) out of its coaction in a way that

also shows its quaternionic nature.

3.1 The quantum group SLy(2, H)

For the deformation of the quaternionic special linear group SL(2,H), we start

from the algebra of a two-dimensional deformed quaternionic space H3. Let A(C})



8 G. Landi et al.

be the x-algebra generated by elements {z;,z% a =1,...,4} with the relations as in

it
Equation (2.1) (for the specific value of the deformation parameter A considered in Sec-
tion 2 and obtained from (2.8) as mentioned there) but without the spherical relation
that defines A(S]). We take A(HZ2) to be the algebra .A(C}) equipped with the antilinear

x-algebra map j : A(C}) — A(C}) defined on generators by
J (21,22, 23,24) > (22, —21, 24, — Z3).

It is worth stressing that this deformation of the quaternions takes place between the two
copies of H while leaving the quaternionic structure within each copy of H undeformed.
Since the second column of the matrix u in (2.3) is the image through j of the first one,
we may think of u as made of two deformed quaternions.

Following a general strategy [22], we now define .A(I, (2, H)) to be the universal
bialgebra for which A(H2) is a comodule *-algebra. More precisely, we define a transfor-

mation bialgebra of A(H3) to be a bialgebra B such that there is a *-algebra map
Ar : A(C)) — B® A(C),
which satisfies
(id® jloAL =Apoj. (3.2)

We then set A(M,(2,H)) to be the universal transformation bialgebra in the following
sense: for any transformation bialgebra B there exists a morphism of transformation
bialgebras (i.e. commuting with the coactions) from A(M,(2, H)) onto B.

The requirement that A(HZ) be a A(M;(2, H))-comodule algebra allows us to derive
the commutation relations of the latter. A coaction Ay is given by matrix multiplication,

Ay (21, —25,23,—2) > A @ (21, 25,23, —2))", (3.3)

for a generic 4 x 4 matrix Ay = (4;;). Asking for (3.2) we have
(Aje)* = (=17 Ajp,
with j/ = j + (—1)/*! and the same for k’; this means that A, has the form
a ay b b,

Aez(aij bu'): —a; af -by bj| 5.4

C1 Cy d] d2
-G ¢ —d; di
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We use “quaternion notations” for the above matrix and write

A9=(“ b), with oz:(aij)=(“1 “2>, (3.5)
c d —a; aj

and similarly for the remaining parts.
The defining matrix in (3.4) has a “classical form.” One readily finds that with

respect to the torus action (3.1) its entries A;; are of multidegree A; @ (—A;) in Z* with
A =(Ay) =((1,0),(-1,0),(0,1),(0,-1)).

The general strategy exemplified by the deformed product (2.10) would then give the
deformed product and in turn, the commutation relations defining the deformed algebra
A(My(2, H)). We shall get them directly from the coaction on the algebra A(C}).

The transformations induced on the generators of A(C}) read

wyi=ALz)=a1®21 -a:®2;, +b1 ®23 - b, ® z,
wai=Ar(z2) =a1®2z+a, ®2 + b1 ® 24 + b, @ Z} (3.6)
w3:=AZ) =00z -z +d1Qz3—drQ Z
Wa:=Az)=c®z+0QzZ|+di Q@21+ dr® Z;

with AL(zj) = (Ar(z;))*. The condition for A; to be an algebra map determines the com-
mutation relations among the generators of .A(M,(2, H)): the algebra generated by the a;;
is commutative, as well as the algebras generated by the b;;, ¢;j, and d;;. However, the
whole algebra is not commutative and there are relations. A straightforward computation

allows one to concisely write them as
Aij Ax = nkin ji An Aij (3.7)

with n = (n;) the deformation matrix in (2.8). Indeed, imposing that (3.3) defines a
x-algebra map on the generators of A(C}), and using the relations (2.7), we have
Y olAikAj — njin Aji Air) ® ukq Uy = 0. Since for a < b the elements ug,u;, could be taken
to be all independent, relations A;xAj; — njinuAj A = 0 hold, for all values of a, b.

An explicit expression of the above commutation relations is in Appendix A. It

is not difficult to see that A(M,(2, H)) is indeed the universal transformation bialgebra,
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since the commutation relations (3.7) and the quaternionic structure of A4, in (3.4) are
derived from the minimal requirement of A to be a *-algebra map such that (3.2) holds.

In order to define the quantum group SLy(2, H) we need a determinant. This is
most naturally introduced via the coaction on forms. There is a natural differential

calculus Q((C‘g) generated in degree 1 by elements {dz;,a = 1,...,4} and relations

Zdek - )»jdeij =0, Zde]t — )\kde]th =0, zj-dzk — kkdekZ}f =0,

dzjdzi + Ajxdzidz; =0,  dzjdzj + Ajdzidz; = 0.

together with their conjugates. The forms Q(C}) could be obtained from the general
procedure mentioned at the end of Section 2. The result is also isomorphic to the one
obtained from the general construction [6], which uses the Dirac operator to implement
the exterior derivative as a commutator.

The coaction Aj is extended to forms by requiring it to commute with d. Having

the action (3.3), it is natural to define a determinant element by setting
Ap(dzydzjdzzdz;) =: det(4y) ® dz;dzjdzzdz;.
We find its explicit form by using the relations of Q(Cp):

det(4y) = a1[af(d1d] + d2d3) + bj(ncdf — dac}) — by (mced; + dic})]
— az[— aj(did} + d2dj) + by (mard + dacj) + bi( — pad; + dicj)]
b~ a3 (ced; — 1dacs) — af(crds + udac) + Bi (i) + cuc5)]
— bylaj(ced; + ndic) + aj(aid; — mdicy) — by(cic} + c265)]. (3.8)

A more compact form for det(4y) is found to be (see also Appendix B)

det(4y) = Z (—1)1e7 Ay (1) Az, (2) A3.0(3) As o (a), (3.9)

UGSq

o(1)o(2)o(3)o

with e =¢ @ The tensor ¢/¥ has components

81324 — SCYCZ = 81423 — gcycl =7,
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and equal to 1 otherwise. In the limit & — 0, the element det(4y) reduces to the deter-
minant of the matrix Ay—o as it should. Additional results on the determinant are in the

following lemmata.

Lemma 3.1. Foreachi,l €{1,...,4}, define the corresponding algebraic complement:

j iloigron ol ool il
Ay =Yy (—1)0lgn-oitoioapailyord ol Ay A A, - Ado s

O’ES;;

where o = (01,...0i-1,0441,...04) =0o(1,...1 = 1,1 +1,...4) € S5, the group of permuta-

tions of three objects. Then,

Ay Ail = Ail Aj for any i and . O

Proof. We use the shorthand ¢f = e?-cinloinoapalpozl . poial Then, the commutation

relations (3.7) yield,

Aghy = Y G Aihis, .. Aire, Aiiren, - Aaole)

(TESg(lA)
1i i—1,0 i+1,i 47 L, loj_1  loi 14
— Z C;r(n l_.'nl lnl+ L_“n l)(n m“_na iy a+1,,,n )Alal-nAifl,ai,l
0653([)
Ait1op - - Aao@)Ail
= A Ay

Here we used the fact that 't ... »pi~Ligitli...p4 s the product of the elements in the
ith column of 5 excluded the element n* = 1 and the result is 1 as one deduces from the
form of the matrix » in (2.8). Similarly for the other coefficient given by the product of
the elements of the Ith row. [ |

Lemma 3.2. The determinant det(4y) is computed via a Laplace expansion:

1. byrows; foreachi e {1,...,4} fixed: det(4y) = 3, (—1)* Ay Ay;
2. by columns; for each i € {1,...,4]} fixed: det(4y) = Y, (— 1)+ 4, 4y;. 0
Proof. These follow from (3.7) after a lengthy but straightforward computation. |

The particular form of the deformation matrix »;; defining the relations in .A(S])
implies that det(4y) is (not surprisingly) a central element in the algebra A(Mj,(2, H))
generated by the entries of Ay. Hence we can take the quotient of this algebra by the
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two-sided ideal generated by det(4y) — 1; we will denote this quotient by .4(SLy(2, H)).
The image of the elements 4;; in the quotient algebra will again be denoted by 4;;.

In order to have a quantum group we need more structure. On the algebra
A(SLy (2, H)) we define a coproduct by

A(4y) = Zk Aix ® Axj,
a counit by
e(Ajj) = §;j,
whereas the antipode S is defined by
S(Ayj) == (1) Ay;.

Here A; are the algebraic complements introduced in Lemma 3.1. Indeed, from
Lemma 3.2, Y, AgS(A;) = Y, (—=1)* 43 Ay = det(4y) = 1, and similarly, using also Lemma
3.1, Y, S(A Ay = 3, (1) A Ay = det(Ay) = 1. Moreover, if i # j, Y°; AyS(4;) = 0 as one
shows by explicit computation.

The definitions above are collected in the following proposition.
Proposition 3.3. The datum (A(SLy(2, H)), A, €, S) constitutes a Hopf algebra. O

The coaction Ay in (3.3) passes to a coaction of A(SLy(2,H)) on A(Hg) and it is
still a x-algebra map. However, the spherical relation Zj zjz; = 1 is no longer invariant
under Aj. Thus, the algebra A(Sg) is not an A(SLy(2, H))-comodule algebra but only a

A(SLy(2, H))-comodule. We shall elaborate more on this in Section 4 below.

3.2 The quantum group Sp,(2)

Motivated by the classical picture, we next introduce the symplectic group .A(Sp,(2)).
Recall that a two-sided *-ideal I in a Hopf algebra (A, A, ¢, S) is a Hopf ideal if

ANCI®A+ARI, e(I) =0, S(I) € I. (3.10)

Then the quotient A/I is a Hopf algebra with induced structures ((r ® 7)o A, €, 7 0 S),

where 7 : A — A/I is the natural projection.

Proposition 3.4. Let I denote the two-sided *-ideal in A(SLy(2,H)) generated by the
elements ), (Ag;)*Ax; — &;; fori, j=1,...,4. Then I C A(SLy(2,H)) is a Hopf ideal. O
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Proof. The first two conditions in (3.10) follow easily from the definition of A and ¢ for
A(SLy(2, H)) in Proposition 3.3. For the third, we observe that if J is an ideal in .A(SLy (2, H))
such that the classical counterpart J is an ideal in A(SL(2, H)), which is generated by
homogeneous elements, then J = J as vector spaces. Indeed, the deformed product of a
generator with any homogeneous function merely results in multiplication by a complex
phase. In our case, the classical counterparts for the generators ) ; (Ay;)* Ax; — §8;j are
indeed homogeneous (if i = j, they are of bidegree (0, 0), otherwise of bidegree A; — A})
and the above applies. In particular, S(I) = S(I'?) € 19 =T. [ |

Corollary 3.5. The quotient.A(Sp,(2)) := A(SLy(2, H))/I is a Hopf algebra with the induced
Hopf algebra structure. O

We still use the symbols (A, €, S) for the induced structures. The “defining matrix” 4y of
A(Spy(2)) has the form (3.4) (or (3.5)) with the additional condition that A} A4, = 1, coming
from the very definition of A(Sp,(2)). A little algebra shows also that Ay A; = 1. These
conditions are equivalent to the statement that S(4y) = A;. In the quaternionic form, the
conditions A} Ay = Ay A; =1 become

a*a+c'c a*b+cd\ (aa*+bb* ac*+bd*\ (1 O
b'a+d*c b'b+d*d) \ca*+db* cct+dd*) \o 1)’
3.3 The quantum homogeneous spaces .A(S]) and A(S))

Using the same notations as in (3.4), let us consider the two-sided ideal in .A(Sp,(2)) given

by Iy := (bij, ¢j,az,a5,a1 — 1,a] — 1). This is a *-Hopf ideal, that is,
A(Iy) <€ A(Spy(2)) ® Iy + Iy ® A(Sp,(2)), e(Iy) =0, S(Iy) C Iy,

and we can take the quotient Hopf algebra A(Sp,(1)) := A(Sp,(2))/I, with corresponding
projection map n;,. By projecting with m;,, the algebra reduces to the commutative one
generated by the entries of the diagonal matrix nj,(4y) = diag(l,, d;;) = diag(l,, d), with
d*d =dd* =1, or d,d} + d.d; = 1; hence, A(Sp,(1)) = A(Sp(1)). There is a coaction

a b a b\ . (I O
A(Sp,(2 A(Sp,(2 A(Sp(1)), )
(Spy(2)) — A(Sp,(2)) ® A(Sp(1)) (C d>'—><c d)®(0 d)

co(A(Sp(1)

The corresponding algebra of coinvariants A(Sp,(2)) )is clearly generated by the

first two columns (a, ¢) = {a;j, G;j} of Ay. An algebra isomorphism between the algebra of
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coinvariants and A(S]) is provided by the x-map sending these columns to the matrix u

in (2.3). On the generators, this is given by
ayb> 2z, Qx> 23, Clt>2Z3, Cot> 24 (3.11)

and the spherical relation corresponds to the condition (454 =) (afa; +cic) =1.
Summarizing, we have that A(Sp,(2))©ASPIL) ~ A(S7). It follows from the general theory
of noncommutative principal bundles over quantum homogeneous spaces [4] that the
inclusion .A(S]) < A(Sp,(2)) is a noncommutative principal bundle with the classical
group Sp(1) as structure group.

Next, we consider theideal in A(Sp,(2)) given by J; := (b;;, ;j)—again easily shown
to be a Hopf ideal. Denote by n; the projection map onto the quotient Hopf algebra
A(Spy(2))/Js generated, as an algebra, by the entries of 7;,(4y) = diagla;;, d;j) = diagla, d).
The conditions AjAy = AyA; =1 give that both {a;;} and {d;;} generate a copy of the
algebra A(Sp(1)). However, from the explicit relations in Appendix A, we see that in
general a;jdmn # dmna;; and the quotient algebra is not commutative.

The algebra of coinvariants for the right coaction (id ® 7 ) o A of 7, (A(Sp,(2)) on
A(Sp,(2)), is A(S}). Indeed, with the map (id ® 7;,) 0 A : Ay > Ay @ 7,(Ag) given by

a b a®a b®d
— . . /
c d c®a ded
one finds that the x-algebra of coinvariants is generated by the elements

(@aa™)1 = a1a] + aza;, (ca™)11 = ciay + a3, (ca*)12 = —craz + ¢2a;.

The *-map (3.11) combined with (2.6) then provides the identification with the generators
of A(S}). Again, the general theory of noncommutative principal bundles over quantum
homogeneous spaces of [4] gives that the inclusion A(S;) < A(Sp,(2)) is a noncommutative
principal bundle with 7 5, (A(Sp,(2)) as structure group. It is a deformation of the principal

bundle over S* with total space Sp(2) and structure group Sp(1) x Sp(1).

4 Noncommutative Conformal Transformations

There is a natural coaction A; of A(SLy(2,H)) on the SU(2) noncommutative principal

fibration A(S)) — \A(S]) of Section 2. Since the matrix u in (2.3) consists of two deformed
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quaternions, the left coaction A of A(SLy(2, H)) in (3.6) can be written on A(Sg) as
Ar: A(S)) > ASLy(2, H) ® A(S]), ur> U:=Aru)=Au, 4.1)
or, in components,
Uig > Uig = Ap(Wig) = Zj Aij ® Ujq. (4.2)

We have already mentioned that the left coaction Ay of A(SLy(2, H)) as in (3.6) does not
leave invariant the spherical relation: Az (3_; zjz;) # 1 ® 1. We will denote by A(S)) the
image of A(S]) under the left coaction of A(SLy(2, H)): it is a subalgebra of A(SLy(2, H)) ®
A(S]). We think of .A(S]) as a 6-deformation of a family of “inflated” spheres. Since >.;Zzj

is central in A(S]) its image

%= Ay (ZJ zj-zj), (4.3)

is a central element in A(Eg ) that parameterizes a family of noncommutative 7-spheres
S;. By evaluating p? as any real number r? € R, we obtain an algebra A(S],) which is a

deformation of the algebra of polynomials on a sphere of radius r.

Remark 4.1. As expected, the coaction of the quantum subgroup .A(Sp,(2)) does not
“inflate the spheres,” i.e. p>=1®1 in this case. Indeed, if 4y = (4;;) is the defining
matrix of A(Sp,(2)), one gets

(U Ugp = Ziﬂ(A*)liAij ® W aujp = Zﬂ 87 ®@ W )aujp =1 ® (U t)ap,

which gives }_;zjzj > 1 ® }_; zjz;. Hence, both A(S]) and .A(S}) are A(Sp,(2))-comodule
x-algebras. Using the identification (3.11) one sees that the coaction of .A(Sp,(2)) on A(S])
is the restriction of the coproduct of .4(Sp,(2)) to the first column of 4y, i.e. to the algebra

of coinvariants A(Sp,(2))°ASP1), O

Next, we define a right action of SU(2) on A(§97 ) in such a way that the correspond-
ing algebra of invariants describes a family of noncommutative 4-spheres. It is natural
to require that the above left coaction of A(SLy(2, H)) on .A(S]) intertwines the right action
of SU(2) on .A(S]) with the action of SU(2) on A(S]).

The algebra A(gg) is generated by elements {w;, w;‘-,j =1,...,4}, the w;s being as
in (3.6) but with “coefficients” in A(SLy(2, H)). Clearly, Zj w’;wj = p2. Then, the algebra of
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invariants of the action of SU(2) on A(S]) is generated by

> * * * *
X = Wi1Wy + WaWy; — W3W3 — Wally,

o = 2(wiwj + wawy), B = 2(—wiws + waws), (4.4)

together with p2. This is so because the elements (4.4) are the images under the map
Ap of the elements (2.6) that generate the algebra of invariants under the action of
SU(2) on A(S]). This correspondence also gives for their commutation relations the same
expressions as the ones in (2.2) for the generators of A(S;). The difference is that we do

not have the spherical relation of .A(S}) any longer but rather we find that

T+ BB+ = (Z] w;‘-wj)z = p*. (4.5)
We denote by A(S?) C A(SLy(2, H)) ® A(S?) the algebra of invariants and conclude that
the coaction Ay, of A(SLy(2, H)) on the SU(2) principal fibration A(S;) < A(S]) generates a
family of SU(2) principal fibrations A(§§) — A(§g ). Evaluating the central element p?, for
any r € R we get an SU(2) principal fibration A(Sg*’r) — A(Sg’r) of spheres of radius r? and
r, respectively.

Motivated by the interpretation of the Hopf algebra SLy(2, H) as a parameter space
(see Section 5), the coaction of A(SLy(2, H)) is extended to the forms Q(S;) by requiring that
it commutes with d, i.e. Ar(dw) = (id ® d)Ar (w), thus extending the differential of A(Sg)
to A(SLy(2, H)) ® A(Sg) as (id ® d). Having these, we have the following characterization

of A(SLy(2, H)) as conformal transformations.

Proposition 4.2. With %, the natural Hodge operator on S;, the algebra A(SLy(2, H))

coacts by conformal transformations on Q(Sg), that is

AL(xgw) = (id ® #g)AL(w) , Yoe Q(Sg) 0

Proof. The map A; is given by the classical coaction of A(SL(2,H)) on Q(S?*) as vector
spaces and only the two products on A(SL(2, H)) and ©2(S*) are deformed. Since *, coincides
with the undeformed Hodge operator * on Q(S;) ~ Q(S*) as vector spaces, the result

follows from the fact that SL(2, H) acts by conformal transformations on S*. [ |
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4.1 The quantum group SOy(5, 1)

By construction, the generators «, E?{ of A(§g) are the images under A; of the corre-

sponding «, 8, x of A(Sg). Some algebra yields

2% = (a1a} + az2a3 + b1b} + byby — c1¢} — €65 — drd} — dod;) ® 1

+ (a1a} + aza; — bib; — boby — c1¢f — &2y + did +dpd;) ® x
+ (a1b} + ubzaj — c1d; — udacy) @ a + (biaj + nazbs — dic; — ned;) ® of
+ (@10 — bia; — c1d; + dicy) ® B+ (baaf — pashy — dact + pncrdi) @ B,

a = (a1} + az6; + bidf + bod3) ® 1+ (a1} + azc; — bidf — bod;) @ x
+ (@1d} + ubyc) ® a + (bic} + azd;) ® o
+ (a1d; — b1 G5) ® B + (baCf — paqdy) @ p*,

B = (azc1 — a10; + bod1 — bida) ® 1 + (@201 — @16, — bedy + bida) ® x
+(—aidy + pubya) ® o + (—bic; + azd;) ® o™
+la1d) — b)) ® B + (=bzce + pasdy) ® B*. (4.6)

From the definition of p in (4.3), using the commutation relations (2.7), it follows that

20% = Ap((u*u); + (Wu)y) = Zﬂk(Ail)*Aik ® () ugkr + (ur2) ur2)

= Zilk(Ail)*Aik ® Mic(uger (W) + uka(uiz)*) = Zilk(Ail)*Aikfllk ® (uu)u,

and, being (uu*)y; the component py; of the defining projector p in (2.4), an explicit

computation yields

2p* = (a1} + aza; + c1¢} + ¢ + bib} + bobs + didf + dod;) ® 1
+ (a1a] + aza5 + c1¢ + 265 — bib — by — didf — dpdj) ® x
+ (a1b; + ubzaj + ad} + pndzcy) @ a + (b1af + mazb; + dic + ned;) ® of
+(a1b; — mhias + c1dy — wdicy) ® B+ (baa} — paszbi + doci — pedy) ® B, (4.7)

In the expressions (4.6) and (4.7), the elements of A(SL,(2, H)) appear only quadratically.

Rather than a coaction of A(SLy(2, H)), on A(S;‘) there is a coaction of the Z2-invariant

subalgebra. We denote this by .4(SOy(5, 1)), a notation that will become clear presently.
In A(C}), let us consider the vector-valued function X := (r, x, @, &%, 8, *)¢, with

ri= 212} + 2225 + 232} + 24z, and X, «, B are the quadratic elements, with the same formal



18 G. Landi et al.

expression as in (2.6), but with the z,'s in A(C}) (that is we do not impose any spherical

relations). A little algebra shows that they satisfy the condition

Zgininzo, or X'gX =0,
ij

where g is the metric on R® with signature (5, 1),i.e. on R%!. In terms of the basis {X;};—;

and with the natural identification of R5! with R!! ¢ C?, this metric becomes

3 . —2 0\ (o 1\ /o 1
g=(%g’1)=%dlag<<o 2>,(1 0),(1 o))' (4.8)

The coaction in (3.3) can be given on these quadratic elements and summarized by
AL(X;) = Zj Cij ® X;. Here the C;j's—assembled in a matrix Cy—are (Z?-invariant) el-
ements in A(SLy(2, H)) whose expression can be read off from Equations (4.6) and (4.7)

simply reading r instead of 1. Their commutation relations are obtained from the (3.7):
CuCjm = vijvmCjmCi,
where the matrix v = (v;;) has entries all equal to 1 except for
V35 = Vgg = V54 = Vg3 = A, V3 = V45 = V53 = Vpg = .
There are two additional properties of the matrix Cy. The first one is that
Co'gCo =g, (4.9)

as we shall now prove. In order to simplify computations for this, we shall rearrange the

generators and use, instead of X, the vector
Y = (w12, T34, 14, W23, T13, T24),
where the 7;;'s are the 2-minors of the matrix u in (2.3):
Tij = Uji1Uj2 — UjgUj1, i<j, i,j=1,...4:.

The relations with the X;'s are

X1=YN+hH Xox=%-Y X3=2%,
Xy=—2uYy, Xs=-2Y, Xe=-21Ys.
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On the generators m;;'s, the coaction Ay, in (4.2) simply reads

mij > Aplmiy) = Z mi’ ® ms,

ls=1..4
l<s
with the m's given by the 2-minors of the matrix Ay:
mijls = AilAjs — nlsAisAjlr l < S,i < ] (4.10)
With the generators 7;;s the condition X*gX = 0 translates to

12734 + L 14703 — (L 13724 = 0, (4.11)

which, at the classical value of the deformation parameter, u = A = 1, is the Pliicker

quadric [1]. In turn, by rewriting the metric, this condition can be written as

0 1) (0 0 -7
V'hy =0, with h=(1h'7)=1diag A7 H). “1. @12
10/ \nw o)/ \-m o

Here and in the following, we use capital letters to denote indices
Ie{l1=(12),2=(34),3=(14),4=(23),5=(13),6 = (24)}.

The statement in (4.9) that Cy* gCy = g is equivalent to the following proposition

whose proof is given in Appendix B.

Proposition 4.3. The minors in (4.10) and the metric in (4.12) satisfy the condition,
1J o K L _ pKL
ZIJ h mp; my- = h**. O
The second relevant property of the matrix Cy concerns its determinant. An
element det(Cy) can be defined using a differential calculus, now on A(RJ") (with relations

dictated by those in A(S;) except for the spherical relation) as

Ar(dX; - - dXg) = det(Cy) @ dX; - - - d Xs.
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One expects that det(Cy) can be expressed in terms of det(4,) as defined in (3.8) and that
it should indeed be equal to 1. Instead of checking this via a direct computation, we
observe that dX; ---dX; is a central element in the differential calculus on A(R;") and
has a classical limit which is invariant under the torus action. In the framework of the
deformation described at the end of Section 2, the result of A; on it remains undeformed

and coincides with the classical coaction of A(SO(5, 1)) giving indeed det(Cy) = 1.

Remark 4.4. With the two properties above, we could have defined the algebra
A(S04(5, 1)) without reference to A(SLy(2, H)). The entries of the matrix Cy are its genera-
tors with relations derived as in Section 3.1 by imposing that X; — ZJ- Cij ® X; respects
the commutation relations of A(S;), except the spherical relation. In addition, one im-
poses the conditions C.gCy = g and det(Cy) = 1. Of course, this algebra is isomorphic to
the Hopf subalgebra of Z,-invariants in .4(SLy(2, H)) discussed above. It could also be
obtained along the lines of [18, 21] (see also the beginning of Section 3) by deforming the
product on A(SO(5, 1)) with respect to the adjoint action of the torus T? c SO(5, 1). O

5 A Noncommutative Family of Instantons on S;

We mentioned in Section 2 that out of the matrix-valued function u in (2.3) one gets a
projection p = u*u, given explicitly in (2.5), whose Grassmannian connection V = pod
has self-dual curvature: %y V2 = V2. The corresponding instanton connection 1-form—
acting on equivariant maps—is expressed in terms of u as well and it is an su(2)-
valued 1-form on S). Indeed, the A(S;)-module £ determined by p is isomorphic to the

A(S})-module of equivariant maps for the defining representation = of SU(2) on C?:
£~ AS) K, C?:i={fe AS)®C*: (id® (g )N = (ag@id)( A},

whose elements we write as f =), f; ® e, by means of the standard basis {e;, e;} of C2.

The connection V= pod: £ — € ® 44 2(S;) becomes on the equivariant maps:

Vif=dfe+) ey,  ab=12,

where the connection 1-form o = (wgp) is found to be given by

Wap = % Zk ((u*)akdukb — d(u*)akukb). (5.1)
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One has wgp = —(0*)pg and Y, wgq = 0 so that w is in Q'(S]) ® su(2).
Out of the coaction of the quantum group SLy(2, H) on the Hopf fibration on S;, we

shall get a family of such connections in the sense that we explain in the next sections.

5.1 A family of projections

We shall first describe a family of vector bundles over S;. This is done by giving a family
of suitable projections. We know from (4.1) or (4.2) the transformation of the matrix u to i
for the coaction of A(SLg(2, H)): Tix = Ar(Uie) = Zj Aij ® ujq, with Ay = (4;;) the defining
matrix of A(SLy(2, H)). The fact that the latter does not preserve the spherical relations

is also the statement that

Zk(ﬁ*)akﬁkb = AL <Zk(u*)akukb> =ApL (Zk ZZZk) 8ab = p*8ab, (5.2)

or ()*U = p?I,. Then, we define P = (P;j) € Mat4(A(§§)) by
P:=1p %W or Pj= p 2 Za Uio (U") ;. (5.3)

The condition (@)*T = p%l, gives that P is an idempotent; being *-self-adjoint it is a

projection.

Remark 5.1. For the above definition, we need to enlarge the algebra A(S?) by adding
the extra element p~2, the inverse of the positive self-adjoint central element p2. In fact,
we shall also presently need the element p~! = ,/p=2. At the smooth level this is not
problematic. The algebra C°°(§;1) can be defined as a fixed point algebra as in [7] and one

finds that the spectrum of p? is positive and does not contain the point 0. 0

Explicitly, one finds for the projection P the expression

p2+X% 0 a B
1 0 24% —pup* mwar
p=l,z| ¢ p +~ uﬁ~ Iz ,
2 ar -mp pP-% 0
B* ua 0 p?-%

a matrix strikingly similar to the matrix (2.5) for the basic projection. The entries of the

projection P are in A(§§), thatis A(SLy(2, H)) ® A(S;): we interpret P as a noncommutative
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family of projections parameterized by the noncommutative space SLy(2, H). This is the
analogue for projections of the noncommutative families of maps that were introduced
and studied in [20, 23]. The interpretation as a noncommutative family is justified by the
classical case: at 0 = 0, there are evaluation maps evy : A(SL(2, H)) — C and for each point
x in SL(2, H), (evy ® id) P is a projection in Mat4(A(S?*), that is a bundle over S*. Although
there need not be enough evaluation maps available in the noncommutative case, we can
still work with the whole family at once.

As mentioned, we think of the Hopf algebra SL,(2, H) as a parameter space and
we extend to A(SLy(2, H)) ® A(S}) the differential of A(S)) as (id ® d) (and similarly, the
Hodge star operator of A(S;) as (id ® #)). Having these, out of the projection P one gets

a noncommutative family of instantons.

Proposition 5.2. The family of connections V := P o (id ® d) has self-dual curvature
V2 = P((id ® d)P)?, that is,

(id ® #¢) P((id ® d)P)?> = P((id ® d) P)?. 0

Proof. From Proposition 4.2 we know that A(SL,(2, H)) coacts by conformal transforma-
tions and the curvature V2 = P((id ® d)P)? is the image of the curvature p(d p)? under the
coaction of A(SLy(2, H)). [ ]

It was shown in [8] that the charge of the basic instanton pis 1. This charge was
given as a pairing between the second component of the Chern character of p—an element
in the cyclic homology group HC4(A(S}))—with the fundamental class of S; in the cyclic
cohomology HC*(A(S})). The zeroth and first components of the Chern character were
shown to vanish identically in HCo(A(S})) and HC(A(S})), respectively. We will reduce
the computation of the Chern character for the family of projections P to this case by
proving that P is equivalent to the projection 1 ® p. Hence, we conclude that P represents
the same class as 1 ® pin the K-theory of the algebra A(SLy(2, H)) ® A(S}).

Recall that two projections p,q are Murray-von Neumann equivalent if there

exists a partial isometry V such that p= VV* and g = V*V.

Lemma5.3. The projection P is Murray—-von Neumann equivalent to the projection 1 ® p
in the algebra M (A(SLq(2, H)) ® A(S})). U

Proof. Define the matrix V = (Vi) € My(A(SLy(2, H)) ® A(S})) by

Vik =p " Aij ® pjx = p 1 Aij ® Uja(U)ak = p ' Uia(l ® (W),
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with @ = (@i;,) as in (4.1). For its adjoint, we have
(V)i = (1 ® wig) (U
Then, using (5.2), one obtains

(V*V)y = Zk(V*)ik Vig=p2 Zkab(l ® Uia) (") ar Urp(1 ® (U*)p1)

= /072 Zab(l ® uia)(ngab)(l ® (u*)bl) =1® Za uia(u*)al =1® b

and
(VV*)il = Zk Vik(V*)kl = p—2 Zkab aia(l ® (U*)ak)(l ® Ukb)(a*)bl
=072 D gy Bl ® Wati) @t = p7 ) a1 ® 8a)(@
=p Za Uia(U")ar = Pu,

|
which finishes the proof.

It follows from this lemma that the components ch,(P) € HC2,(A(SLy(2, H)) ® A(S})), with
n=0,1,2, of the Chern character of P coincide with the pushforwards ¢, ch,(p) of
chy,(p) € HC2,(A(S})) under the algebra map

¢ : AS;) - ASLy(2,H) ® A(S)), a+ 1®a.

As a consequence, both chy(P) and ch; (P) are zero since chy(p) and ch; (p) vanish [8]. Next,
we would like to compute the charge of the family of instantons by pairing ch,(P) with
the fundamental class [S}] € HC*(A(S})); classically, this corresponds to an integration
over S* giving a value 1 of the charge which is constant over SL(2, H). As said, the Chern
character chy(P) is an element in HC4(A(SLy(2, H)) ® A(S;)), which at first sight seems
unsuitable to pair with an element in HC*(A(S})). However, there is a pairing between the
K-theory group Ko(A(SLy(2, H)) ® A(S}) and the K-homology group K°(A(S}). Recall that
for any algebra A from Kasparov's KK-theory, one has that K°(A4) = KK(A, C) and Ky(A) =
KX(C, A). As described in [6, Appendix IV.A], for algebras A, B, and C, there is a map
7¢ : KK(A, B) — KK(C ® A,C ® B) which simply tensors a Kasparov .A — B module by C on
the left. In our case we get an element 74z, 2,m)[S;] € KK(A(SLy (2, H)) ® A(S;), A(SLg(2, H))),
which can be paired with [P] via the cup product [12]. Thus we obtain the desired pairing:

KK(C, A(SLy (2, H)) ® A(S})) x KK(A(S}), C) — KK(C, A(SLy(2, H))),
(LP1,[S3]) = ([P), Tt [Sh])-
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Having [P] = [1 ® pl, we obtain
([P, Taisty 2 [S]) = (11 @ ([p], [SE]) = [1] € Ko(A(SLy (2, HD)),

where in the last line we used the equality ([p], [S;]) = 1 proved in [8] too.
The above is the statement that the value 1 of the topological charge is constant

over the family.

5.2 A family of connections

When transforming u by the coaction of SLy(2, H) in (4.1), one transforms the connection

1-form w in (5.1) as well to @ = (@gp) With,

~ 1 * * *
®ap = Arlwap) = 3 Zkij(A )ik Akj ® (U aidujp — d(u)giup). (5.4)
Since Ay is linear, o is still traceless (), @z, = 0) and skew-Hermitean (&gp = —(@*)pa).

Proposition 5.4. The instanton connection 1-form w is invariant under the coaction of

the quantum group Sp,(2), that is for this quantum group one has
AL(wab) =1Q wgp. (]

Proof. This is a simple consequence of the fact that for Sp,(2) one has ) ; (A*);x Ax; = §ij

from which (5.4) reduces to @gp = 1 ® wgp. |

Hence, the relevant space that parameterizes the connection one-forms is not
SLy(2, H) but rather the quotient of SL,(2, H) by Sp,(2). Denoting by = the natural quo-
tient map from A(SLy(2,H)) to A(Sp,(2)), the algebra of the quotient is the algebra of
coinvariants of the natural left coaction Ay, = (7 ® id) o A of Sp,(2) on SLy(2, H):

AMy) :={a € ASLy(2,H)) | Arla) =1 ® a)l.

Since Spy(2) is a quantum subgroup of SLy(2, H) the quotient is well defined: the algebra
A(My) is a quantum homogeneous space and the inclusion A(Mjy) — A(SLy(2,H)) is a

noncommutative principal bundle with .A(Sp,(2)) as structure group.

Lemma 5.5. The quantum quotient space A(My) is generated as an algebra by the
elements m;; := ) (A% Aj = Y i (Ari)* Agj. O
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Proof. Since the relations in the quotient .A(Sp,(2)) are quadratic in the matrix elements
A;; and (A;;)*, the generators of .A(Mjy) have to be at least quadratic in them. For the first
leg of the tensor product A(a) to involve these relations in A(Sp,(2)), we need to take
a =) ;(Aj)* Ay, so that

(v @idA@ =) w(Am)* Ain) @ (Aumk)" An

=D 7 (Ain) )7 (Ain) ® (Amid)* At = D Sn ® (Ank)” Ani,

giving the desired result. u

We will think of the transformed » in (5.4) as a family of connection one-forms
parameterized by the noncommutative space My. At the classical value 6 = 0, we get
the moduli space My—_o = SL(2, H)/Sp(2) of instantons of charge 1. For each point x in
My—o, the evaluation map evy : A(My—o) — C gives an instanton connection (i.e. one with

self-dual curvature) (evy ® id)@ on the bundle over S* described by (evy ® id) P.

5.3 The space M, of connections and its geometry

The structure of the algebra A(My) is deduced from that of A(SLy(2, H)). We collect the

generators m;; = ) ; (Ax;)* Axj into a matrix M := (m;;). Explicitly, one finds

m 0 g1 g5
0 m - 4
M= nG2 LG (5.5)
g —Kng; n 0
g2 G 0 n
with its entries related to those of the defining matrix A4, in (3.4) of A(SLy(2, H)) by
m=m" =aja; +azaz + cjc; + ¢z,
n=n*= bTbl + b;bz + drdl + d;dz,
g1 =aibi +ubsas, +cdi +pdc, (5.6)

g2 = bya; —pazby +dsa —pcyd;.

As for the commutation relations, one finds that both m and n are central:

mx=xm, nx=xn Vxec My (5.7a)
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that g; and g, are normal:

DGy = G191, 9295 = G592 (5.7b)

and that

9192 = 2GR, G195 =1’ Gig1. (5.7¢)

together with their conjugates. There is also a quadratic relation,
mn —(g1g1 + 9,92) = 1, (5.8)

coming from the condition det(4;) = 1. Indeed, one first establishes that besides the

product mn, also gig: + g;9. is a central element in .A(M,), and then computes

mn — gig1 + g;9: = aja1didi + ajaid;d; + aja.did; + aja.d;d, + bibicicr + bibic;c,
+bbycia + bybacyer —ajadiby — ajadib, — ajcdiby — ajcd; by
—bidicja, — bidic,a, — bydscia; — bydacyas — ajcydaby + ajcydib;
+ajcidaby — ajcid b, — bid;c.a1 + bidscias + bydic.ar — bydicia;
= det(Ay)
by a direct comparison with the expression (3.8). Elements (m;;) of the matrix M enter

the expression for p2. With py; the components of the defining projector p in (2.4) and
having formula (4.7), one finds that

1
pT = EZU Nij Mij & Dji

1
:5[(m+n)®1+(m—n)®x+ugi‘®a+ﬁgz®ﬁ+ﬁgl®a*+ugé‘®ﬁ*].

In particular, for 4;; € A(Sp,(2)) one gets p* = %(1 ®tr(p) = 1 ® 1, as already observed in

Remark 4.1.

5.4 The boundary of M,

The defining matrix M of M, in (5.5), with the commutation relations among its entries,
is strikingly similar to the defining projection p of A(S}) in (2.5) with the corresponding
commutation relations. Clearly, the crucial difference is that while for A(Sg) we have a

spherical relation, for My we have the relation (5.8), which makes M, a #-deformation
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of a hyperboloid in six dimensions. This becomes more clear if we introduce two central

elements w and y, given in terms of m, n by
w = 1(m + n); yi=3(m—n).
Relation (5.8) then reads
w2 — (P +gig1 + 9ig0) = 1, (5.9)

making evident the hyperboloid structure. Let us examine its structure at “infinity.” We

first adjoin the inverse of w to A(My), and stereographically project onto the coordinates,
YVi=wly, G :=w'lg, Gy:=wlg.
The relation (5.9) becomes,
Y24+ GiG+G5Gy=1—w2
Evaluating w as areal number, and taking its “limit to infinity” we get a spherical relation,
Y2+ GiG, + G5G, = 1.

By combining this with relations (5.7), we can conclude that at the “boundary” of My, we

reencounter the noncommutative 4-sphere A(S;) via the identification
Y < x, Gy <o Gy < B.

The above construction is the analogue of the classical structure, in which 4-spheres are

found at the boundary of the moduli space.

6 Outlook

We have constructed a noncommutative family of instantons of charge 1 on the non-
commutative 4-sphere S;. The family is parameterized by a noncommutative space My,
which reduces to the moduli space of charge 1 instantons on S* in the limit when 6 — 0.
Although this means that Mj is a quantization of the moduli space My_g, it does not
imply that it is itself a space of moduli. In order to call this the moduli space of charge 1
instantons on S; a few things must be clarified. We mention in particular two important

points that for the moment lack a proper understanding.
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First of all, we are confronted with the difficulty of finding a proper notion of
gauge group and gauge transformations. A naive dualization of the undeformed construc-
tion would lead one to consider the group of A(SU(2))-coequivariant algebra maps from
the algebra A(SU(2)) to A(S]), equipped with the convolution product. However, since the
algebra A(SU(2)) is commutative as opposed to A(S]), one quickly realizes that there are
not so many elements in this group (an interesting open problem is to find in general a
correct noncommutative analogue of the group of maps from a space X to a group G).

The second open problem is related to the fact that one would need some sort
of universality for the noncommutative family of instantons to call it a moduli space.
A possible notion of universality could be defined as follows. A family of instantons
parameterized by A(M) is said to be universal if for any other noncommutative family of
instantons parameterized by, say, an algebra B, there exists an algebra map ¢ : M — B
such that this family can be obtained from the universal family via the map ¢. Again, this
is the analogue of the notion of universality for noncommutative families of maps as in
[20, 23]. But it appears that, in order to prove universality for the actual family that we
have constructed in the present paper, an argument along the classical lines—involving
a local construction of the moduli space from its tangent bundle [3]—fails here, due to
the fact that there is no natural notion of a tangent space to a noncommutative space.

Progress on both of these problems must await another time.
Appendix
A Explicit Commutation Relations

For convenience, we list the explicit commutation relations (3.7) of the elements of the

matrix (3.4). The not trivial ones are the following:

aiby = bhiax azby = pu ha, a;c = ca; axC; = | C1az
@by = 1 b2y azbz =7t bea, a16; = 1 G4 ax0; = |4 C2Q2
aibi =pu bikal abi =1 b)lkaz al(fi‘ =0 CTal a20>1k =7 C>1ka2
a1b§ =n b;al a2b§ =u b;az alc?z“ =0 C?Z"al azcz =7 CszaZ
a1di = dia azd, = /’Lz dia; bic, = Mz b, byc, = c1by
ardz = p? dra axdy = daa; bic, = &b by, = 1i? &by
@dy = dia ad} = dja bic; =7* ciby byci = cib;

—2 —2
a1d; = p° dya, axd; =dja; bic; = ;b byc; = ” &b,
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bid, = pu dyby bydy = pu dyby ady =7 dic Cody = 11 dycy
bidy = pu dyby body = pu daby ady = 1 dycy Cody = T dycy
bid! = dib byd! =7 dib, ad; =pdic ed: =mdic
bid} = dib byd} = 7t dbs ad; =mdia ed; = p djc

together with their conjugates.

B Explicit Proof of Proposition 4.3

We prove here that the minors in (4.10) and the metric in (4.12) satisfy the condition

ZIJ hIJ mIK mJL — hKL

(B.1)

of Proposition 4.3. As said in the main text, this is equivalent to the fact that the defining

matrix Cy of A(SOy(5, 1)) satisfy Cy4* gC = g with g the metric in (4.8).

We first prove (B.1) when in the right-hand side h%X% # 0, namely for the cases
(K,L)=(1,2), (3,4), (5,6). For this we need the formula (3.9) for the determinant of 4. A

little algebra show that the determinant can also be written as

det(4y) = Z (=187 Ay 1)1 A5 224031 3 Asia) 2

U€S4

where g7 = ¢9. Also, for the tensor ¢ we find relations:

ikl — njigjikl; M — gk, ikl nkjgikjl,
and analogues for z,
Fiikl _ mjgjikl; gkl — gl ik njkgikjl_
Given o € Sy, we let 0’ = (12)o and ¢” = (34)0, and compute
det(4g) = Y (=1)"'8° Ay1)1 Ao (2,2 A0(3)3 Asia) 4
(7654
= Z (=D& Ag)1 Ao2,2 — &7 As@1Ao(1),2) Ac(3),3 Ac i a
oeS\o”

= Z (1)1 (27 Ao(1)1 Ao (2,2 — &7 Nolo@M1280(1),2A0(2),1) Ao (3)3 Asa)4

oeSs\o’

(B.2)

(B.3)

(B.4)
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= Y D monon'? A showa

oeS\o’
— 12
= Y =D Mone'? (A3 Araia — 134403 4 A0 )3)
oeS\{o’,0"}
= Z (=18 Mmoo Mo@ow. (B.5)
geSs\{o'a"}

Since the mijkl where defined fori < j, k <1, we choose o € S; \ {¢’0”} such that o7 < 02

and o3 < o04. Hence the sum above runs over o = ((o1,02), (03,04)) € Z, where

7:=1{((1,2),(3,4));((1,3),(2,4);((1,4),(2,3);((2,3), (1,4); (2,4), (1,3)); (3,4), (1, 2))} .

Finally, using the explicit form of the ¢s, the above formula (B.5) reads
_ g, 1., 2
det(4y) = ) h""m;'ms?,

and the condition det(A4y) = 1 proves (B.1) for K = 1, L = 2. The relation above coincides
with the “hyperboloid” relation (5.8) for the generators of the matrix M,.
For the other two cases we use different orders for the A,;); in (B.2). Similar

procedures to the one in (B.5)—and using the properties (B.3) and (B.4)—lead to

det(A4y) = n2a 2:(—1)‘“| 2 Moo Moo@™,

(7654

which gives
pdet(4g) = R mPmy?,
hence proving (B.1) for K = 3, L = 4; and to

det(4g) = —n23 Y _ (=118 Moo’ Moow™,

(7654

which gives
wdet(4y) = — ZU h7mm;°®,

hence proving (B.1) for K = 5,L = 6.
Finally, we have (B.1) when h¥Z = 0 in the right-hand side; for these cases (B.1) is

i Kl i Kl ij Kl oo K —§f K — i Kkl
M127M3s™ + Mmaa" mi™ + pmas’ mis™ + umis¥ mos™ — pmas mis™ —mmizVmso, = 0.
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These can be proved with the explicit expressions of the m;;* in (4.10) and observing
that the hypothesis I = (ij), K = (kl) such that h’¥ = 0 implies four possibilities: i =k,
i =1, j=kor j=1.In addition, the relation m;;* = —y*m;;’* reduces the computations

to just one case, say i = 1.

Acknowledgments

We thank Simon Brain, Eli Hawkins, Mark Rieffel, Lech Woronowicz, and Makoto
Yamashita for useful discussions and remarks. G.L. and C.R. were partially supported
by the “Italian project PRINO6 - Noncommutative geometry, quantum groups and ap-
plications.” C.P. gratefully acknowledges support from MRTN-CT 2003-505078, INDAM,
MKTD-CT 2004-509794, and SNF.

References

[1] Atiyah, M. The Geometry of Yang—Mills Fields. Lezioni Fermiane. Pisa, Italy: Scuola Normale
Superiore, 1979.

[2] Atiyah, M., V. G. Drinfeld, N. J. Hitchin, and Yu. I. Manin. “Construction of instantons.”
Physical Letters 65A (1978): 185-7.

[3] Atiyah, M., N. J. Hitchin, and I. M. Singer. “Deformations of instantons.” Proceedings of the
National Academy of Sciences, USA 74A (1977): 2662-3.

[4] Brzezinski, T., and S. Majid. “Quantum group gauge theory on quantum spaces.” Communi-
cations in Mathematical Physics 157 (1993): 591-638. Erratum 167 (1995): 235.

[6] Brain, S., and S. Majid. “Quantisation of twistor theory by cocycle twist.” (2007): preprint
arXiv:math/0701893.

[6] Connes, A. Noncommutative Geometry. San Diego, CA: Academic Press, 1994.

[71 Connes, A., and M. Dubois-Violette. “Noncommutative finite-dimensional manifolds 1: Spher-
ical manifolds and related examples.” Communications in Mathematical Physics 230 (2002):
539-79.

[8] Connes, A., and G. Landi. “Noncommutative manifolds: the instanton algebra and isospectral
deformations.” Communications in Mathematical Physics 221 (2001): 141-59.

[9] Drinfeld, V. G. “Constant quasiclassical solutions of the Yang-Baxter quantum equation.”
Soviet Mathematics Doklady 28 (1983): 667-71.

[10] Drinfeld, V. G. “Quasi-Hopf algebras.” Leningrad Mathematical Journal 1 (1990): 1419-57.

[11] Hartshorne, R. “Stable vector bundles and instantons.” Communications in Mathematical
Physics 59 (1978): 1-15.

[12] XKasparov, G. “The operator K-functor and extensions of C*-algebras.” Izvestiya Rossiiskoi
Akademii Nauk 44 (1980): 571-636.

[13] Landi, G., C. Pagani, and C. Reina. “A Hopf bundle over a quantum four-sphere from the
symplectic group.” Communications in Mathematical Physics 263 (2006): 65-88.



32 G. Landi et al.

(14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Landi, G., and W. van Suijlekom. “Principal fibrations from noncommutative spheres.” Com-
munications in Mathematical Physics 260 (2005): 203-25.

Landi, G., and W. van Suijlekom. “Noncommutative instantons from twisted conformal sym-
metries.” Communications in Mathematical Physics 271 (2007): 591-639.

Reshetikhin, N. “Multiparameter quantum groups and twisted quasitriangular Hopf alge-
bras.” Letters in Mathematical Physics 20 (1990): 331-5.

Rieffel, M. A. Deformation Quantization for Actions of R*. Memoirs of the American Math-
ematical Society 506. Providence, RI: American Mathematical Society, 1993.

Rieffel, M. A. “Compact quantum groups associated with toral subgroups.” Contemporary
Mathematics 145 (1993): 465-91.

Sitarz, A. “Twists and spectral triples for isospectral deformations.” Letters in Mathematical
Physics 58 (2001): 69-79.

Soltan, P. M. “Quantum families of maps and quantum semigroups on finite quantum spaces.”
(2006): preprint arXiv:math/0610922.

Varilly, J. C. “Quantum symmetry groups of noncommutative spheres.” Communications in
Mathematical Physics 221 (2001): 511-23.

Wang, S. “Quantum symmetry groups of finite spaces.” Communications in Mathematical
Physics 195 (1998): 195-211.

Woronowicz, S. L. “Pseudospaces, Pseudogroups and Pontryagin Duality.” In Proceedings of
the International Conference on Mathematical Physics, edited by K. Osterwalder, 407-12.
Lecture Notes in Physics 116. Berlin: Springer, 1980.



	Introduction
	The Principal Fibration
	Deformations of the Groups SL(2,H) and Sp(2)
	Noncommutative Conformal Transformations
	A Noncommutative Family of Instantons on S4
	Outlook
	Explicit Commutation Relations
	Explicit Proof of Proposition 4.3

