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We construct θ-deformations of the classical groups SL(2, H) and Sp(2). Coacting on a

basic instanton on a noncommutative four-sphere S4
θ , we construct a noncommutative

family of instantons of charge 1. The family is parameterized by the quantum quotient

of SLθ (2, H) by Spθ (2).

1 Introduction

Self-dual (and anti-self-dual) solutions of Yang–Mills equations have played an impor-

tant role both in mathematics and physics. Commonly called (anti-)instantons, they are

connections with self-dual curvature on smooth G-bundles over a four-dimensional com-

pact manifold M. In particular, one considers SU(2) instantons on the sphere S4.

General solutions are constructed by the ADHM method of [2] and it is known [3]

that the moduli space of SU(2)-instantons, with instanton charge k—the second Chern

class of the bundle—is a (8k − 3)-dimensional manifold Mk. For k = 1 the moduli space
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M1 is isomorphic to an open ball in R
5 [11] and, in this construction, generic moduli

are obtained from the so-called basic instanton. The latter is though of as a quaternion

line bundle over P
1
H � S4 with connection induced from H

2 by orthogonal projection.

All other instantons of charge 1 are obtained from the basic one with the action of

the conformal group SL(2, H) modulo the isometry group Sp(2) = Spin(5). The resulting

homogeneous space is M1; it is also the space of quaternion Hermitean structures in H
2.

The attempt to generalize to noncommutative geometry the ADHM construction

of SU(2) instantons together with their moduli space is the starting motivation behind

papers [13–15] and the present one. A noncommutative principal fibration A(S4
θ ) ↪→ A(S7

θ ),

which “quantizes” the classical SU(2)-Hopf fibration over S4, has been constructed in [14]

on the toric noncommutative four-sphere S4
θ . The generators of A(S4

θ ) are the entries of a

projection p, which describes the basic instanton on A(S4
θ ). That is, p gives a projective

module of finite-type p[A(S4
θ )]4 and a connection ∇ = p◦ d on it, which has a self-dual

curvature and charge 1, in some appropriate sense; this is the basic instanton. In [15]

infinitesimal instantons (“the tangent space to the moduli space”) were constructed using

infinitesimal conformal transformations, that is elements in a quantized enveloping

algebra Uθ (so(5, 1)). In the present paper, we look at a global construction and obtain the

other charge 1 instantons by “quantizing” the actions of the Lie groups SL(2, H) and Sp(2)

on the basic instanton, which enter the classical construction [1].

The paper is organized as follows. In Section 2, we recall the structure of the

SU(2)-principal Hopf fibration S7
θ → S4

θ . Section 3 is devoted to the construction of

θ-deformations A(SLθ (2, H)) and A(Spθ (2)) of the corresponding classical groups, endowed

with Hopf algebra structures. The algebras A(S7
θ ), A(S4

θ ) are then described as quantum

homogeneous spaces of A(Spθ (2)) as illustrated at the end of the section. In Section 4,

we consider the coactions of A(SLθ (2, H)) and A(Spθ (2)) on the Hopf fibration S7
θ → S4

θ . We

use these coactions in Section 5 to construct a noncommutative family of instantons by

means of the algebra given by the quantum quotient of A(SLθ (2, H)) by A(Spθ (2)). This

turns out to be a noncommutative algebra generated by six elements subject to a “hyper-

boloid” relation. We finish by mentioning relations to the notion of quantum families of

maps as proposed in [20, 23] and by stressing some open problems.

2 The Principal Fibration

The class of deformations that we work with is the one of “toric noncommutative spaces”

introduced in [8] and further elaborated in [7]. In [14] a noncommutative principal

fibration A(S4
θ ) ↪→ A(S7

θ ) was introduced and infinitesimal instantons on it were
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constructed in [15] using infinitesimal conformal transformations. We refer to these

latter papers for a detailed description of the inclusion A(S4
θ ) ↪→ A(S7

θ ) as a noncommu-

tative principal fibration (with classical SU(2) as structure group) and for its use for

noncommutative instantons. Here we limit ourself to a brief description. The coordinate

algebra A(S7
θ ) on the sphere S7

θ is the ∗-algebra generated by elements {zj, z∗
j; j = 1, . . . , 4}

with relations

zjzk = λ jkzkzj, z∗
jzk = λkjzkz∗

j, z∗
jz

∗
k = λ jkz∗

kz∗
j, (2.1)

and spherical relation
∑

z∗
jz j = 1. The deformation matrix (λ jk) is taken so to allow

an action by automorphisms of the undeformed group SU(2) on A(S7
θ ) and so that the

subalgebra of invariants under this action is identified with the coordinate algebra A(S4
θ )

of a sphere S4
θ . With deformation parameter λ = e2πiθ , the ∗-algebra A(S4

θ ) is generated by

a central element x and elements α, β, α∗, β∗ with commutation relations

αβ = λβα, α∗β∗ = λβ∗α∗, β∗α = λαβ∗, βα∗ = λα∗β, (2.2)

and spherical relation α∗α + β∗β + x2 = 1. All this (including the relation between the

deformation parameter for S7
θ and S4

θ ) is most easily seen by taking the generators of

A(S4
θ ) as the entries of a projection, which yields an “instanton bundle” over S4

θ . Consider

the matrix-valued function on S7
θ given by

u = (|ψ1〉 , |ψ2〉) =
(

z1 −z∗
2 z3 −z∗

4

z2 z∗
1 z4 z∗

3

)t

, (2.3)

where t denotes matrix transposition, and |ψ1〉 , |ψ2〉 are elements in the right A(S7
θ )-

module C
4 ⊗ A(S7

θ ). They are orthonormal with respect to the A(S7
θ )-valued Hermitean

structure 〈ξ , η〉 = ∑
ξ ∗

j η j and as a consequence, u∗u = I2. Hence the matrix

p = uu∗ = |ψ1〉 〈ψ1| + |ψ2〉 〈ψ2| (2.4)
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is a self-adjoint idempotent with entries in A(S4
θ ); we have explicitly:

p = 1

2

⎛⎜⎜⎜⎜⎝
1 + x 0 α β

0 1 + x −µβ∗ µ α∗

α∗ −µβ 1 − x 0

β∗ µα 0 1 − x

⎞⎟⎟⎟⎟⎠ , (2.5)

with µ = √
λ = eπiθ . The generators of A(S4

θ ) are bilinear in those of A(S7
θ ) and given by

α = 2
(
z1z∗

3 + z2z∗
4

)
, β = 2(−z1z4 + z2z3), x = z1z∗

1 + z2z∗
2 − z3z∗

3 − z4z∗
4. (2.6)

The defining relation of the algebra A(S7
θ ) can be given on the entries of the matrix u in

(2.3). Writing u = (uia ), with i, j = 1, . . . , 4 and a = 1, 2, one gets

uiaujb = η jiu jbuia . (2.7)

with η = (ηi j) the matrix

η =

⎛⎜⎜⎜⎜⎝
1 1 µ µ

1 1 µ µ

µ µ 1 1

µ µ 1 1

⎞⎟⎟⎟⎟⎠ . (2.8)

The deformation matrix (λ jk) in (2.1) is just the above η with entries rearranged.

The finitely generated projective A(S4
θ )-module E = p[A(S4

θ )]4 is isomorphic to the

module of equivariant maps from A(S7
θ ) to C

2 describing the vector bundle associated via

the fundamental representation of SU(2). On E one has the Grassmann connection

∇ := p◦ d : E → E ⊗A(S4
θ ) 
1(S4

θ

)
, (2.9)

with 
(S4
θ ) a natural differential calculus on S4

θ . There is also a natural Hodge star

operator ∗θ (see below). The connection has a self-dual curvature ∇2 = p(dp)2, that is,

∗θ (p(dp)2) = p(dp)2.
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Its “topological charge” is computed to be 1 by a noncommutative index theorem. This

“basic” noncommutative instanton has been given a twistor description in [5].

The two algebras A(S7
θ ) and A(S4

θ ) can be described in terms of a deformed (a

“star”) product on the undeformed algebras A(S7) and A(S4). Both spheres S7 and S4 carry

an action of the torus T
2, which is compatible with the action of SU(2) on the total space

S7. In other words, it is an action on the principal SU(2)-bundle S7 → S4. The action by

automorphisms on the algebra A(S4) is given simply by

σt : (x, α, β) �→ (
x, e2πit1α, e2πit2β

)
,

for t = (t1, t2) ∈ T
2. Now, any polynomial in the algebra A(S4) is decomposed into ele-

ments, which are homogeneous under this action. An element fr ∈ A(S4) is said to be

homogeneous of bidegree r = (r1, r2) ∈ Z
2 if

σt ( fr) = e2πi(r1t1+r2t2) fr,

and each f ∈ A(S4) is a unique finite sum of homogeneous elements [17]. This decompo-

sition corresponds to writing the polynomial f in terms of monomials in the generators.

Let now θ = (θ jk = −θkj) be a real antisymmetric 2 × 2 matrix (thus given by a

single real number, θ12 = θ , say). The θ-deformation of A(S4) is defined by replacing the

ordinary product by a deformed product, given on homogeneous elements by

fr ×θ gs := eπiθ (r1s2−r2s1) frgs, (2.10)

and extended linearly to all elements in A(S4). The vector space A(S4) equipped with the

product ×θ is denoted by A(S4
θ ). On the other hand, the algebra A(S7) does not carry an

action of this T
2 but rather a lifted action of a double cover 2-torus [15]. Nonetheless,

the lifted action still allows us to define the algebra A(S7
θ ) by endowing the vector space

A(S7) with a deformed product similar to the one in (2.10). As the notation suggests, these

deformed algebras are shown to be isomorphic to the algebras defined by the relations

in Equations (2.1) and (2.2).

In fact, the torus action can be extended to forms and one also deforms the exte-

rior algebra of forms via a product like the one in (2.10) on spectral components so pro-

ducing deformed exterior algebras 
(S4
θ ) and 
(S7

θ ). As for functions, these are isomorphic
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as vector spaces to their undeformed counterparts but endowed with a deformed

product.

As mentioned, the spheres S4
θ and S7

θ are examples of toric noncommutative man-

ifolds (originally called isospectral deformations [8]). They have noncommutative ge-

ometries via spectral triples whose Dirac operator and Hilbert space of spinors are the

classical ones: only the algebra of functions and its action on the spinors is changed.

In particular, having an undeformed Dirac operator (or, in other words, an undeformed

metric structure) one takes as a Hodge operator ∗θ the undeformed operator on each

spectral component of the algebra of forms.

3 Deformations of the Groups SL(2, H) and Sp(2)

Our interest in deforming the groups SL(2, H) and Sp(2) is motivated by their use for

the construction of instantons on S4. Classically, charge 1 instantons are generated

from the basic one by the action of the conformal group SL(2, H) of S4. Elements of

the subgroup Sp(2) ⊂ SL(2, H) leave invariant the basic one, hence to get new instantons

one needs to quotient SL(2, H) by the spin group Sp(2) � Spin(5). The resulting moduli

space of SU(2) instantons on S4 modulo gauge transformations is identified (cf. [1]) with

the five-dimensional quotient manifold SL(2, H)/Sp(2).

In a parallel attempt to generate instantons on A(S4
θ ), we construct a quantum

group SLθ (2, H) and its quantum subgroup Spθ (2). An infinitesimal construction was pro-

posed in [15] where a deformed dual enveloping algebra Uθ (so(5, 1)) was used to generate

infinitesimal instantons by acting on the basic instanton described above.

The construction of Hopf algebras A(SLθ (2, H)) and A(Spθ (2)) is a special case of

the quantization of compact Lie groups using Rieffel’s strategy in [18], and studied for

the toric noncommutative geometries in [21]. Firstly, a deformed (Moyal-type) product ×θ

is constructed on the algebra of (continuous) functions A(G) on a compact Lie group G,

starting with an action of a closed connected abelian subgroup of G (usually a torus).

The algebra A(G) equipped with the deformed product is denoted by A(Gθ ). Keeping the

classical expression of the coproduct, counit, and antipode on A(G), but now on the

algebra A(Gθ ), the latter becomes a Hopf algebra. It is in duality with a deformation

of the universal enveloping algebra U(g) of the Lie algebra g of G. The Hopf algebra

U(g) is deformed to Uθ (g) by leaving unchanged the algebra structure while twisting the

coproduct, counit, and antipode. The deformation from U(g) to Uθ (g) is implemented with

a twist of Drinfel’d type [9, 10]—in fact, explicitly constructed in [16] for the cases in

hand—as revived in [19].
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The deformed enveloping algebra Uθ (so(5, 1)) was explicitly constructed in [15].

We now briefly discuss the dual construction for the Lie group SL(2, H). The torus T
2 is

embedded in SL(2, H) diagonally,

ρ(t ) = diag
(
e2πit1 , e2πit2

)
, for t = (t1, t2) ∈ T

2,

and the group T
2 × T

2 acts on SL(2, H) by

(s, t , g) ∈ T
2 × T

2 × SL(2, H) �→ ρ(s) · g · ρ(t )−1 ∈ SL(2, H). (3.1)

Similar to the case of the spheres in Section 2, any function f ∈ A(SL(2, H)) expands in a

series f = ∑
r fr of homogeneous elements for this action of T

4, but now r = (r1, r2, r3, r4)

is a multidegree taking values in Z
4. A deformed product ×θ is defined by an analogue of

formula (2.10) on homogeneous elements:

fr ×θ gs = eπiθ (r1s2−r2s1+r3s4−r4s3) frgs,

and extended by linearity to the whole of A(SL(2, H)). The resulting deformed algebra

A(SLθ (2, H)), endowed with the classical (expressions for the) coproduct 
, counit ε, and

antipode S becomes a Hopf algebra.

In fact, to avoid problems coming from the noncommutativity of quaternions, we

shall think of elements in H as 2 by 2 matrices over C via the natural inclusion

H � q = c1 + c2 j �→
(

c1 c2

−c2 c1

)
∈ Mat2(C), for c1, c2 ∈ C.

In the present paper, we need not only the Hopf algebra A(SLθ (2, H)) but also its coaction

on the principal bundle A(S4
θ ) ↪→ A(S7

θ ), and in turn on the basic instanton connection

(2.9) on the bundle, in order to generate new instantons. Having this fact in mind we

proceed to give an explicit construction of A(SLθ (2, H)) out of its coaction in a way that

also shows its quaternionic nature.

3.1 The quantum group SLθ (2, H)

For the deformation of the quaternionic special linear group SL(2, H), we start

from the algebra of a two-dimensional deformed quaternionic space H
2
θ . Let A(C4

θ )
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be the ∗-algebra generated by elements {zj, z∗
j; a = 1, . . . , 4} with the relations as in

Equation (2.1) (for the specific value of the deformation parameter λ considered in Sec-

tion 2 and obtained from (2.8) as mentioned there) but without the spherical relation

that defines A(S7
θ ). We take A(H2

θ ) to be the algebra A(C4
θ ) equipped with the antilinear

∗-algebra map j : A(C4
θ ) → A(C4

θ ) defined on generators by

j : (z1, z2, z3, z4) �→ (z2, −z1, z4, −z3).

It is worth stressing that this deformation of the quaternions takes place between the two

copies of H while leaving the quaternionic structure within each copy of H undeformed.

Since the second column of the matrix u in (2.3) is the image through j of the first one,

we may think of u as made of two deformed quaternions.

Following a general strategy [22], we now define A(Mθ (2, H)) to be the universal

bialgebra for which A(H2
θ ) is a comodule ∗-algebra. More precisely, we define a transfor-

mation bialgebra of A(H2
θ ) to be a bialgebra B such that there is a ∗-algebra map


L : A
(
C

4
θ

) → B ⊗ A
(
C

4
θ

)
,

which satisfies

(id ⊗ j) ◦ 
L = 
L ◦ j. (3.2)

We then set A(Mθ (2, H)) to be the universal transformation bialgebra in the following

sense: for any transformation bialgebra B there exists a morphism of transformation

bialgebras (i.e. commuting with the coactions) from A(Mθ (2, H)) onto B.

The requirement that A(H2
θ ) be a A(Mθ (2, H))-comodule algebra allows us to derive

the commutation relations of the latter. A coaction 
L is given by matrix multiplication,


L :
(
z1, −z∗

2, z3, −z∗
4

)t �→ Aθ

.⊗ (
z1, −z∗

2, z3, −z∗
4

)t
, (3.3)

for a generic 4 × 4 matrix Aθ = (Aij). Asking for (3.2) we have

(Ajk)∗ = (−1) j+k Aj′k′ ,

with j′ = j + (−1) j+1 and the same for k′; this means that Aθ has the form

Aθ =
(

aij bij

cij dij

)
=

⎛⎜⎜⎜⎜⎝
a1 a2 b1 b2

−a∗
2 a∗

1 −b∗
2 b∗

1

c1 c2 d1 d2

−c∗
2 c∗

1 −d∗
2 d∗

1

⎞⎟⎟⎟⎟⎠ . (3.4)
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We use “quaternion notations” for the above matrix and write

Aθ =
(

a b

c d

)
, with a = (aij) =

(
a1 a2

−a∗
2 a∗

1

)
, (3.5)

and similarly for the remaining parts.

The defining matrix in (3.4) has a “classical form.” One readily finds that with

respect to the torus action (3.1) its entries Aij are of multidegree �i ⊕ (−� j) in Z
4 with

� = (�i) = ((1, 0), (−1, 0), (0, 1), (0, −1)).

The general strategy exemplified by the deformed product (2.10) would then give the

deformed product and in turn, the commutation relations defining the deformed algebra

A(Mθ (2, H)). We shall get them directly from the coaction on the algebra A(C4
θ ).

The transformations induced on the generators of A(C4
θ ) read

w1 : = 
L (z1) = a1 ⊗ z1 − a2 ⊗ z∗
2 + b1 ⊗ z3 − b2 ⊗ z∗

4

w2 : = 
L (z2) = a1 ⊗ z2 + a2 ⊗ z∗
1 + b1 ⊗ z4 + b2 ⊗ z∗

3 (3.6)

w3 : = 
L (z3) = c1 ⊗ z1 − c2 ⊗ z∗
2 + d1 ⊗ z3 − d2 ⊗ z∗

4

w4 : = 
L (z4) = c1 ⊗ z2 + c2 ⊗ z∗
1 + d1 ⊗ z4 + d2 ⊗ z∗

3

with 
L (z∗
j) = (
L (zj))∗. The condition for 
L to be an algebra map determines the com-

mutation relations among the generators of A(Mθ (2, H)): the algebra generated by the aij

is commutative, as well as the algebras generated by the bij, cij, and dij. However, the

whole algebra is not commutative and there are relations. A straightforward computation

allows one to concisely write them as

Aij Akl = ηkiη jl Akl Aij (3.7)

with η = (ηki) the deformation matrix in (2.8). Indeed, imposing that (3.3) defines a

∗-algebra map on the generators of A(C4
θ ), and using the relations (2.7), we have∑

kl (Aik Ajl − η jiηkl Ajl Aik) ⊗ ukaulb = 0. Since for a ≤ b the elements ukaulb could be taken

to be all independent, relations Aik Ajl − η jiηkl Ajl Aik = 0 hold, for all values of a, b.

An explicit expression of the above commutation relations is in Appendix A. It

is not difficult to see that A(Mθ (2, H)) is indeed the universal transformation bialgebra,
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since the commutation relations (3.7) and the quaternionic structure of Aθ in (3.4) are

derived from the minimal requirement of 
L to be a ∗-algebra map such that (3.2) holds.

In order to define the quantum group SLθ (2, H) we need a determinant. This is

most naturally introduced via the coaction on forms. There is a natural differential

calculus 
(C4
θ ) generated in degree 1 by elements {dzj, a = 1, . . . , 4} and relations

zjdzk − λ jkdzkzj = 0, zjdz∗
k − λkjdz∗

kzj = 0, z∗
jdzk − λkjdzkz∗

j = 0,

dzjdzk + λ jkdzkdzj = 0, dzjdz∗
k + λkjdz∗

kdzj = 0.

together with their conjugates. The forms 
(C4
θ ) could be obtained from the general

procedure mentioned at the end of Section 2. The result is also isomorphic to the one

obtained from the general construction [6], which uses the Dirac operator to implement

the exterior derivative as a commutator.

The coaction 
L is extended to forms by requiring it to commute with d. Having

the action (3.3), it is natural to define a determinant element by setting


L
(
dz1dz∗

2dz3dz∗
4

) =: det(Aθ ) ⊗ dz1dz∗
2dz3dz∗

4.

We find its explicit form by using the relations of 
(C4
θ ):

det(Aθ ) = a1
[
a∗

1

(
d1d∗

1 + d2d∗
2

) + b∗
2

(
µc2d∗

1 − d2c∗
1

) − b∗
1

(
µc2d∗

2 + d1c∗
1

)]
− a2

[− a∗
2

(
d1d∗

1 + d2d∗
2

) + b∗
2

(
µc1d∗

1 + d2c∗
2

) + b∗
1

( − µc1d∗
2 + d1c∗

2

)]
+ b1

[− a∗
2

(
c2d∗

1 − µd2c∗
1

) − a∗
1

(
c1d∗

1 + µd2c∗
2

) + b∗
1

(
c1c∗

1 + c2c∗
2

)]
− b2

[
a∗

2

(
c2d∗

2 + µd1c∗
1

) + a∗
1

(
c1d∗

2 − µd1c∗
2

) − b∗
2

(
c1c∗

1 + c2c∗
2

)]
. (3.8)

A more compact form for det(Aθ ) is found to be (see also Appendix B)

det(Aθ ) =
∑
σ∈S4

(−1)|σ |εσ A1,σ (1) A2,σ (2) A3,σ (3) A4,σ (4), (3.9)

with εσ = εσ (1)σ (2)σ (3)σ (4). The tensor εi jkl has components

ε1324 = εcycl = µ; ε1423 = εcycl = µ,
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and equal to 1 otherwise. In the limit θ → 0, the element det(Aθ ) reduces to the deter-

minant of the matrix Aθ=0 as it should. Additional results on the determinant are in the

following lemmata.

Lemma 3.1. For each i, l ∈ {1, . . . , 4}, define the corresponding algebraic complement:

Âil =
∑
σ∈S3

(−1)|σ |εσ1...σi−1lσi+1...σ4ησ1lησ2l · · · ησi−1l A1,σ1 . . . Ai−1,σi−1 Ai+1,σi+1 . . . A4,σ (4),

where σ = (σ1, . . . σi−1, σi+1, . . . σ4) = σ (1, . . . l − 1, l + 1, . . . 4) ∈ S3, the group of permuta-

tions of three objects. Then,

Ail Âil = Âil Ail for any i and l. �

Proof. We use the shorthand cσ
l = εσ1...σi−1lσi+1...σ4ησ1lησ2l · · · ησi−1l . Then, the commutation

relations (3.7) yield,

Ail Âil =
∑

σ∈S3(l̂)

cσ
l Ail A1σ1 . . . Ai−1,σi−1 Ai+1,σi+1 . . . A4,σ (4)

=
∑

σ∈S3(l̂)

cσ
l

(
η1i · · · ηi−1,iηi+1,i · · · η4i)(ηl,σ1 · · · ηlσi−1ηl,σi+1 · · · ηl4)A1σ1 . . . Ai−1,σi−1

·Ai+1,σi+1 . . . A4,σ (4) Ail

= Âil Ail .

Here we used the fact that η1i · · · ηi−1,iηi+1,i · · · η4i is the product of the elements in the

ith column of η excluded the element ηii = 1 and the result is 1 as one deduces from the

form of the matrix η in (2.8). Similarly for the other coefficient given by the product of

the elements of the lth row. �

Lemma 3.2. The determinant det(Aθ ) is computed via a Laplace expansion:

1. by rows; for each i ∈ {1, . . . , 4} fixed: det(Aθ ) = ∑
l (−1)i+l Ail Âil ;

2. by columns; for each i ∈ {1, . . . , 4} fixed: det(Aθ ) = ∑
l (−1)i+l Ali Âli. �

Proof. These follow from (3.7) after a lengthy but straightforward computation. �

The particular form of the deformation matrix ηi j defining the relations in A(S7
θ )

implies that det(Aθ ) is (not surprisingly) a central element in the algebra A(Mθ (2, H))

generated by the entries of Aθ . Hence we can take the quotient of this algebra by the
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two-sided ideal generated by det(Aθ ) − 1; we will denote this quotient by A(SLθ (2, H)).

The image of the elements Aij in the quotient algebra will again be denoted by Aij.

In order to have a quantum group we need more structure. On the algebra

A(SLθ (2, H)) we define a coproduct by


(Aij) :=
∑

k
Aik ⊗ Akj,

a counit by

ε(Aij) := δi j,

whereas the antipode S is defined by

S(Aij) := (−1)i+ j Âji.

Here Âli are the algebraic complements introduced in Lemma 3.1. Indeed, from

Lemma 3.2,
∑

l Ail S(Ali) = ∑
l (−1)i+l Ail Âil = det(Aθ ) = 1, and similarly, using also Lemma

3.1,
∑

l S(Ail )Ali = ∑
l (−1)i+l Âli Ali = det(Aθ ) = 1. Moreover, if i �= j,

∑
l Ail S(Alj) = 0 as one

shows by explicit computation.

The definitions above are collected in the following proposition.

Proposition 3.3. The datum (A(SLθ (2, H)), 
, ε, S) constitutes a Hopf algebra. �

The coaction 
L in (3.3) passes to a coaction of A(SLθ (2, H)) on A(H2
θ ) and it is

still a ∗-algebra map. However, the spherical relation
∑

j z∗
jz j = 1 is no longer invariant

under 
L . Thus, the algebra A(S7
θ ) is not an A(SLθ (2, H))-comodule algebra but only a

A(SLθ (2, H))-comodule. We shall elaborate more on this in Section 4 below.

3.2 The quantum group Spθ (2)

Motivated by the classical picture, we next introduce the symplectic group A(Spθ (2)).

Recall that a two-sided ∗-ideal I in a Hopf algebra (A, 
, ε, S) is a Hopf ideal if


(I ) ⊆ I ⊗ A + A ⊗ I , ε(I ) = 0, S(I ) ⊆ I. (3.10)

Then the quotient A/I is a Hopf algebra with induced structures ((π ⊗ π ) ◦ 
, ε, π ◦ S),

where π : A → A/I is the natural projection.

Proposition 3.4. Let I denote the two-sided ∗-ideal in A(SLθ (2, H)) generated by the

elements
∑

k(Aki)∗ Akj − δi j for i, j = 1, . . . , 4. Then I ⊂ A(SLθ (2, H)) is a Hopf ideal. �
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Proof. The first two conditions in (3.10) follow easily from the definition of 
 and ε for

A(SLθ (2, H)) in Proposition 3.3. For the third, we observe that if J is an ideal in A(SLθ (2, H))

such that the classical counterpart J (0) is an ideal in A(SL(2, H)), which is generated by

homogeneous elements, then J = J (0) as vector spaces. Indeed, the deformed product of a

generator with any homogeneous function merely results in multiplication by a complex

phase. In our case, the classical counterparts for the generators
∑

k(Aki)∗ Akj − δi j are

indeed homogeneous (if i = j, they are of bidegree (0, 0), otherwise of bidegree �i − � j)

and the above applies. In particular, S(I ) = S(I (0)) ⊆ I (0) = I . �

Corollary 3.5. The quotientA(Spθ (2)) := A(SLθ (2, H))/I is a Hopf algebra with the induced

Hopf algebra structure. �

We still use the symbols (
, ε, S) for the induced structures. The “defining matrix” Aθ of

A(Spθ (2)) has the form (3.4) (or (3.5)) with the additional condition that A∗
θ Aθ = 1, coming

from the very definition of A(Spθ (2)). A little algebra shows also that Aθ A∗
θ = 1. These

conditions are equivalent to the statement that S(Aθ ) = A∗
θ . In the quaternionic form, the

conditions A∗
θ Aθ = Aθ A∗

θ = 1 become(
a∗a + c∗c a∗b + c∗d

b∗a + d∗c b∗b + d∗d

)
=

(
aa∗ + bb∗ ac∗ + bd∗

ca∗ + db∗ cc∗ + dd∗

)
=

(
1 0

0 1

)
.

3.3 The quantum homogeneous spaces A(S7
θ) and A(S4

θ)

Using the same notations as in (3.4), let us consider the two-sided ideal in A(Spθ (2)) given

by Iθ := 〈bij, cij, a2, a∗
2, a1 − 1, a∗

1 − 1〉. This is a ∗-Hopf ideal, that is,


(Iθ ) ⊆ A(Spθ (2)) ⊗ Iθ + Iθ ⊗ A(Spθ (2)), ε(Iθ ) = 0, S(Iθ ) ⊆ Iθ ,

and we can take the quotient Hopf algebra A(Spθ (1)) := A(Spθ (2))/Iθ with corresponding

projection map πIθ . By projecting with πIθ , the algebra reduces to the commutative one

generated by the entries of the diagonal matrix πIθ (Aθ ) = diag(I2, dij) = diag(I2, d), with

d∗d = dd∗ = I2 or d1d∗
1 + d2d∗

2 = 1; hence, A(Spθ (1)) = A(Sp(1)). There is a coaction

A(Spθ (2)) → A(Spθ (2)) ⊗ A(Sp(1)),

(
a b

c d

)
�→

(
a b

c d

)
.⊗

(
I 0

0 d

)
.

The corresponding algebra of coinvariants A(Spθ (2))co(A(Sp(1)) is clearly generated by the

first two columns (a, c) = {aij, cij} of Aθ . An algebra isomorphism between the algebra of
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coinvariants and A(S7
θ ) is provided by the ∗-map sending these columns to the matrix u

in (2.3). On the generators, this is given by

a1 �→ z1, a2 �→ z2, c1 �→ z3, c2 �→ z4 (3.11)

and the spherical relation corresponds to the condition (A∗
θ Aθ )11 = ∑

(a∗
i ai + c∗

i ci) = 1.

Summarizing, we have that A(Spθ (2))co(A(Sp(1)) � A(S7
θ ). It follows from the general theory

of noncommutative principal bundles over quantum homogeneous spaces [4] that the

inclusion A(S7
θ ) ↪→ A(Spθ (2)) is a noncommutative principal bundle with the classical

group Sp(1) as structure group.

Next, we consider the ideal inA(Spθ (2)) given by Jθ := 〈bij, cij〉—again easily shown

to be a Hopf ideal. Denote by πJθ
the projection map onto the quotient Hopf algebra

A(Spθ (2))/Jθ generated, as an algebra, by the entries of πJθ
(Aθ ) = diag(aij, dij) = diag(a, d).

The conditions A∗
θ Aθ = Aθ A∗

θ = 1 give that both {aij} and {dij} generate a copy of the

algebra A(Sp(1)). However, from the explicit relations in Appendix A, we see that in

general aijdmn �= dmnaij and the quotient algebra is not commutative.

The algebra of coinvariants for the right coaction (id ⊗ πJθ
) ◦ 
 of πJθ

(A(Spθ (2))) on

A(Spθ (2)), is A(S4
θ ). Indeed, with the map (id ⊗ πJθ

) ◦ 
 : Aθ �→ Aθ

.⊗ πJθ
(Aθ ) given by

(
a b

c d

)
�→

(
a

.⊗ a b
.⊗ d

c
.⊗ a d

.⊗ d

)
,

one finds that the ∗-algebra of coinvariants is generated by the elements

(aa∗)11 = a1a∗
1 + a2a∗

2, (ca∗)11 = c1a∗
1 + c2a∗

2, (ca∗)12 = −c1a2 + c2a1.

The ∗-map (3.11) combined with (2.6) then provides the identification with the generators

of A(S4
θ ). Again, the general theory of noncommutative principal bundles over quantum

homogeneous spaces of [4] gives that the inclusionA(S4
θ ) ↪→ A(Spθ (2)) is a noncommutative

principal bundle with πJθ
(A(Spθ (2)) as structure group. It is a deformation of the principal

bundle over S4 with total space Sp(2) and structure group Sp(1) × Sp(1).

4 Noncommutative Conformal Transformations

There is a natural coaction 
L of A(SLθ (2, H)) on the SU(2) noncommutative principal

fibration A(S4
θ ) ↪→ A(S7

θ ) of Section 2. Since the matrix u in (2.3) consists of two deformed
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quaternions, the left coaction 
L of A(SLθ (2, H)) in (3.6) can be written on A(S7
θ ) as


L : A
(
S7

θ

) → A(SLθ (2, H)) ⊗ A
(
S7

θ

)
, u �→ ũ := 
L (u) = Aθ

.⊗ u, (4.1)

or, in components,

uia �→ ũia := 
L (uia ) =
∑

j
Aij ⊗ uja . (4.2)

We have already mentioned that the left coaction 
L of A(SLθ (2, H)) as in (3.6) does not

leave invariant the spherical relation: 
L (
∑

j z∗
jz j) �= 1 ⊗ 1. We will denote by A(S̃7

θ ) the

image of A(S7
θ ) under the left coaction of A(SLθ (2, H)): it is a subalgebra of A(SLθ (2, H)) ⊗

A(S7
θ ). We think of A(S̃7

θ ) as a θ-deformation of a family of “inflated” spheres. Since
∑

j z∗
jz j

is central in A(S7
θ ) its image

ρ2 := 
L

(∑
j
z∗

jz j

)
, (4.3)

is a central element in A(S̃7
θ ) that parameterizes a family of noncommutative 7-spheres

S̃7
θ . By evaluating ρ2 as any real number r2 ∈ R, we obtain an algebra A(S7

θ ,r) which is a

deformation of the algebra of polynomials on a sphere of radius r.

Remark 4.1. As expected, the coaction of the quantum subgroup A(Spθ (2)) does not

“inflate the spheres,” i.e. ρ2 = 1 ⊗ 1 in this case. Indeed, if Aθ = (Aij) is the defining

matrix of A(Spθ (2)), one gets

(u∗u)ab �→
∑

i jl
(A∗)li Aij ⊗ (u∗)alu jb =

∑
jl

δl j ⊗ (u∗)alu jb = 1 ⊗ (u∗u)ab,

which gives
∑

j z∗
jz j �→ 1 ⊗ ∑

j z∗
jz j. Hence, both A(S7

θ ) and A(S4
θ ) are A(Spθ (2))-comodule

∗-algebras. Using the identification (3.11) one sees that the coaction of A(Spθ (2)) on A(S7
θ )

is the restriction of the coproduct of A(Spθ (2)) to the first column of Aθ , i.e. to the algebra

of coinvariants A(Spθ (2))co(A(Sp(1)). �

Next, we define a right action of SU(2) on A(S̃7
θ ) in such a way that the correspond-

ing algebra of invariants describes a family of noncommutative 4-spheres. It is natural

to require that the above left coaction of A(SLθ (2, H)) on A(S7
θ ) intertwines the right action

of SU(2) on A(S̃7
θ ) with the action of SU(2) on A(S7

θ ).

The algebra A(S̃7
θ ) is generated by elements {w j, w∗

j , j = 1, . . . , 4}, the w js being as

in (3.6) but with “coefficients” in A(SLθ (2, H)). Clearly,
∑

j w∗
jw j = ρ2. Then, the algebra of
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invariants of the action of SU(2) on A(S̃7
θ ) is generated by

x̃ = w1w
∗
1 + w2w

∗
2 − w3w

∗
3 − w4w

∗
4,

α̃ = 2(w1w
∗
3 + w2w

∗
4), β̃ = 2(−w1w4 + w2w3), (4.4)

together with ρ2. This is so because the elements (4.4) are the images under the map


L of the elements (2.6) that generate the algebra of invariants under the action of

SU(2) on A(S7
θ ). This correspondence also gives for their commutation relations the same

expressions as the ones in (2.2) for the generators of A(S4
θ ). The difference is that we do

not have the spherical relation of A(S4
θ ) any longer but rather we find that

α̃∗α̃ + β̃∗β̃ + x̃2 =
(∑

j
w∗

jw j

)2
= ρ4. (4.5)

We denote by A(S̃4
θ ) ⊂ A(SLθ (2, H)) ⊗ A(S4

θ ) the algebra of invariants and conclude that

the coaction 
L of A(SLθ (2, H)) on the SU(2) principal fibration A(S4
θ ) ↪→ A(S7

θ ) generates a

family of SU(2) principal fibrations A(S̃4
θ ) ↪→ A(S̃7

θ ). Evaluating the central element ρ2, for

any r ∈ R we get an SU(2) principal fibration A(S4
θ ,r) ↪→ A(S7

θ ,r) of spheres of radius r2 and

r, respectively.

Motivated by the interpretation of the Hopf algebra SLθ (2, H) as a parameter space

(see Section 5), the coaction of A(SLθ (2, H)) is extended to the forms 
(S4
θ ) by requiring that

it commutes with d, i.e. 
L (dω) = (id ⊗ d)
L (ω), thus extending the differential of A(S4
θ )

to A(SLθ (2, H)) ⊗ A(S4
θ ) as (id ⊗ d). Having these, we have the following characterization

of A(SLθ (2, H)) as conformal transformations.

Proposition 4.2. With ∗θ the natural Hodge operator on S4
θ , the algebra A(SLθ (2, H))

coacts by conformal transformations on 
(S4
θ ), that is


L (∗θω) = (id ⊗ ∗θ )
L (ω) , ∀ ω ∈ 

(
S4

θ

)
. �

Proof. The map 
L is given by the classical coaction of A(SL(2, H)) on 
(S4) as vector

spaces and only the two products onA(SL(2, H)) and 
(S4) are deformed. Since ∗θ coincides

with the undeformed Hodge operator ∗ on 
(S4
θ ) � 
(S4) as vector spaces, the result

follows from the fact that SL(2, H) acts by conformal transformations on S4. �
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4.1 The quantum group SOθ (5, 1)

By construction, the generators α̃, β̃, x̃ of A(S̃4
θ ) are the images under 
L of the corre-

sponding α, β, x of A(S4
θ ). Some algebra yields

2x̃ = (
a1a∗

1 + a2a∗
2 + b1b∗

1 + b2b∗
2 − c1c∗

1 − c2c∗
2 − d1d∗

1 − d2d∗
2

) ⊗ 1

+ (
a1a∗

1 + a2a∗
2 − b1b∗

1 − b2b∗
2 − c1c∗

1 − c2c∗
2 + d1d∗

1 + d2d∗
2

) ⊗ x

+ (
a1b∗

1 + µb2a∗
2 − c1d∗

1 − µd2c∗
2

) ⊗ α + (
b1a∗

1 + µa2b∗
2 − d1c∗

1 − µc2d∗
2

) ⊗ α∗

+ (
a1b∗

2 − µb1a∗
2 − c1d∗

2 + µd1c∗
2

) ⊗ β + (
b2a∗

1 − µa2b∗
1 − d2c∗

1 + µc2d∗
1

) ⊗ β∗,

α̃ = (
a1c∗

1 + a2c∗
2 + b1d∗

1 + b2d∗
2

) ⊗ 1 + (
a1c∗

1 + a2c∗
2 − b1d∗

1 − b2d∗
2

) ⊗ x

+ (
a1d∗

1 + µb2c∗
2

) ⊗ α + (
b1c∗

1 + µa2d∗
2

) ⊗ α∗

+ (
a1d∗

2 − µb1c∗
2

) ⊗ β + (
b2c∗

1 − µa2d∗
1

) ⊗ β∗,

β̃ = (a2c1 − a1c2 + b2d1 − b1d2) ⊗ 1 + (a2c1 − a1c2 − b2d1 + b1d2) ⊗ x

+ (−a1d2 + µb2c1) ⊗ α + (−b1c2 + µa2d1) ⊗ α∗

+ (a1d1 − µb1c1) ⊗ β + (−b2c2 + µa2d2) ⊗ β∗. (4.6)

From the definition of ρ in (4.3), using the commutation relations (2.7), it follows that

2ρ2 = 
L ((u∗u)11 + (u∗u)22) =
∑

ilk
(Ail )

∗ Aik ⊗ ((ul1)∗uk1 + (ul2)∗uk2)

=
∑

ilk
(Ail )

∗ Aik ⊗ ηlk(uk1(ul1)∗ + uk2(ul2)∗) =
∑

ilk
(Ail )

∗ Aikηlk ⊗ (uu∗)kl ,

and, being (uu∗)kl the component pkl of the defining projector p in (2.4), an explicit

computation yields

2ρ2 = (
a1a∗

1 + a2a∗
2 + c1c∗

1 + c2c∗
2 + b1b∗

1 + b2b∗
2 + d1d∗

1 + d2d∗
2

) ⊗ 1

+ (
a1a∗

1 + a2a∗
2 + c1c∗

1 + c2c∗
2 − b1b∗

1 − b2b∗
2 − d1d∗

1 − d2d∗
2

) ⊗ x

+ (
a1b∗

1 + µb2a∗
2 + c1d∗

1 + µd2c∗
2

) ⊗ α + (
b1a∗

1 + µa2b∗
2 + d1c∗

1 + µc2d∗
2

) ⊗ α∗

+(
a1b∗

2 − µb1a∗
2 + c1d∗

2 − µd1c∗
2

) ⊗ β + (
b2a∗

1 − µa2b∗
1 + d2c∗

1 − µc2d∗
1

) ⊗ β∗. (4.7)

In the expressions (4.6) and (4.7), the elements of A(SLθ (2, H)) appear only quadratically.

Rather than a coaction of A(SLθ (2, H)), on A(S4
θ ) there is a coaction of the Z

2-invariant

subalgebra. We denote this by A(SOθ (5, 1)), a notation that will become clear presently.

In A(C4
θ ), let us consider the vector-valued function X := (r, x, α, α∗, β, β∗)t , with

r := z1z∗
1 + z2z∗

2 + z3z∗
3 + z4z∗

4 and x, α, β are the quadratic elements, with the same formal
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expression as in (2.6), but with the zµ’s in A(C4
θ ) (that is we do not impose any spherical

relations). A little algebra shows that they satisfy the condition

∑
i j

gij Xi X j = 0, or Xt gX = 0,

where g is the metric on R
6 with signature (5, 1), i.e. on R

5,1. In terms of the basis {Xi}i=1,...,6

and with the natural identification of R
5,1 with R

1,1 ⊕ C
2, this metric becomes

g = (
1
2 gij) = 1

2 diag

((
−2 0

0 2

)
,

(
0 1

1 0

)
,

(
0 1

1 0

))
. (4.8)

The coaction in (3.3) can be given on these quadratic elements and summarized by


L (Xi) = ∑
j Cij ⊗ X j. Here the Cij’s—assembled in a matrix Cθ—are (Z2-invariant) el-

ements in A(SLθ (2, H)) whose expression can be read off from Equations (4.6) and (4.7)

simply reading r instead of 1. Their commutation relations are obtained from the (3.7):

CilC jm = νi jνmlC jmCil ,

where the matrix ν = (νi j) has entries all equal to 1 except for

ν35 = ν46 = ν54 = ν63 = λ, ν36 = ν45 = ν53 = ν64 = λ.

There are two additional properties of the matrix Cθ . The first one is that

Cθ
t g Cθ = g, (4.9)

as we shall now prove. In order to simplify computations for this, we shall rearrange the

generators and use, instead of X, the vector

Y = (π12, π34, π14, π23, π13, π24),

where the πi j’s are the 2-minors of the matrix u in (2.3):

πi j := ui1uj2 − ui2uj1, i < j, i, j = 1, . . . 4.

The relations with the Xi’s are

X1 = Y1 + Y2, X2 = Y1 − Y2, X3 = 2Y3,

X4 = −2µ Y4, X5 = −2Y5, X6 = −2µ Y6.
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On the generators πi j’s, the coaction 
L in (4.2) simply reads

πi j �→ 
L (πi j) =
∑

l,s=1...4
l<s

mij
ls ⊗ πls,

with the m’s given by the 2-minors of the matrix Aθ :

mij
ls = Ail Ajs − ηls Ais Ajl , l < s, i < j. (4.10)

With the generators πi js the condition Xt gX = 0 translates to

π12π34 + µπ14π23 − µ π13π24 = 0, (4.11)

which, at the classical value of the deformation parameter, µ = λ = 1, is the Plücker

quadric [1]. In turn, by rewriting the metric, this condition can be written as

YthY = 0, with h = (
1
2 hI J) = 1

2 diag

((
0 1

1 0

)
,

(
0 µ

µ 0

)
,

(
0 −µ

−µ 0

))
. (4.12)

Here and in the following, we use capital letters to denote indices

I ∈ {1 = (12), 2 = (34), 3 = (14), 4 = (23), 5 = (13), 6 = (24)}.

The statement in (4.9) that Cθ
t g Cθ = g is equivalent to the following proposition

whose proof is given in Appendix B.

Proposition 4.3. The minors in (4.10) and the metric in (4.12) satisfy the condition,

∑
I J

hI J mI
K mJ

L = hKL . �

The second relevant property of the matrix Cθ concerns its determinant. An

element det(Cθ ) can be defined using a differential calculus, now on A(R5,1
θ ) (with relations

dictated by those in A(S4
θ ) except for the spherical relation) as


L (dX1 · · · dX6) = det(Cθ ) ⊗ dX1 · · · dX6.
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One expects that det(Cθ ) can be expressed in terms of det(Aθ ) as defined in (3.8) and that

it should indeed be equal to 1. Instead of checking this via a direct computation, we

observe that dX1 · · · dX6 is a central element in the differential calculus on A(R5,1
θ ) and

has a classical limit which is invariant under the torus action. In the framework of the

deformation described at the end of Section 2, the result of 
L on it remains undeformed

and coincides with the classical coaction of A(SO(5, 1)) giving indeed det(Cθ ) = 1.

Remark 4.4. With the two properties above, we could have defined the algebra

A(SOθ (5, 1)) without reference to A(SLθ (2, H)). The entries of the matrix Cθ are its genera-

tors with relations derived as in Section 3.1 by imposing that Xi �→ ∑
j Cij ⊗ X j respects

the commutation relations of A(S4
θ ), except the spherical relation. In addition, one im-

poses the conditions C t
θ gCθ = g and det(Cθ ) = 1. Of course, this algebra is isomorphic to

the Hopf subalgebra of Z2-invariants in A(SLθ (2, H)) discussed above. It could also be

obtained along the lines of [18, 21] (see also the beginning of Section 3) by deforming the

product on A(SO(5, 1)) with respect to the adjoint action of the torus T
2 ⊂ SO(5, 1). �

5 A Noncommutative Family of Instantons on S4
θ

We mentioned in Section 2 that out of the matrix-valued function u in (2.3) one gets a

projection p = u∗u, given explicitly in (2.5), whose Grassmannian connection ∇ = p◦ d

has self-dual curvature: ∗θ∇2 = ∇2. The corresponding instanton connection 1-form—

acting on equivariant maps—is expressed in terms of u as well and it is an su(2)-

valued 1-form on S7
θ . Indeed, the A(S4

θ )-module E determined by p is isomorphic to the

A(S4
θ )-module of equivariant maps for the defining representation π of SU(2) on C

2:

E � A(S7
θ ) �π C

2 := {
f ∈ A(S7

θ ) ⊗ C
2 : (id ⊗ π (g)−1)( f ) = (αg ⊗ id)( f )

}
,

whose elements we write as f = ∑
a fa ⊗ ea by means of the standard basis {e1, e2} of C

2.

The connection ∇ = p◦ d : E → E ⊗A(S4) 
(S4
θ ) becomes on the equivariant maps:

∇( fa ) = d fa +
∑

b
ωab fb, a, b = 1, 2,

where the connection 1-form ω = (ωab) is found to be given by

ωab = 1
2

∑
k

(
(u∗)akdukb − d(u∗)akukb

)
. (5.1)
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One has ωab = −(ω∗)ba and
∑

a ωaa = 0 so that ω is in 
1(S7
θ ) ⊗ su(2).

Out of the coaction of the quantum group SLθ (2, H) on the Hopf fibration on S4
θ , we

shall get a family of such connections in the sense that we explain in the next sections.

5.1 A family of projections

We shall first describe a family of vector bundles over S4
θ . This is done by giving a family

of suitable projections. We know from (4.1) or (4.2) the transformation of the matrix u to ũ

for the coaction of A(SLθ (2, H)): ũia = 
L (uia ) = ∑
j Aij ⊗ uja , with Aθ = (Aij) the defining

matrix of A(SLθ (2, H)). The fact that the latter does not preserve the spherical relations

is also the statement that

∑
k
(ũ∗)akũkb = 
L

(∑
k
(u∗)akukb

)
= 
L

(∑
k

z∗
kzk

)
δab = ρ2δab, (5.2)

or (ũ)∗ũ = ρ2
I2. Then, we define P = (Pij) ∈ Mat4(A(S̃4

θ )) by

P := ũ ρ−2 (ũ)∗, or Pij = ρ−2
∑

a
ũia (ũ∗)aj. (5.3)

The condition (ũ)∗ũ = ρ2
I2 gives that P is an idempotent; being ∗-self-adjoint it is a

projection.

Remark 5.1. For the above definition, we need to enlarge the algebra A(S̃4
θ ) by adding

the extra element ρ−2, the inverse of the positive self-adjoint central element ρ2. In fact,

we shall also presently need the element ρ−1 =
√

ρ−2. At the smooth level this is not

problematic. The algebra C ∞(S̃4
θ ) can be defined as a fixed point algebra as in [7] and one

finds that the spectrum of ρ2 is positive and does not contain the point 0. �

Explicitly, one finds for the projection P the expression

P = 1

2
ρ−2

⎛⎜⎜⎜⎜⎝
ρ2 + x̃ 0 α̃ β̃

0 ρ2 + x̃ −µ β̃∗ µ α̃∗

α̃∗ −µ β̃ ρ2 − x̃ 0

β̃∗ µ α̃ 0 ρ2 − x̃

⎞⎟⎟⎟⎟⎠ ,

a matrix strikingly similar to the matrix (2.5) for the basic projection. The entries of the

projection P are in A(S̃4
θ ), that is A(SLθ (2, H)) ⊗ A(S4

θ ): we interpret P as a noncommutative
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family of projections parameterized by the noncommutative space SLθ (2, H). This is the

analogue for projections of the noncommutative families of maps that were introduced

and studied in [20, 23]. The interpretation as a noncommutative family is justified by the

classical case: at θ = 0, there are evaluation maps evx : A(SL(2, H)) → C and for each point

x in SL(2, H), (evx ⊗ id)P is a projection in Mat4(A(S4)), that is a bundle over S4. Although

there need not be enough evaluation maps available in the noncommutative case, we can

still work with the whole family at once.

As mentioned, we think of the Hopf algebra SLθ (2, H) as a parameter space and

we extend to A(SLθ (2, H)) ⊗ A(S4
θ ) the differential of A(S4

θ ) as (id ⊗ d) (and similarly, the

Hodge star operator of A(S4
θ ) as (id ⊗ ∗θ )). Having these, out of the projection P one gets

a noncommutative family of instantons.

Proposition 5.2. The family of connections ∇̃ := P ◦ (id ⊗ d) has self-dual curvature

∇̃2 = P ((id ⊗ d)P )2, that is,

(id ⊗ ∗θ )P ((id ⊗ d)P )2 = P ((id ⊗ d)P )2. �

Proof. From Proposition 4.2 we know that A(SLθ (2, H)) coacts by conformal transforma-

tions and the curvature ∇̃2 = P ((id ⊗ d)P )2 is the image of the curvature p(dp)2 under the

coaction of A(SLθ (2, H)). �

It was shown in [8] that the charge of the basic instanton p is 1. This charge was

given as a pairing between the second component of the Chern character of p—an element

in the cyclic homology group HC4(A(S4
θ ))—with the fundamental class of S4

θ in the cyclic

cohomology HC4(A(S4
θ )). The zeroth and first components of the Chern character were

shown to vanish identically in HC0(A(S4
θ )) and HC2(A(S4

θ )), respectively. We will reduce

the computation of the Chern character for the family of projections P to this case by

proving that P is equivalent to the projection 1 ⊗ p. Hence, we conclude that P represents

the same class as 1 ⊗ p in the K-theory of the algebra A(SLθ (2, H)) ⊗ A(S4
θ ).

Recall that two projections p, q are Murray–von Neumann equivalent if there

exists a partial isometry V such that p = VV∗ and q = V∗V .

Lemma 5.3. The projection P is Murray–von Neumann equivalent to the projection 1 ⊗ p

in the algebra M4
(
A(SLθ (2, H)) ⊗ A(S4

θ )
)
. �

Proof. Define the matrix V = (Vik) ∈ M4(A(SLθ (2, H)) ⊗ A(S4
θ )) by

Vik = ρ−1 Aij ⊗ pjk = ρ−1 Aij ⊗ uja (u∗)ak = ρ−1ũia (1 ⊗ (u∗)ak),
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with ũ = (ũia ) as in (4.1). For its adjoint, we have

(V∗)ik = ρ−1(1 ⊗ uia )(ũ∗)ak.

Then, using (5.2), one obtains

(V∗V )il =
∑

k
(V∗)ikVkl = ρ−2

∑
kab

(1 ⊗ uia )(ũ∗)akũkb(1 ⊗ (u∗)bl )

= ρ−2
∑

ab
(1 ⊗ uia )(ρ2δab)(1 ⊗ (u∗)bl ) = 1 ⊗

∑
a

uia (u∗)al = 1 ⊗ pil

and

(VV∗)il =
∑

k
Vik(V∗)kl = ρ−2

∑
kab

ũia (1 ⊗ (u∗)ak)(1 ⊗ ukb)(ũ∗)bl

= ρ−2
∑

kab
ũia (1 ⊗ (u∗)akukb)(ũ∗)bl = ρ−2

∑
ab

ũia (1 ⊗ δab)(ũ∗)bl

= ρ−2
∑

a
ũia (ũ∗)al = Pil ,

which finishes the proof.
�

It follows from this lemma that the components chn(P ) ∈ HC2n(A(SLθ (2, H)) ⊗ A(S4
θ )), with

n = 0, 1, 2, of the Chern character of P coincide with the pushforwards φ∗ chn(p) of

chn(p) ∈ HC2n(A(S4
θ )) under the algebra map

φ : A(S4
θ ) → A(SLθ (2, H)) ⊗ A(S4

θ ), a �→ 1 ⊗ a.

As a consequence, both ch0(P ) and ch1(P ) are zero since ch0(p) and ch1(p) vanish [8]. Next,

we would like to compute the charge of the family of instantons by pairing ch2(P ) with

the fundamental class [S4
θ ] ∈ HC4(A(S4

θ )); classically, this corresponds to an integration

over S4 giving a value 1 of the charge which is constant over SL(2, H). As said, the Chern

character ch2(P ) is an element in HC4(A(SLθ (2, H)) ⊗ A(S4
θ )), which at first sight seems

unsuitable to pair with an element in HC4(A(S4
θ )). However, there is a pairing between the

K-theory group K0(A(SLθ (2, H)) ⊗ A(S4
θ )) and the K-homology group K0(A(S4

θ )). Recall that

for any algebra A from Kasparov’s KK-theory, one has that K0(A) = KK(A, C) and K0(A) =
KK(C,A). As described in [6, Appendix IV.A], for algebras A,B, and C, there is a map

τC : KK(A,B) → KK(C ⊗ A, C ⊗ B) which simply tensors a Kasparov A − B module by C on

the left. In our case we get an element τA(SLθ (2,H))[S4
θ ] ∈ KK(A(SLθ (2, H)) ⊗ A(S4

θ ),A(SLθ (2, H))),

which can be paired with [P ] via the cup product [12]. Thus we obtain the desired pairing:

KK
(
C,A(SLθ (2, H)) ⊗ A

(
S4

θ

)) × KK
(
A

(
S4

θ

)
, C

) → KK(C,A(SLθ (2, H))),(
[P ],

[
S4

θ

]) �→ 〈
[P ], τA(SLθ (2,H))

[
S4

θ

]〉
.
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Having [P ] = [1 ⊗ p], we obtain

〈
[P ], τA(SLθ (2,H))

[
S4

θ

]〉 = [1] ⊗ 〈[p], [S4
θ ]〉 = [1] ∈ K0(A(SLθ (2, H))),

where in the last line we used the equality 〈[p], [S4
θ ]〉 = 1 proved in [8] too.

The above is the statement that the value 1 of the topological charge is constant

over the family.

5.2 A family of connections

When transforming u by the coaction of SLθ (2, H) in (4.1), one transforms the connection

1-form ω in (5.1) as well to ω̃ = (ω̃ab) with,

ω̃ab := 
L (ωab) = 1

2

∑
kij

(A∗)ik Akj ⊗ (
(u∗)aidujb − d(u∗)aiu jb

)
. (5.4)

Since 
L is linear, ω̃ is still traceless (
∑

a ω̃aa = 0) and skew-Hermitean (ω̃ab = −(ω̃∗)ba ).

Proposition 5.4. The instanton connection 1-form ω is invariant under the coaction of

the quantum group Spθ (2), that is for this quantum group one has


L (ωab) = 1 ⊗ ωab. �

Proof. This is a simple consequence of the fact that for Spθ (2) one has
∑

k(A∗)ik Akj = δi j

from which (5.4) reduces to ω̃ab = 1 ⊗ ωab. �

Hence, the relevant space that parameterizes the connection one-forms is not

SLθ (2, H) but rather the quotient of SLθ (2, H) by Spθ (2). Denoting by π the natural quo-

tient map from A(SLθ (2, H)) to A(Spθ (2)), the algebra of the quotient is the algebra of

coinvariants of the natural left coaction 
L = (π ⊗ id) ◦ 
 of Spθ (2) on SLθ (2, H):

A(Mθ ) := {a ∈ A(SLθ (2, H)) | 
L (a) = 1 ⊗ a}.

Since Spθ (2) is a quantum subgroup of SLθ (2, H) the quotient is well defined: the algebra

A(Mθ ) is a quantum homogeneous space and the inclusion A(Mθ ) ↪→ A(SLθ (2, H)) is a

noncommutative principal bundle with A(Spθ (2)) as structure group.

Lemma 5.5. The quantum quotient space A(Mθ ) is generated as an algebra by the

elements mij := ∑
k(A∗)ik Akj = ∑

k(Aki)∗ Akj. �
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Proof. Since the relations in the quotient A(Spθ (2)) are quadratic in the matrix elements

Aij and (Aij)∗, the generators of A(Mθ ) have to be at least quadratic in them. For the first

leg of the tensor product 
(a) to involve these relations in A(Spθ (2)), we need to take

a = ∑
i(Aik)∗ Ail , so that

(π ⊗ id)
(a) =
∑

imn
π ((Aim)∗ Ain) ⊗ (Amk)∗ Anl

=
∑

imn
π ((Aim)∗)π (Ain) ⊗ (Amk)∗ Anl =

∑
mn

δmn ⊗ (Amk)∗ Anl ,

giving the desired result. �

We will think of the transformed ω̃ in (5.4) as a family of connection one-forms

parameterized by the noncommutative space Mθ . At the classical value θ = 0, we get

the moduli space Mθ=0 = SL(2, H)/Sp(2) of instantons of charge 1. For each point x in

Mθ=0, the evaluation map evx : A(Mθ=0) → C gives an instanton connection (i.e. one with

self-dual curvature) (evx ⊗ id)ω̃ on the bundle over S4 described by (evx ⊗ id)P .

5.3 The space Mθ of connections and its geometry

The structure of the algebra A(Mθ ) is deduced from that of A(SLθ (2, H)). We collect the

generators mij = ∑
k(Aki)∗ Akj into a matrix M := (mij). Explicitly, one finds

M =

⎛⎜⎜⎜⎜⎝
m 0 g1 g∗

2

0 m −µ g2 µ g∗
1

g∗
1 −µ g∗

2 n 0

g2 µ g1 0 n

⎞⎟⎟⎟⎟⎠ (5.5)

with its entries related to those of the defining matrix Aθ in (3.4) of A(SLθ (2, H)) by

m = m∗ = a∗
1a1 + a∗

2a2 + c∗
1c1 + c∗

2c2,

n = n∗ = b∗
1b1 + b∗

2b2 + d∗
1d1 + d∗

2d2,

g1 = a∗
1b1 + µ b∗

2a2 + c∗
1d1 + µ d∗

2c2, (5.6)

g2 = b∗
2a1 − µ a∗

2b1 + d∗
2c1 − µ c∗

2d1.

As for the commutation relations, one finds that both m and n are central:

m x = x m, n x = x n ∀x ∈ Mθ ; (5.7a)
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that g1 and g2 are normal:

g1g∗
1 = g∗

1g1, g2g∗
2 = g∗

2g2; (5.7b)

and that

g1g2 = µ2g2g1, g1g∗
2 = µ2g∗

2g1. (5.7c)

together with their conjugates. There is also a quadratic relation,

mn − (g∗
1g1 + g∗

2g2) = 1, (5.8)

coming from the condition det(Aθ ) = 1. Indeed, one first establishes that besides the

product mn, also g∗
1g1 + g∗

2g2 is a central element in A(Mθ ), and then computes

mn − g∗
1g1 + g∗

2g2 = a∗
1a1d∗

1d1 + a∗
1a1d∗

2d2 + a∗
2a2d∗

1d1 + a∗
2a2d∗

2d2 + b∗
1b1c∗

1c1 + b∗
1b1c∗

2c2

+ b∗
2b2c∗

1c1 + b∗
2b2c∗

2c2 − a∗
1c1d∗

1b1 − a∗
1c1d∗

2b2 − a∗
2c2d∗

1b1 − a∗
2c2d∗

2b2

− b∗
1d1c∗

1a1 − b∗
1d1c∗

2a2 − b∗
2d2c∗

1a1 − b∗
2d2c∗

2a2 − a∗
1c∗

2d2b1 + a∗
1c∗

2d1b2

+ a∗
2c∗

1d2b1 − a∗
2c∗

1d1b2 − b∗
1d∗

2c2a1 + b∗
1d∗

2c1a2 + b∗
2d∗

1c2a1 − b∗
2d∗

1c1a2

= det(Aθ )

by a direct comparison with the expression (3.8). Elements (mij) of the matrix M enter

the expression for ρ2. With pkl the components of the defining projector p in (2.4) and

having formula (4.7), one finds that

ρ2 = 1

2

∑
i j

ηi j mij ⊗ pji

= 1

2

[
(m + n) ⊗ 1 + (m − n) ⊗ x + µ g∗

1 ⊗ α + µ g2 ⊗ β + µ g1 ⊗ α∗ + µ g∗
2 ⊗ β∗] .

In particular, for Aij ∈ A(Spθ (2)) one gets ρ2 = 1
2 (1 ⊗ tr(p)) = 1 ⊗ 1, as already observed in

Remark 4.1.

5.4 The boundary of Mθ

The defining matrix M of Mθ in (5.5), with the commutation relations among its entries,

is strikingly similar to the defining projection p of A(S4
θ ) in (2.5) with the corresponding

commutation relations. Clearly, the crucial difference is that while for A(S4
θ ) we have a

spherical relation, for Mθ we have the relation (5.8), which makes Mθ a θ-deformation
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of a hyperboloid in six dimensions. This becomes more clear if we introduce two central

elements w and y, given in terms of m, n by

w := 1
2 (m + n); y := 1

2 (m − n).

Relation (5.8) then reads

w2 − (y2 + g∗
1g1 + g∗

2g2) = 1, (5.9)

making evident the hyperboloid structure. Let us examine its structure at “infinity.” We

first adjoin the inverse of w to A(Mθ ), and stereographically project onto the coordinates,

Y := w−1y, G1 := w−1g1, G2 := w−1g2.

The relation (5.9) becomes,

Y2 + G∗
1G1 + G∗

2G2 = 1 − w−2.

Evaluating w as a real number, and taking its “limit to infinity” we get a spherical relation,

Y2 + G∗
1G1 + G∗

2G2 = 1.

By combining this with relations (5.7), we can conclude that at the “boundary” of Mθ , we

reencounter the noncommutative 4-sphere A(S4
θ ) via the identification

Y ↔ x, G1 ↔ α G2 ↔ β.

The above construction is the analogue of the classical structure, in which 4-spheres are

found at the boundary of the moduli space.

6 Outlook

We have constructed a noncommutative family of instantons of charge 1 on the non-

commutative 4-sphere S4
θ . The family is parameterized by a noncommutative space Mθ ,

which reduces to the moduli space of charge 1 instantons on S4 in the limit when θ → 0.

Although this means that Mθ is a quantization of the moduli space Mθ=0, it does not

imply that it is itself a space of moduli. In order to call this the moduli space of charge 1

instantons on S4
θ a few things must be clarified. We mention in particular two important

points that for the moment lack a proper understanding.
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First of all, we are confronted with the difficulty of finding a proper notion of

gauge group and gauge transformations. A naive dualization of the undeformed construc-

tion would lead one to consider the group of A(SU(2))-coequivariant algebra maps from

the algebra A(SU(2)) to A(S7
θ ), equipped with the convolution product. However, since the

algebra A(SU(2)) is commutative as opposed to A(S7
θ ), one quickly realizes that there are

not so many elements in this group (an interesting open problem is to find in general a

correct noncommutative analogue of the group of maps from a space X to a group G).

The second open problem is related to the fact that one would need some sort

of universality for the noncommutative family of instantons to call it a moduli space.

A possible notion of universality could be defined as follows. A family of instantons

parameterized by A(M) is said to be universal if for any other noncommutative family of

instantons parameterized by, say, an algebra B, there exists an algebra map φ : M → B
such that this family can be obtained from the universal family via the map φ. Again, this

is the analogue of the notion of universality for noncommutative families of maps as in

[20, 23]. But it appears that, in order to prove universality for the actual family that we

have constructed in the present paper, an argument along the classical lines—involving

a local construction of the moduli space from its tangent bundle [3]—fails here, due to

the fact that there is no natural notion of a tangent space to a noncommutative space.

Progress on both of these problems must await another time.

Appendix

A Explicit Commutation Relations

For convenience, we list the explicit commutation relations (3.7) of the elements of the

matrix (3.4). The not trivial ones are the following:

a1b1 = µ b1a1 a2b1 = µ b1a2 a1c1 = µ c1a1 a2c1 = µ c1a2

a1b2 = µ b2a1 a2b2 = µ b2a2 a1c2 = µ c2a1 a2c2 = µ c2a2

a1b∗
1 = µ b∗

1a1 a2b∗
1 = µ b∗

1a2 a1c∗
1 = µ c∗

1a1 a2c∗
1 = µ c∗

1a2

a1b∗
2 = µ b∗

2a1 a2b∗
2 = µ b∗

2a2 a1c∗
2 = µ c∗

2a1 a2c∗
2 = µ c∗

2a2

a1d1 = d1a1 a2d1 = µ2 d1a2 b1c1 = µ2 c1b1 b2c1 = c1b2

a1d2 = µ2 d2a1 a2d2 = d2a2 b1c2 = c2b1 b2c2 = µ2 c2b2

a1d∗
1 = d∗

1a1 a2d∗
1 = µ2 d∗

1a2 b1c∗
1 = µ2 c∗

1b1 b2c∗
1 = c∗

1b2

a1d∗
2 = µ2 d∗

2a1 a2d∗
2 = d∗

2a2 b1c∗
2 = c∗

2b1 b2c∗
2 = µ2 c∗

2b2
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b1d1 = µ d1b1 b2d1 = µ d1b2 c1d1 = µ d1c1 c2d1 = µ d1c2

b1d2 = µ d2b1 b2d2 = µ d2b2 c1d2 = µ d2c1 c2d2 = µ d2c2

b1d∗
1 = µ d∗

1b1 b2d∗
1 = µ d∗

1b2 c1d∗
1 = µ d∗

1c1 c2d∗
1 = µ d∗

1c2

b1d∗
2 = µ d∗

2b1 b2d∗
2 = µ d∗

2b2 c1d∗
2 = µ d∗

2c1 c2d∗
2 = µ d∗

2c2

together with their conjugates.

B Explicit Proof of Proposition 4.3

We prove here that the minors in (4.10) and the metric in (4.12) satisfy the condition

∑
I J

hI J mI
K mJ

L = hKL (B.1)

of Proposition 4.3. As said in the main text, this is equivalent to the fact that the defining

matrix Cθ of A(SOθ (5, 1)) satisfy Cθ
t g C = g with g the metric in (4.8).

We first prove (B.1) when in the right-hand side hKL �= 0, namely for the cases

(K, L) = (1, 2), (3, 4), (5, 6). For this we need the formula (3.9) for the determinant of Aθ . A

little algebra show that the determinant can also be written as

det(Aθ ) =
∑
σ∈S4

(−1)|σ |εσ Aσ (1),1 Aσ (2),2 Aσ (3),3 Aσ (4),4 (B.2)

where εσ = εσ . Also, for the tensor ε we find relations:

εi jkl = η jiε
jikl ; εi jkl = ηlkεi jlk; εi jkl = ηkjε

ikjl , (B.3)

and analogues for ε,

εi jkl = ηi jε
jikl ; εi jkl = ηklε

i jlk, εi jkl = η jkεikjl . (B.4)

Given σ ∈ S4, we let σ ′ = (12)σ and σ ′′ = (34)σ , and compute

det(Aθ ) =
∑
σ∈S4

(−1)|σ |εσ Aσ (1),1 Aσ (2),2 Aσ (3),3 Aσ (4),4

=
∑

σ∈S4\σ ′
(−1)|σ |(εσ Aσ (1),1 Aσ (2),2 − εσ ′

Aσ (2),1 Aσ (1),2
)
Aσ (3),3 Aσ (4),4

=
∑

σ∈S4\σ ′
(−1)|σ |(εσ Aσ (1),1 Aσ (2),2 − εσ ′

ησ (1)σ (2)η12 Aσ (1),2 Aσ (2),1
)
Aσ (3),3 Aσ (4),4
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=
∑

σ∈S4\σ ′
(−1)|σ |εσ mσ (1)σ (2)

12 Aσ (3),3 Aσ (4),4

=
∑

σ∈S4\{σ ′,σ ′′}
(−1)|σ |εσ mσ (1)σ (2)

12 (Aσ (3),3 Aσ (4),4 − η34 Aσ (3),4 Aσ (4),3)

=
∑

σ∈S4\{σ ′σ ′′}
(−1)|σ |εσ mσ (1)σ (2)

12 mσ (3)σ (4)
34. (B.5)

Since the mij
kl where defined for i < j, k < l, we choose σ ∈ S4 \ {σ ′σ ′′} such that σ1 < σ2

and σ3 < σ4. Hence the sum above runs over σ = (
(σ1, σ2), (σ3, σ4)

) ∈ I, where

I := {(
(1, 2), (3, 4)

)
; ((1, 3), (2, 4)); ((1, 4), (2, 3)); ((2, 3), (1, 4)); ((2, 4), (1, 3)); ((3, 4), (1, 2))

}
.

Finally, using the explicit form of the εs, the above formula (B.5) reads

det(Aθ ) =
∑

I J
hI JmI

1mJ
2,

and the condition det(Aθ ) = 1 proves (B.1) for K = 1, L = 2. The relation above coincides

with the “hyperboloid” relation (5.8) for the generators of the matrix Mθ .

For the other two cases we use different orders for the Aσ (i)i in (B.2). Similar

procedures to the one in (B.5)—and using the properties (B.3) and (B.4)—lead to

det(Aθ ) = η24

∑
σ∈S4

(−1)|σ | εσ mσ (1)σ (4)
14 mσ (2)σ (3)

23,

which gives

µdet(Aθ ) =
∑

I J
hI JmI

3mJ
4,

hence proving (B.1) for K = 3, L = 4; and to

det(Aθ ) = −η23

∑
σ∈S4

(−1)|σ |εσ mσ (1)σ (3)
13 mσ (2)σ (4)

24,

which gives

µdet(Aθ ) = −
∑

I J
hI JmI

5mJ
6,

hence proving (B.1) for K = 5, L = 6.

Finally, we have (B.1) when hKL = 0 in the right-hand side; for these cases (B.1) is

m12
i jm34

kl + m34
i jm12

kl + µm23
i j m14

kl + µm14
i jm23

kl − µm24
i j m13

kl − µm13
i jm24

kl = 0.
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These can be proved with the explicit expressions of the mij
kl in (4.10) and observing

that the hypothesis I = (i j), K = (kl) such that hI K = 0 implies four possibilities: i = k,

i = l, j = k or j = l. In addition, the relation mij
kl = −ηklmij

lk reduces the computations

to just one case, say i = l.
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