Noncommutative geometry and particle physics

Walter D. van Suijlekom
(joint with Jord Boeijink/Thijs van den Broek)

September 10, 2009
Contents

- Spectral action
- The (noncommutative) geometry of Yang–Mills fields
- Supersymmetry in noncommutative geometry
Noncommutative manifolds

- Basic device: a spectral triple (A, \mathcal{H}, D):
 - algebra A of bounded operators on
 - a Hilbert space \mathcal{H},
 - a self-adjoint operator D with compact resolvent
 such that the commutator $[D, a]$ is bounded for all $a \in A$.
Noncommutative manifolds

- Basic device: a spectral triple \((\mathcal{A}, \mathcal{H}, D)\):
 - algebra \(\mathcal{A}\) of bounded operators on
 - a Hilbert space \(\mathcal{H}\),
 - a self-adjoint operator \(D\) with compact resolvent such that the commutator \([D, a]\) is bounded for all \(a \in \mathcal{A}\).

- Grading \(\gamma : \mathcal{H} \to \mathcal{H}\) such that

\[
\gamma^2 = \text{id}, \quad D\gamma + \gamma D = 0, \quad \gamma a = a\gamma \quad (a \in \mathcal{A})
\]
Noncommutative manifolds

- Basic device: a spectral triple \((A, \mathcal{H}, D)\):
 - algebra \(A\) of bounded operators on
 - a Hilbert space \(\mathcal{H}\),
 - a self-adjoint operator \(D\) with compact resolvent
 such that the commutator \([D, a]\) is bounded for all \(a \in A\).

- Grading \(\gamma : \mathcal{H} \to \mathcal{H}\) such that
 \[
 \gamma^2 = \text{id}, \quad D\gamma + \gamma D = 0, \quad \gamma a = a\gamma \quad (a \in A)
 \]

- Real structure \(J : \mathcal{H} \to \mathcal{H}\), anti-unitary operator such that
 \[
 JD = \pm JD, \quad J\gamma = \pm \gamma J.
 \]
 defining an \(A\)-bimodule structure on \(\mathcal{H}\) via
 \[
 (a, b) \cdot \psi = aJb^*J^{-1}\psi \quad (\psi \in \mathcal{H})
 \]
 and we require (first order):
 \[
 [[D, a], JbJ^{-1}] = 0
 \]
Example: Riemannian spin geometry

Let M be a compact m-dimensional Riemannian spin manifold.

- $\mathcal{A} = C^\infty(M)$
- $\mathcal{H} = L^2(S)$, square integrable spinors
- $D = \slashed{\partial}$, Dirac operator
- $\gamma = \gamma_{m+1}$ if m even (chirality)
- $J = C$ (charge conjugation)

Then D has compact resolvent because $\slashed{\partial}$ elliptic self-adjoint. Also $[D, f]$ bounded for $f \in C^\infty(M)$.
Morita equivalence

Suppose $\mathcal{A} \sim_M \mathcal{B}$.

Can we construct a spectral triple on \mathcal{B} from $(\mathcal{A}, \mathcal{H}, D)$?

- Let $\mathcal{B} \simeq \text{End}_\mathcal{A}(\mathcal{E})$ with \mathcal{E} finitely generated projective. Define

 $$\mathcal{H}' = \mathcal{E} \otimes_\mathcal{A} \mathcal{H}$$

 Then \mathcal{B} acts as bounded operators on \mathcal{H}'.

Definition of operator D' (η, ψ) := $\nabla(\eta) \psi + \eta \otimes D \psi$ requires a (compatible) connection on \mathcal{E}:

$\nabla : \mathcal{E} \to \mathcal{E} \otimes_\mathcal{A} \Omega^1_D$ with respect to the derivation $d := [D, \cdot]$ and the Connes' differential one-forms are

$$\Omega^1_D(A) = \begin{cases} \sum_j a_j [D, b_j] : a_j, b_j \in \mathcal{A} \end{cases}$$

Then $(\mathcal{B}, \mathcal{H}', D')$ is a spectral triple [Connes, 1996].
Morita equivalence

Suppose $\mathcal{A} \sim_{\mathcal{M}} \mathcal{B}$. Can we construct a spectral triple on \mathcal{B} from $(\mathcal{A}, \mathcal{H}, D)$?

- Let $\mathcal{B} \simeq \text{End}_\mathcal{A}(\mathcal{E})$ with \mathcal{E} finitely generated projective. Define

$$\mathcal{H}' = \mathcal{E} \otimes_\mathcal{A} \mathcal{H}$$

Then \mathcal{B} acts as bounded operators on \mathcal{H}'.

- Definition of operator $D'(\eta, \psi) := \nabla(\eta)\psi + \eta \otimes D\psi$ requires a (compatible) connection on \mathcal{E}:

$$\nabla : \mathcal{E} \to \mathcal{E} \otimes_\mathcal{A} \Omega^1_D(\mathcal{A})$$

with respect to the derivation $d := [D, .]$ and the Connes’ differential one-forms are

$$\Omega^1_D(\mathcal{A}) = \left\{ \sum_j a_j[D, b_j] : a_j, b_j \in \mathcal{A} \right\}$$
Morita equivalence

Suppose $\mathcal{A} \sim_M \mathcal{B}$.
Can we construct a spectral triple on \mathcal{B} from $(\mathcal{A}, \mathcal{H}, D)$?

- Let $\mathcal{B} \cong \text{End}_\mathcal{A}(\mathcal{E})$ with \mathcal{E} finitely generated projective. Define

$$\mathcal{H}' = \mathcal{E} \otimes_\mathcal{A} \mathcal{H}$$

Then \mathcal{B} acts as bounded operators on \mathcal{H}'.

- Definition of operator $D'(\eta, \psi) := \nabla(\eta)\psi + \eta \otimes D\psi$ requires a (compatible) connection on \mathcal{E}:

$$\nabla : \mathcal{E} \rightarrow \mathcal{E} \otimes_\mathcal{A} \Omega^1_D(\mathcal{A})$$

with respect to the derivation $d := [D, .]$ and the Connes’ differential one-forms are

$$\Omega^1_D(\mathcal{A}) = \left\{ \sum_j a_j[D, b_j] : a_j, b_j \in \mathcal{A} \right\}$$

- Then $(\mathcal{B}, \mathcal{H}', D')$ is a spectral triple [Connes, 1996].
Morita equivalence
with real structure

Again, suppose $\mathcal{A} \sim_\mathcal{M} \mathcal{B}$.

- If there is a real structure J on $(\mathcal{A}, \mathcal{H}, D)$, then instead

$$\mathcal{H}' := \mathcal{E} \otimes_\mathcal{A} \mathcal{H} \otimes_\mathcal{A} \overline{\mathcal{E}}$$

in terms of the conjugate (left \mathcal{A}-) module $\overline{\mathcal{E}}$ and define

$$D'(\eta \otimes \psi \otimes \overline{\rho}) = \nabla(\eta)\psi \otimes \overline{\rho} + \eta \otimes D\psi \otimes \overline{\rho} + \eta \otimes \psi \overline{\nabla}(\overline{\rho})$$

where

$$\nabla : \mathcal{E} \rightarrow \mathcal{E} \otimes_\mathcal{A} \Omega^1_D(\mathcal{A})$$

$$\overline{\nabla} : \overline{\mathcal{E}} \rightarrow \Omega^1_D(\mathcal{A}) \otimes_\mathcal{A} \overline{\mathcal{E}},$$

and

$$J' : \mathcal{H}' \rightarrow \mathcal{H}', \quad \eta \otimes \psi \otimes \overline{\rho} \mapsto \rho \otimes J\psi \otimes \overline{\eta}$$

complete the definition of a real spectral triple $(\mathcal{B}, \mathcal{H}', D', J')$.
In the case $B = A$ (i.e. $\mathcal{E} = A$) we have of course $\mathcal{H}' \simeq \mathcal{H}$ and $J' \equiv J$.

$D' \mapsto UD'U^*$ implies $A \mapsto uAu^* + u[D, u^*]$. The element A is the gauge field and it acts as $A \pm JAJ^{-1}$ on H, that is, in the adjoint representation.
In the case $B = A$ (i.e. $E = A$) we have of course $\mathcal{H}' \simeq \mathcal{H}$ and $J' \equiv J$.

However, the operator D is perturbed to $D' = D_A \equiv D + A \pm JAJ^{-1}$ with $A^* = A \in \Omega^1_D(A)$ the connection one-form (gauge potential) in $\nabla = d + A$. These are the so-called inner fluctuations.
In the case $B = A$ (i.e. $E = A$) we have of course $\mathcal{H}' \sim \mathcal{H}$ and $J' \equiv J$.

However, the operator D is perturbed to $D' = D_A \equiv D + A \pm JA^{-1}$ with $A^* = A \in \Omega^1_D(A)$ the connection one-form (gauge potential) in $\nabla = d + A$. These are the so-called inner fluctuations.

The (gauge) group $U(A)$ of unitary elements in A acts on \mathcal{H} in the adjoint, i.e. via the unitary $U = uJu^{-1}$ for $u \in U(A)$.

Morita self-equivalence
Morita self-equivalence

- In the case $\mathcal{B} = \mathcal{A}$ (i.e. $\mathcal{E} = \mathcal{A}$) we have of course $\mathcal{H}' \simeq \mathcal{H}$ and $J' \equiv J$.
- However, the operator D is perturbed to $D' = DA \equiv D + A \pm JAJ^{-1}$ with $A^* = A \in \Omega^1_D(\mathcal{A})$ the connection one-form (gauge potential) in $\nabla = d + A$. These are the so-called inner fluctuations.
- The (gauge) group $U(\mathcal{A})$ of unitary elements in \mathcal{A} acts on \mathcal{H} in the adjoint, i.e. via the unitary $U = uJuJ^{-1}$ for $u \in U(\mathcal{A})$.
- This induces an action of $U(\mathcal{A})$ on the connection one-form A, since $D' \mapsto UD'U^*$ implies

$$A \mapsto uAu^* + u[D, u^*]$$
Morita self-equivalence

- In the case $B = A$ (i.e. $E = A$) we have of course $H' \cong H$ and $J' \equiv J$.

- However, the operator D is perturbed to $D' = D_A \equiv D + A \pm JAJ^{-1}$
 with $A^* = A \in \Omega^1_D(A)$ the connection one-form (gauge potential) in
 $\nabla = d + A$. These are the so-called inner fluctuations.

- The (gauge) group $U(A)$ of unitary elements in A acts on H in the
 adjoint, i.e. via the unitary $U = uJuJ^{-1}$ for $u \in U(A)$.

- This induces an action of $U(A)$ on the connection one-form A, since
 $D' \mapsto UD'U^*$ implies

 $$A \mapsto uAu^* + u[D, u^*]$$

- The element A is the gauge field and it acts as $A \pm JAJ^{-1}$ on H, that
 is, in the adjoint representation.
Spectral action principle

Given a (real) spectral triple \((A, \mathcal{H}, D)\), we define an action functional on \(A \in \Omega^1_D(A)\) and \(\psi \in \mathcal{H}\) as

\[
S_\Lambda[A, \psi] := \text{Tr} (f(D_A/\Lambda)) - \text{Tr} (f(D/\Lambda)) + \langle \psi, D_A \psi \rangle
\]

with \(f\) a function on \(\mathbb{R}\) \((...)\) and \(\Lambda \in \mathbb{R}\) a cut-off.

- Gauge invariance: \(S_\Lambda[u^* A u + u^* [D, u], u \psi] = S_\Lambda[A, \psi]\).
Spectral action principle

Given a (real) spectral triple \((A, \mathcal{H}, D)\), we define an action functional on \(A \in \Omega^1_D(A)\) and \(\psi \in \mathcal{H}\) as

\[
S_{\Lambda}[A, \psi] := \text{Tr} \left(f\left(\frac{D A}{\Lambda} \right) \right) - \text{Tr} \left(f\left(\frac{D}{\Lambda} \right) \right) + \langle \psi, D_A \psi \rangle
\]

with \(f\) a function on \(\mathbb{R}\) \((\ldots)\) and \(\Lambda \in \mathbb{R}\) a cut-off.

- **Gauge invariance**: \(S_{\Lambda}[u^* Au + u^* [D, u], u\psi] = S_{\Lambda}[A, \psi]\).
- The part \(\text{Tr} \left(f\left(\frac{D}{\Lambda} \right) \right)\) is purely ‘gravitational’ (this terminology is justified by applying it to the commutative spectral triple associated to \(M\)).
Heat kernel expansion

One obtains an explicit expression for

$$\text{Tr } (f(D_A/\Lambda))$$

in terms of the heat expansion for the operator $e^{-t(D_A/\Lambda)^2}$.

- Assume simple dimension spectrum for D and a heat expansion

$$\text{Tr } e^{-tD_A^2} \sim \sum_{\alpha} t^\alpha a_\alpha(D_A) \quad (t \to 0)$$
Heat kernel expansion

One obtains an explicit expression for

\[\text{Tr} \left(f\left(D_A/\Lambda \right) \right) \]

in terms of the heat expansion for the operator \(e^{-t(D_A/\Lambda)^2} \).

- Assume simple dimension spectrum for \(D \) and a heat expansion

\[\text{Tr} \ e^{-tD_A^2} \sim \sum_{\alpha} t^\alpha a_\alpha(D_A) \quad (t \to 0) \]

- Then write \(f \) as a Laplace transform of \(\phi \)

\[\text{Tr} \left(f\left(D_A/\Lambda \right) \right) = \int_{t>0} \phi(t) e^{-t(D_A/\Lambda)^2} \, dt = \sum_{\alpha} f_{-\alpha} \Lambda^{-\alpha} a_\alpha(D_A) \]
Example: Yang–Mills theory

Given a compact 4-dimensional Riemannian spin manifold M, consider:

- $\mathcal{A} = \mathcal{C}^\infty(M) \otimes M_n(\mathbb{C})$
- $\mathcal{H} = L^2(S) \otimes M_n(\mathbb{C})$
- $D = \partial \otimes 1$
- $\gamma = \gamma_5 \otimes 1$, $J = C \otimes (.)^*$

<table>
<thead>
<tr>
<th>Proposition (Chamseddine-Connes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The self-adjoint operator $A + J A J^{-1}$ with $A = A^* \in \Omega^1(D(A))$ describes an $\text{su}(n)$-valued one-form on M.</td>
</tr>
<tr>
<td>The gauge group $\text{U}(A) \cong \mathcal{C}^\infty(M, \text{U}(n))$ acts on \mathcal{H} in the (usual) adjoint representation.</td>
</tr>
<tr>
<td>The spectral action is given by $S_{\Lambda}[A, \psi] = f(0) 24 \pi^2 \int_M \text{Tr} F_A \wedge F_A + \langle \psi, (\partial / \otimes \text{ad} A) \psi \rangle + O(\Lambda^{-1})$ with F_A the curvature of the connection one-form corresponding to A.</td>
</tr>
</tbody>
</table>
Example: Yang–Mills theory

Given a compact 4-dimensional Riemannian spin manifold M, consider

- $A = C^\infty(M) \otimes M_n(\mathbb{C})$
- $\mathcal{H} = L^2(S) \otimes M_n(\mathbb{C})$
- $D = \partial \otimes 1$
- $\gamma = \gamma_5 \otimes 1$
- $J = C \otimes (.)^*$.

Proposition (Chamseddine-Connes)

- The self-adjoint operator $A + JAJ^{-1}$ with $A = A^* \in \Omega^1_D(A)$ describes an $\mathfrak{su}(n)$-valued one-form on M.
- The gauge group $\mathcal{U}(A) \simeq C^\infty(M, U(n))$ acts on \mathcal{H} in the (usual) adjoint representation.
- The spectral action is given by

\[
S_\Lambda[A, \psi] = \frac{f(0)}{24\pi^2} \int_M \text{Tr} F_A \wedge F_A + \langle \psi, (\partial + \text{ad}A)\psi \rangle + O(\Lambda^{-1})
\]

with F_A the curvature of the connection one-form corresponding to A.
We make two observations.

1. The $\mathfrak{su}(n)$-valued one-form defines a connection one-form on the trivial principal bundle $M \times SU(n)$.

Is there a spectral triple that describes Yang–Mills theory on topologically non-trivial principal bundles?
We make two observations.

1. The $\mathfrak{su}(n)$-valued one-form defines a connection one-form on the trivial principal bundle $M \times SU(n)$.

Is there a spectral triple that describes Yang–Mills theory on topologically non-trivial principal bundles?

2. With the fermions in the adjoint representation of $U(A)$, the above action is a candidate for defining a supersymmetric theory.

How does supersymmetry appear, and can we extend it to physically realistic models? (eg. MSSM)
Geometry of Yang–Mills fields

Let $P \to M$ be a G-principal bundle. A convenient way to define connections on P is through covariant derivatives on the associated bundle(s).

- A covariant derivative (or, connection) on $E = P \times_G V$ is a map

$$\nabla : \Gamma^\infty(E) \to \Gamma^\infty(E) \otimes_{C^\infty(M)} \Omega^1(M))$$

satisfying the Leibniz rule $\nabla(sf) = \nabla(s)f + s \otimes df$. This implies that $\nabla = \nabla_0 + A$ with $A \in \Gamma^\infty(adP) \otimes_{C^\infty(M)} \Omega^1(M)$ for any two ∇, ∇_0.
Geometry of Yang–Mills fields

Let $P \to M$ be a G-principal bundle. A convenient way to define connections on P is through covariant derivatives on the associated bundle(s).

- **A covariant derivative** (or, connection) on $E = P \times_G V$ is a map

 \[\nabla : \Gamma^\infty(E) \to \Gamma^\infty(E) \otimes_{C^\infty(M)} \Omega^1(M) \]

 satisfying the Leibniz rule $\nabla(sf) = \nabla(s)f + s \otimes df$. This implies that $\nabla = \nabla_0 + A$ with $A \in \Gamma^\infty(\text{ad}P) \otimes_{C^\infty(M)} \Omega^1(M)$ for any two ∇, ∇_0.

- The **curvature** of ∇ is $F_\nabla := \nabla^2 \in \Gamma^\infty(\text{ad}P) \otimes_{C^\infty(M)} \Omega^2(M)$.

Geometry of Yang–Mills fields

Let $P \to M$ be a G-principal bundle. A convenient way to define connections on P is through covariant derivatives on the associated bundle(s).

- A covariant derivative (or, connection) on $E = P \times_G V$ is a map

$$\nabla : \Gamma^\infty(E) \to \Gamma^\infty(E) \otimes_{C^\infty(M)} \Omega^1(M))$$

satisfying the Leibniz rule $\nabla(sf) = \nabla(s)f + s \otimes df$. This implies that $\nabla = \nabla_0 + A$ with $A \in \Gamma^\infty(\text{ad}P) \otimes_{C^\infty(M)} \Omega^1(M)$ for any two ∇, ∇_0.

- The curvature of ∇ is $F_\nabla := \nabla^2 \in \Gamma^\infty(\text{ad}P) \otimes_{C^\infty(M)} \Omega^2(M)$.

- The gauge group $\text{Aut}_1(P) \simeq \Gamma^\infty(\text{Ad}P)$ acts on ∇

$$\nabla \mapsto g \nabla g^{-1}$$

and, consequently, $F_\nabla \mapsto g F_\nabla g^{-1}$.
Given the above, we may define the Yang–Mills action functional (for simplicity, assume $G = U(n)$ or $SU(n)$)

$$S_{YM}[A] = \int_M \text{Tr} \ F_\nabla \wedge * F_\nabla$$

writing $\nabla = \nabla_0 + A$ for some fixed connection ∇_0
Yang–Mills action

• Given the above, we may define the Yang–Mills action functional (for simplicity, assume $G = U(n)$ or $SU(n)$)

$$S_{YM}[A] = \int_M \text{Tr} \ F_\nabla \wedge *F_\nabla$$

writing $\nabla = \nabla_0 + A$ for some fixed connection ∇_0

• This describes the dynamics and self-interactions of a single gauge boson (eg. photon, W-boson, gluon, ...)

Example: QCD has $G = SU(3)$. Gluons are $su(3)$-valued one-forms on M; quarks are sections of $E = P \times SU(3) C_3$. Their dynamics and interaction are described by $S_{YM} + S_M$.

Yang–Mills action

- Given the above, we may define the Yang–Mills action functional (for simplicity, assume $G = U(n)$ or $SU(n)$)

$$S_{YM}[A] = \int_M \text{Tr} \ F_\nabla \wedge *F_\nabla$$

writing $\nabla = \nabla_0 + A$ for some fixed connection ∇_0

- This describes the dynamics and self-interactions of a single gauge boson (eg. photon, W-boson, gluon, ...)

- Physical matter (fermions) can be included (on a spin manifold) as sections of the tensor product of the spinor bundle S the associated bundles E to P:

$$S_M[A, \psi] = \langle \psi, \gamma \circ \nabla \psi \rangle$$

(eg. electrons, quarks, ...)
Yang–Mills action

Given the above, we may define the Yang–Mills action functional (for simplicity, assume $G = U(n)$ or $SU(n)$)

$$S_{YM}[A] = \int_M \text{Tr} \ F_\nabla \wedge {}^* F_\nabla$$

writing $\nabla = \nabla_0 + A$ for some fixed connection ∇_0

This describes the dynamics and self-interactions of a single gauge boson (eg. photon, W-boson, gluon, ...)

Physical matter (fermions) can be included (on a spin manifold) as sections of the tensor product of the spinor bundle S the associated bundles E to P:

$$S_M[A, \psi] = \langle \psi, \gamma \circ \nabla \psi \rangle$$

(eg. electrons, quarks, ...)

Example: QCD has $G = SU(3)$. Gluons are $\mathfrak{su}(3)$-valued one-forms on M; quarks are sections of $E = P \times_{SU(3)} \mathbb{C}^3$. Their dynamics and interaction are described by $S_{YM} + S_M$.
Yang–Mills theory (non-trivial)

Algebra

Let \mathcal{A} be a finitely generated, projective $C^\infty(M)$-module $*$-algebra. Thus, the module structure is compatible with the $*$-algebra structure:

$$f(ab) = (fa)b = a(fb), \quad (fa)^* = \bar{f}a^*, \quad \text{et cetera.}$$

Recall that an algebra bundle $B \rightarrow M$ is a vector bundle with an algebra structure on the fibers; also, the local trivializations are algebra maps.
Yang–Mills theory (non-trivial)

Algebra

Let \mathcal{A} be a finitely generated, projective $C^\infty(M)$-module \ast-algebra. Thus, the module structure is compatible with the \ast-algebra structure:

$$f(ab) = (fa)b = a(fb), \quad (fa)^\ast = \overline{fa}^\ast,$$

et cetera.

Recall that an algebra bundle $B \to M$ is a vector bundle with an algebra structure on the fibers; also, the local trivializations are algebra maps.

Proposition (Serre-Swan for algebra bundles)

There is a one-to-one correspondence between finite rank (involutive) algebra bundles on M and finitely generated projective $C^\infty(M)$-module (\ast)-algebras.

The correspondence being $\mathcal{A} \simeq \Gamma^\infty(M, B)$ for an algebra bundle $B \to M$.
Yang–Mills theory (non-trivial)
Hilbert space and Dirac operator

We define a Hilbert space \(\mathcal{H} := \mathcal{A} \otimes C^\infty(M) L^2(M, S) \). Let \(\nabla_0 \) be a (compatible) connection on the finitely generated projective module \(\mathcal{A} \):

\[
\nabla_0 : \mathcal{A} \rightarrow \mathcal{A} \otimes C^\infty(M) \Omega^1_\partial(C^\infty(M))
\]

A self-adjoint operator \(D \) on \(\mathcal{H} \) is defined as \(D = \nabla_0 \otimes 1 + 1 \otimes \partial \).
Yang–Mills theory (non-trivial)
Hilbert space and Dirac operator

We define a Hilbert space $\mathcal{H} := \mathcal{A} \otimes_{C^\infty(M)} L^2(M, S)$. Let ∇_0 be a (compatible) connection on the finitely generated projective module \mathcal{A}:

$$\nabla_0 : \mathcal{A} \rightarrow \mathcal{A} \otimes_{C^\infty(M)} \Omega^1(\mathcal{A})$$

A self-adjoint operator D on \mathcal{H} is defined as $D = \nabla_0 \otimes 1 + 1 \otimes \partial$.

Theorem

- *The set of data $(\mathcal{A}_{C^\infty(M)}, \mathcal{H}, D)$ defines a spectral triple.*

Also, there exists a grading $\gamma = 1 \otimes \gamma_5$ (assuming M even dimensional) and a real structure $J = (\cdot)^* \otimes C$.

Next, we study the inner fluctuations of this spectral triple.
Yang–Mills theory (non-trivial)

Principal bundles

From the transition functions \(t_{\alpha\beta} \) of the algebra bundle \(B \) (for which \(\mathcal{A} \simeq \Gamma^\infty(M, B) \)) we build a \(SU(n) \)-principal bundle:

- Assume for simplicity that the fiber of \(B \) is isomorphic to \(M_n(\mathbb{C}) \).
Yang–Mills theory (non-trivial)

Principal bundles

From the transition functions $t_{\alpha\beta}$ of the algebra bundle B (for which $\mathcal{A} \simeq \Gamma_\infty(M, B)$) we build a $SU(n)$-principal bundle:

- Assume for simplicity that the fiber of B is isomorphic to $M_n(\mathbb{C})$.
- Then $t_{\alpha\beta}(x) \in \text{Aut}(M_n(\mathbb{C})) = SU(n)$
Yang–Mills theory (non-trivial)

Principal bundles

From the transition functions $t_{\alpha\beta}$ of the algebra bundle B (for which $A \simeq \Gamma^\infty(M, B)$) we build a $SU(n)$-principal bundle:

- Assume for simplicity that the fiber of B is isomorphic to $M_n(\mathbb{C})$.
- Then $t_{\alpha\beta}(x) \in \text{Aut}(M_n(\mathbb{C})) = SU(n)$
- The resulting $SU(n)$-principal bundle P has as an associated bundle:

$$B = P \times_{SU(n)} M_n(\mathbb{C})$$
Yang–Mills theory (non-trivial)

Principal bundles

From the transition functions $t_{\alpha\beta}$ of the algebra bundle B (for which $\mathcal{A} \simeq \Gamma^\infty(M, B)$) we build a $SU(n)$-principal bundle:

- Assume for simplicity that the fiber of B is isomorphic to $M_n(\mathbb{C})$.
- Then $t_{\alpha\beta}(x) \in \text{Aut}(M_n(\mathbb{C})) = SU(n)$
- The resulting $SU(n)$-principal bundle P has as an associated bundle:

\[
B = P \times_{SU(n)} M_n(\mathbb{C})
\]

- The connection ∇_0 defines a covariant derivative ∇_0 on the associated bundle B.
Yang–Mills theory (non-trivial)
Principal bundles

From the transition functions $t_{\alpha\beta}$ of the algebra bundle B (for which $A \simeq \Gamma^\infty(M, B)$) we build a $SU(n)$-principal bundle:

- Assume for simplicity that the fiber of B is isomorphic to $M_n(\mathbb{C})$.
- Then $t_{\alpha\beta}(x) \in \text{Aut}(M_n(\mathbb{C})) = SU(n)$
- The resulting $SU(n)$-principal bundle P has as an associated bundle:

$$B = P \times_{SU(n)} M_n(\mathbb{C})$$

- The connection ∇_0 defines a covariant derivative ∇_0 on the associated bundle B.
- The inner fluctuations $D \mapsto D' = D + A + JAJ^{-1}$ give rise to connections ∇ on B, such that $D' = \gamma \circ \nabla$. They are parametrized by elements in $\Omega^1(\text{ad}P)$.
Yang–Mills theory (non-trivial)

Spectral action

We collect this in a

Theorem

- \((A_{\infty}(M), A \otimes C_{\infty}(M)) L^2(S), D = \nabla_0 \otimes 1 + 1 \otimes \partial, \gamma = 1 \otimes \gamma_5, J = (.)^* \otimes C)\)
 is an even real spectral triple.

- The self-adjoint operator \(A + JAJ^{-1}\) with \(A = A^* \in \Omega^1_D(A)\) describes a section of \(\text{ad}P \times \Lambda^1(M)\).

- The gauge group \(U(A) \simeq \Gamma_{\infty}(\text{Ad}P)\), and acts on \(H\) in the adjoint representation.

- The spectral action is given by

\[
S_{\Lambda}[A, \psi] = \frac{f(0)}{24\pi^2} \int_M \text{Tr} \ F_A \wedge \ast F_A + \langle \psi, (\partial + \text{ad}A)\psi \rangle + O(\Lambda^{-1})
\]

with \(F_A\) the curvature of the connection \(\nabla\) corresponding to \(D + A + JAJ^{-1}\).
The noncommutative torus for rational θ is of the above type.

More generally, one can construct from a spectral triple $(\mathcal{A}_0, \mathcal{H}_0, D_0)$ and a (fin.gen.proj.) \mathcal{A}_0-module algebra \mathcal{A}, equipped with a D_0-connection ∇ another spectral triple

$$(\mathcal{A}, \mathcal{A} \otimes \mathcal{A}_0 \mathcal{H}, \nabla \otimes 1 + 1 \otimes D_0)$$

(similar to Morita equivalence)

Relation to the work of Ćaćić (MPIM, Caltech)?

Include topological terms through addition of $\text{Tr} \left(\gamma f(D_A/\Lambda) \right)$.

Supersymmetric Yang–Mills theory

Again, consider the spectral triple $(\mathcal{C}^\infty(M) \otimes M_n(\mathbb{C}), L^2(S) \otimes M_n(\mathbb{C}), \mathcal{D} \otimes 1)$ and the spectral action

$$S_\Lambda[A, \psi] = \frac{f(0)}{24\pi^2} \int_M \text{Tr} \ F \wedge \ast F + \langle \psi, D_A \psi \rangle + \mathcal{O}(\Lambda^{-1})$$

With the fermions $\psi \in \mathcal{H}$ in the adjoint representation of the gauge group $\mathcal{U}(\mathcal{A})$, it might be possible to exchange $\psi \leftrightarrow A$ (in some way), while leaving the spectral action invariant.
Supersymmetric Yang–Mills theory

Again, consider the spectral triple \((C^\infty(M) \otimes M_n(\mathbb{C}), L^2(S) \otimes M_n(\mathbb{C}), \mathcal{D} \otimes 1)\)

and the spectral action

\[
S_\Lambda[A, \psi] = \frac{f(0)}{24\pi^2} \int_M \text{Tr} \ F \wedge \ast F + \langle \psi, D_A \psi \rangle + \mathcal{O}(\Lambda^{-1})
\]

- With the fermions \(\psi \in \mathcal{H}\) in the adjoint representation of the gauge group \(\mathcal{U}(A)\), it might be possible to exchange \(\psi \leftrightarrow A\) (in some way), while leaving the spectral action invariant.
- First, we need to obtain the correct degrees of freedom:

\[
\text{H} = L^2(S) \otimes R_u(n)\]
Supersymmetric Yang–Mills theory

Again, consider the spectral triple \((C^\infty(M) \otimes M_n(\mathbb{C}), L^2(S) \otimes M_n(\mathbb{C}), \emptyset \otimes 1)\)
and the spectral action

\[S_\Lambda[A, \psi] = \frac{f(0)}{24\pi^2} \int_M \text{Tr} \ F \wedge *F + \langle \psi, D_A \psi \rangle + \mathcal{O}(\Lambda^{-1}) \]

- With the fermions \(\psi \in \mathcal{H}\) in the adjoint representation of the gauge group \(U(A)\), it might be possible to exchange \(\psi \leftrightarrow A\) (in some way), while leaving the spectral action invariant.
- First, we need to obtain the correct degrees of freedom:
 - Instead of \(\langle \psi, D_A \psi \rangle\) we consider
 \[\langle \widetilde{\chi}, D_A \widetilde{\psi} \rangle \]
 in terms of a anti-chiral \(\widetilde{\chi}\) and chiral \(\widetilde{\psi}\) (this is in accordance with the usual independent variables \(\overline{\psi}\) and \(\psi\) in the Lorentzian case [vNW]).
Supersymmetric Yang–Mills theory

Again, consider the spectral triple \((C^\infty(M) \otimes M_n(\mathbb{C}), L^2(S) \otimes M_n(\mathbb{C}), \emptyset \otimes 1)\)

and the spectral action

\[S_\Lambda[A, \psi] = \frac{f(0)}{24\pi^2} \int_M \text{Tr} \ F \wedge *F + \langle \psi, D_A \psi \rangle + \mathcal{O}(\Lambda^{-1}) \]

- With the fermions \(\psi \in \mathcal{H}\) in the adjoint representation of the gauge group \(\mathcal{U}(A)\), it might be possible to exchange \(\psi \leftrightarrow A\) (in some way), while leaving the spectral action invariant.

- First, we need to obtain the correct degrees of freedom:
 - Instead of \(\langle \psi, D_A \psi \rangle\) we consider
 \[\langle \tilde{\chi}, D_A \tilde{\psi} \rangle \]
 in terms of a anti-chiral \(\tilde{\chi}\) and chiral \(\tilde{\psi}\) (this is in accordance with the usual independent variables \(\overline{\psi}\) and \(\psi\) in the Lorentzian case [vNW]).

- Write \(\mathcal{H} = L^2(S) \otimes M_n(\mathbb{C}) \cong L^2(S) \otimes_{\mathbb{R}} u(n)\) and
 \[\langle \tilde{\chi}, D_A \tilde{\psi} \rangle = \langle \text{Tr} \tilde{\chi}, D \text{Tr} \tilde{\psi} \rangle + \langle \chi, D_A \psi \rangle \]
 where \(\tilde{\psi} = \text{Tr} \tilde{\psi} + \psi\), \(\tilde{\chi} = idem\) is the decomposition according to \(u(n) = \mathbb{R} \oplus su(n)\). Thus, the spinors \(\text{Tr} \tilde{\chi}\) and \(\text{Tr} \tilde{\psi}\) decouple.
We restrict the inner product to χ and ψ in $L^2(S) \otimes_{\mathbb{R}} \mathfrak{su}(n)$ and consider

$$\text{SYM}[A, \chi, \psi] = \frac{f(0)}{24\pi^2} \int_M \text{Tr} \ F_A \wedge *F_A + \langle \chi, D_A \psi \rangle$$
We restrict the inner product to χ and ψ in $L^2(S) \otimes_{\mathbb{R}} \mathfrak{su}(n)$ and consider

$$S_{SYM}[A, \chi, \psi] = \frac{f(0)}{24\pi^2} \int_M \text{Tr } F_A \wedge *F_A + \langle \chi, D_A \psi \rangle$$

Consider the following supersymmetry transformations

$$\delta A := c_1 \gamma^\mu \otimes (\epsilon_-, \gamma_\mu \psi) + c_2 \gamma^\mu \otimes (\chi, \gamma_\mu \epsilon_+)$$

$$\delta \psi := c_3 F \epsilon_+$$

$$\delta \chi := c_4 F \epsilon_-.$$

with $\epsilon_+ \in L^2(S)$ constant spinors such that $\gamma_5 \epsilon_\pm = \pm \epsilon_\pm$.

We restrict the inner product to χ and ψ in $L^2(S) \otimes_{\mathbb{R}} \mathfrak{su}(n)$ and consider

$$S_{\text{SYM}}[A, \chi, \psi] = \frac{f(0)}{24\pi^2} \int_M \text{Tr} \ F_A \wedge *F_A + \langle \chi, D_A \psi \rangle$$

Consider the following supersymmetry transformations

$$
\delta A := c_1 \gamma^\mu \otimes (\epsilon_-, \gamma_\mu \psi) + c_2 \gamma^\mu \otimes (\chi, \gamma_\mu \epsilon_+)
$$

$$
\delta \psi := c_3 F \epsilon_+
$$

$$
\delta \chi := c_4 F \epsilon_-
$$

with $\epsilon_\pm \in L^2(S)$ constant spinors such that $\gamma_5 \epsilon_\pm = \pm \epsilon_\pm$.

Proposition

For certain constants c_i the action functional S_{SYM} is invariant under the supersymmetry transformations:

$$\frac{d}{dt} S_{\text{SYM}}[A + t\delta A, \chi + t\delta \chi, \psi + t\delta \psi] \bigg|_{t=0} = 0$$
Guided by physics: super-QCD

- The $SU(3)$-gauge field A describes what is called a **gluon**, its supersymmetric partner ψ (together with χ) a **gluino**.
Guided by physics: super-QCD

- The $SU(3)$-gauge field A describes what is called a gluon, its supersymmetric partner ψ (together with χ) a gluino.
- We would like to include also quarks, as well as their superpartners: squarks, but keep the gauge group to be $SU(3)$.

Guided by physics: super-QCD

- The $SU(3)$-gauge field A describes what is called a gluon, its supersymmetric partner ψ (together with χ) a gluino.
- We would like to include also quarks, as well as their superpartners: squarks, but keep the gauge group to be $SU(3)$.
- Quarks are fermions in the defining representation of $SU(3)$ rather then in the adjoint representation. We therefore extend our finite-dimensional Hilbert space $M_3(\mathbb{C})$ to
 \[V := \mathbb{C}^3 \oplus M_3(\mathbb{C}) \oplus \overline{\mathbb{C}^3} \]
 and let $M_3(\mathbb{C})$ act on both \mathbb{C}^3 and $M_3(\mathbb{C})$ by left matrix multiplication, and as the identity on $\overline{\mathbb{C}^3}$.
Guided by physics: super-QCD

- The $SU(3)$-gauge field A describes what is called a gluon, its supersymmetric partner ψ (together with χ) a gluino.
- We would like to include also quarks, as well as their superpartners: squarks, but keep the gauge group to be $SU(3)$.
- Quarks are fermions in the defining representation of $SU(3)$ rather than in the adjoint representation. We therefore extend our finite-dimensional Hilbert space $M_3(\mathbb{C})$ to

$$V := \mathbb{C}^3 \oplus M_3(\mathbb{C}) \oplus \overline{\mathbb{C}^3}$$

and let $M_3(\mathbb{C})$ act on both \mathbb{C}^3 and $M_3(\mathbb{C})$ by left matrix multiplication, and as the identity on $\overline{\mathbb{C}^3}$.
- The real structure is now given on V by the map

$$J_V : (q_1, T, \overline{q_2}) \mapsto (q_2, T^*, \overline{q_1})$$

(eventually combined with the real structure on M).
Guided by physics: super-QCD

- The $SU(3)$-gauge field A describes what is called a gluon, its supersymmetric partner ψ (together with χ) a gluino.
- We would like to include also quarks, as well as their superpartners: squarks, but keep the gauge group to be $SU(3)$.
- Quarks are fermions in the defining representation of $SU(3)$ rather then in the adjoint representation. We therefore extend our finite-dimensional Hilbert space $M_3(\mathbb{C})$ to

$$V := \mathbb{C}^3 \oplus M_3(\mathbb{C}) \oplus \overline{\mathbb{C}^3}$$

and let $M_3(\mathbb{C})$ act on both \mathbb{C}^3 and $M_3(\mathbb{C})$ by left matrix multiplication, and as the identity on $\overline{\mathbb{C}^3}$.
- The real structure is now given on V by the map

$$J_V : (q_1, T, \overline{q}_2) \mapsto (q_2, T^*, \overline{q}_1)$$

(eventually combined with the real structure on M).
- Thus, the algebra $\mathcal{A} = C^\infty(M) \otimes M_3(\mathbb{C})$ acts on $\mathcal{H} = L^2(S) \otimes V$ and $J = C \otimes J_V$ defines an anti-unitary operator on \mathcal{H}.
Deriving the squarks

As said, we do not want to change the gauge group $SU(3)$ so the algebra should remain $C^\infty(M) \otimes M_3(\mathbb{C})$. Squarks, being superpartners of quarks, are bosons. We want to obtain them as inner fluctuations. This motivates to replace the operator $\partial / \otimes 1$ on H by $D = \partial / \otimes 1 + \gamma_5 \otimes D_V$ with $D_V: V \to V$ given by

$$
\begin{pmatrix}
0 \\
0 \\
e_0 \\
d_0 \\
0 \\
e_0
\end{pmatrix}
$$

with $d: M_3(\mathbb{C}) \to \mathbb{C}^3$, $g \mapsto g \cdot v$ and $e: M_3(\mathbb{C}) \to \mathbb{C}^3$, $g \mapsto g^t \cdot v$ for some vector $v \in \mathbb{C}^3$. Proposition $(C^\infty(M) \otimes M_3(\mathbb{C}), L^2(S) \otimes V, D, \gamma_5 \otimes 1, J)$ defines a real, even spectral triple.
Deriving the squarks

- As said, we do not want to change the gauge group $SU(3)$ so the algebra should remain $C^\infty(M) \otimes M_3(\mathbb{C})$.

- Squarks, being superpartners of quarks, are bosons. We want to obtain them as *inner fluctuations*.

Proposition $(C^\infty(M) \otimes M_3(\mathbb{C}), L^2(S) \otimes V, D, \gamma_5 \otimes 1, J)$ defines a real, even spectral triple.
Deriving the squarks

- As said, we do not want to change the gauge group $SU(3)$ so the algebra should remain $C^\infty(M) \otimes M_3(\mathbb{C})$.

- Squarks, being superpartners of quarks, are bosons. We want to obtain them as inner fluctuations.

- This motivates to replace the operator $\partial \otimes 1$ on \mathcal{H} by

$$D = \partial \otimes 1 + \gamma_5 \otimes D_V$$

with $D_V : V \rightarrow V$ given by

$$D_V := \begin{pmatrix}
0 & d & 0 \\
\text{d}^* & 0 & \text{e}^* \\
0 & \text{e} & 0
\end{pmatrix}$$

with $d : M_3(\mathbb{C}) \rightarrow \mathbb{C}^3, g \mapsto g \cdot \nu$ and $e : M_3(\mathbb{C}) \rightarrow \overline{\mathbb{C}^3}, g \mapsto g^t \cdot \overline{\nu}$ for some vector $\nu \in \mathbb{C}^3$.
Deriving the squarks

- As said, we do not want to change the gauge group $SU(3)$ so the algebra should remain $C^\infty(M) \otimes M_3(\mathbb{C})$.
- Squarks, being superpartners of quarks, are bosons. We want to obtain them as inner fluctuations.
- This motivates to replace the operator $\frac{\partial}{\partial} \otimes 1$ on \mathcal{H} by

 $$D = \frac{\partial}{\partial} \otimes 1 + \gamma_5 \otimes D_V$$

 with $D_V : V \to V$ given by

 $$D_V := \begin{pmatrix} 0 & d & 0 \\ d^* & 0 & e^* \\ 0 & e & 0 \end{pmatrix}$$

 with $d : M_3(\mathbb{C}) \to \mathbb{C}^3, g \mapsto g \cdot v$ and $e : M_3(\mathbb{C}) \to \overline{\mathbb{C}}^3, g \mapsto g^t \cdot \overline{v}$ for some vector $v \in \mathbb{C}^3$.

Proposition

$(C^\infty(M) \otimes M_3(\mathbb{C}), L^2(S) \otimes V, D, \gamma_5 \otimes 1, J)$ defines a real, even spectral triple
Deriving the squarks

Inner fluctuations

Again, consider \((C^\infty(M) \otimes M_3(\mathbb{C}), L^2(S) \otimes V, D, \gamma_5 \otimes 1, J)\).

The inner fluctuations \(D_A = D + A + JAJ^{-1}\) of \(D\) can be written as

\[
D + A + A\tilde{q}
\]

where \(A\) is parametrized by an \(u(3)\)-valued one-form and \(A\tilde{q}\) by an element \(\tilde{q} \in C^\infty(M) \otimes \mathbb{C}^3\). In fact, we can write

\[
A\tilde{q}(q_1, g, \bar{q}_2) = (g\tilde{q}, \bar{q}_1\tilde{q}^t + \tilde{q}\bar{q}_2^t, g^t\tilde{q})
\]
Deriving the squarks

Inner fluctuations

Again, consider \((C^\infty(M) \otimes M_3(\mathbb{C}), L^2(S) \otimes V, D, \gamma_5 \otimes 1, J)\).

- The inner fluctuations \(D_A = D + A + JAJ^{-1}\) of \(D\) can be written as
 \[
 D + A + \tilde{A}_\tilde{q}
 \]
 where \(A\) is parametrized by an \(u(3)\)-valued one-form and \(\tilde{A}_\tilde{q}\) by an element \(\tilde{q} \in C^\infty(M) \otimes \mathbb{C}^3\). In fact, we can write
 \[
 \tilde{A}_\tilde{q}(q_1, g, \bar{q}_2) = (g\tilde{q}, \bar{q}_1\tilde{q}^t + \tilde{q}\bar{q}_2^t, g^t\tilde{q})
 \]

Proposition

- The gauge group \(U(A) \simeq C^\infty(M, U(3))\) acts on the Hilbert space as:
 \[
 (q_1, g, \bar{q}_2) \mapsto (uq_1, ugu^*, \bar{u}\bar{q}_2)
 \]

- The gauge transformation \(D_A \rightarrow UD_AU^*\) transforms the gauge fields as
 \[
 A \mapsto uAu^* + u[D, u^*]; \quad \tilde{A}_\tilde{q} \mapsto \tilde{A}_u\tilde{q}
 \]
The spectral action

Interestingly, \[[\partial + A, A_\tilde{q}] = \gamma^\mu A (\partial_\mu + A_\mu) \tilde{q}. \]

Proposition

In addition to the Yang–Mills action, we have in the (bosonic) spectral action:

\[
\int_M \left[- \left(\frac{6f_2}{\pi^2 \Lambda^2} + 3R \right) \Lambda^2 |\tilde{q}(x)|^2 + \frac{f(0)}{4 \pi^2} \left(8 |\tilde{q}(x)|^4 + 6 |(\partial_\mu + A_\mu) \tilde{q}(x)|^2 \right) \right] d\mu g(x)
\]
The spectral action

Interestingly, $[\mathcal{D} + A, A \bar{q}] = \gamma^\mu A(\partial_\mu + A_\mu)\bar{q}$.

Proposition

In addition to the Yang–Mills action, we have in the (bosonic) spectral action:

$$\int_M \left[- \left(\frac{6f_2}{\pi^2 \Lambda^2} + 3R \right) \Lambda^2 |\bar{q}(x)|^2 + \frac{f(0)}{4\pi^2} (8|\bar{q}(x)|^4 + 6|\partial_\mu + A_\mu)\bar{q}(x)|^2 \right] d\mu g(x)$$

Proposition

The fermionic action $\langle \psi, D_A \psi \rangle$ contains in addition

$$\langle \psi_q, (\partial + A)\psi_q \rangle + \langle \chi_g, (\partial + \text{ad}A)\psi_g \rangle + \langle \bar{\psi}_q, (\partial + A)\bar{\psi}_q \rangle +$$

$$\langle \psi_q, \psi_g \bar{q} \rangle + \langle \chi_g \bar{q}, \chi_q \rangle + \langle \chi_g \bar{q}, \bar{\psi}_q \rangle + \langle \bar{\psi}_q, \psi_g^t \bar{q} \rangle$$

where $\psi = \psi_q \oplus (\psi_g \oplus \chi_g) \oplus \bar{\psi}_q$
Interpretation/comparison with the MSSM

So, in addition to the previous SYM terms, we have

\[
\int_M \left[- \left(\frac{6f_2}{\pi^2 \Lambda^2} + 3R \right) \Lambda^2 |\tilde{q}(x)|^2 + \frac{f(0)}{4\pi^2} \left(8|\tilde{q}(x)|^4 + 6| (\partial_\mu + A_\mu)\tilde{q}(x)|^2 \right) \right] \, d\mu_g(x)
\]

\[
\langle \psi_q, (\not{\partial} + A)\psi_q \rangle + \langle \chi_g, (\not{\partial} + \text{ad}A)\psi_g \rangle + \langle \overline{\psi}_q, (\not{\partial} + \overline{A})\overline{\psi}_q \rangle + \\
\langle \psi_q, \psi_g \tilde{q} \rangle + \langle \chi_g \tilde{q}, \chi_q \rangle + \langle \chi_g^t \tilde{q}, \overline{\psi}_q \rangle + \langle \overline{\psi}_q, \psi_g^t \tilde{q} \rangle
\]

We recognize from the MSSM [Kramml]:

- **squark kinetic term** \(\propto |\partial_\mu \tilde{q}|^2 \).
- **squark mass term** \(\propto |\tilde{q}|^2 \).
- **squark quartic self-interaction** \(\propto |\tilde{q}|^4 \).
- **squark-gluon interactions** \(\propto |(\partial_\mu + A_\mu)\tilde{q}|^2 \).
- **squark-quark-gluino interaction** \(\propto \langle \chi_g \tilde{q}, \psi_q \rangle \).
Outlook (Part 2)

- Unimodularity to reduce $U(n)$ to $SU(n)$. Fermion doubling. [CCM].
- An essential further step is to identify the coefficients of the terms just considered. However, the literature is on the MSSM, whereas we considered only part of that, namely super-QCD.
- Future plan is to include the electro-weak sector as well, exploiting the same ideas. This could lead to a noncommutative geometrical description of the MSSM, whose Lagrangian is highly non-trivial to write down. We hope to derive it as the spectral action of some noncommutative manifold.