Noncommutative Geometry Seminar SISSA, Trieste, June 9, 2005

The Dirac operator on quantum SU(2)

Walter van Suijlekom (SISSA)

Ref: L. Dąbrowski, G. Landi, A. Sitarz, WvS and J. Várilly "The Dirac operator on $SU_q(2)$ ", math.QA/0411609 "Local index formula for $SU_q(2)$ ", math.QA/0501287

Introduction

- Noncommutative Geometry vs. Quantum Groups
- Construct q-version of spin geometry on SU(2):
 - Homogeneous space:

$$SU(2) = \frac{\text{Spin}(4)}{\text{Spin}(3)} = \frac{SU(2) \times SU(2)}{SU(2)}$$
 (1)

with Spin(3) the diagonal SU(2) subgroup of Spin(4). Quotient map: $(p,q) \mapsto pq^{-1}$

- Action of $Spin(4) = SU(2) \times SU(2)$ on SU(2):

$$(p,q) \cdot x = pxq^{-1} \tag{2}$$

Algebraic preliminaries

Let q be a positive real number, $q \neq 1$.

Definition. Define the algebra $\mathcal{A} := \mathcal{A}(SU_q(2))$ of polynomials on $SU_q(2)$ to be the *-algebra generated by a and b, subject to the following relations:

$$ba = qab,$$
 $b^*a = qab^*,$ $bb^* = b^*b$
 $a^*a + q^2b^*b = 1,$ $aa^* + bb^* = 1.$

As a consequence, $a^*b = qba^*$ and $a^*b^* = qb^*a^*$. Correspondence with [Kl-Schm],[Chakr-Pal],[Con]: $a \leftrightarrow a^*, b \leftrightarrow -b$. This becomes a Hopf *-algebra with

- the coproduct $\Delta:\mathcal{A}\to\mathcal{A}\otimes\mathcal{A}$ defined by

$$\Delta a := a \otimes a - q \, b \otimes b^*,$$
$$\Delta b := b \otimes a^* + a \otimes b,$$

- the counit $\varepsilon : \mathcal{A} \to \mathbb{C}$ defined by $\varepsilon(a) = 1$ and $\varepsilon(b) = 0$,
- the antipode $S:\mathcal{A}\to\mathcal{A}$ defined as an antilinear map by

$$Sa = a^*, \qquad Sb = -qb,$$

 $Sb^* = -q^{-1}b^*, \qquad Sa^* = a.$

Definition. The *-algebra $\mathcal{U} := \mathcal{U}_q(su(2))$ is generated by elements e, f, k, with k invertible, satisfying the relations

$$ek = qke,$$
 $kf = qfk,$ $k^2 - k^{-2} = (q - q^{-1})(fe - ef)$

Correspondence with [Kl-Schm]: $q \leftrightarrow q^{-1}$, or, equivalently: $e \leftrightarrow f$. Hopf *-algebra structure given by: coproduct Δ :

$$\Delta k = k \otimes k, \qquad \Delta e = e \otimes k + k^{-1} \otimes e, \qquad \Delta f = f \otimes k + k^{-1} \otimes f,$$

counit $\epsilon(k) = 1, \epsilon(f) = \epsilon(e) = 0$, antipode S,

$$Sk = k^{-1}, \qquad Sf = -qf, \qquad Se = -q^{-1}e,$$

and star structure: $k^* = k, f^* = e$.

Representation theory of $\mathcal{U}_q(su(2))$

The irreducible finite dimensional representations σ_l of $\mathcal{U}_q(su(2))$ are labelled by nonnegative half-integers $l = 0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots$, and given by

$$\sigma_l(k) |lm\rangle = q^m |lm\rangle,$$

$$\sigma_l(f) |lm\rangle = \sqrt{[l-m][l+m+1]} |l,m+1\rangle,$$

$$\sigma_l(e) |lm\rangle = \sqrt{[l-m+1][l+m]} |l,m-1\rangle,$$

on the irreducible \mathcal{U} -modules $V_l = \text{Span}\{|lm\rangle\}_{m=-l,...,l}$.

The brackets denote q-integers: $[n] = \frac{q^n - q^{-n}}{q - q^{-1}}$, provided $q \neq 1$.

Action of $\mathcal{U}_q(su(2))$ on $\mathcal{A}(SU_q(2))$

Dual pairing $\langle ., . \rangle : \mathcal{U} \times \mathcal{A} \to \mathbb{C}$ induces left and right action of $h \in \mathcal{U}_q(su(2))$ on $x \in \mathcal{A}(SU_q(2))$:

 $h \triangleright x := x_{(1)} \langle h, x_{(2)} \rangle \qquad x \triangleleft h := \langle h, x_{(1)} \rangle x_{(2)},$

where we use Sweedler's notation for the coproduct in $\mathcal{A}(SU_q(2))$:

$$\Delta x = x_{(1)} \otimes x_{(2)}, \qquad (x \in \mathcal{A})$$

Using the antipode, the right action can be transformed into a left action, which we will denote by $h \cdot x$.

Left regular representation of $\mathcal{A}(SU_q(2))$

We establish the left regular representation of \mathcal{A} as an equivariant representation with respect to two copies of \mathcal{U} acting via \cdot and \triangleright on the left.

Definition. Let λ and ρ be mutually commuting representations of the Hopf algebra \mathcal{U} on a vector space V. A representation π of the algebra \mathcal{A} on V is (λ, ρ) -equivariant if the following compatibility relations hold:

$$\lambda(h) \,\pi(x)\xi = \pi(h_{(1)} \cdot x) \,\lambda(h_{(2)})\xi,$$

$$\rho(h) \,\pi(x)\xi = \pi(h_{(1)} \triangleright x) \,\rho(h_{(2)})\xi,$$

for all $h \in \mathcal{U}$, $x \in \mathcal{A}$ and $\xi \in V$.

Equivariant representation of $\mathcal{A}(SU_q(2))$

Representation space:

$$V := \bigoplus_{2l=0}^{\infty} V_l \otimes V_l \tag{3}$$

The two copies of $\mathcal{U}_q(su(2))$ act via the irreducible representations σ on the first and the second leg of the tensor product, respectively:

$$\lambda(h) = \sigma_l(h) \otimes \mathrm{id}, \qquad \rho(h) = \mathrm{id} \otimes \sigma_l(h) \qquad \text{on } V_l \otimes V_l.$$
 (4)

We abbreviate $|lmn\rangle := |lm\rangle \otimes |ln\rangle$, for $m, n = -l, \ldots, l$.

9

Proposition. A (λ, ρ) -equivariant *-representation π of $\mathcal{A}(SU_q(2))$ on V is necessarily given by the left regular representation. Explicitly:

$$\pi(a) |lmn\rangle = A^{+}_{lmn} |l + \frac{1}{2}, m + \frac{1}{2}, n + \frac{1}{2}\rangle + A^{-}_{lmn} |l - \frac{1}{2}, m + \frac{1}{2}, n + \frac{1}{2}\rangle,$$

$$\pi(b) |lmn\rangle = B^{+}_{lmn} |l + \frac{1}{2}, m + \frac{1}{2}, n - \frac{1}{2}\rangle + B^{-}_{lmn} |l - \frac{1}{2}, m + \frac{1}{2}, n - \frac{1}{2}\rangle,$$

where for example the constants A_{lmn}^{\pm} are given by

$$A_{lmn}^{+} = q^{(-2l+m+n-1)/2} \left(\frac{[l+m+1][l+n+1]}{[2l+1][2l+2]} \right)^{\frac{1}{2}},$$
$$A_{lmn}^{-} = q^{(2l+m+n+1)/2} \left(\frac{[l-m][l-n]}{[2l][2l+1]} \right)^{\frac{1}{2}}.$$

10

Spinor representation

We amplify representation π of \mathcal{A} to the spinor representation defined by $\pi' = \pi \otimes \operatorname{id}$ on $V \otimes \mathbb{C}^2$, and set $\rho' = \rho \otimes \operatorname{id}$, but λ' as the tensor product of the representations λ on V and $\sigma_{\frac{1}{2}}$ on $V_{\frac{1}{2}} = \mathbb{C}^2$:

$$\lambda'(h) := (\lambda \otimes \sigma_{\frac{1}{2}})(\Delta h) = \lambda(h_{(1)}) \otimes \sigma_{\frac{1}{2}}(h_{(2)}).$$
(5)

Proposition. The representation π' of \mathcal{A} is (λ', ρ') -equivariant. Clebsch-Gordan decomposition:

$$V \otimes \mathbb{C}^2 = \left(\bigoplus_{2l=0}^{\infty} V_l \otimes V_l\right) \otimes V_{\frac{1}{2}} \simeq V_{\frac{1}{2}} \oplus \bigoplus_{2j=1}^{\infty} (V_{j+\frac{1}{2}} \otimes V_j) \oplus (V_{j-\frac{1}{2}} \otimes V_j).$$
(6)

11

Basis vectors $(j = 0, \frac{1}{2}, 1, \frac{3}{2}, 2, ...)$: $|j\mu n\uparrow\rangle := C_{j+1,\mu} |j + \frac{1}{2}, \mu - \frac{1}{2}, n\rangle \otimes |\frac{1}{2}, +\frac{1}{2}\rangle - S_{j+1,\mu} |j + \frac{1}{2}, \mu + \frac{1}{2}, n\rangle \otimes |\frac{1}{2}, -\frac{1}{2}\rangle,$ where $\mu = -j, ..., j$ and $n = -(j + \frac{1}{2}), ..., j + \frac{1}{2}$ $|j\mu n\downarrow\rangle := S_{j\mu} |j - \frac{1}{2}, \mu - \frac{1}{2}, n\rangle \otimes |\frac{1}{2}, +\frac{1}{2}\rangle + C_{j\mu} |j - \frac{1}{2}\mu + \frac{1}{2}n\rangle \otimes |\frac{1}{2}, -\frac{1}{2}\rangle,$ where $\mu = -i$, ..., i and $n = -(i - \frac{1}{2})$, ..., $i - \frac{1}{2}$ and the a-Clebsch-Gordan

where $\mu = -j, \ldots, j$ and $n = -(j - \frac{1}{2}), \ldots, j - \frac{1}{2}$, and the *q*-Clebsch-Gordan coefficients come from the well-known representation theory of $\mathcal{U}_q(su(2))$:

$$C_{j\mu} := q^{-(j+\mu)/2} \frac{[j-\mu]^{\frac{1}{2}}}{[2j]^{\frac{1}{2}}}, \qquad S_{j\mu} := q^{(j-\mu)/2} \frac{[j+\mu]^{\frac{1}{2}}}{[2j]^{\frac{1}{2}}}.$$

 \implies expressions for π' in basis $\{|j\mu n\uparrow\rangle, |j\mu n\downarrow\rangle\}$ contain off-diagonal terms.

Invariant Dirac operator

Proposition. Any self-adjoint operator on $\mathcal{H} = (V \otimes \mathbb{C}^2)^{\text{cl}}$, that commutes with both actions ρ', λ' of $\mathcal{U}_q(su(2))$ is of the form

 $D|j\mu n\uparrow
angle = d_j^{\uparrow}|j\mu n\uparrow
angle, \qquad D|j\mu n\downarrow
angle = d_j^{\downarrow}|j\mu n\downarrow
angle.$

Restrict form of eigenvalues by imposing **bounded commutator** condition:

$$[D, \pi'(x)] \in \mathcal{B}(\mathcal{H}), \qquad (x \in \mathcal{A}).$$
(7)

• D with as eigenvalues q-analogues of the classical Dirac operator (like [j]) gives unbounded commutators (cf. [Bib-Kul]).

 'Classical' Dirac operator with D eigenvalues linear in j with opposite signs on the ↑ and ↓-eigenspaces, respectively.

Proposition. If *D* has eigenvalues linear in *j*, the commutators $[D, \pi'(x)]$ $(x \in A)$ are bounded operators.

The spectrum of D coincides with that of the classical Dirac operator on the round sphere $S^3 \simeq SU(2)$. We make the following choice:

$$D|j\mu n\rangle\rangle = \begin{pmatrix} 2j + \frac{3}{2} & 0\\ 0 & -2j - \frac{1}{2} \end{pmatrix} |j\mu n\rangle\rangle, \tag{8}$$

and conclude that $(\mathcal{A}(SU_q(2)), \mathcal{H}, D)$ is a (3⁺-summable) spectral triple.

Relation with [Gos], with unbounded commutators? Difference in definition of spinor space: $\mathbb{C}^2 \otimes V$ (instead of $V \otimes \mathbb{C}^2$). Define on $\mathbb{C}^2 \otimes V$:

> $\pi'(x) = \mathrm{id} \otimes \pi(x);$ $\rho'(h) = \mathrm{id} \otimes \rho(h);$ $\lambda'(h) = \sigma_{\frac{1}{2}}(h_{(1)}) \otimes \lambda(h_{(2)}).$

Let us (naïvely) define the Dirac operator to be diagonal in the $\uparrow - \downarrow$ basis obtained from the Clebsch-Gordan decomposition, with *j*-linear eigenvalues. This is exactly [Gos]. A computation shows that $[D, \pi'(x)]$ is unbounded.

However, this π' is not (λ', ρ') -equivariant, so that the choice of $\mathbb{C}^2 \otimes V$ is not allowed, because $\mathcal{U}_q(su(2))$ is not cocommutative.

Real structure

A real structure J on the spectral triple $(\mathcal{A}(SU_q(2)), \mathcal{H}, D)$ defines a representation of the opposite algebra $\mathcal{A}(SU_q(2))^\circ$:

$$\pi'^{\circ}(x) = J\pi'(x^*)J^{-1}$$
 satisying $\pi'^{\circ}(xy) = \pi'^{\circ}(y)\pi'^{\circ}(x)$

Definition. The real structure J is the antilinear operator on \mathcal{H} which is defined on the orthonormal spinor basis by

$$\begin{split} J \left| j \mu n \uparrow \right\rangle &:= i^{2(2j+\mu+n)} \left| j, -\mu, -n, \uparrow \right\rangle; \\ J \left| j \mu n \downarrow \right\rangle &:= i^{2(2j-\mu-n)} \left| j, -\mu, -n, \downarrow \right\rangle. \end{split}$$

 \implies The Dirac operator D commutes with J.

Conditions such as the commutant property and first-order condition entail that J maps both \mathcal{A} and $[D, \mathcal{A}]$ to the commutant of \mathcal{A} .

In the case of $\mathcal{A}(SU_q(2))$, they are <u>almost</u> satisfied.

Definition. The ideal \mathcal{K}_q is defined as the two-sided ideal in $\mathcal{B}(\mathcal{H})$ generated by the positive traceclass operator: $L_q |j\mu n\rangle := q^j |j\mu n\rangle$.

 \mathcal{K}_q is contained in the ideal of infinitesimals of order α , that is, compact operators whose *n*-th singular value μ_n satisfies $\mu_n = O(n^{-\alpha})$, for all $\alpha > 0$.

Proposition. With D and J as above, the commutant property and the first-order condition are satisfied up to infinitesimals of arbitrary order:

 $[\pi'(x), J\pi'(y)J^{-1}] \in \mathcal{K}_q;$ $[\pi'(x), [D, J\pi'(y)J^{-1}]] \in \mathcal{K}_q; \qquad (\forall x, y \in \mathcal{A}(SU_q(2)))$

Local index formula for $SU_q(2)$ (sketchy!)

The local index formula of Connes-Moscovici has been applied to this spectral triple. It provides a method to compute the index of a twisted Dirac operator in terms of easier "local expressions".

Important here is that we can work modulo the infinitesimals of arbitrary high order. The quotient map is understood geometrically as a symbol map:

$$\rho: \mathcal{B} \to \mathcal{A}(D_{q+}^2) \otimes \mathcal{A}(D_{q-}^2)$$
(9)

which maps onto the "cosphere bundle" \mathbb{S}_q^* . Here \mathcal{B} is the algebra $\delta^n(\mathcal{A}) \cup \delta^n([D,\mathcal{A}])$ for any n'th iteration of the derivation $\delta(x) = |D|x - x|D|$, and $D_{q\pm}^2$ are two noncommutative disks.

If F denotes the sign of D (+ on \uparrow and - on \downarrow), we can express the Chern character $ch(a_0, a_1) := tr(a_0[F, a_1])$ of $\mathcal{A}(SU_q(2))$ in terms of three (relatively simple) linear functionals $\tau_0^{\uparrow}, \tau_0^{\downarrow}, \tau_1$ on the disks as

 $2(\tau_0^{\uparrow} \otimes \tau_0^{\downarrow}) \left(\rho(a_0 \delta a_1) \right) - \left(\tau_1 \otimes \tau_0^{\downarrow} + \tau_0^{\uparrow} \otimes \tau_1 \right) \left(\rho(a_0 \delta^2 a_1) \right) + \frac{2}{3} (\tau_1 \otimes \tau_1) \left(\rho(a_0 \delta^3 a_1) \right)$

References

- Bib-Kul P. N. Bibikov, P. P. Kulish, "Dirac operators on the quantum group $SU_q(2)$ and the quantum sphere", J. Math. Sci. **100** (2000), 2039–2050.
- Chakr-Pal P. S. Chakraborty, A. Pal, "Equivariant spectral triples on the quantum SU(2) group", K-Theory **28** (2003), 107–126.
 - Con A. Connes, "Cyclic cohomology, quantum group symmetries and the local index formula for $SU_q(2)$ ", math.qa/0209142
 - Gos D. Goswami, "Some noncommutative geometric aspects of $SU_q(2)$ ", math-ph/0108003
 - KI-Schm A. U. Klimyk, K. Schmüdgen, *Quantum Groups and their Representations*, Springer, New York, 1998.