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On the Algebraic Structure of Functional Matrices of Special Form

V. V. Zudilin UDC 511.36, 512.643.8

Abstract. Algebraic properties of functional matrices arising in the construction of graded Padé approxima-

tions are established. This construction plays an important role in the theory of transcendental numbers.
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In 1984, in the brief communication [1], the description of a new analytic construction was given, namely,
graded Padé approximations were introduced. In the same note substantially new results obtained via the
proposed approach were indicated. In fact, the construction suggested by Chudnovsky [1] was a further
generalization of the known Siegel–Shidlovskii method in the theory of transcendental numbers. However,
the proof of the results in [1] contained a gap, which was filled by the author of the present paper in [2]
(where certain details related to the history of the problem can be found), and stronger results were
obtained. Note that a variation of the method of graded Padé approximations leads to even stronger
results in particular cases [3, 4].

The aim of the present paper is to indicate certain interesting algebraic and combinatorial laws arising
in the construction of graded Padé approximations.

§§§1. Description of the construction

Consider m different systems of first-order homogeneous linear differential equations

d

dz
yil =

mi∑
j=1

Q
(i)
lj yij , Q

(i)
lj = Q

(i)
lj (z) ∈ C(z),

l , j = 1, . . . , mi , mi ≥ 2, i = 1, . . . , m, m ≥ 2.

(1)

Denote by T (z) ∈ C[z] the least common denominator of the coefficients of systems (1). The collection of
these systems is needed only when linear functional forms constructed below proliferate.

In the construction below, due to Chudnovsky, the approximating linear topological forms (graded
Padé approximations) depending on a positive integral parameter N are described. Let us immediately
introduce some notation. We set ā = (ā1 , . . . , ām) , where āi = (ai1 , . . . , aimi) , i = 1, . . . , m , and
κ̄ = (κ̄1 , . . . , κ̄m) is a multi-index, where κ̄i = (κi1 , . . . , κimi) , i = 1, . . . , m , all components κij of any
multi-index are nonnegative, and if a sum contains a term with at least one component for which κij < 0 ,
then this term is treated as missing (equal to zero). For brevity, in the formulas we write

āκ̄ =
∏

i=1,...,m
j=1,...,mi

a
κij
ij , |κ̄i| =

mi∑
j=1

κij , i = 1, . . . , m.

Let us introduce the sets

Ωi = Ωi(N) =
{
κ̄ : |κ̄l| = N − δil , l = 1, . . . , m

}
, Ω = Ω(N) =

m⋃
i=1

Ωi ,

Θ = Θ(N) =
{
s̄ : |s̄l| = N , l = 1, . . . , m

}
,
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where δil is the ordinary Kronecker delta. Moreover, we write

ωi = Card Ωi , ω = Card Ω =
m∑
i=1

ωi , θ = Card Θ.

Let fi1(z), . . . , fimi(z) , i = 1, . . . , m , be an arbitrary solution of the collection of systems (1). The
desired linear forms can be expressed as follows:

R(z ; ā) =
m∑
i=1

Pi(z ; ā)〈āi , f̄i(z)〉 =
m∑
i=1

Pi(z ; ā)
mi∑
j=1

aijfij(z), (2)

where the polynomials Pi(z ; ā) are homogeneous with respect to each of the components āl , l = 1, . . . , m ,
and have the form

Pi(z ; ā) =
∑
κ̄∈Ωi

āκ̄Pκ̄(z), i = 1, . . . , m. (3)

The functional linear form (2) can be represented as follows:

R(z ; ā) =
∑
s̄∈Θ

ās̄Rs̄(z), where Rs̄(z) =
m∑
i=1

mi∑
j=1

Ps̄−ēij (z)fij(z), s̄ ∈ Θ, (4)

and ēij is the multi-index with one on the ijth place and with zeros on the other places.
Furthermore, let M1 , M2 , . . . , Mm be arbitrary positive integers and let ε > 0 . Without loss of

generality, we may assume that M1 ≥ M2 ≥ · · · ≥ Mm (because we can renumerate the systems in
collection (1) if necessary). Moreover, we set M = M1 .

For the case in which the functions fi1(z), . . . , fimi(z) , i = 1, . . . , m , are linearly independent over
C(z) and the coefficients of their Taylor series satisfy certain arithmetic conditions (for instance, are
E-functions or G-functions), we can apply the Siegel lemma and construct a nontrivial form (2) such that

degz Pi(z ; ā) < M , ord
z=0

Pi(z ; ā) ≥M −Mi , i = 1, . . . , m,

ord
z=0

R(z ; ā) ≥ K =
[
ω1M1 + ω2M2 + · · ·+ ωmMm − εM

θ

]
, (5)

and whose polynomials Pκ̄(z) , κ̄ ∈ Ωi , i = 1, . . . , m , have the appropriate arithmetic properties. Now
we consider the differential operator

D =
∂

∂z
−

m∑
i=1

(
mi∑
j=1

(mi∑
l=1

Q
(i)
lj (z)ail

)
∂

∂aij

)
,

related to the system of homogeneous linear differential equations adjoint to system (1). This operator
has the following (easily verified) property:

D

mi∑
j=1

aijfij(z) ≡ 0, i = 1, . . . , m.

Now we write
R[n](z ; ā) =

(
T (z) ·D

)n
R(z ; ā), n = 0, 1, 2, . . . ,

and denote by R
[n]
s̄ (z) and P

[n]
κ̄ (z) the forms and the polynomials, respectively, that appear in these

functions. Consider the functional determinant

∆(z) = det
(
P

[n]
κ̄ (z)

)
n=0,1,...,ω−1 ; κ̄∈Ω

. (6)
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We can readily see that

degz P
[n]
i (z ; ā) < M + tn, i = 1, . . . , m, (7)

ord
z=0

P
[n]
i (z ; ā) ≥M −Mi − n, i = 1, . . . , m, (8)

ord
z=0

R[n](z ; ā) ≥ K − n, (9)

where
t = max

{
deg T , max

i,l,j
{deg TQ(i)

lj }
}
.

Applying the Siegel normality condition (however, not to the original systems (1), but to the adjoint
systems), Chudnovsky [1] showed that the determinant (6) is nondegenerate. In the same note it was
announced that an argument similar to that in the Siegel approach implies the estimate

deg ∆(z)− ord
z=0

∆(z) = o(M), (10)

which is an important property used in applications to numerical inequalities. Our objective is just to
describe this analogy and to obtain the best possible estimate for the quantity on the left-hand side of (10).

Let us order the elements of the set Ω as follows: an element κ̄ ∈ Ω is said to be lexicographically less
than κ̄′ ∈ Ω (notation: κ̄ ≺ κ̄′) if (for κ̄ ∈ Ωi and κ̄′ ∈ Ωi′) we have either i < i′ or both i = i′ and
κ11 = κ′11 , κ12 = κ′12 , . . . , κ1m1 = κ′1m1

; . . . ; κl1 = κ′l1 , . . . , κl,j−1 = κ′l,j−1 , and κlj < κ′lj for some l ,
1 ≤ l ≤ m , and j , 1 ≤ j ≤ ml . We introduce a similar ordering for the elements of the set Θ and can
now express the elements of the row

(
Rs̄(z)

)
s̄∈Θ

via the elements of the row
(
Pκ̄(z)

)
κ̄∈Ω

:

∑
s̄∈Θ

ās̄Rs̄(z) = R(z ; ā) =
m∑
i=1

Pi(z ; ā)
mi∑
j=1

aijfij(z) =
m∑
i=1

∑
κ̄∈Ωi

Pκ̄(z)
mi∑
j=1

āκ̄+ēijfij(z)

=
m∑
i=1

∑
κ̄∈Ωi

Pκ̄(z)
mi∑
j=1

∑
s̄∈Θ

δκ̄+ēij ,s̄ā
s̄fij(z)

∑
s̄∈Θ

ās̄
m∑
i=1

∑
κ̄∈Ωi

Pκ̄(z)
mi∑
j=1

δκ̄+ēij ,s̄fij(z),

and hence, after equating the terms at ās̄ , s̄ ∈ Θ, we obtain

(
Rs̄(z)

)
s̄∈Θ

=
(
Pκ̄(z)

)
κ̄∈Ω
·

(
mi∑
j=1

δκ̄+ēij ,s̄fij(z)

)
i=1,...,m,κ̄∈Ωi ; s̄∈Θ

. (11)

Here δs̄′ ,s̄ , s̄′ , s̄ ∈ Θ, stands for the “generalized” Kronecker delta of the set Θ, i.e.,

δs̄′ ,s̄ =

{
1 for s̄′ = s̄,

0 otherwise.

In what follows, the matrix (
mi∑
j=1

δκ̄+ēij ,s̄fij(z)

)
i=1,...,m,κ̄∈Ωi ; s̄∈Θ

(12)

is called a transition matrix. In it, the elements of the sets Ω and Θ are lexicographically ordered, the
elements of Ω index the rows, and the elements of Θ index the columns. By formula (11), this matrix is
the transition matrix from the row

(
Pκ̄(z)

)
κ̄∈Ω

to the row
(
Rs̄(z)

)
s̄∈Θ

.
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§§§2. Algebraic relationships and the rank of the transition matrix

Lemma 1 (see [5, Chap. 2, §7]). For any m, N ∈ N , the following relation holds:

Card
{
ni ∈ Z, ni ≥ 0, i = 1, . . . , m : n1 + n2 + · · ·+ nm = N

}
=
(
N +m− 1

N

)
.

Hence,

ωi =
(
N +mi − 2
N − 1

) m∏
l=1
l 6=i

(
N +ml − 1

N

)
, i = 1, . . . , m, θ =

m∏
l=1

(
N +ml − 1

N

)
.

Everywhere below we assume that the functions fij(z) , i = 1, . . . , m , j = 1, . . . , mi , are algebraically
independent.

Denote by {Yκ̄}κ̄∈Ω the rows of the transition matrix (12). Let us indicate a maximal linearly inde-
pendent system of these rows that contains as many rows with indices from Ω1 as possible, followed by
as many rows with indices from Ω2 as possible, etc., up to Ωm . To this end, we consider the set

Ω∗ =
m⋃
i=1

Ω∗i , Ω∗i =
{
κ̄ ∈ Ω : κ11 = κ21 = · · · = κi−1,1 = 0

}
⊂ Ωi , i = 1, . . . , m,

and show that if a row {Yκ̄′} has the index κ̄′ /∈ Ω∗ , then it can be linearly expressed via rows {Yκ̄}κ̄∈Ω∗

with indices less than κ̄′ . To this end, we need the following identity.

Lemma 2. Let κ̄ ∈ Ωi \ Ω∗i , that is, let there be an index i′ = i′(i, κ̄) < i such that κi′1 > 0 . Then

Yκ̄ =
1

fi′1(z)

(
mi∑
j=1

fij(z)Yκ̄−ēi′1+ēij −
mi′∑
j=2

fi′j(z)Yκ̄−ēi′1+ēi′j

)
. (13)

Proof. Indeed, we have

mi′∑
l=1

fi′l(z)Yκ̄−ēi′1+ēi′l =
mi′∑
l=1

fi′l(z)

(
mi∑
j=1

δκ̄−ēi′1+ēi′l+ēij ,s̄fij(z)

)
s̄∈Ω

=

(
mi′∑
l=1

mi∑
j=1

δκ̄−ēi′1+ēi′l+ēij ,s̄fij(z)fi′l(z)

)
s̄∈Ω

=

(
mi∑
j=1

mi′∑
l=1

δκ̄−ēi′1+ēij+ēi′l ,s̄fi′l(z)fij(z)

)
s̄∈Ω

=
mi∑
j=1

fij(z)

(
mi′∑
l=1

δκ̄−ēi′1+ēij+ēi′l ,s̄fi′l(z)

)
s̄∈Ω

=
mi∑
j=1

fij(z)Yκ̄−ēi′1+ēij ,

and this implies (13). �

Now it remains to note that the right-hand side of formula (13) contains only rows whose indices
are less than κ̄ with respect to the lexicographic order. Indeed, we have κ̄ − ēi′1 + ēij ≺ κ̄ because
κ̄ − ēi′1 + ēij ∈ Ωi′ , κ̄ ∈ Ωi , and i′ < i , j = 1, . . . , mi , and κ̄ − ēi′1 + ēi′j ≺ κ̄ because ēi′j ≺ ēi′1 ,
j = 2, . . . , mi′ .

Thus, if κ̄′ /∈ Ω∗ , then the row Yκ̄′ is a linear combination of the rows Yκ̄ , κ̄ ∈ Ω∗ , κ̄ ≺ κ̄′ .
Now let us show that the rows {Yκ̄}κ̄∈Ω∗ are linearly independent. Assume the contrary: suppose a

linear combination of the Yκ̄ vanishes, i.e., ∑
κ̄∈Ω∗

γκ̄Yκ̄ ≡ 0. (14)
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Since the functions fij , i = 1, . . . , m , j = 1, . . . , mi , are algebraically independent, it follows that
relation (14) remains valid if we set fi1 = 1 and fij = 0 for i = 1, . . . , m and j = 2, . . . , mi in this
relation. After this substitution, relation (14) becomes

Y =
∑
i=1

∑
κ̄∈Ω∗i

γκ̄
(
δκ̄+ēi1 ,s̄

)
s̄∈Ω
≡ 0. (15)

Assume that for some κ̄′ ∈ Ω∗i′ we have γκ̄′ 6= 0. Consider the component of the row Y with the index
κ̄′ + ēi′1 . It is equal to

m∑
i=1

∑
κ̄∈Ω∗i

γκ̄δκ̄+ēi1 ,κ̄′+ēi′1 = γκ̄′ 6= 0,

because the relations κ̄ + ēi1 = κ̄′ + ēi′1 , where κ̄ ∈ Ω∗ , are possible for κ̄ = κ̄′ only. Indeed, if this is
not the case, then either i < i′ or i′ < i . In the first case we have κ′i1 = κi1 + 1 > 0 , and this contradicts
the relation κ̄′ ∈ Ω∗i′ , and in the other case we have κi′1 = κ′i′1 + 1 > 0 , and this contradicts the relation
κ̄ ∈ Ω∗i . Thus, we have a nonzero component of the row Y , and this contradicts relation (15). Thus, the
linear independence of the system of rows {Yκ̄}κ̄∈Ω∗ is proved.

Let us summarize the above discussion in the form of the following theorem.

Theorem 1. The rows of the matrix (12) with indices from the set Ω∗ form a basis in the system of
rows of this matrix.

Corollary. The rank of the transition matrix (12) is equal to

m∏
l=1

(
N +ml − 1

N

)
−

m∏
l=1

(
N +ml − 2

N

)
.

Proof. It follows from Theorem 1 that the rank of matrix (12) is exactly equal to

ω∗ = Card Ω∗ =
m∑
i=1

ω∗i , ω∗i = Card Ω∗i , i = 1, . . . , m.

By Lemma 1, we have

ω∗i = Card
{
κ̄1 : |κ̄1| = N , κ11 = 0

}
× · · · × Card

{
κ̄i−1 : |κ̄i−1| = N , κi−1,1 = 0

}
× Card

{
κ̄i : |κ̄i| = N − 1

}
× Card

{
κ̄i+1 : |κ̄i+1| = N

}
× · · · × Card

{
κ̄m : |κ̄m| = N

}
=
i−1∏
l=1

(
N +ml − 2

N

)
·
(
N +mi − 2
N − 1

)
·

m∏
l=i+1

(
N +ml − 1

N

)
, i = 1, . . . , m,

and hence,

ω∗ =
m∑
i=1

ω∗i =
m∑
i=1

(
N +mi − 2
N − 1

)
·
i−1∏
l=1

(
N +ml − 2

N

)
·

m∏
l=i+1

(
N +ml − 1

N

)

=
m∏
l=1

(
N +ml − 1

N

)
·
m∑
i=1

(
N +mi − 2
N − 1

)
(
N +mi − 1

N

) i−1∏
l=1

(
N +ml − 2

N

)
(
N +ml − 1

N

)
= θ

m∑
i=1

(
1− mi − 1

N +mi − 1

) i−1∏
l=1

ml − 1
N +ml − 1
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= θ

(
1−

m∏
l=1

ml − 1
N +ml − 1

)
=

m∏
l=1

(
N +ml − 1

N

)
−

m∏
l=1

(
N +ml − 2

N

)
.

The last number gives the rank of matrix (12). �

In conclusion of this section, we also indicate a basis of the system of columns of matrix (12). Consider
the set of columns with indices from the set

Θ∗ = {s̄ ∈ Θ : s11 + · · ·+ sm1 > 0}.

Theorem 2. The columns of the matrix (12) with indices from the set Θ∗ form a basis in the set of
columns of this matrix.

Proof. The complement Θ \Θ∗ =
{
s̄ ∈ Θ : s11 = s21 = · · · = sm1 = 0

}
has the cardinality

Card Θ \Θ∗ =
m∏
i=1

Card{s̄i : |s̄i| = N , si1 = 0} =
m∏
i=1

(
N +mi − 2

N

)
.

Therefore,

θ∗ = Card Θ∗ = θ −
m∏
i=1

(
N +mi − 2

N

)
= ω∗ ,

and this is exactly the rank of the transition matrix. Denote by {Xs̄}s̄∈Θ the columns of matrix (12). We
must show that all columns with indices from Θ\Θ∗ can be expressed via the system {Xs̄}s̄∈Θ∗ , and this
means that the columns from the latter set form a basis. We need the relation of “being higher” on the set
of multi-indices (in general, not only taken from the set Θ, but of dimension (m1 , m2 , . . . , mm) and with
nonnegative components). We write r̄ ≤ s̄ , i.e., r̄ is not higher than s̄ , if rij ≤ sij for all i = 1, . . . , m ,
j = 1, . . . , mi , and r̄ < s̄ , i.e., r̄ is lower than s̄ , if r̄ ≤ s̄ and r̄ 6= s̄ . We only note that the relation
of being higher is not an order. For any s̄ ∈ Θ \Θ∗ , the following identity holds, which is presented here
without proof:

∑
r̄≤s̄

(
m∏
i=1

(
(−1)|r̄i|

(|r̄i|)!
ri2! · · · rimi !

f
−|r̄i|
i1 (z)fri2i2 (z) · · · frimiimi

(z)
))

Xs̄−r̄+|r̄1|ē11+|r̄2|ē21+···+|r̄m|ēm1 ≡ 0. (16)

In this relation we can carry over the term from the sum for the zero value of r̄ to the right-hand side
and obtain the required expression for the column Xs̄ , s̄ ∈ Θ \Θ∗ , via the columns {Xs̄}s̄∈Θ∗ . �

§§§3. Estimate for the difference between the degree
and the order of a zero of a functional determinant

We first note that by applying the above-mentioned Siegel lemma, we can make the order of zero at
the point z = 0 of the θ∗ linear functional forms (4) Rs̄(z) , s̄ ∈ Θ∗ , greater than or equal to

K∗ =
[
ω1M1 + ω2M2 + · · ·+ ωmMm − εM

θ∗

]
.

Applying relations (11) and (16), we obtain an expression for the linear forms Rs̄(z) , s̄ ∈ Θ\Θ∗ , in terms
of the forms already constructed:

∑
r̄≤s̄

(
m∏
i=1

(
(−1)|r̄i|

(|r̄i|)!
ri2! · · · rimi !

f
−|r̄i|
i1 (z)fri2i2 (z) · · · frimiimi

(z)
))

Rs̄−r̄+|r̄1|ē11+|r̄2|ē21+···+|r̄m|ēm1(z) ≡ 0.
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By this relation we have

ord
z=0

Rs̄(z) ≥ K = K∗ −N max
1≤i≤m

{
ord
z=0

fi1(z)
}
, s̄ ∈ Θ \Θ∗.

The new value of K significantly exceeds the older one in condition (5) for sufficiently large N and M .
Below it is the new value that we use.

To obtain the best possible estimate of the order of the zero at the point z = 0 of the determinant (6),
we must replace as many columns of this determinant (with indices from a set Ω′ ⊂ Ω) as possible,
by means of a nondegenerate linear transformation, by as many columns of the linear forms R

[n]
s̄ (z) ,

n = 0, 1, . . . , ω− 1 , s̄ ∈ Θ, as possible. Here it is first required to replace the columns of the polynomials
whose order of the zero at the point z = 0 is smaller. As an example of such a set Ω′ , we can take the
set Ω∗ because of what was said in the preceding section. Under the corresponding linear transformation,
the columns with indices from Ω∗1 , . . . , Ω∗m are replaced by linear functional forms for which estimate (9)
holds. Under this transformation, the order of the zero of the determinant increases (as compared to the
order of the zero of ∆(z)) by O(ω∗) , and relations (8) and (9) imply that it is at most

θ∗K +
m∑
i=1

(ωi − ω∗i )(M −Mi)−O(ω2) ≥ ωM − εM −
m∑
i=2

ω∗i (M −Mi)−O(ω2),

whence

ord
z=0

∆(z) ≥ ωM − εM −
m∑
i=2

ω∗i (M −Mi)−O(ω2).

Moreover, by (7) we have the trivial estimate deg ∆(z) ≤ ωM +O(ω2) . Hence,

deg ∆(z)− ord
z=0

∆(z) ≤ εM +
m∑
i=2

ω∗i (M −Mi) +O(ω2).

The quantity on the right-hand side of the last estimate is not o(M) because of the second summand. In
fact, in the Siegel approach, relation (10) gives an upper estimate of the order of the zero of the determinant
∆(z) at a rational point α that differs from zero and from the singularities of system (1). It is precisely
this fact that is used in numerical applications. In [6], Galochkin proposed a new approach in principle to
estimating the value ordz=α ∆(z) that makes use of arithmetical (and not algebraic, as above) properties
of the constructed polynomials (3). Here relation (10) becomes unnecessary. The realization of the graded
Padé approximations with the help of Galochkin’s result [6] is described in detail in [2].

This research was partially supported by the Russian Foundation for Basic Research under grant No. 94-
01-00739.
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