BRIEF COMMUNICATIONS

On the Measure of Linear and Algebraic Independence for Values of Entire Hypergeometric Functions

V. V. Zudilin

KEY WORDS: entire hypergeometric function, measure of linear independence, measure of algebraic independence, Galois group.

§1. Introduction

Let t and l be positive integers and let

$$\lambda_1, \dots, \lambda_{t+l}; \beta_1, \dots, \beta_l \in \mathbb{Q} \setminus \{-1, -2, \dots\}, \qquad \lambda_{t+l} = 0.$$
(1)

In the note, estimates for the measure of linear and algebraic independence of the values of generalized hypergeometric functions $f(z), f'(z), \ldots, f^{(m-1)}(z), m = t+l$, at a rational point $\alpha \neq 0$ are established, where

$$f(z) = \sum_{\nu=0}^{\infty} \frac{(\beta_1)_{\nu} \cdots (\beta_l)_{\nu}}{(\lambda_1 + 1)_{\nu} \cdots (\lambda_{t+l} + 1)_{\nu}} \left(\frac{z}{t}\right)^{t\nu},$$
(2)
(\beta)_0 = 1, \quad (\beta)_{\nu} = \beta(\beta + 1) \cdots (\beta + \nu - 1), \quad \nu = 1, 2, \ldots \ldots

These estimates follow from general theorems in [1] (where the history of the problem can also be found) together with new results of the theory of differential Galois groups [2].

By the measure of algebraic independence of the reals ξ_1, \ldots, ξ_m , we mean the behavior of the quantity

$$|P(\xi_1,\ldots,\xi_m)|, \qquad P(y_1,\ldots,y_m) \in \mathbb{Z}[y_1,\ldots,y_m], \tag{3}$$

in dependence on the following quantities: the modulus of the product $\Pi(P)$ of all nonzero coefficients of the polynomial P, the height H(P) (the maximum of the moduli of the coefficients), and the degree deg P of the polynomial. In the case of deg P = 1, the characteristic (3) is called the *measure of linear independence* of the reals ξ_1, \ldots, ξ_m .

§2. Galois group of a generalized hypergeometric equation

Let the parameters (1) of the function (2) satisfy the following conditions:

- 1) $\lambda_i \beta_j \notin \mathbb{Z}$ for all $i = 1, \dots, t+l$ and $j = 1, \dots, l$;
- 2) there is no common divisor d > 1 of the numbers t and l such that $(\lambda_1 + 1/d, \ldots, \lambda_{t+l} + 1/d) \sim (\lambda_1, \ldots, \lambda_{t+l}), (\beta_1 + 1/d, \ldots, \beta_l + 1/d) \sim (\beta_1, \ldots, \beta_l).$

(Here the notation $(\beta'_1, \ldots, \beta'_m) \sim (\beta_1, \ldots, \beta_m)$ means that for some nonidentity permutation $\sigma : \{1, \ldots, m\} \rightarrow \{1, \ldots, m\}$ we have $\beta'_j - \beta_{\sigma(j)} \in \mathbb{Z}$ for any $j \in \{1, \ldots, m\}$.)

Condition 1) is usually called the *linear irreducibility condition* and Condition 2) the *Kummer irreducibility condition*.

Translated from Matematicheskie Zametki, Vol. 61, No. 2, pp. 302–304, February, 1997.

Original article submitted October 18, 1996.

Let G be the Galois group of the linear homogeneous differential equation

$$\left(\left(z\frac{d}{dz}+t\lambda_1\right)\cdots\left(z\frac{d}{dz}+t\lambda_{t+l}\right)-z^t\left(z\frac{d}{dz}+t\beta_1\right)\cdots\left(z\frac{d}{dz}+t\beta_l\right)\right)y=0,\tag{4}$$

which is satisfied by function (2).

PROPOSITION 1. If t = 1 and if conditions 1) and 2) hold, then $G = GL_m$.

PROPOSITION 2. If t is odd and if conditions 1) and 2) hold, then $SL_m \subset G \subset \mathbb{C}^* \times SL_m = GL_m$.

In the case of even t, the following additional condition of *quadratic irreducibility* is needed for the group G to contain SL_m :

3) there is no real τ such that $(\lambda_1 + \tau, \ldots, \lambda_{t+l} + \tau) \sim (-\lambda_1, \ldots, -\lambda_{t+l}), (\beta_1 + \tau, \ldots, \beta_l + \tau) \sim (-\beta_1, \ldots, -\beta_l).$

PROPOSITION 3. If t is even and if conditions 1)-3) hold, then $SL_m \subset G \subset \mathbb{C}^* \times SL_m = GL_m$.

The proofs of Propositions 1-3 can be found in [2].

Now let us write out the definition in [1] for a linear differential equation. Let $\psi_1(z), \ldots, \psi_m(z)$ be a fundamental system of solutions of a linear homogeneous differential equation

$$y^{(m)} + A_1(z)y^{(m-1)} + \dots + A_{m-1}(z)y' + A_m(z)y = 0, \qquad A_j \in \mathbb{C}(z), \quad j = 1, \dots, m.$$
(5)

We say that Eq. (5) of order *m* belongs to the class \mathbf{W}^0 if the functions

$$\psi_j^{(l-1)}(z), \qquad j, l = 1, \dots, m,$$
(6)

are homogeneously algebraically independent over $\mathbb{C}(z)$.

THEOREM 1. Let conditions 1) and 2) hold in the case of odd t or conditions 1)–3) hold in the case of even t. Then the linear homogeneous differential equation (4) belongs to the class \mathbf{W}^0 .

PROOF. Let $\psi_1(z), \ldots, \psi_m(z)$ be a fundamental system of solutions of Eq. (4) and let G be the Galois group of this equation. The condition $G = \operatorname{GL}_m$ is equivalent to the condition that the functions (6) be algebraically independent. However, if $G \neq \operatorname{GL}_m$ and $G \supset \operatorname{SL}_m$, then there exists exactly one algebraic relation among the functions (6). For the generalized hypergeometric equation (4), this relation is known: the Wronskian of a fundamental system of solutions is a rational function, in other words,

$$\det\left(\psi_j^{(l-1)}(z)\right)_{j,l=1,\ldots,m} = A(z) \in \mathbb{C}(z).$$

We can readily see that this single algebraic relation is not homogeneous. Therefore, for the case in which $SL_m \subset G \subset GL_m$ (and this follows from Propositions 1–3), equation (4) belongs to the class \mathbf{W}^0 .

This completes the proof of the theorem. \Box

§3. Estimates for the measures

Now we state the main result of the present note.

THEOREM 2. Let the parameters (1) of the function (2) satisfy conditions 1) and 2) for t odd and conditions 1)–3) for t even. Let a rational point $\alpha \neq 0$ and a positive integer d be given. Then there exist positive constants $\gamma = \gamma(f(z), \alpha, d)$ and $C = C(f(z), \alpha, d)$ such that for any homogeneous polynomial $P \in \mathbb{Z}[y_1, \ldots, y_m]$ of degree d we have the inequality

$$|P(f(\alpha), f'(\alpha), \dots, f^{(m-1)}(\alpha))| > C\Pi^{-1} H^{1-\gamma(\log \log H)^{-1/(m^2-m+2)}}$$

where $\Pi = \Pi(P)$ and $H = H(P) \ge 3$.

PROOF. Since, by Theorem 1, Eq. (4) belongs to the class \mathbf{W}_0 , we can apply [1, Theorem I]. This gives the desired inequality. \Box

Theorem 2 immediately implies the following result on the measure of linear independence.

THEOREM 3. Let the parameters (1) of the function (2) satisfy conditions 1) and 2) for t odd and conditions 1)–3) for t even, and let $\alpha \neq 0$ be a rational point. Then there exist positive constants $\gamma = \gamma(f(z), \alpha)$ and $C = C(f(z), \alpha)$ such that

$$\begin{aligned} |h_1 f(\alpha) + h_2 f'(\alpha) + \dots + h_m f^{(m-1)}(\alpha)| &> C(H_1 \dots H_m)^{-1} H^{1 - \gamma(\log \log H)^{-1/(m^2 - m + 2)}}, \\ h_i \in \mathbb{Z}, \quad H_i = \max\{1, |h_i|\}, \quad i = 1, \dots, m, \qquad H = \max_{1 \le i \le m} \{H_i\} \ge 3. \end{aligned}$$

I express my deep gratitude to Professor D. Bertrand who acquainted me with the results of [2].

References

- V. V. Zudilin, "On lower estimates of values of polynomials in certain entire functions," Mat. Sb. [Russian Acad. Sci. Sb. Math.], 187, No. 12, 57–86 (1996).
- 2. N. M. Katz, Exponential Sums and Differential Equations, Ann. of Math. Stud., 124, Univ. Press, Princeton, NJ (1990).

M. V. LOMONOSOV MOSCOW STATE UNIVERSITY *E-mail address*: wadim@ipsun.ras.ru

Translated by A. I. Shtern