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Very well-poised hypergeometric series and multiple integrals

V. V. Zudilin [W. Zudilin]

The purpose of this note is to establish a relationship between two objects: the very well-poised
hypergeometric series
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Theorem. Suppose that k > 1, the parameters ho,h1,...,hg+2 € C satisfy the conditions
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and hi,hge2 #0,—-1,—-2,... . Then the following identity holds:
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The proof is carried out by induction. If £ = 1, then the statement of the theorem follows from
the limit case of Dougall’s theorem ([1], §4.4, (1)). If & > 2, then we set g = 0 for k even and
ex = 1 or —1 for k odd and use the relation

Ty (ao,al, - ,ak_l,ak) _ F(bk - ak) ] i /—t0+ioo F(GO + t) F(ak + t) F(_t) eEk Tt
F(U'O) 2mi —tp—1i00 F(bk + t)

] (ao +t,a1+t,...,0-1 +t)dt
ot by+t,... by_1+t)

bl: R bk—l: bk
(4)

where to € R, Rag > to > 0, Ray > to > 0, Rbry > RNao + Ray, provided that the integral
on the left-hand side of (4) converges. Representing the hypergeometric series (1) in the form
of a Barnes-type contour integral and applying the inductive hypothesis to the integrand on the
right-hand side of (4), we obtain the desired identity (3).
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We note that the series on the right-hand side of (3) admits a ‘less economical’ representation in
the form of an Euler-type multiple integral over the cube [0,1]¥*2 (see [2], Lemma 1). The above
theorem and recent results of Zlobin ([3], [4]) also yield a representation of the very well-poised
hypergeometric series (1) in the form of an integral proposed in Sorokin’s papers [5], [6].

In spite of the analytic nature of the theorem, the identity (3) is motivated by arithmetic
results for the values of the Riemann zeta function (zeta values) at positive integers ([5]-[13]).
As is known [13], in the case of integral parameters h a very well-poised hypergeometric series
of the form (1) is a Q-linear form in even or odd zeta values, depending on the parity of k > 4.
Therefore, if the parameters a and b are positive and integral and satisfy the additional condition

b1 +az =bz+az =---=by_1 +ag, (5)

then the integral (2) is a Qlinear form in zeta values whose arguments are of the same parity.
The specialization a; = n 4+ 1 and b; = 2n + 2 leads to the coincidence (conjectured by the
author in [13], §9) of multiple integrals and very well-poised hypergeometric series; denoting
the corresponding integrals (2) by Ji , and using the arithmetic results in [12], Lemmas 4.2-4.4,
we conclude that

DEtle 1. g € Z¢(k)+ Z¢(k—2) + - + Z¢(3) + Z  for k odd, (6)

where D,, is the least common multiple of the numbers 1,2,...,n and ®,, is the product of the
primes p < n such that 2/3 < {n/p} < 1 ({-} stands for the fractional part of a number). The
relations (6) (with the multiple DX instead of DE¥1®;1) were conjectured by Vasil’ev [14] (see
also [11], comment to Theorem 2) and proved by him for k = 5 (the case k = 3 was treated
in [7]). Thus, we give a particular answer to Vasil’ev’s conjecture. The choice a; = rn + 1 and
bj = (r+1)n+2in (2) (or, equivalently, ho = (2r+1)n+2and hj =rn+1forj=1,...,k+2
in (1)) with an integer r > 1 depending on a given odd integer k leads to the linear forms (in odd
zeta values) similar to those considered by Rivoal [10] in the proof of his remarkable result that
the sequence ¢(3), ¢(5), {(7), ... contains infinitely many irrationals.
Moreover, it should be noted that if the assumption (5) holds, then the quantity

Frto(hoihi,. .-, hrya) Ji(a,b)
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is obviously invariant under the action of the (h-trivial) group & (of order (k+2)!) consisting of all
permutations of the parameters h1,..., hgt+2. This result also has number-theoretic applications.
For k = 2 and k = 3 the change of variables (zg_1,zk) — (1 — zg,1 — zx_1) in (2) gives an
additional transformation ¢ of both the integral (2) and the series (1); for k > 4 this transformation
is not available, since the condition (5) is violated. The groups (®,¢) of orders 120 and 1920 for
k = 2 and k = 3, respectively, are known ([8], [9]); Rhin and Viola use these groups to obtain
nice estimates for the irrationality measures of {(2) and ¢(3). For k > 4 the group & admits a
natural interpretation as a permutation group of the parameters eq; = h; — 1, 1 < I <k + 2, and
eji=ho—hj—h;, 1< j<I< k42 (for details, see [13], §9).
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