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1. Introduction. Attempts to find algebraic relations over Q for the numbers

π, ζ(3), ζ(5), ζ(7), ζ(9), . . . , (1)

are still unsuccessful. Conjecturely, the numbers (1) are algebraically independent

over Q and it looks quite natural and interesting to consider for positive integers

s1, s2, . . . , sl with s1 > 1 values of the l-fold zeta function

ζ(s) = ζ(s1, s2, . . . , sl) :=
∑

n1>n2>···>nl>1

1
ns11 n

s2
2 · · ·n

sl
l

(2)

since the algebraic structure of the relations between these numbers (in comparison

with a conjectured empty structure for (1)) is fairly rich. The numbers (2) are

called the multiple zeta values (MZVs for brevity), or the multiple harmonic series,

or the Euler–Zagier numbers. To each (2) we assign, as usual, two characteristics:

the weight (or the degree) |s| := s1 + s2 + · · ·+ sl and the length `(s) := l.

To decribe known relations (i.e., numerical identities) over Q for the numbers (2),

we introduce the standard coding of multi-indices s by words (monomials in non-

commutative letters) over the alphabet X = {x0, x1} by the rule

s 7→ xs = xs1−1
0 x1x

s2−1
0 x1 . . . x

sl−1
0 x1.

Then

ζ(xs) := ζ(s) (3)

1No use is allowed without references to this preprint.
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for all convergent words (i.e., the words starting with x0 and ending with x1);

respectively, we define the weight (or the degree) |xs| := |s| as the number of

letters and the length `(xs) := `(s) as the number of x1’s.

Let Q〈X〉 = Q〈x0, x1〉 be the graded Q-algebra (with x0 and x1 both of degree 1)

of polynomials in non-commutative indeterminates; the underlying graded rational

vector space of Q〈X〉 is denoted H. Let H1 = Q1 ⊕ Hx1 and H0 = Q1 ⊕ x0Hx1,

where 1 is a unit (the empty word of weight 0) of the algebra Q〈X〉. Then H1

can be regarded as a subalgebra of Q〈X〉, in fact the non-commutative polynomial

algebra on generators ys = xs−1
0 x1, while H0 can be viewed as the graded Q-vector

space spanned by the convergent words. Now, we can think of zeta function as the

Q-linear map ζ : H0 → R defined by the rules ζ(1) = 1 and (3).

Consider multiplications tt on H and ∗ on H1 by requiring that they distribute

over addition, that

1ttw = wtt1 = w, 1 ∗ w = w ∗ 1 = w (4)

for any word w, and that

xjuttxkv = xj(uttxkv) + xk(xjutt v),

yju ∗ ykv = yj(u ∗ ykv) + yk(yju ∗ v) + yj+k(u ∗ v) (5)

for any words u, v, letters xj , xk or generators yj , yk of H1, respectively. We men-

tion that inductive arguments show the commutativity and the assosiativity of

both multiplications; algebras (H,tt) and (H1, ∗) can be regarded as graded Hopf

algebras.

Proposition 1. The map ζ is a homomorphism of (H0,tt) into R, i.e.,

ζ(w1 ttw2) = ζ(w1)ζ(w2) for all w1, w2 ∈ H0. (6)

Proposition 2. The map ζ is a homomorphism of (H0, ∗) into R, i.e.,

ζ(w1 ∗ w2) = ζ(w1)ζ(w2) for all w1, w2 ∈ H0. (7)

Although these results are classical (see, e.g., [H2], [HO], [W2]), we give an

alternative approach to prove them using a differential-difference origin of multipli-

cations tt and ∗ in conformal functional models of the shuffle and stuffle algebras,

respectively; this way is already known for the proof of relations (6). Our ap-

proach can be extended to multiplications generalizing the above ones, called the

quasi-shuffle products in [H3].
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Proposition 3. The map ζ satisfies the relations

ζ(x1 ttw − x1 ∗ w) = 0 for all w ∈ H0 (8)

(in particular , the argument of ζ in (8) belongs to H0).

Proof. For detailed proof we refer to Derivation Theorem [H1, Theorem 5.1] and

Theorem 4.3 in [HO].

All known relations over Q between the multiple zeta values follow from identi-

ties (6)–(8). Thus, the following conjecture from [W1] looks quite verisimilar.

Waldschmidt’s conjecture. All relations between MZVs follow from (6)–(8);

equivalently ,

ker ζ = {utt v − u ∗ v : u ∈ H1, v ∈ H0}.

2. Shuffle algebra of polylogarithms. To demonstrate relations (6) for MZVs

we introduce a notion of the polylogarithm

Lis(z) :=
∑

n1>n2>···>nl>1

zn1

ns11 n
s2
2 · · ·n

sl
l

, |z| < 1,

for each set of positive integers s1, s2, . . . , sl. Obviously, we obtain

Lis(1) = ζ(s), s ∈ Zl, s1 > 2, s2 > 1, . . . , sl > 1. (9)

As in Section 1 we define the polylogarithm on words xs setting

Lixs(z) := Lis(z), Li1(z) := 1, (10)

and extend this definition by linearity to the graded algebra H1 (not H since coding

allows only admissible words that means ‘ending with x1’).

Lemma 1. Let w 6= 1 be any admissible word (i.e., any monomial in H1), xj its

first letter (hence w = xju for some admissable word u or u = 1). Then

d
dz

Liw(z) =
d
dz

Lixju(z) = ωj(z) Liu(z), (11)

where

ωj(z) = ωxj (z) :=


1
z

if xj = x0,

1
1− z

if xj = x1.
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Proof. Let w = xju = xs for some multi-index s. Then

d
dz

Liw(z) =
d
dz

Lis(z) =
d
dz

∑
n1>n2>···>nl>1

zn1

ns11 n
s2
2 · · ·n

sl
l

,

=
∑

n1>n2>···>nl>1

zn1−1

ns1−1
1 ns22 · · ·n

sl
l

.

Therefore, if s1 > 1 (i.e., xj = x0), we obtain

d
dz

Lix0u(z) =
1
z

∑
n1>n2>···>nl>1

zn1

ns1−1
1 ns22 · · ·n

sl
l

=
1
z

Lis1−1,s2,...,sl(z) =
1
z

Liu(z),

while in the case s1 = 1 (i.e., xj = x1)

d
dz

Lix1u(z) =
∑

n1>n2>···>nl>1

zn1−1

ns22 · · ·n
sl
l

=
∑

n2>···>nl>1

1
ns22 · · ·n

sl
l

∞∑
n1=n2+1

zn1−1

=
1

1− z
∑

n2>···>nl>1

zn2

ns22 · · ·n
sl
l

=
1

1− z
Lis2,...,sl(z) =

1
1− z

Liu(z).

The proof is complete.

Lemma 1 motivates an extended (to the total algebra H) definition of the poly-

logarithm; namely, we define Li1(z) = 1 and

Liw(z) =


logs z
s!

if w = xs0 for some s > 1,∫ z

0

ωj(z) Liu(z) dz if w = xju containts letter x1

(12)

for any word w ∈ H. Then Lemma 1 remains true for this extended version of poly-

logarithm (the new definition coincides with (10) for admissible words); moreover,

lim
z→0+0

Liw(z) = 0 if the word w containts letter x1. (13)

It is easy to verify that the ‘new’ polylogarithms are real-valued and continious

functions in the real interval (0, 1).

Lemma 2. The map w 7→ Liw(z) is a homomorphism of (H,tt) into C((0, 1);R).

Proof. We must check that

Liw1 ttw2(z) = Liw1(z) Liw2(z) for all w1, w2 ∈ H. (14)
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It is enough to verify relation (14) for words w1, w2 ∈ H. We prove (14) by induction

on |w1|+|w2|; if w1 = 1 or w2 = 1 relation (14) becomes obvious by (4). Otherwise,

w1 = xju and w2 = xkv, hence by Lemma 1 and the inductive hypothesis we obtain

d
dz
(
Liw1(z) Liw2(z)

)
=

d
dz
(
Lixju(z) Lixkv(z)

)
=

d
dz

Lixju(z) · Lixkv(z) + Lixju(z) · d
dz

Lixkv(z)

= ωj(z) Liu(z) Lixkv(z) + ωk(z) Lixju(z) Liv(z)

= ωj(z) Liutt xkv(z) + ωk(z) Lixjutt v(z)

=
d
dz
(
Lixj(utt xkv)(z) + Lixj(xjutt v)(z)

)
=

d
dz

Lixjutt xkv(z)

=
d
dz

Liw1 ttw2(z).

Therefore,

Liw1(z) Liw2(z) = Liw1 ttw2(z) + C. (15)

If at least one among the words w1 and w2 contains letter x1, then tending z → 0+0

by (12), (13) we obtain C = 0; otherwise, the substitution z = 1 gives the same

result C = 0. Hence equality (15) leads us to the required relation (14).

Proof of Proposition 1. Proposition 1 immediately follows from Lemma 2 by the

use of (9).

H. N. Minh and M. Petitot in [MP] (see also [MPH]) calculated the monodromy

for the differential equations (11) and proved that the homomorphism w 7→ Liw(z)

of the shuffle algebra (H,tt) over C is bijective, i.e., all C-algebraic relations be-

tween polylogarithms come from the shuffle product.

3. Quasi-shuffle products. Both multiplications, the shuffle tt and the stuffle ∗,
can be formalized in a following manner due to M. Hoffman’s construction of quasi-

shuffle Hopf algebras.

We begin with the graded non-commutative polynomial algebra A = K〈A〉 over

a subfield K ⊂ C, where A is a locally finite set of generators (i.e., the set of

generators in each positive degree is finite). As usual, we refer to elements of A as

letters, and to monomials in the letters as words. For any word w we write `(w)

for its length (the number of letters it contains) and |w| for its weight or degree
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(the sum of the degrees of its factors). The unique word of length 0 is 1, the empty

word. We define a multiplication ◦ by requiring that ◦ is distribute over addition,

that

1 ◦ w = w ◦ 1 = w (16)

for any word w, and that

aju ◦ akv = aj(u ◦ akv) + ak(aju ◦ v) + [aj , ak](u ◦ v) (17)

for any words u, v and letters aj , ak ∈ A, where a function [ · , · ] : Ā× Ā→ Ā (Ā :=

A ∪ {0}) satisfies

(S0) [a,0] = 0 for all a ∈ Ā,

(S1) [aj , ak] = [ak, aj ] for all aj , ak ∈ Ā,

(S2) [[aj , ak], al] = [aj , [ak, al]] for all aj , ak, al ∈ Ā, and

(S3) either [aj , ak] = 0 or |[ak, aj ]| = |aj |+ |ak| for all aj , ak ∈ A.

Then (A, ◦) is a commutative graded K-algebra (see [H3, Theorem 2.1]).

If [aj , ak] = 0 for all letters aj , ak ∈ A, then (A, ◦) is the shuffle algebra as

usually defined; in particular case A = {x0, x1} we obtain the shuffle algebra

(A, ◦) = (H,tt) of MZVs (or polylogarithms). The stuffle algebra (H1, ∗) can

be derived from the general construction by the choice of generators A = {yj}∞j=1

and brackets

[yj , yk] = yj+k for integers j > 1 and k > 1.

Consider another multiplication ◦̄ defined by the rules

1 ◦̄w = w ◦̄1 = w,

uaj ◦̄ vak = (u ◦̄ vak)aj + (uaj ◦̄ v)ak + (u ◦̄ v)[aj , ak]

instead of (16), (17), respectively. Then (A, ◦̄) is also a commutative graded K-

algebra.

Proposition 4. The algebras (A, ◦) and (A, ◦̄) coincide.

Remark. Proposition 4 can be easily verified with the use of the commutativity of

the multiplications ‘◦’ and ‘◦̄’. But our proof of (18) below remains true even if we

omit the commutativity condition (S1).
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Proof. It is enough to prove that

w1 ◦ w2 = w1 ◦̄w2 (18)

for any words w1, w2 ∈ K〈A〉. Both sides of (18) are homogeneous monomials

from A of the same length. We prove (18) by induction on `(w1) + `(w2). If

`(w1) = 0 or `(w2) = 0, then (18) is an obvious identity. If `(w1) = `(w2) = 1,

hence w1 = a1 and w2 = a2 are letters, we obtain

a1 ◦ a2 = a1a2 + a2a1 + [a1, a2] = a1 ◦̄ a2.

If `(w1) > 1 while `(w2) = 1, hence w1 = a1ua2 and w2 = a3, by the inductive

hypothesis we obtain

a1ua2 ◦ a3 = a1(ua2 ◦ a3) + a3a1ua2 + [a1, a3]ua2

= a1(ua2 ◦̄ a3) + a3a1ua2 + [a1, a3]ua2

= a1((u ◦̄ a3)a2 + ua2a3 + u[a2, a3]) + a3a1ua2 + [a1, a3]ua2

= a1((u ◦ a3)a2 + ua2a3 + u[a2, a3]) + a3a1ua2 + [a1, a3]ua2

= (a1(u ◦ a3) + a3a1u+ [a1, a3]u)a2 + a1ua2a3 + a1u[a2, a3]

= (a1u ◦ a3)a2 + a1ua2a3 + a1u[a2, a3]

= (a1u ◦̄ a3)a2 + a1ua2a3 + a1u[a2, a3]

= a1ua2 ◦̄ a3.

Similarly, if `(w1) > 1 and `(w2) > 1, hence w1 = a1ua2 and w2 = a3va4, by the

inductive hypothesis we obtain

a1ua2 ◦ a3va4 = a1(ua2 ◦ a3va4) + a3(a1ua2 ◦ va4) + [a1, a3](ua2 ◦ va4)

= a1(ua2 ◦̄ a3va4) + a3(a1ua2 ◦̄ va4) + [a1, a3](ua2 ◦̄ va4)

= a1((u ◦̄ a3va4)a2 + (ua2 ◦̄ a3v)a4 + (u ◦̄ a3v)[a2, a4])

+ a3((a1u ◦̄ va4)a2 + (a1ua2 ◦̄ v)a4 + (a1u ◦̄ v)[a2, a4])

+ [a1, a3]((u ◦̄ va4)a2 + (ua2 ◦̄ v)a4 + (u ◦̄ v)[a2, a4])

= a1((u ◦ a3va4)a2 + (ua2 ◦ a3v)a4 + (u ◦ a3v)[a2, a4])

+ a3((a1u ◦ va4)a2 + (a1ua2 ◦ v)a4 + (a1u ◦ v)[a2, a4])

+ [a1, a3]((u ◦ va4)a2 + (ua2 ◦ v)a4 + (u ◦ v)[a2, a4])
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= (a1(u ◦ a3va4) + a3(a1u ◦ va4) + [a1, a3](u ◦ va4))a2

+ (a1(ua2 ◦ a3v) + a3(a1ua2 ◦ v) + [a1, a3](ua2 ◦ v))a4

+ (a1(u ◦ a3v) + a3(a1u ◦ v) + [a1, a3](u ◦ v))[a2, a4]

= (a1u ◦ a3va4)a2 + (a1ua2 ◦ a3v)a4 + (a1u ◦ a3v)[a2, a4]

= (a1u ◦̄ a3va4)a2 + (a1ua2 ◦̄ a3v)a4 + (a1u ◦̄ a3v)[a2, a4]

= a1ua2 ◦̄ a3va4

The proof is complete.

4. Functional model of stuffle algebra. The functional model of the stuffle

algebra cannot be characterized in a way similar to polylogarithmic since the rule (5)

does not yield any differential structure. Thus, we require a difference operation

instead; namely, we take the simplest one

Df(t) = f(t− 1)− f(t).

It is easy to see that

D
(
f1(t)f2(t)

)
= Df1(t) · f2(t) + f1(t) ·Df2(t) +Df1(t) ·Df2(t). (19)

The inverse operation can be given by the formula

Ig(t) =
∞∑
n=1

g(t+ n)

up to a constant term if we restrict some growth condition for g(t) at infinity, for

instance, g(t) = O(1/t2) as t→ +∞.

In a spirit of the proof of Lemma 2, by (5) and (19) we require functions ωj(t)

satisfying the relations

ωj(t)ωk(t) = ωj+k(t) for integers j > 1 and k > 1.

The simplest example of such functions can be given by the formulae

ωj(t) =
1
tj
, j = 1, 2, . . . .

This enables us to define the functions

Ris(t) = Ris1,...,sl−1,sl(t) := I

(
1
tsl

Ris1,...,sl−1(t)
)

by induction on the length of the multi-index s. By definition we obtain

DRiuyj (t) =
1
tj

Riu(t). (20)
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Lemma 3. There holds the equality

Ris(t) =
∑

n1>···>nl−1>nl>1

1
(t+ n1)s1 · · · (t+ nl−1)sl−1(t+ nl)sl

; (21)

in particular ,

Ris(0) = ζ(s), s ∈ Zl, s1 > 2, s2 > 1, . . . , sl > 1, (22)

lim
t→+∞

Ris(t) = 0, s ∈ Zl, s1 > 2, s2 > 1, . . . , sl > 1. (23)

Proof. We have

Ris(t) = I

(
1
tsl

Ris1,...,sl−1(t)
)

= I

(
1
tsl

∑
n1>···>nl−1>1

1
(t+ n1)s1 · · · (t+ nl−1)sl−1

)

=
∞∑
n=1

1
(t+ n)sl

∑
n1>···>nl−1>1

1
(t+ n1 + n)s1 · · · (t+ nl−1 + n)sl−1

=
∑

n′1>···>n′l−1>n>1

1
(t+ n′1)s1 · · · (t+ n′l−1)sl−1(t+ n)sl

,

which is the required equality (21).

Further, define the multiplication ∗̄ on H1 (hence on the subalgebra H0) by the

formulae

1 ∗̄w = w ∗̄1 = w, (24)

uyj ∗̄ vyk = (u ∗̄ vyk)yj + (uyj ∗̄ v)yk + (u ∗̄ v)yj+k

instead of (4), (5).

Lemma 4. The map w 7→ Riw(z) is a homomorphism of (H0, ∗̄) into C([0,+∞);

R).

Proof. We must verify that

Riw1 ∗̄w2(z) = Riw1(z) Riw2(z) for all w1, w2 ∈ H0. (25)

Without loss of generality we restrict ourselves to words w1, w2 ∈ H0 and prove (25)

by induction on `(w1) + `(w2). If w1 = 1 or w2 = 1, the relation (25) becomes
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obvious by (24). Otherwise, w1 = uyj and w2 = vyk, hence by (19), (20) and the

inductive hypothesis we obtain

D
(
Riw1(t) Riw2(t)

)
= D

(
Riuyj (t) Rivyk(t)

)
= DRiuyj (t) · Rivyk(t) + Riuyj (t) ·DRivyk(t)

+DRiuyj (t) ·DRivyk(t)

=
1
tj

Riu(t) Rivyk(t) +
1
tk

Riuyj (t) Riv(t) +
1

tj+k
Riu(t) Riv(t)

=
1
tj

Riu ∗̄ vyk(t) +
1
tk

Riuyj ∗̄ v(t) +
1

tj+k
Riu ∗̄ v(t)

= D
(
Ri(u ∗̄ vyk)yj (t) + Ri(uyj ∗̄ v)yk(t) + Ri(u ∗̄ v)yj+k(t)

)
= DRiuyj ∗̄ vyk(t)

= DRiw1 ∗̄w2(t)

Therefore,

Riw1(t) Riw2(t) = Riw1 ∗̄w2(t) + C (26)

and tending t → +∞ by (23) we obtain C = 0. Thus equality (26) becomes the

required identity (25).

Proof of Proposition 2. Proposition 2 immediately follows from Lemma 4 and

Proposition 4 by the use of (22).

We underline that our approach for the proof of Proposition 2 is similar to the

approach for the proof of Proposition 1.
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