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Ramanujan-type formulae and irrationality

measures of some multiples of πππ

W.V. Zudilin

Abstract. An explicit construction of simultaneous Padé approximations for gener-

alized hypergeometric series and formulae for the quantities π
√
d , d∈{1, 2, 3, 10005},

in terms of these series are used for estimates of irrationality measures of these mul-
tiples of π. Other possible applications are also discussed.
Bibliography: 14 titles.

Introduction

An important role in the history of the Archimedes constant π is played by
formulae allowing one to calculate it with high accuracy (these days one speaks
about billions of decimals). One class of these formulae are representations obtained
by Ramanujan in 1914 [1], among which we must point out first of all the following
two examples:

∞∑
ν=0

(1/4)ν(1/2)ν(3/4)ν
ν!3

(21460ν + 1123) · (−1)
ν

8822ν+1
=
4

π
, (1)

∞∑
ν=0

(1/4)ν(1/2)ν(3/4)ν
ν!3

(26390ν + 1103) · 1

994ν+2
=

1

2π
√
2
; (2)

As usual, (a)ν = Γ(a+ν)/Γ(a) = a(a+1) · · · (a+ν−1) for ν � 1 and (a)0 = 1 is the
Pochhammer symbol (the shifted factorial); here and throughout, ‘empty’ products
are set equal to 1. These formulae have only recently been rigorously substantiated
and until now new formulae of Ramanujan type have arisen in connection with
modular parametrization of solutions of differential equations [2] and algorithms
for hypergeometric series [3]. We present as examples two further formulae, which
we shall use in the present paper:

∞∑
ν=0

(1/3)ν(1/2)ν(2/3)ν
ν!3

(14151ν + 827) · (−1)
ν

5002ν+1
=
3
√
3

π
, (3)

∞∑
ν=0

(1/6)ν(1/2)ν(5/6)ν
ν!3

(545140134ν + 13591409) · (−1)ν
533603ν+2

=
3

2π
√
10005

; (4)
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formula (3) is proved in [2] (formula (1.19)) and (4) is the celebrated Chudnovskys’
formula [4], which enabled them to hold the record in the calculation of π in 1989–94.
On the left-hand side of each formula (1)–(4) we see a general hypergeometric

series

f(z) = mFm−1

(
a1, a2, . . . , am
b2, . . . , bm

∣∣∣∣ z
)
=
∞∑
ν=0

(a1)ν(a2)ν · · · (am)ν
(b2)ν · · · (bm)ν

zν

ν!

=
∞∑
ν=0

zν
a(0)a(1) · · ·a(ν − 1)
b(0)b(1) · · · b(ν − 1) ,

where

a(x) = (x+a1)(x+a2) · · · (x+am), b(x) = (x+b1)(x+b2) · · · (x+bm), b1 = 1.
(5)

It is well known that f(z) satisfies a homogeneous linear differential equation of
order m, so that the system of functions

fi(z) =

(
z
d

dz

)i
f(z) =

∞∑
ν=0

νizν
a(0)a(1) · · ·a(ν − 1)
b(0)b(1) · · · b(ν − 1) , i = 0, 1, . . ., m− 1,

produces a solution to some system of m linear differential equations of the first
order. In [5] one can find an explicit construction of simultaneous Padé approx-
imations for the system of functions 1, f0(z), f1(z), . . . , fm−1(z); the author also
indicates there (omitting details) arithmetic applications for the values of these
functions. The aim of the present paper is to obtain estimates of irrationality
measures of the quantities on the right-hand sides of (1)–(4). We state these esti-
mates as upper bounds for the irrationality exponent. Recall that the irrationality
exponent of a real irrational number α is

µ = µ(α) := inf

{
c ∈ R : the inequality

∣∣∣∣α− pq
∣∣∣∣ � |q|−c has

finitely many solutions in p, q ∈ Z
}
.

We also point out the equality µ(α) = µ(α−1) which immediately follows from this
definition.

Theorem. The following estimates hold for the irrationality exponents:

µ(π) � 57.53011083 . . ., (6)

µ(π
√
2 ) � 13.93477619 . . ., (7)

µ(π
√
3 ) � 44.12528464 . . ., (8)

µ(π
√
10005 ) � 10.02136339 . . . . (9)

The program we implement below was in effect announced by the Chudnovskys
[4], [6], who presented as applications estimates (without detailed proofs) for
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irrationality measures of π
√
2 and π

√
640320 = 8π

√
10005 , which were worse

than (7) and (9). We simplify the analytic and the arithmetic presentations of
the construction in [5], which enables us to give a compact proof of the theorem
refining the results of [4], [6].
It must be pointed out that there exist other methods for obtaining estimates of

the measure of irrationality of π and some of its multiples, which produce better
results. For instance, our estimates (6) and (8) are worse than the inequalities

µ(π) � 8.01604539 . . . , µ(π
√
3 ) � 4.60157912 . . .

obtained by Hata [7]. In the general case, for quantities of the form π
√
d, where d

is a positive integer, one has the estimate

µ(π
√
d ) � 10.88248501 . . . ,

which follows from the inequality µ(π2) � 5.44124250 . . . of Rhin and Viola [8].
Hence (7) does not improve the already known estimate either, and only (9) refines
it for d = 10005. However, we emphasize that since new formulae of Ramanujan
type keep occurring, the methods used in the present paper can find further number-
theoretic applications.

§ 1. Simultaneous Padé approximations
The construction below will be parametrized by integers M and N such that

M < N �
(
1 +

1

m

)
M − 1. (10)

Considering the polynomial

Q(x) =
M∑
µ=0

(−1)µ
(
M

µ

)
b(N −M)b(N −M + 1) · · · b(N −M + µ− 1)

a(0)a(1) · · ·a(µ− 1) xµ

= m+1Fm

(
−M, N −M + b1, N −M + b2, . . . , N −M + bm

a1, a2, . . . , am

∣∣∣∣ x
)
, (11)

we see that

Q(z−1)fi(z) =
∞∑
l=0

zl−M
M∑
µ=0
µ�M−l

(−1)µ
(
M

µ

)
(µ+ l −M)i

× b(N −M) · · · b(N −M + µ − 1)
a(0) · · ·a(µ− 1)

a(0)a(1) · · ·a(µ + l−M − 1)
b(0)b(1) · · · b(µ+ l−M − 1)

=
∞∑
l=0

cl,iz
l−M , i = 0, 1, . . . , m− 1. (12)
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For convenience we shall separately write the resulting formulae for the
coefficients cl,i in (12) on each of the following intervals:

(a) for 0 � l < M

cl,i =
M∑

µ=M−l
(−1)µ

(
M

µ

)
(µ+ l−M)i

× b(N −M)b(N −M + 1) · · · b(N −M + µ − 1)
a(µ+ l−M) · · ·a(µ− 1) · b(0) · · · b(µ+ l −M − 1) ; (13)

(b) for M � l � N

cl,i =
1

b(0)b(1) · · · b(N −M − 1)

M∑
µ=0

(−1)µ
(
M

µ

)
(µ+ l−M)i

× a(µ) · · ·a(µ+ l−M − 1) · b(µ−M + l) · · · b(µ−M +N − 1); (14)

(c) for l > N

cl,i =
M∑
µ=0

(−1)µ
(
M

µ

)
(µ + l −M)i

× a(µ) · · ·a(µ + l −M − 1)
b(0) · · · b(N −M − 1) · b(µ−M +N) · · · b(µ −M + l− 1) . (15)

The next result has an extremely complicated proof in [5]. We borrowed the idea
of an elementary proof of it from [9].

Lemma 1. For all i = 0, 1, . . . , m− 1 and integers l such that M � l � N one has
cl,i = 0.

Proof. The function

(µ + l −M)i · a(µ) · · ·a(µ+ l −M − 1) · b(µ−M + l) · · · b(µ−M +N − 1)

is a µ-polynomial of degree at most

i+m(l −M) +m(N − l) � (m− 1) +m(N −M) � −1 +M

(we use condition (10) in the last inequality). On the other hand, for each poly-
nomial P (x) of degree less than M one has

M∑
µ=0

(−1)µ
(
M

µ

)
P (µ) = 0,

since each derivative of the polynomial

M∑
µ=0

(−1)µ
(
M

µ

)
xµ = (1− x)M
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of order less than M vanishes at x = 1. In view of (14), this leads to the required
result.

As one consequence, we see that the system

Ri(z) =
∞∑

l=N+1

cl,iz
l−M = Q(z−1)fi(z)− Pi(z−1), i = 0, 1, . . . , m− 1, (16)

Pi(x) =
M−1∑
l=0

cl,ix
M−l, i = 0, 1, . . . , m− 1,

yields simultaneous approximations (Padé approximations forN+1 = (1+1/m)M)
to the system of functions 1, f0(z), . . . , fm−1(z). Since our construction depends on
the positive integers M,N , it will sometimes be important to indicate explicitly
this dependence: we shall write

Q(x;M,N) = Q(x),

Pi(x;M,N) = Pi(x), Ri(z;M,N) = Ri(z), i = 0, 1, . . . , m− 1.
In what follows we require the following simple estimate for the remainders of

the approximations (16).

Lemma 2. Let N = (1 + 1/m)M − 1, assume that the coefficients aj , bj in the
expansions (5) are positive, and that bj � 1, j = 1, . . . , m. Then for |z| < 1/2m,

lim
M→∞

log |Ri(z;M,N)|
M

� log |z|
m

+ (m+ 2) log 2

for each i = 0, 1, . . ., m− 1.
(17)

In particular, for |z| < 1/2m(m+2),

lim
M→∞

log |Ri(z;M,N)|
M

< 0 for each i = 0, 1, . . . , m− 1. (18)

Proof. We find estimates for the coefficients in (15). Assuming that aj � A for
some integer A � 1, j = 1, . . . , m, for l > N we obtain

|cl,i| �
M∑
µ=0

(
M

µ

)
li · a(M)a(M + 1) · · ·a(l− 1)
b(0)b(1) · · · b(l −M − 1)

� 2M lm−1 ·
(
(A +M)(A +M + 1) · · · (A + l− 1)

(l −M)!

)m

= 2M
(
A + l− 1
l −M

)m
lm−1 � 2M+m(A+l−1) lm−1, i = 0, 1, . . . , m− 1.

Hence for |z| < 1/2m,

|Ri(z)| �
∞∑

l=N+1

|z|l−M |cl,i| � 2M+m(A−1)|z|−M
∞∑

l=N+1

lm−1(2m|z|)l

< 2M+m(A−1)|z|−M · (N +m)
m(2m|z|)N+1

(1− 2m|z|)m , i = 0, 1, . . . , m− 1,

which yields (since N = (1 + 1/m)M − 1) the limit relation (17).
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Remark. The z variable of the hypergeometric series on the left-hand sides of
(1)–(4) satisfies the inequality |z| < 1/2m(m+2) with m = 3.

§ 2. Arithmetic aspects
Our further considerations concern the hypergeometric series in (1)–(4); therefore

we set
m = 3, M = 3n, N = 4n− 1,

where n is an increasing positive integer. We also set

Qn(x) = Q(x;M,N),

Pi,n(x) = Pi(x;M,N), Ri,n(z) = Ri(z;M,N), i = 0, 1, . . . , m− 1.

In addition, the polynomial b(x) in (5) will always be equal to (x+1)3, whereas for
a(x) we shall have the following options:

(I) a(x) = (x+ 1/4)(x+ 1/2)(x+ 3/4);
(II) a(x) = (x+ 1/3)(x+ 1/2)(x+ 2/3);
(III) a(x) = (x+ 1/6)(x+ 1/2)(x+ 5/6).

For n = 1, 2, . . . let Dn be the least common denominator of the coefficients of
Qn(x). In our discussion of the above-listed cases we shall also show that

DnPi,n(x) ∈ Z[x], i = 0, 1, . . . , m− 1, n = 1, 2, . . . .

(I) In this case the substitution in (11) yields

Qn(x) =
M∑
µ=0

(−1)µ44µxµ M ! (N −M + µ)!3
(M − µ)! (N −M)!3(4µ)!

and by formula (13) for the coefficients of the polynomial Pi,n(x) we obtain

cl,i = 4
4(M−l)

M∑
µ=M−l

(−1)µ(µ+ l−M)i (4(µ + l −M))!
(µ+ l −M)!4 ·

M ! (N −M + µ)!3
(M − µ)! (N −M)!3(4µ)! .

The factors

(µ + l −M)i (4(µ+ l−M))!
(µ + l −M)!4

participating in the last expression are integers, so that the elements of the required

sequence Dn = D
(I)
n are for each n the least common denominators of the quantities

M ! (N −M + µ)!3
(M − µ)! (N −M)!3(4µ)! =

(3n)! (n+ µ)!3

(3n− µ)!n!3(4µ)! ·
(
n

n+ µ

)3
, µ = 0, 1, . . . , 3n.

Consider now the integer-valued function

ϕ(x, y) = �3x− y� + 3�x�+ �4y� − �3x� − 3�x+ y� + 3λ(x + y) − 3λ(x), (19)
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where

λ(x) =

{
1 if {x} = 0,
0 otherwise,

and � · � and { · } are the integer and the fractional parts of a number, respectively.
Since for each prime p and each positive integer N ,

ordpN ! =

⌊
N

p

⌋
+

⌊
N

p2

⌋
+

⌊
N

p3

⌋
+· · · , ordpN = λ

(
N

p

)
+λ

(
N

p2

)
+λ

(
N

p3

)
+· · · ,

we conclude from the definition of ϕ(x, y) that the following equality holds for each
µ = 0, 1, . . ., 3n:

∏
p

p−ϕ(n/p,µ/p)−ϕ(n/p
2,µ/p2)−··· =

(3n)! (n+ µ)!3

(3n− µ)!n!3(4µ)! ·
(
n

n+ µ

)3
. (20)

Hence setting

ϕ0(x) = max
0�y�3x

ϕ(x, y), (21)

we obtain by (20) the required denominator Dn in the following form:

Dn =
∏
p

pϕ0(n/p)+ϕ0(n/p
2)+ϕ0(n/p

3)+···.

The function (19) is 1-periodic in each variable, therefore by the prime number

theorem the primes p �
√
3n make a contribution of order O(econst·

√
n) to the

asymptotic formula for Dn as n → ∞. This means, in particular, that one can
consider another sequence

D̃n =
∏
p>
√
3n

pϕ0(n/p),

and we have

lim
n→∞

logDn
n

= lim
n→∞

log D̃n
n
.

Consider now another auxiliary function:

ϕ1(x) = max
y∈R
ϕ(x, y) = max

0�y<1
ϕ(x, y);

by contrast with (21) it is 1-periodic and therefore can be explicitly calculated:

ϕ1(x) =




3 if {x} ∈
[
1
4

]
,

2 if {x} ∈
[
0, 14
)
∪
(
1
4 ,
1
3

)
∪
[
1
2

]
,

1 if {x} ∈
[
1
3 ,
1
2

)
∪
(
1
2 ,
2
3

)
∪
[
3
4

]
,

0 if {x} ∈
[
2
3 ,
3
4

)
∪
(
3
4 , 1
)
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(here [x] is the singleton consisting of x). At the same time, for x � 1/3 we
obviously have ϕ0(x) = ϕ1(x). Hence it remains to calculate the function (21) on
the set 0 � x < 1/3:

ϕ0(x) =




3 if x ∈
[
1
4

]
,

2 if x ∈
[
1
6
, 1
4

)
∪
(
1
4
, 1
3

)
,

1 if x ∈
[
1
12 ,

1
6

)
,

0 if x ∈
[
0, 112
)
.

As a result, for the evaluation of the asymptotic behaviour of

D̃n =
∏
p>3n

pϕ0(n/p) ·
∏

√
3n<p�3n

pϕ1(n/p)

as n→∞ it remains to use the prime number theorem again:

lim
n→∞

log D̃n
n

=

∫ 1/3
0

ϕ0(x) d

(
−1
x

)
+

∫ 1/3
0

ϕ1(x) d

(
ψ(x) +

1

x

)

+

∫ 1
1/3

ϕ1(x) dψ(x)

= 18 + 2γ + ψ

(
1

3

)
+ ψ

(
2

3

)
= 18− 3 log 3 = 14.70416313 . . .,

where ψ( · ) is the logarithmic derivative of the gamma function and γ = −ψ(1) is
Euler’s constant.
Summarizing, we can state the following definitive result.

Lemma 3. The asymptotic behaviour of the least common denominator Dn = D
(I)
n

of the polynomials Qn(x) and Pi,n(x), i = 0, 1, . . . , m, is described in case (I) by
the limit relation

lim
n→∞

logD
(I)
n

n
= 18− 3 log 3 = 14.70416313 . . . .

(II) Performing calculations in accordance with formulae (11) and (13) we see

that Dn = D
(II)
n is the least common denominator of the quantities

M ! (N −M + µ)!3µ!
(M − µ)! (N −M)!3(2µ)! (3µ)! =

(3n)! (n+ µ)!3µ!

(3n− µ)!n!3(2µ)! (3µ)! ·
(
n

n + µ

)3
,

µ = 0, 1, . . . , 3n.

Hence the auxiliary function ϕ(x, y) has the following form:

ϕ(x, y) = �3x−y�+3�x�+ �2y�+ �3y�−�3x�−3�x+ y�−�y�+3λ(x+y)−3λ(x),
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and the calculation of the corresponding ϕ0(x) (for 0 � x < 1/3) and ϕ1(x)
produces the following result:

ϕ0(x) =




3 for x ∈
[
2
9 ,
1
3

)
,

2 for x ∈
[
1
6 ,
2
9

)
,

1 for x ∈
[
1
9 ,
1
6

)
,

0 for x ∈
[
0, 19
)
,

ϕ1(x) =




3 for {x} ∈
[
2
9 ,
1
3

)
,

2 for {x} ∈
[
0, 29
)
∪
[
1
3

]
∪
[
1
2

]
,

1 for {x} ∈
(
1
3 ,
1
2

)
∪
(
1
2 ,
2
3

)
,

0 for {x} ∈
[
2
3
, 1
)
.

Thus,

∫ 1/3
0

ϕ0(x) d

(
−1
x

)
+

∫ 1/3
0

ϕ1(x) d

(
ψ(x) +

1

x

)
+

∫ 1
1/3

ϕ1(x) dψ(x)

= 15 + 2γ − ψ
(
2

9

)
+ 2ψ

(
1

3

)
+ ψ

(
2

3

)

= 15− 9
2
log 3− π

2
√
3
− γ − ψ

(
2

9

)
= 13.33336442 . . . ,

and we arrive at the following result.

Lemma 4. The asymptotic behaviour of the denominators Dn = D
(II)
n is described

by the limit relation

lim
n→∞

logD
(II)
n

n
= 15− 9

2
log 3− π

2
√
3
− γ − ψ

(
2

9

)
= 13.33336442 . . . .

Remark. The well-known Gauss formula (see, for example, [10], p. 19) enables
one to calculate the value of ψ(x) in terms of elementary functions, however the
corresponding expressions are fairly cumbersome; for instance,

−ψ
(
2

9

)
= γ +

5

2
log 3 +

π

2
cot
2π

9
+ 2 cos

π

9
log

(
2 sin

2π

9

)

− 2 cos 2π
9
log

(
2 sin

4π

9

)
− 2 cos 4π

9
log

(
2 sin

π

9

)
.

(III) Arguing as before we conclude that for each n the quantity Dn = D
(III)
n is

the least common denominator of the quantities

M ! (N −M + µ)!3(3µ)!
(M − µ)! (N −M)!3µ! (6µ)! =

(3n)! (n+ µ)!3(3µ)!

(3n− µ)!n!3µ! (6µ)! ·
(
n

n+ µ

)3
,

µ = 0, 1, . . . , 3n.
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Hence

ϕ(x, y) = �3x−y�+3�x�+ �y�+ �6y�−�3x�−3�x+y�−�3y�+3λ(x+y)−3λ(x),

therefore

ϕ0(x) =



2 for x ∈

[
1
6
, 1
3

)
,

1 for x ∈
[
1
18 ,

1
6

)
,

0 for x ∈
[
0, 118
)
,

0 � x < 1
3 ,

ϕ1(x) =



2 for {x} ∈

[
0, 1
3

)
∪
[
1
2

]
,

1 for {x} ∈
[
1
3 ,
1
2

)
∪
(
1
2 ,
2
3

)
∪
[
13
18 ,

5
6

]
,

0 for {x} ∈
[
2
3 ,
13
18

)
∪
(
5
6 , 1
)
,

so that

∫ 1/3
0

ϕ0(x) d

(
−1
x

)
+

∫ 1/3
0

ϕ1(x) d

(
ψ(x) +

1

x

)
+

∫ 1
1/3

ϕ1(x) dψ(x)

= 24 + 2γ + ψ

(
1

3

)
+ ψ

(
2

3

)
+ ψ

(
5

6

)
− ψ
(
13

18

)

= 24− 3 log 3 + ψ
(
5

6

)
− ψ
(
13

18

)
= 20.97202138 . . .,

and we arrive at the following result.

Lemma 5. The asymptotic behaviour of the denominators Dn = D
(III)
n is described

by the limit relation

lim
n→∞

logD
(III)
n

n
= 24− 3 log 3 + ψ

(
5

6

)
− ψ
(
13

18

)
= 20.97202138 . . . .

§ 3. Asymptotic behaviour of approximations
We point out straight away that in the original paper [5] the author puts forward

effective methods for the calculation of the asymptotic behaviour of the polynomials
Qn(z

−1) and the remainders Ri,n(z) as n→∞. However — and this was precisely
the case in [5] — a thorough substantiation of empirical arguments remains out-
side the reach of a middle-sized paper, therefore we present in what follows another
approach to the solution of the above-mentioned problem.
By the general theory of Wilf–Zeilberger all the above-constructed objects —

the polynomials Qn(x), Pi,n(x), and the linear forms Ri,n(z) — satisfy difference
equations with respect to the positive integer parameter n. The most convenient
(from the standpoint of algorithms at any rate) are the polynomials Qn(x), which
have a simple representation (11) as hypergeometric series. The next result is in
effect a special case of Theorem 4.4.1 in [11]. Here we denote by N the shift operator
in the n-variable.
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Lemma 6. There exists a difference operator

∆ = F0(x, n) + F1(x, n)N + · · ·+ Fs(x, n)Ns ∈ Z[x, n][N]

such that

∆Qn(x) = F0(x, n)Qn(x) + F1(x, n)Qn+1(x) + · · ·+ Fs(x, n)Qn+s(x) = 0,
n = 1, 2, . . . .

Lemma 7. Let ∆ = ∆(x, n,N) be the difference operator of Lemma 6. Then for
each positive integer n � n0 and for i = 0, 1, . . . , m− 1,

∆(x, n,N)Pi,n(x) = 0, ∆(z−1, n,N)Ri,n(z) = 0.

In other words, the sequences of remainders of approximation satisfy the same
difference equation as the sequence of denominators Qn(x) of the approximants.

Proof. For each n we set

P̃i,n(x) = ∆(x, n,N)Pi,n(x)

=
s∑
j=0

Fj(x, n)Pi,n+j(x) ∈ Q[x], i = 0, 1, . . . , m− 1. (22)

Then

P̃i,n(z
−1) = ∆(z−1, n,N)Pi,n(z

−1)

= ∆(z−1, n,N)
(
Qn(z

−1)fi(z) −Ri,n(z)
)
= −∆(z−1, n,N)Ri,n(z)

= −
s∑
j=0

Fj(z
−1, n)Ri,n+j(z), i = 0, 1, . . . , m− 1. (23)

The total degrees of the polynomials Fj(x, n) are bounded by an absolute constant,
therefore using in the domain |z| < 1/2m = 1/23 the estimates for the Ri,n+j(z),
j = 0, 1, . . ., s, following from limit relation (17) in Lemma 2 we conclude that for
each ε > 0 there exists n1 = n1(ε) such that

log |P̃i,n(z−1)|
n

< log |z|+ 3 · 5 log 2 + ε (24)

for all n � n1(ε). We now select ε = log 2 and carry out further reasonings for each
n � n0 = n1(log 2) and i = 0, 1, . . ., m− 1. Replacing x = z−1 by integers q > 23,
by (24) (with ε = log2) we obtain

|P̃i,n(q)| < 216nq−n. (25)

At the same time the polynomial (22) has a fixed denominator after multi-
plication by which the quantities on the left-hand side of (25) become integers.
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Hence P̃i,n(q) = 0 for all q � q0. We see that the polynomial P̃i,n(x) vanishes at
infinitely many points, so that P̃i,n(x) ≡ 0 for each n � n0 and i = 0, 1, . . . , m− 1.
In view of the definition (22) of P̃i,n(x) and relations (23), we arrive at the required
result.

In fact, for the calculation of the difference operator of Lemma 6 there exists
the Gosper–Zeilberger algorithm of creative telescoping [11], Chapter 6. Using it,
we obtain in case (I) an (explicit, albeit very cumbersome) formula for a difference
operator ∆ = ∆(I)(x, n,N) such that

degx∆
(I) = 6, degn∆

(I) = 33, degN∆
(I) = 4.

The most important information for the evaluation of the asymptotic behaviour is
contained in the characteristic polynomial of this difference operator:

χ(N) = χ(I)(N) = lim
n→∞

∆(I)(x, n,N)

n33

= 23133(2048x− 243)
(
39(524288x2− 248832x− 59049)(N4 + 1)

+ 22(524288x2 − 248832x− 59049)
× (4194304x3− 5308416x2+ 1399680x− 19683)N3

+ 2 · 34(32768x2 + 55296x+ 729)(524288x2− 248832x− 59049)N2

+ 2237(64x− 9)(524288x2− 248832x− 59049)N
)
. (26)

In case (II) for the corresponding difference operator ∆ = ∆(II)(x, n,N) we have

degx∆
(II) = 6, degn∆

(II) = 41, degN∆
(II) = 4;

and its characteristic polynomial differs from χ(I)(N) by a constant factor:

χ(II)(N) = lim
n→∞

∆(II)(x, n,N)

n41
=
315

218
χ(N)

(which, however, comes as no surprise).
Finally, in case (III) for the difference operator ∆ = ∆(III)(x, n,N) we have

degx∆
(III) = 6, degn∆

(III) = 41, degN∆
(III) = 4

and

χ(III)(N) = lim
n→∞

∆(III)(x, n,N)

n41
=
315

22
χ(N).

Now, the asymptotic behaviour of the above-constructed approximants (to poly-
nomials and linear forms) is for each fixed z = 1/x in the domain 0 < |z| < 1
completely determined by the zeros of the characteristic polynomial χ(N). This
follows by Lemmas 6, 7, and the following generalization of Poincaré’s theorem
(see [12], Theorem 1).

Lemma 8. Let un, n = n0, n0+1, . . . , be a sequence that is a non-trivial solution of
a non-degenerate difference equation with characteristic polynomial χ(N), χ(0) 	= 0.
Then there exists an upper limit limn→∞ |un|1/n, which is equal to the absolute value
|N0| of a zero of χ(N). Moreover, if the other zeros of χ(N) have absolute values
distinct from |N0|, then one can replace the upper limit by the ordinary one.
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§ 4. Irrationality measures
For estimates of the irrationality measure we require the following result, which

was established in [13], Proposition 3.3 (see also [7], Remark 2.1 as regards a refine-
ment of the statement).

Lemma 9. Let α ∈ R be an irrational number. Assume that a sequence of linear
forms qnx− pn with integer coefficients from the field of rationals or an imaginary
quadratic field satisfies the relations

lim
n→∞

log |qn|
n

= C1, lim
n→∞

log |qnα− pn|
n

� −C0,

where C0 and C1 are real positive numbers. Then µ(α) � 1 +C1/C0.
Proof of the theorem. We consider in detail the estimate (6). For its derivation in
case (I), for each n = 1, 2, . . . we set

Pn(x) = 21460P1,n(x) + 1123P0,n(x),

Rn(z) = 21460R1,n(z) + 1123R0,n(z)

= Qn(z
−1)

∞∑
ν=0

(1/4)ν(1/2)ν(3/4)ν
ν!3

(21460ν + 1123)zν − Pn(z−1)

and consider the corresponding numerical forms resulting from the substitution

z = −1/8822 and multiplication by the common denominator Dn = D(I)n of the
coefficients of the polynomials Qn(x) and Pn(x):

rn = DnRn(−882−2) = DnQn(−8822) ·
4 · 882
π
−DnPn(−8822)

= qn ·
1

π
− pn ∈ Z

1

π
+ Z, n = 1, 2, . . . ; (27)

it is precisely at this point that we use formula (1). Starting from some n the
sequences Qn(−8822) and Rn(−1/8822) satisfy the same difference equation
with operator ∆(I)(−8822, n,N). Here the first sequence is non-trivial; so also is
the second sequence because of (27) and since 1/π is irrational. By Lemma 8 the
asymptotic behaviour of these sequences is determined by certain zeros N1 and N2
of the characteristic polynomial (26) with x = −8822:

lim
n→∞

log |Qn(−8822)|
n

= log |N1|, lim
n→∞

log |Rn(−1/8822)|
n

� log |N2|.

Multiplying out a numerical coefficient one brings the characteristic polynomial to
the following form:

N4 − 401273814916233455620N3+ 163210109239302N2− 22127620N+ 1

and for its zeros (of which two are real and two are complex conjugate) we have

log |N1| = 47.44117569 . . . ,
log |N2| = log |N′2| = −15.80349476 . . ., log |N′′2 | = −15.83418617 . . . .
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In our choice of a zero majorizing the asymptotic expression for the sequence
Rn(−882−2) we used the trivial estimate (18) of Lemma 2. For the evaluation
of the asymptotic behaviour of the linear forms (27) with integer coefficients it now
remains to use Lemma 3. In the notation of Lemma 9 we obtain

C0 = − log |N2| − (18− 3 log 3) = 1.09933162 . . .,
C1 = log |N1|+ (18− 3 log 3) = 62.14533883 . . . ,

therefore

µ(π−1) � 1 + C1
C0
= 57.53011083 . . . .

In view of the equality µ(π) = µ(π−1), we arrive at the required estimate (6).
For the derivation of the estimate (7) we use formula (2). In this case the asymp-

totic behaviour of the sequence Dn as n→∞ is also described by Lemma 3, and for
z = 1/994 the corresponding characteristic polynomial (26) is (up to multiplication
by a numerical coefficient) equal to

N4 + 755528641771136725636176380N3

+ 2488600714253930502N2+ 2732361980N+ 1.

Hence

C0 = 20.62568987 . . .− 14.70416313 . . .= 5.92152673 . . .,
C1 = 61.88945992 . . .+ 14.70416313 . . .= 76.59362305 . . .

and we obtain the estimate

µ

(
1

π
√
2

)
� 1 + C1

C0
= 13.93477619 . . . ,

which yields in effect (7).
The estimates (8) and (9) correspond to the use of formulae (3) (case (II))

and (4) (case (III)), respectively. For z = −1/5002 the characteristic polynomial is
as follows:

19683N4− 262145327105399680078732N3

+ 331773760512118098N2− 139968078732N+ 19683,
so that in case (II),

C0 = 14.66365222 . . .− 13.33336442 . . .= 1.33028779 . . . ,
C1 = 44.03567538 . . .+ 13.33336442 . . .= 57.36903981 . . . ,

and by Lemma 9 we obtain the estimate (8). Finally, for z = −1/533603 the
characteristic polynomial is

19683N4− 58838593699430396423147427221766247926046392398732N3

+ 122534920953081108757902878834806098N2

− 85062121695608910732N+ 19683;
therefore in case (III),

C0 = 34.90377291 . . .− 20.97202138 . . .= 13.93175152 . . . ,
C1 = 104.71137186 . . .+ 20.97202138 . . .= 125.68339324 . . .,

and we arrive at the estimate (9). The proof of the theorem is now complete.
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§ 5. Final observations
Of course, we could consider another choice of the parameters M and N . How-

ever, it turns out that in all cases under consideration our choice of these parameters
is optimal. In addition, the evaluation of the asymptotic behaviour of the coeffi-
cients and the approximating forms becomes much more complicated in the general
case — not only technically, but also as regards substantiations. We also point out
that one can immediately obtain difference equations for the sequences of poly-
nomials Pi,n(x) and forms Ri,n(z) since each of these objects is a double hyper-
geometric series and a suitable version of the algorithm of creative telescoping
can be used. However, the corresponding technical realization of this idea requires
an enormous amount of time.
As regards other applications of the methods used in the present paper, the

following observation due to Guillera [14] appears important. He points out that
formulae of the Ramanujan type are closely connected with rapidly convergent
series for the logarithms of algebraic numbers and other interesting constants. More
precisely, by considering in [14] series of the following kind:

F (k) =
∞∑
ν=0

(1/4 + k)ν(1/2 + k)ν(3/4 + k)ν
(1 + k)3ν

(21460(ν + k) + 1123) · (−1)ν
8822(ν+k)+1

(cf. (1)) he discovers that their values have elementary expressions not only for
k = 0, but also for k = 1/2. For instance, in the above example

F (0) =
4

π
, F

(
1

2

)
= 4 log

(
2 · 310
76

)

(the first equality holds by (1)). A large number of other series in the list in [14]
allows one to conjecture the existence of a broad class of formulae for mathemati-
cally interesting constants to which one can successfully apply the methods of the
present paper. Unfortunately, we know of no more or less systematic theory in this
area; the existing examples must perhaps be regarded as lucky incidents.
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