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Abstract. We construct simultaneous rational approximations to the q-series L1(x1; q)

and L1(x2; q), and, if x = x1 = x2, to the series L1(x; q) and L2(x; q), where

L1(x; q) =

∞∑
n=1

(xq)n

1− qn
=

∞∑
n=1

xqn

1− xqn
, L2(x; q) =

∞∑
n=1

n(xq)n

1− qn
=

∞∑
n=1

xqn

(1− xqn)2
.

Applying the construction, we obtain quantitative linear independence over Q of the

numbers in the following collections: 1, ζq(1) = L1(1; q), ζq2 (1), and 1, ζq(1), ζq(2) =

L2(1; q) for q = 1/p, p ∈ Z \ {0,±1}.

Let q be a variable taking values in the disc |q| < 1, and let p = 1/q be its reciprocal.
The q-logarithm is defined by the series

L1(x; q) = − lnq(1− x) =
∞∑
n=1

(xq)n

1− qn
=
∞∑
n=1

xn

pn − 1

=
∞∑
n=1

xqn

1− xqn
= x

∞∑
n=1

1
pn − x

, |x| < |p| = |q|−1.

It really inherits certain properties of the series

Li1(x) =
∞∑
n=1

xn

n
, |x| < 1,

for the ordinary logarithm − log(1−x), although from the number-theoretical point of
view it is, in a sense, more intriguing: there are no transcendence results, at least for
its values at rational points x. Even the irrationality is usually asserted for x rational
but p integer, |p| > 1. P. Erdős proved [Er] that the q-harmonic series ζq(1) = L1(1; q)
is irrational for q = 1/p, p ∈ Z \ {0,±1}, already in 1948, and only recently, based
on new ideas, further results in this direction, first quantitative and then qualitative,
were obtained in [Be], [Bo], [BV1], [As], [MVZ], [BZ].

‡The work is partially supported by grant no. 03-01-00359 of the Russian Foundation for Basic
Research.
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2 W. ZUDILIN

The series, which may be regarded as a possible q-extension of the series

Li2(x) =
∞∑
n=1

xn

n2
, |x| 6 1,

for the dilogarithm, is

L2(x; q) =
∞∑
n=1

n(xq)n

1− qn
=
∞∑
n=1

nxn

pn − 1

=
∞∑
n=1

xqn

(1− xqn)2
= x

∞∑
n=1

pn

(pn − x)2
, |x| < |p| = |q|−1.

In particular, the value ζq(2) = L2(1; q) is in a very interesting parallel with the
number ζ(2) (see [Zu2]). On the other hand, the equations

x
d

dx
L1(x; q) = L2(x; q), x

d
dx

Li2(x) = Li1(x)

show that our q-analogues of the logarithm and dilogarithm have an opposite differ-
ential relationship than their originals.

In Section 1, we present a general construction of simultaneous rational approx-
imations to the q-functions L1(x1; q) and L1(x2; q), where x1, x2 are distinct fixed
complex numbers. It happens so that the only case, when we are able to apply the
functional construction for getting an arithmetic result for the values, is x1 = 1 and
x2 = −1. The following theorem and its corollary are proved, independently and by
a completely different method, by P. Bundschuh and K. Väänänen in [BV2].

Theorem 1. Let q = 1/p for some p ∈ Z \ {0,±1}. Then the numbers

1, L1(1; q) =
∞∑
n=1

1
pn − 1

and L1(−1; q) = −
∞∑
n=1

1
pn + 1

are linearly independent over Q. Moreover, for any ε > 0 there exists a positive
constant X (ε) such that

|X0 +X1L1(1; q) +X2L1(−1; q)| > X−2(π2+4)/(π2−8)−ε, X = max{|X1|, |X2|},
(1)

for any integers X0, X1, X2 satisfying X > X (ε). (Numerically, 2(π2 + 4)/(π2 − 8) =
14.83694025 . . . .)

Since
L1(1; q) = ζq(1) and

1
2
(
L1(1; q) + L1(−1; q)

)
= ζq2(1),

we have the following curious

Corollary. Let q = 1/p for some p ∈ Z \ {0,±1}. Then the numbers

1, ζq(1) =
∞∑
n=1

1
pn − 1

and ζq2(1) =
∞∑
n=1

1
p2n − 1
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are linearly independent over Q. Moreover, for any ε > 0 there exists a positive
constant X (ε) such that

|X0 +X1ζq(1) +X2ζq2(1)| > X−2(π2+4)/(π2−8)−ε, X = max{|X1|, |X2|},

for any integers X0, X1, X2 satisfying X > X (ε).

If x1 = x2 = x, our construction may be developed further to provide simultaneous
rational approximations to the q-functions L1(x; q) and L2(x; q). This is done in
Section 2 and the only arithmetic application for the values is the following result,
previously obtained by K. Postelmans and W. Van Assche in [PA] using multiple (in
fact, double) little q-Jacobi polynomials.

Theorem 2. Let q = 1/p for some p ∈ Z \ {0,±1}. Then the numbers

1, ζq(1) = L1(1; q) =
∞∑
n=1

1
pn − 1

and ζq(2) = L2(1; q) =
∞∑
n=1

pn

(pn − 1)2

are linearly independent over Q. Moreover, for any ε > 0 there exists a positive
constant X (ε) such that

|X0 +X1ζq(1) +X2ζq(2)| > X−2(π2+4)/(π2−8)−ε, X = max{|X1|, |X2|}, (2)

for any integers X0, X1, X2 satisfying X > X (ε).

Recall standard q-notations, which will be used throughout the paper:

(a; q)n =
n∏
ν=1

(1− aqν−1),
[
n

k

]
q

=
(q; q)n

(q; q)k · (q; q)n−k
∈ Z[q],

where k = 0, 1, . . . , n and n = 0, 1, 2, . . . . The definition of the q-hypergeometric
series appears later in (15).

1. Simultaneous approximations to two q-logarithms

1.1. Let x1, x2 be distinct complex arguments of two q-logarithms. The construction
below will depend on the positive integers n and m satisfying m > 2n. Take

R̃(T ) =
(qT/x1; q)n(qT/x2; q)n

(qn+1T ; q)2n+1
=

∏n
j=1(1− qjT/x1)(1− qjT/x2)∏2n

k=0(1− qk+n+1T )
. (3)

Lemma 1. The following partial fraction decomposition is valid:

R̃(T ) =
2n∑
k=0

Ak
1− qk+n+1T

, (4)

where

Ak = (−1)k(x1x2)−nq−n(n+1)−2kn+k(k+1)/2 (qk+1x1; q)n(qk+1x2; q)n
(q; q)k(q; q)2n−k

(5)

= (x1x2)−nq−n(n+1) (qx1; q)n(qx2; q)n
(q; q)2n

· (q−2n; q)k(qn+1x1; q)k(qn+1x2; q)k
(q; q)k(qx1; q)k(qx2; q)k

qk,
(6)
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and also

Akp
(k+n+1)(m+1) = pM+k(k+1)/2+k(m−2n) (pk+1/x1; p)n(pk+1/x2; p)n

(p; p)k(p; p)2n−k
(7)

with M = n(m+ 2n+ 2) +m+ 1.

Proof. The existence and uniqueness of the decomposition (4) is a classical knowledge
combined with the fact that R̃(T ) = O(T−1) as T → ∞. Moreover, we may use the
standard procedure for determining the unknown coefficients:

Ak = R̃(T )(1− qk+n+1T )
∣∣
T=q−(k+n+1) =

(q−(k+n)/x1; q)n(q−(k+n)/x2; q)n
(q−k; q)k(q; q)2n−k

.

The latter expression implies formulae (5) and (6). Then we deduce

Akp
(k+n+1)(m+1) = p(k+n+1)(m+1)+(2n−k)(2n−k+1)/2 (pk+1/x1; p)n(pk+1/x2; p)n

(p; p)k(p; p)2n−k

that after simple reduction becomes (7). �

1.2. Now let R(T ) = R̃(T ) ·Tm+1, and let x denote any of the two numbers x1 or x2.
Note that the function R(T ) has zeros at T = xqt for t = −1,−2, . . . ,−n. Consider
the quantities

I(x) =
∞∑
t=0

R(T )
∣∣
T=xqt

=
∞∑

t=−n
R(T )

∣∣
T=xqt

, x ∈ {x1, x2}. (8)

Lemma 2. We have

I(xj) = AL1(xj ; q)−A∗(xj)−A∗∗(xj), j = 1, 2, (9)

where

A =
2n∑
k=0

Akp
(k+n+1)(m+1), A∗(x) =

2n∑
k=0

Akp
(k+n+1)(m+1)

k∑
l=1

x

pl − x
, (10)

A∗∗(x) = p(n+1)(m+1)
m−1∑
l=0

xm−l

pm−l − 1

2n∑
k=0

Akq
−k(l+1) (11)

In other words, I(x1) and I(x2) viewed as functions of p = 1/q realize simultaneous
rational approximations to the q-logarithms L1(x1; q) and L1(x2; q).

Proof. Write

I(x) =
∞∑

t=−n
R(T )

∣∣
T=xqt

=
∞∑

t=−n
xm+1qt(m+1)

2n∑
k=0

Ak
1− xqk+n+t+1

= xm+1
2n∑
k=0

Akq
−(k+n+1)(m+1)

∞∑
t=−n

q(k+n+t+1)(m+1)

1− xqk+n+t+1

= xm+1
2n∑
k=0

Akq
−(k+n+1)(m+1)

∞∑
l=k+1

ql(m+1)

1− xql
.
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Since

xm+1
∞∑

l=k+1

ql(m+1)

1− xql
=

∞∑
l=k+1

xql

1− xql
−

∞∑
l=k+1

xql − xm+1ql(m+1)

1− xql

=
∞∑
l=1

xql

1− xql
−

k∑
l=1

xql

1− xql
−

∞∑
l=k+1

m∑
j=1

(xql)j

= L1(x; q)−
k∑
l=1

xql

1− xql
−

m∑
j=1

xj
∞∑

l=k+1

(qj)l

= L1(x; q)−
k∑
l=1

xql

1− xql
−

m∑
j=1

xjqj(k+1)

1− qj
, (12)

we obtain

I(x) =
2n∑
k=0

Akq
−(k+n+1)(m+1) · L1(x; q)−

2n∑
k=0

Akq
−(k+n+1)(m+1)

k∑
l=1

xql

1− xql

−
2n∑
k=0

Akq
−(k+n+1)(m+1)

m∑
j=1

xjqj(k+1)

1− qj

=
2n∑
k=0

Akp
(k+n+1)(m+1) · L1(x; q)−

2n∑
k=0

Akp
(k+n+1)(m+1)

k∑
l=1

x

pl − x

− p(n+1)(m+1)
m∑
j=1

(xq)j

1− qj
2n∑
k=0

Akq
−k(m+1−j),

from which the result follows. Note that from (10), (11) and the explicit formulae for
Ak, presented in Lemma 1, the quantities A, A∗(x) and A∗∗(x) are indeed rational
functions of the variable p = 1/q. �

Remark. The above construction might be easily generalized: the s quantities

I(xj) =
∞∑
t=0

(qT/x1; q)n · · · (qT/xs; q)n
(qn+1T ; q)m+1

Tm+1

∣∣∣∣
T=xjqt

, j = 1, . . . , s,

correspond to (functional) simultaneous approximations to L1(x1; q), . . . , L1(xs; q).
A problem here consists in the fact that no arithmetic applications to the values are
available if s > 2.

1.3. From Lemma 1, multiplication of every Ak byXn(p; p)2n, whereX is the product
of the numerators of the rational numbers x1 and x2, and by a ‘suitable’ power of
the polynomial p, gives us polynomials in Z[p], whence from (7) and the starting
condition m > 2n we deduce the following result.

Lemma 3. We have

Xnp−M (p; p)2n ·A ∈ Z[p], Xnp−M (p; p)2nD2n(p, x) ·A∗(x) ∈ Z[p], (13)

Xnp−(n+1)(m+1)(p; p)2nDm(p, 1) ·A∗∗(x) ∈ Z[p], (14)
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where M = n(m + 2n + 2) + m + 1 and DN (p, x), x ∈ C, denotes the least common
multiple of the polynomials p− x, p2 − x, . . . , pN − x in the ring Z[p].

Inclusion (14) may be considerably improved by the application of the following
q-hypergeometric identity.

Lemma 4. For s > 1,

s+1φs

(
a, b1, . . . , bs
c1, . . . , cs

∣∣∣∣ q, z) =
∞∑
k=0

(a; q)k(b1; q)k · · · (bs; q)k
(q; q)k(c1; q)k · · · (cs; q)k

zk (15)

=
(az; q)∞
(z; q)∞

s∏
j=1

(bj ; q)∞
(cj ; q)∞

∞∑
kj=0

(cj/bj ; q)kj
(q; q)kj

b
kj
j

(z; q)k1+···+ks
(az; q)k1+···+ks

.

We do not reproduce the proof of this simple fact, since it follows lines of the proof
in [GR], Section 1.4, of classical Heine’s transform (corresponding to the case s = 1).

The promised improvement of (14) is as follows.

Lemma 5. We have
Xnp−MDm(p, 1) ·A∗∗(x) ∈ Z[p]. (16)

Proof. Using (6) and Lemma 4 with s = 2 we see that

2n∑
k=0

Akq
−k(l+1) = (x1x2)−nq−n(n+1) (qx1; q)n(qx2; q)n

(q; q)2n

× 3φ2

(
q−2n, qn+1x1, q

n+1x2

qx1, qx2

∣∣∣∣ q, q−l)
= (x1x2)−nq−n(n+1) (q−2n−l; q)2n

(q; q)2n

×
n∑

k1=0

(q−n; q)k1

(q; q)k1

(qn+1x1)k1

n∑
k2=0

(q−n; q)k2

(q; q)k2

(qn+1x2)k2

× (q−l; q)k1+k2

(q−2n−l; q)k1+k2

= pn(n+1)+n(2n+1) (pl+1; p)2n

(p; p)2n

n∑
k1=0

n∑
k2=0

(pl−k1−k2+1; p)k1+k2

(p2n+l−k1−k2+1; p)k1+k2

× (pn−k1+1; p)k1(pn−k2+1; p)k2

(p; p)k1(p; p)k2

(−1)k1+k2xk1−n
1 xk2−n

2

× pk1(k1+1)/2+k2(k2+1)/2−(k1+k2)(n+1)

= pn(2n+1)
n∑

k1=0

n∑
k2=0

k1+k26l

[
2n+ l − k1 − k2

2n

]
p

[
n

k1

]
p

[
n

k2

]
p

(−1)k1+k2

× xk1−n
1 xk2−n

2 p(n−k1)(n−k1+1)/2+(n−k2)(n−k2+1)/2. (17)

Substituting this result into (11) we get the desired inclusion (16). �
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1.4. The asymptotic evaluation of the approximations I(n)(xj) = I(xj), j = 1, 2, and
coefficients A(n) = A as n→∞ follows a standard scheme.

Lemma 6. For p ∈ Z \ {0,±1}, we have

lim
n→∞

log |I(n)(xj)|
n2 log |p|

= 0, j = 1, 2. (18)

Proof. From (8) and m > 2n we deduce that

I(x) = R(T )|T=x +O(qm+1) ∼ R̃(x) as n→∞

for x ∈ {x1, x2}, with the immediate consequence (see (3))

lim
n→∞

log |I(n)(xj)|
n2 log |q|

= 0, j = 1, 2,

yielding (18). �

Lemma 7. Let m = bαnc with some real α > 2 (the brackets b · c denote the integer
part of a number). Then, for p ∈ Z \ {0,±1}, the following limit relation is valid:

lim
n→∞

log |A(n)|
n2 log |p|

= 3(1 + α). (19)

Proof. For the sequence A = A(n), we use the explicit formulae (10) and (5). We
have A =

∑2n
k=0 Ãk, where

Ãk = Akp
(k+n+1)(m+1)

= (−1)k(x1x2)−np(n+1)(n+m+1)+(2n+m+1)k−k(k+1)/2 (qk+1x1; q)n(qk+1x2; q)n
(q; q)k(q; q)2n−k

.
(20)

Since

Ãk

Ãk−1

= −p2n+m−k+1 (1− qk+nx1)(1− qk+nx2)(1− q2n−k+1)
(1− qkx1)(1− qkx2)(1− qk)

, k = 1, 2, . . . , 2n,

we obtain |Ãk| > |p| · |Ãk−1| for k = 1, 2, . . . , 2n, unless n is sufficiently large. The
latter inequalities give us

|A| =
∣∣∣∣ 2n∑
k=0

Ãk

∣∣∣∣ 6 |Ã2n|
2n∑
k=0

|p|−k < |Ã2n| ·
1

1− |p|−1
,

|A| =
∣∣∣∣ 2n∑
k=0

Ãk

∣∣∣∣ > |Ã2n| − |Ã2n−1| > |Ã2n| ·
(

1− 1
|p|

)
.

(21)

Finally, by (20)

|Ã2n| = |x1x2|−n|p|3n
2+(3n+1)(m+1)

(
1 +O(|q|)

)
as n→∞,

that in combination with (21) and m = bαnc yield (19). �
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1.5. In order to prove a linear independence result for the values of L1(x; q) at
two different points x1, x2, we should deal with the approximations having integer
coefficients. This means that we are required to multiply our approximations (9) by

Xnp−M · l.c.m.
(
(p; p)2n, Dm(p, 1)

)
· l.c.m.

(
D2n(p, x1), D2n(p, x2)

)
(22)

(see Lemmas 3, 5). Unfortunately, in spite of the high negative power of p, the
factor (22) always increases to infinity with n and this fact, in view of Lemma 6,
means that no arithmetic result could follow.

Nevertheless, in the special case x1 = 1, x2 = −1 we may improve inclusions (13)
of Lemma 3 and use the precise estimates from [As], [MVZ] for the degree of the
polynomials

D̂m,2n(p) = l.c.m.
(
D2n(p, 1), D2n(p,−1), Dm(p, 1)

)
= l.c.m.

(
Dm(p, 1), D2n(p,−1)

)
, n = 1, 2, . . . ,

to get our Theorem 1.

Lemma 8. If x1 = 1 and x2 = −1, then the following inclusions hold:

p−M (p; p2)n ·A ∈ Z[p], p−M (p; p2)nD2n(p,±1) ·A∗(±1) ∈ Z[p], (23)

p−MDm(p, 1) ·A∗∗(±1) ∈ Z[p]. (24)

In other words, the factor
p−M (p; p2)nD̂m,2n(p)

is a common denominator of the approximations I(1) and I(−1).

Proof. The inclusion (24) is already shown in Lemma 5. By (7),

(p; p2)n ·Akp(k+n+1)(m+1)

= pM+k(k+1)/2+k(m−2n) (p; p)2n

(p2; p2)n
· (pk+1; p)n(−pk+1; p)n

(p; p)k(p; p)2n−k

= pM+k(k+1)/2+k(m−2n)

[
n+ k

k

]
p2

[
2n
k

]
p

∈ p(2n+1)2
Z[p];

thus, the inclusions (23) follow from (10). �

Lemma 9 ([MVZ], Corollary of Lemma 1). Suppose 2n 6 m 6 4n. Then

degp D̂m,2n(p) =
1
π2

(2m2 + 4(2n)2) +O(n log n) as n→∞.

In other words, for p integer, |p| > 1,

lim
n→∞

log |D̂bαnc,2n(p)|
n2 log |p|

=
2
π2

(8 + α2).

Finally, we present a non-vanishing property of the approximations I(n)(x), where
x ∈ {x1, x2} = {±1}.
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Lemma 10. For any p ∈ Z \ {0,±1} and any pair of rational numbers X1 and X2,
X2

1 +X2
2 6= 0, we have

X1I
(n)(1) +X2I

(n)(−1) 6= 0

for all n sufficiently large.

Proof. Using the definition of I(x) we deduce that

I(n)(±1) =
∞∑
t=0

R(T )
∣∣
T=±qt = R(±1) +O(qm+1)

= − (q; q)n(−q; q)n
(±qn+1; q)2n+1

+O(q2n+1) = − (q2; q2)n
(1∓ qn+1)

(
1 +O(qn+2)

)
= −(1± qn+1)(q2; q2)∞

(
1 +O(qn+2)

)
as n→∞,

whence

X1I
(n)(1)+X2I

(n)(−1) = −
(
(X1+X2)+(X1−X2)qn+1

)
(q2; q2)∞

(
1+O(qn+2)

)
. (25)

Therefore, the q-expansion of (25) starts either from q0 if X1 6= X2, or from qn+1

otherwise. This means that the expression (25) is not zero for all n sufficiently
large. �

1.6. Everything is now ready for proving Theorem 1. Our general tool in deducing
estimates for the linear independence measures will be Lemma 2.1 from [Ha], which
needs the following ‘q-adoption’.

Lemma 11. Let γ1, γ2 be real numbers, and let

I(n)
j = A(n)γj − B(n)

j , j = 1, 2, n = 1, 2, . . . ,

be two sequences of linear forms with integer coefficients A(n),B(n)
1 ,B(n)

2 . Suppose
that

lim
n→∞

log |I(n)
1 |

n2 log |p|
= lim
n→∞

log |I(n)
2 |

n2 log |p|
= −C0, lim

n→∞

log |A(n)|
n2 log |p|

= C1

for positive numbers C0, C1, and that there exist infinitely many n ∈ N satisfying
I(n)

1 /I(n)
2 6= ρ for any rational ρ. Then the numbers 1, γ1 and γ2 are linear indepen-

dent over Q and, for any ε > 0, there exists a positive integer X (ε) such that

|X0 +X1γ1 +X2γ2| > X−C1/C0−ε, X = max{|X1|, |X2|},

for any integers X0, X1, X2 satisfying X > X (ε).

Proof of Theorem 1. Let p ∈ Z \ {0,±1}. Take x1 = 1, x2 = −1, and

I(n)
j = p−M (p; p2)nD̂m,2n(p) · I(n)(xj)

= A(n)L1(xj ; q)− B(n)
j , j = 1, 2, n = 1, 2, . . . ,
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where A(n), B(n)
1 and B(n)

2 are integers in accordance with Lemma 8. Then Lemmas
6, 7, 9 and the fact degp(p; p2)n = n2 imply

C0 = − lim
n→∞

log |I(n)
j |

n2 log |p|
= 3− 24

π2
, j = 1, 2,

C1 = lim
n→∞

log |A(n)|
n2 log |p|

= 6 +
24
π2
.

If ρ is a rational number, non-vanishing of I(n)
1 − ρI

(n)
2 for all n sufficiently large

follows from Lemma 10. Therefore, we can apply Lemma 11 to conclude with the
linear independence of the numbers 1, L1(1; q), L1(−1; q), and with the estimate (1)
for any integers X0, X1, X2 satisfying X = max{|X1|, |X2|} > X (ε). �

2. Simultaneous approximations to the q-logarithm and q-dilogarithm

2.1. Now let x1 = x2 = x in the settings of the previous section. Then all for-
mulae, obtained there, remain valid, but we do not have any more simultaneous
rational approximations to two q-logarithms, just to the one, L1(x; q). On the other
hand, the function R̃(T ) in (3) has now double zeros at the points T = xqt for
t = −1,−2, . . . ,−n, hence

R̃′(T ) = T
d

dT
R̃(T ) + (2n+ 1)R̃(T ) =

2n∑
k=0

Ak((2n+ 1)− 2nqk+n+1T )
(1− qk+n+1T )2

(26)

has zeros at these points. Therefore, taking R′(T ) = R̃′(T ) · T 2n+1, we will consider
the quantity

I ′(x) =
∞∑
t=0

R′(T )
∣∣
T=xqt

=
∞∑

t=−n
R′(T )

∣∣
T=xqt

.

Lemma 12. We have

I ′(x) = AL2(x; q)−B∗ −B∗∗, (27)

where A is given in (10), while

B∗ =
2n∑
k=0

Akp
(k+n+1)(2n+1)

k∑
l=1

xpl

(pl − x)2
, (28)

B∗∗ = p(n+1)(2n+1)
2n−1∑
l=0

(2n− l)x2n−l

p2n−l − 1

2n∑
k=0

Akq
−k(l+1). (29)

In other words, I(x) = AL1(x; q) − A∗(x) − A∗∗(x) and I ′(x) in (27) viewed as
functions of p = 1/q realize simultaneous rational approximations to the q-logarithm
L1(x; q) and q-dilogarithm L2(x; q).
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Proof. We obtain

I ′(x) =
∞∑

t=−n
R′(T )

∣∣
T=xqt

=
∞∑

t=−n
x2n+1qt(2n+1)

2n∑
k=0

Ak((2n+ 1)− 2nxqk+n+t+1)
(1− xqk+n+t+1)2

=
2n∑
k=0

Akq
−(k+n+1)(2n+1)

∞∑
t=−n

(2n+ 1)(xqk+n+t+1)2n+1 − 2n(xqk+n+t+1)2n+2

(1− xqk+n+t+1)2

=
2n∑
k=0

Akq
−(k+n+1)(2n+1)

∞∑
l=k+1

(2n+ 1)(xql)2n+1 − 2n(xql)2n+2

(1− xql)2
. (30)

Applying the identity

y − (2n+ 1)y2n+1 + 2ny2n+2

(1− y)2
= y

d
dy

(
y − y2n+1

1− y

)
= y

d
dy

2n∑
j=1

yj =
2n∑
j=1

jyj , |y| < 1,

as in (12) we see that

∞∑
l=k+1

(2n+ 1)(xql)2n+1 − 2n(xql)2n+2

(1− xql)2

=
k+1∑
l=1

xql

(1− xql)2
−

∞∑
l=k+1

xql − (2n+ 1)(xql)2n+1 + 2n(xql)2n+2

(1− xql)2

=
∞∑
l=1

xql

(1− xql)2
−

k∑
l=1

xql

(1− xql)2
−

∞∑
l=k+1

2n∑
j=1

j(xql)j

= L2(x; q)−
k∑
l=1

xql

(1− xql)2
−

2n∑
j=1

jxjqj(k+1)

1− qj
,

hence we may continue (30) as follows:

I ′(x) =
2n∑
k=0

Akp
(k+n+1)(2n+1) · L2(x; q)−

2n∑
k=0

Akp
(k+n+1)(2n+1)

k∑
l=1

xpl

(pl − x)2

− p(n+1)(2n+1)
2n∑
j=1

j(xq)j

1− qj
2n∑
k=0

Akq
−k(2n+1−j).

The coefficient of L2(x; q) in the latter expression is exactly the same as of L1(x; q)
in (9), while for the tails we have the required formulae (28) and (29). �

2.2. Using (7), (28) and the representation

B∗∗ = p(2n+1)2
2n−1∑
l=0

(2n− l)x2n−l

p2n−l − 1

n∑
k1=0

n∑
k2=0

k1+k26l

[
2n+ l − k1 − k2

2n

]
p

[
n

k1

]
p

[
n

k2

]
p

(−1)k1+k2

× xk1+k2−2np(n−k1)(n−k1+1)/2+(n−k2)(n−k2+1)/2

derived from (29) and (17), we obtain the following assertion.
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Lemma 13. We have the inclusions

X2n(p; p)2np
−(2n+1)2

D2n(p, x)2 ·B∗ ∈ Z[p], (31)

X2np−(2n+1)2
D2n(p, 1) ·B∗∗ ∈ Z[p], (32)

where X is the numerator of the rational number x.

2.3. Reasoning as in the first paragraph of Subsection 1.5, we see that the inclusions
of Lemmas 3, 5, 13 and the asymptotics of Lemma 6 give no chance to prove a linear
independence result for the numbers 1, L1(x; q) and L2(x; q). Nevertheless, when
x = 1, inclusions (13) and (31) may be seriously improved, and this is a way to prove
Theorem 2.

Lemma 14. If x = x1 = x2 = 1, then[
2n
n

]
p

p−(2n+1)2
·A ∈ Z[p],

[
2n
n

]
p

p−(2n+1)2
D2n(p, 1) ·A∗ ∈ Z[p],[

2n
n

]
p

p−(2n+1)2
D2n(p, 1)2 ·B∗ ∈ Z[p].

(33)

In other words, the correct denominator of the approximations I(1) and I ′(1) is[
2n
n

]
p

p−(2n+1)2
D2n(p, 1)2.

Proof. If x = 1, then from (7)[
2n
n

]
p

·Akp(k+n+1)(2n+1) = p(2n+1)2+k(k+1)/2 (p; p)2n

(p; p)2
n

· (pk+1; p)2
n

(p; p)k(p; p)2n−k

= p(2n+1)2+k(k+1)/2

[
n+ k

k

]2

p

[
2n
k

]
p

∈ p(2n+1)2
Z[p].

Substituting these formulae into (10), (28) and using (16), (32) result in (33). �

2.4. It remains to indicate the results similar to Lemmas 6 and 10 for the sequences
I(n)(1) = I(1) and I ′

(n)(1) = I ′(1) when n increases to infinity.

Lemma 15. For p ∈ Z \ {0,±1}, we have

lim
n→∞

log |I(n)(1)|
n2 log |p|

= lim
n→∞

log |I ′(n)(1)|
n2 log |p|

= 0.

In addition, for any pair of rational numbers X1 and X2, X2
1 +X2

2 6= 0, the condition

X1I
(n)(1) +X2I

′(n)(1) 6= 0

holds unless n is sufficiently large.

Proof. As in the proof of Lemma 6, we have

I(1) = R̃(1) +O(q2n+1) and I ′(1) = R̃′(1) +O(q2n+1) as n→∞.
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Formulae (26) give us

R̃′(1) = R̃(1) ·
(

(2n+ 1)− 2
n∑
j=1

qj

1− qj
+O(qn+1)

)
= R̃(1) ·

(
(2n+ 1) +O(q)

)
as n→∞,

where the constant in O(q) is independent of n. Therefore, the relation X1I
(n)(1) +

X2I
′(n)(1) = 0 cannot hold identically for a fixed pair of rationals X1, X2 with

X2
1 +X2

2 6= 0, and also

lim
n→∞

log |I(n)(1)|
n2 log |q|

= lim
n→∞

log |I ′(n)(1)|
n2 log |q|

= 0,

thus showing the truth of the lemma. �

Proof of Theorem 2. Let p ∈ Z \ {0,±1} and x = x1 = x2 = 1 in the above construc-
tion. Then the linear forms

I(n)
1 =

[
2n
n

]
p

p−(2n+1)2
D2n(p, 1)2 · I(n)(1) = A(n)L1(1; q)− B(n)

1 ,

I(n)
2 =

[
2n
n

]
p

p−(2n+1)2
D2n(p, 1)2 · I ′(n)(1) = A(n)L2(1; q)− B(n)

2 ,

n = 1, 2, . . . ,

have integer coefficients A(n), B(n)
1 and B(n)

2 in accordance with Lemmas 8 and 14.
The asymptotic behaviour of the linear forms and their coefficients is determined by
Lemmas 15, 7 and the estimates

degp

[
2n
n

]
p

= n2, degpD2n(p, 1) =
3
π2

(2n)2 +O(n log n) as n→∞

(for the latter one, see [BV1], Section 2, or [As]), hence

C0 = − lim
n→∞

log |I(n)
j |

n2 log |p|
= 3− 24

π2
, j = 1, 2,

C1 = lim
n→∞

log |A(n)|
n2 log |p|

= 6 +
24
π2
.

If ρ is a rational number, non-vanishing of I(n)
1 −ρI

(n)
2 for all n sufficiently large follows

from the second part of Lemma 15. Therefore, we can apply Lemma 11 to conclude
with the linear independence of the numbers 1, ζq(1) = L1(1; q), ζq(2) = L2(1; q), and
with the estimate (2) for any integers X0, X1, X2 satisfying X = max{|X1|, |X2|} >
X (ε). �
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