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1. INTRODUCTION

As usual, quantities depending on a number ¢ and becoming classical objects as ¢ — 1 (at least
formally) are regarded as g-analogs or g-extensions. A possible way to g-extend the values of the
Riemann zeta function reads as follows (here ¢ € C, |g| < 1):

0o 0 k—1,v o0 v v
Gk =Y o) =32 qq :ZM k=1,2,..., 1)
n=1

1- (1= q)F’

where o%_1(n) = >4, d"=1 is the sum of powers of the divisors and the polynomials py(z) € Z[z]

v=1 v=1

can be determined recursively by the formulas p; =1 and pry1 = (14 (k — 1)x)pr + z(1 — z)p),
for k=1,2,... (see [1, Part 8, Chap. 1, Sec. 8, Problem 75] for the case k = 2). Then the limit
relations
lim (1-0)"¢y(k) = pi(1) - C(k) = (k= D1)!-C(k),  k=2,3,..., (2)
lal<1

hold; the equality px(1) = (k — 1)! is proved in [2, formula (7)]. The above defined g-zeta values
(1) present several new interesting problems in the theory of diophantine approximations and
transcendental numbers; these problems are extensions of the corresponding problems for ordinary
zeta values and we state some of them in Sec. 3 of this note. Our nearest aim is to demonstrate how
some recent contributions to the arithmetic study of the numbers ((k), k =2, 3, ..., successfully
work for g-zeta values. Namely, we mean the hypergeometric construction of linear forms (proposed
in the works of E. M. Nikishin [3], L. A. Gutnik [4], Yu. V. Nesterenko [5]) and the arithmetic
method (due to G. V. Chudnovsky [6], E. A. Rukhadze [7], M. Hata [8]) accompanied by the
group-structure scheme (due to G. Rhin and C. Viola [9], [10]). The next section contains new
irrationality measures of the numbers (,(1) and ¢,(2) for ¢=* = p € Z\ {0, +:1}, and our starting
point is the following table illustrating a connection of some objects and their g-extensions (here
| - | denotes the integral part of a number and the notation ‘l.c.m.” means the least common
multiple). We refer the reader to the book [11] and the papers [12]-[14], where some motivations
and justifications are presented.

‘ ordinary objects ‘ g-extensions, p=1/q € Z\ {0, £1} ‘
P -1
numbers n € Z ‘numbers’ [n]p = 1 € Z[p)
p—
irreducible reciprocal polynomials
l
primes [ € {2,3,5,7,...} €7 o(p)= [ - ezlp)
k=1
(k.0)=1
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ordinary objects g-extensions, p=1/q € Z\ {0, £1}
Jackson’s g-gamma function
Euler’s gamma function I'(t) y(t) = [, (1—g¢") (1— q)l—t
! [ (1 —gttv1)
the factorial n! =T'(n + 1) g-factorial [n]q! =T¢(n +1)
n n v
- p—1 n(n—1)/2
n! = H v EZ [n]p! = H pj :pn(n )/ [n]4! € Z[p]
v=1 v=1
n n n
Ordl nl = \‘TJ + {ﬁJ + - OI‘dcpl(p)[n]p! = {TJ 5 l= 2, 3, 4,
Dy =lcm.(1,...,n) Dn(p) = l-ﬁ-m-([l]Pa -y [n]p)
_ [log n/logl]
= II ¢ €z = [T @) € zip]
primes (<n I=1
the prime number theorem Mertens’ formula
lim 108D0n _ lim 108 [Pn(@)] _ 3
n—oo n n—co n?log |p| 7

If ¢(x) is the logarithmic derivative of Euler’s gamma function and {z} = z — |z| is the
fractional part of a number z, then, for each semi-interval [u,v) C (0, 1), Mertens’ formula yields
the limit relation

o S gl = () v e) = [ ACe) o)

n—oco N2
ey log|p|l;{n/z}e[u’“)

(see [14, Lemma 1]), which can be regarded as a g-extension of the formula

im Y logl= () v = [ du(e)

primes [>vVCn
{n/1}€lu,v)

in the arithmetic method of [6-10].

2. RATIONAL APPROXIMATIONS TO ¢-ZETA VALUES
AND BASIC TRANSFORMATIONS

Let ag, a1, az, and b be positive integers satisfying the condition a; + as < b. Then, Heine’s

series -
Fq(b—az) I‘q(t+a1)I‘q(t+a2) aot
(1 —q)lq(a1) i—0 Lq(t+1)Tq(t +b)

becomes a Q(p)-linear form F(a,b) = A(,(1) — B with the property
p~ M Din(p) - F(a, b) € Z[pl¢,(1) + Zlp], (4)

where M = M (a, b) is some (explicitly defined) integer and m is the maximum of the 6-element
set

F(a,b) =

coo =ap+a;+ay—b—1, cor = ap — 1, ci1=a; —1, co1 = ax — 1,
Clgzb—al—l, ngzb—az—l.

Taking H(c) = F(a,b) and using the stability of the quantity

F(ap, a1, az,b) _ H(e)

P e Dyl o6 —ag) ~ (e "here Tha(e) = leorla!feals! [eazly! = p™" 9Ty (e),
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under the action of the transformations

T = (e22 €21 Co1 €11 €12 Co0): (G0, a1, az,b) — (a1,b— a1, ap, ap + az),

o = (c11 c21)(c12 €22): (ag, a1, as,b) — (ap,az,a1,b),

we arrive at the following inclusions (which improve (4)):

P YDy ()27 (p) - Fla,b) € Z[p|¢,(1) + Z[p| (5)
with .
Qp) = [[®/' (@),  w= max orde,qy hple) (6)

IT,(ge)’

In addition, trivial estimates for F'(a,b) and explicit formulas for the coefficient A imply that

2
=1 ge(r?,0)

|F(a,b)| = [p|°®, |A| < |p|(a0+a1+a2)b7(af+a§+b2)/2+0(b) (7)

with some absolute constant in O(b).

Note that the nontrivial transformation 7 of the quantity H(c)/II,(c) has been obtained (in an-
other notation) by E. Heine [15] already in 1847. The transformation group & = (7, o) of order 12
has no ordinary analog, since the corresponding (in the limit as ¢ — 1) Gauss hypergeometric se-
ries are divergent. We use the group (72, 0) of order 6 instead of the total available group & to
ensure the required condition a; + as < b. Now, choosing ag = a2 =8n+1, a; = 6n+ 1, and
b= 15n + 2 and having in mind (5), (7), and (3), we derive the following result.

Theorem 1. Foreach ¢ =1/p, p € Z\{0, £1}, the number (,(1) is irrational and its irrationality
exponent satisfies the estimate
1(C,(1)) < 2.42343562 ... . (8)

A value p = p(a) is said to be the irrationality exponent of a real irrational number « if y is the
least possible exponent such that for any € > 0 the inequality |a —a/b| < b~(#+) has only finitely
many solutions in integers a and b. The estimate (8) can be compared with the previous result
(¢, (1)) < 272 /(w2 —2) = 2.50828476.. .. , of P. Bundschuh and K. Véanénen in [12] corresponding
to the choice ap = a1 = ay =n+1 and b= 2n + 2 in the above notation.

Similar arguments with a simpler group (o) of order 2 can be put forward to improve W. Van
Assche’s estimate p(log,(2)) < 3.36295386 ... in [13] for the following g-extension of log(2):

l/

o0
log, (2 :Z 1—q Zz:l—i—q

v=1

Namely, in [14] we obtain the inequality p(log,(2)) < 3.29727451... for ¢ ' =p e Z\ {0, £1}.
In the case of the numbers (,(2), consider the positive integers (a,b) = (a1, a2, as, b2, b3)
satisfying the conditions a; < by, a1 + a2 + az < by + b3 and the g-basic hypergeometric series

~ F (b2 b3 — a3 t+(11 (t+a2)F (t +CL3) e
F b — q (b2+b3 a1 —as a3)t
(a,b) (1 —q) 2I‘ (ay) Z T'y( Ty(t+b2) Ty(t+ b3) E

- ZCq(2) -

Then p M D,,, (p)Dum, (p) - F(a,b) € Z[p|(4(2) + Z[p], where m; > mgy are the two successive
maxima of the 10-element set

a;j —1 for k=1,

coo = (b2 +b3) — (a1 + a2 +az) =1,  cj= j=1,2,3,
! by —a; —1 for k=2,3,
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and, in addition,
|ﬁ(a, b)| — |p|O(max{b2,b3})’ |;4v| < |p|bgbgf(af+a§+a§)/2+0(max{b2,b3})‘
The c-permutation group ® C &1 generated by all permutations of ay, as, as, the permutation of
ba, b3, and the permutation (cog ca2)(c11 ¢33)(c13 c31), has order 120 and is known in connection
with the Rhin-Viola proof [9] of the new irrationality measure for ((2) (see also [16, Sec. 6]). In
notation H(c) = F(a, b), the quantity
H(c)

[coolq! [ea1]q! [e22]q! [eas]q! [ea1]q!

is stable under the action of the group &. This &-stability yields the inclusions

p M Dy (9) Doy (D)2 (p) - Fa, ) € Z[p|¢(2) + Z[p)

with a quantity ﬁ(p) defined as in (6). Finally, choosing a; =5n+1, aa=6n+1, ag=Tn+1,
and by = 14n + 2, bg = 15n + 2, we deduce the following result [17].

Theorem 2. Foreach ¢ =1/p, p € Z\{0, £1}, the number (,(2) is irrational and its irrationality
exponent satisfies the estimate
1(Cy(2)) < 4.07869374 . .. . (9)

Quantitative estimates of type (9) for (,(2) have not been previously stated, although the
transcendence of (,(2) for any algebraic number ¢ with 0 < |g| < 1 follows from Nesterenko’s
theorem [18].

It is also pleasant to mention that the simpler choice of the parameters a; = as = a3 =n-+1,
by = b3 = 2n + 2 also proves the irrationality of (,(2) for ¢~ € Z\ {0, 1}, and the limit ¢ — 1
produces Apéry’s original sequence [19] of rational approximations to ((2).

We would like to stress that using, as in [7—10], (multiple) g-integrals for both series F'(a, b)
and F (a, b) in the study of arithmetical properties of the numbers (,(1) and (,(2) leads to great
difficulties. The reason for this is that no change of variable concept in g-integration (see [20; 21,
Sec. 2.2.4]).

3. GENERAL PROBLEMS FOR ¢-ZETA VALUES

We begin by mentioning that, for an even integer k > 2, the series Ej(q) = 1 — 2k(,(k)/By,
where By € Q are the Bernoulli numbers, is known as the FEisenstein series. Therefore, the
modular origin (with respect to the parameter 7 = logq/2mi) of the functions E4, Fg, Es, ...
yields the algebraic independence of the functions (;(2), (4(4), (;(6) over Q[g], while all other even
g-zeta values are polynomials in (,(4) and (,(6). In this sense, the consequence of Nesterenko’s
theorem [18] “the numbers (,(2), (;(4), (;(6) are algebraically independent over Q for algebraic g,
0 < |g| < 1”7 reads as a complete g-extension of the consequence of Lindemann’s theorem [22]
“C(2) = 7%/6 is transcendental.” Moreover, the transcendence of values of the function

(_ v, 2v+1

> 1) q > n? 2
1+42) 1 g+t :<1+221q ) (10)
v= n=

at algebraic points ¢, 0 < |¢| < 1, also follows from Nesterenko’s theorem (a proof of Jacobi’s
identity (10) can be found, e.g., in [23, Theorem 2|); the series on the left-hand-side of (10) is the

g-analog of the series
o (-1)”
4 _—
;) w1
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The best known estimate for the irrationality exponent of (10) in the case ¢~ ! € Z \ {0, £1} was
obtained in [24].

The limit relations (2) as well as the expected algebraic structure of the ordinary zeta values
motivate the following questions (we also regard (,(1) to be an odd g¢-zeta value, although the
corresponding ordinary harmonic series is divergent as ¢ — 1).

Problem 1. Prove that the q-zeta values (4(1),(4(2), (4(3),... as functions of q are linearly
independent over C(q).

Problem 2. Prove that the g-functional set involving the three even q-zeta values (4(2), (;(4),
(;(6) and all odd q-zeta values (4(1), (4(3), (4(5), ..., consists of functions that are algebraically
independent over C(q)

The associated diophantine problems consist in proving the corresponding linear and algebraic
independences over the algebraic closure of Q for algebraic ¢ with 0 < |g| < 1. In this direction,
even irrationality and Q-linear independence results for g¢-zeta values at the point ¢ € Q with
g1 €7\ {0, +1} would be very interesting.

A problem of another type is to construct a model of multiple g-zeta values involving g¢-zeta
values (1) and possessing properties similar to the model of multiple zeta values [25].
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