= BRIEF COMMUNICATIONS =

Diophantine Problems for q-Zeta Values

V. V. Zudilin

Received June 3, 2002

Key words: irrationality measure, zeta value, basic hypergeometric series, Eisenstein series, hypergeometric transformation.

1. INTRODUCTION

As usual, quantities depending on a number q and becoming classical objects as $q \to 1$ (at least formally) are regarded as q-analogs or q-extensions. A possible way to q-extend the values of the Riemann zeta function reads as follows (here $q \in \mathbb{C}$, |q| < 1):

$$\zeta_q(k) = \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n = \sum_{\nu=1}^{\infty} \frac{\nu^{k-1} q^{\nu}}{1 - q^{\nu}} = \sum_{\nu=1}^{\infty} \frac{q^{\nu} \rho_k(q^{\nu})}{(1 - q^{\nu})^k}, \qquad k = 1, 2, \dots,$$
 (1)

where $\sigma_{k-1}(n) = \sum_{d|n} d^{k-1}$ is the sum of powers of the divisors and the polynomials $\rho_k(x) \in \mathbb{Z}[x]$ can be determined recursively by the formulas $\rho_1 = 1$ and $\rho_{k+1} = (1 + (k-1)x)\rho_k + x(1-x)\rho'_k$ for $k = 1, 2, \ldots$ (see [1, Part 8, Chap. 1, Sec. 8, Problem 75] for the case k = 2). Then the limit relations

$$\lim_{\substack{q \to 1 \\ |q| < 1}} (1 - q)^k \zeta_q(k) = \rho_k(1) \cdot \zeta(k) = (k - 1)! \cdot \zeta(k), \qquad k = 2, 3, \dots,$$
 (2)

hold; the equality $\rho_k(1) = (k-1)!$ is proved in [2, formula (7)]. The above defined q-zeta values (1) present several new interesting problems in the theory of diophantine approximations and transcendental numbers; these problems are extensions of the corresponding problems for ordinary zeta values and we state some of them in Sec. 3 of this note. Our nearest aim is to demonstrate how some recent contributions to the arithmetic study of the numbers $\zeta(k)$, $k=2,3,\ldots$, successfully work for q-zeta values. Namely, we mean the hypergeometric construction of linear forms (proposed in the works of E. M. Nikishin [3], L. A. Gutnik [4], Yu. V. Nesterenko [5]) and the arithmetic method (due to G. V. Chudnovsky [6], E. A. Rukhadze [7], M. Hata [8]) accompanied by the group-structure scheme (due to G. Rhin and C. Viola [9], [10]). The next section contains new irrationality measures of the numbers $\zeta_q(1)$ and $\zeta_q(2)$ for $q^{-1} = p \in \mathbb{Z} \setminus \{0, \pm 1\}$, and our starting point is the following table illustrating a connection of some objects and their q-extensions (here $\lfloor \cdot \rfloor$ denotes the integral part of a number and the notation 'l.c.m.' means the least common multiple). We refer the reader to the book [11] and the papers [12]–[14], where some motivations and justifications are presented.

ordinary objects	q-extensions, $p = 1/q \in \mathbb{Z} \setminus \{0, \pm 1\}$
numbers $n \in \mathbb{Z}$	'numbers' $[n]_p = \frac{p^n-1}{p-1} \in \mathbb{Z}[p]$
primes $l \in \{2, 3, 5, 7, \dots\} \in \mathbb{Z}$	irreducible reciprocal polynomials $\Phi_l(p) = \prod_{\substack{k=1\\(k,l)=1}}^l (p-e^{2\pi i k/l}) \in \mathbb{Z}[p]$

ordinary objects	q -extensions, $p=1/q\in\mathbb{Z}\setminus\{0,\pm 1\}$
Euler's gamma function $\Gamma(t)$	Jackson's q-gamma function $\Gamma_q(t) = \frac{\prod_{\nu=1}^{\infty} (1 - q^{\nu})}{\prod_{\nu=1}^{\infty} (1 - q^{t+\nu-1})} (1 - q)^{1-t}$
the factorial $n! = \Gamma(n+1)$	q -factorial $[n]_q! = \Gamma_q(n+1)$
$n! = \prod_{ u=1}^n u \in \mathbb{Z}$	$[n]_p! = \prod_{\nu=1}^n rac{p^{ u}-1}{p-1} = p^{n(n-1)/2}[n]_q! \in \mathbb{Z}[p]$
$\operatorname{ord}_{l} n! = \left\lfloor \frac{n}{l} \right\rfloor + \left\lfloor \frac{n}{l^{2}} \right\rfloor + \cdots$	$\operatorname{ord}_{\Phi_l(p)}[n]_p! = \left\lfloor \frac{n}{l} \right\rfloor, l = 2, 3, 4, \dots$
$D_n = \text{l.c.m.}(1, \dots, n)$ $= \prod_{\text{primes } l \le n} l^{\lfloor \log n / \log l \rfloor} \in \mathbb{Z}$	$D_n(p) = \underset{n}{\text{l.c.m.}} ([1]_p, \dots, [n]_p)$ $= \prod_{l=1} \Phi_l(p) \in \mathbb{Z}[p]$
the prime number theorem $\lim_{n\to\infty}\frac{\log D_n}{n}=1$	Mertens' formula $\lim_{n \to \infty} \frac{\log D_n(p) }{n^2 \log p } = \frac{3}{\pi^2}$

If $\psi(x)$ is the logarithmic derivative of Euler's gamma function and $\{x\} = x - \lfloor x \rfloor$ is the fractional part of a number x, then, for each semi-interval $[u,v) \subset (0,1)$, Mertens' formula yields the limit relation

$$\lim_{n \to \infty} \frac{1}{n^2 \log |p|} \sum_{l : \{n/l\} \in [u,v)} \log |\Phi_l(p)| = \frac{3}{\pi^2} (\psi'(u) - \psi'(v)) = \frac{3}{\pi^2} \int_u^v d(-\psi'(x))$$
(3)

(see [14, Lemma 1]), which can be regarded as a q-extension of the formula

$$\lim_{n \to \infty} \frac{1}{n} \sum_{\substack{\text{primes } l > \sqrt{Cn} \\ \{n/l\} \in [u,v)}} \log l = \psi(v) - \psi(u) = \int_u^v d\psi(x)$$

in the arithmetic method of [6–10].

2. RATIONAL APPROXIMATIONS TO q-ZETA VALUES AND BASIC TRANSFORMATIONS

Let a_0 , a_1 , a_2 , and b be positive integers satisfying the condition $a_1 + a_2 \le b$. Then, Heine's series

$$F(\boldsymbol{a},b) = \frac{\Gamma_q(b-a_2)}{(1-q)\Gamma_q(a_1)} \sum_{t=0}^{\infty} \frac{\Gamma_q(t+a_1)\Gamma_q(t+a_2)}{\Gamma_q(t+1)\Gamma_q(t+b)} q^{a_0t}$$

becomes a $\mathbb{Q}(p)$ -linear form $F(\boldsymbol{a},b) = A\zeta_q(1) - B$ with the property

$$p^{-M}D_m(p) \cdot F(\boldsymbol{a}, b) \in \mathbb{Z}[p]\zeta_q(1) + \mathbb{Z}[p], \tag{4}$$

where $M = M(\boldsymbol{a}, b)$ is some (explicitly defined) integer and m is the maximum of the 6-element set

$$c_{00} = a_0 + a_1 + a_2 - b - 1,$$
 $c_{01} = a_0 - 1,$ $c_{11} = a_1 - 1,$ $c_{21} = a_2 - 1,$ $c_{12} = b - a_1 - 1,$ $c_{22} = b - a_2 - 1.$

Taking H(c) = F(a, b) and using the stability of the quantity

$$\frac{F(a_0, a_1, a_2, b)}{\Gamma_q(a_0) \Gamma_q(a_2) \Gamma_q(b - a_2)} = \frac{H(\mathbf{c})}{\Pi_q(\mathbf{c})}, \quad \text{where} \quad \Pi_q(\mathbf{c}) = [c_{01}]_q! [c_{21}]_q! [c_{22}]_q! = p^{-N(\mathbf{c})} \Pi_p(\mathbf{c}),$$

MATHEMATICAL NOTES Vol. 72 No. 6 2002

under the action of the transformations

$$\tau = (c_{22} \ c_{21} \ c_{01} \ c_{11} \ c_{12} \ c_{00}) \colon (a_0, a_1, a_2, b) \mapsto (a_1, b - a_1, a_0, a_0 + a_2),$$

$$\sigma = (c_{11} \ c_{21})(c_{12} \ c_{22}) \colon (a_0, a_1, a_2, b) \mapsto (a_0, a_2, a_1, b),$$

we arrive at the following inclusions (which improve (4)):

$$p^{-M}D_m(p)\Omega^{-1}(p) \cdot F(\boldsymbol{a}, b) \in \mathbb{Z}[p]\zeta_q(1) + \mathbb{Z}[p]$$
(5)

with

$$\Omega(p) = \prod_{l=1}^{m} \Phi_{l}^{\nu_{l}}(p), \qquad \nu_{l} = \max_{\mathfrak{g} \in \langle \tau^{2}, \sigma \rangle} \operatorname{ord}_{\Phi_{l}(p)} \frac{\Pi_{p}(\boldsymbol{c})}{\Pi_{p}(\mathfrak{g}\boldsymbol{c})}.$$
(6)

In addition, trivial estimates for F(a, b) and explicit formulas for the coefficient A imply that

$$|F(\boldsymbol{a},b)| = |p|^{O(b)}, \qquad |A| \le |p|^{(a_0 + a_1 + a_2)b - (a_1^2 + a_2^2 + b^2)/2 + O(b)}$$
 (7)

with some absolute constant in O(b).

Note that the nontrivial transformation τ of the quantity $H(c)/\Pi_q(c)$ has been obtained (in another notation) by E. Heine [15] already in 1847. The transformation group $\mathfrak{G} = \langle \tau, \sigma \rangle$ of order 12 has no ordinary analog, since the corresponding (in the limit as $q \to 1$) Gauss hypergeometric series are divergent. We use the group $\langle \tau^2, \sigma \rangle$ of order 6 instead of the total available group \mathfrak{G} to ensure the required condition $a_1 + a_2 \leq b$. Now, choosing $a_0 = a_2 = 8n + 1$, $a_1 = 6n + 1$, and b = 15n + 2 and having in mind (5), (7), and (3), we derive the following result.

Theorem 1. For each q = 1/p, $p \in \mathbb{Z} \setminus \{0, \pm 1\}$, the number $\zeta_q(1)$ is irrational and its irrationality exponent satisfies the estimate

$$\mu(\zeta_a(1)) < 2.42343562\dots$$
 (8)

A value $\mu = \mu(\alpha)$ is said to be the *irrationality exponent* of a real irrational number α if μ is the least possible exponent such that for any $\varepsilon > 0$ the inequality $|\alpha - a/b| \le b^{-(\mu + \varepsilon)}$ has only finitely many solutions in integers a and b. The estimate (8) can be compared with the previous result $\mu(\zeta_q(1)) \le 2\pi^2/(\pi^2 - 2) = 2.50828476...$, of P. Bundschuh and K. Väänänen in [12] corresponding to the choice $a_0 = a_1 = a_2 = n + 1$ and b = 2n + 2 in the above notation.

Similar arguments with a simpler group $\langle \sigma \rangle$ of order 2 can be put forward to improve W. Van Assche's estimate $\mu(\log_q(2)) \leq 3.36295386...$ in [13] for the following q-extension of $\log(2)$:

$$\log_q(2) = \sum_{\nu=1}^{\infty} \frac{(-1)^{\nu-1} q^{\nu}}{1 - q^{\nu}} = \sum_{\nu=1}^{\infty} \frac{q^{\nu}}{1 + q^{\nu}}.$$

Namely, in [14] we obtain the inequality $\mu(\log_q(2)) \leq 3.29727451...$ for $q^{-1} = p \in \mathbb{Z} \setminus \{0, \pm 1\}$. In the case of the numbers $\zeta_q(2)$, consider the positive integers $(\boldsymbol{a}, \boldsymbol{b}) = (a_1, a_2, a_3, b_2, b_3)$ satisfying the conditions $a_j < b_k$, $a_1 + a_2 + a_3 < b_2 + b_3$ and the q-basic hypergeometric series

$$\widetilde{F}(\boldsymbol{a}, \boldsymbol{b}) = \frac{\Gamma_q(b_2 - a_2) \, \Gamma_q(b_3 - a_3)}{(1 - q)^2 \Gamma_q(a_1)} \sum_{t=0}^{\infty} \frac{\Gamma_q(t + a_1) \, \Gamma_q(t + a_2) \, \Gamma_q(t + a_3)}{\Gamma_q(t + b_2) \, \Gamma_q(t + b_3)} \, q^{(b_2 + b_3 - a_1 - a_2 - a_3)t}$$

$$= \widetilde{A} \zeta_q(2) - \widetilde{B}.$$

Then $p^{-M}D_{m_1}(p)D_{m_2}(p) \cdot \widetilde{F}(\boldsymbol{a}, \boldsymbol{b}) \in \mathbb{Z}[p]\zeta_q(2) + \mathbb{Z}[p]$, where $m_1 \geq m_2$ are the two successive maxima of the 10-element set

$$c_{00} = (b_2 + b_3) - (a_1 + a_2 + a_3) - 1,$$
 $c_{jk} = \begin{cases} a_j - 1 & \text{for } k = 1, \\ b_k - a_j - 1 & \text{for } k = 2, 3, \end{cases}$ $j = 1, 2, 3,$

and, in addition,

$$|\widetilde{F}(\boldsymbol{a}, \boldsymbol{b})| = |p|^{O(\max\{b_2, b_3\})}, \qquad |\widetilde{A}| \le |p|^{b_2 b_3 - (a_1^2 + a_2^2 + a_3^2)/2 + O(\max\{b_2, b_3\})}.$$

The c-permutation group $\mathfrak{G} \subset \mathfrak{S}_{10}$ generated by all permutations of a_1, a_2, a_3 , the permutation of b_2, b_3 , and the permutation $(c_{00} c_{22})(c_{11} c_{33})(c_{13} c_{31})$, has order 120 and is known in connection with the Rhin-Viola proof [9] of the new irrationality measure for $\zeta(2)$ (see also [16, Sec. 6]). In notation $\widetilde{H}(c) = \widetilde{F}(a, b)$, the quantity

$$\frac{\widetilde{H}(c)}{[c_{00}]_q!\,[c_{21}]_q!\,[c_{22}]_q!\,[c_{33}]_q!\,[c_{31}]_q!}$$

is stable under the action of the group \mathfrak{G} . This \mathfrak{G} -stability yields the inclusions

$$p^{-M}D_{m_1}(p)D_{m_2}(p)\widetilde{\Omega}^{-1}(p)\cdot \widetilde{F}(\boldsymbol{a},\boldsymbol{b})\in \mathbb{Z}[p]\zeta_q(2)+\mathbb{Z}[p]$$

with a quantity $\widetilde{\Omega}(p)$ defined as in (6). Finally, choosing $a_1 = 5n + 1$, $a_2 = 6n + 1$, $a_3 = 7n + 1$, and $b_2 = 14n + 2$, $b_3 = 15n + 2$, we deduce the following result [17].

Theorem 2. For each q = 1/p, $p \in \mathbb{Z} \setminus \{0, \pm 1\}$, the number $\zeta_q(2)$ is irrational and its irrationality exponent satisfies the estimate

$$\mu(\zeta_q(2)) \le 4.07869374\dots \tag{9}$$

Quantitative estimates of type (9) for $\zeta_q(2)$ have not been previously stated, although the transcendence of $\zeta_q(2)$ for any algebraic number q with 0 < |q| < 1 follows from Nesterenko's theorem [18].

It is also pleasant to mention that the simpler choice of the parameters $a_1 = a_2 = a_3 = n+1$, $b_2 = b_3 = 2n+2$ also proves the irrationality of $\zeta_q(2)$ for $q^{-1} \in \mathbb{Z} \setminus \{0, \pm 1\}$, and the limit $q \to 1$ produces Apéry's original sequence [19] of rational approximations to $\zeta(2)$.

We would like to stress that using, as in [7–10], (multiple) q-integrals for both series $F(\boldsymbol{a}, b)$ and $\widetilde{F}(\boldsymbol{a}, \boldsymbol{b})$ in the study of arithmetical properties of the numbers $\zeta_q(1)$ and $\zeta_q(2)$ leads to great difficulties. The reason for this is that no change of variable concept in q-integration (see [20; 21, Sec. 2.2.4]).

3. GENERAL PROBLEMS FOR q-ZETA VALUES

We begin by mentioning that, for an even integer $k \geq 2$, the series $E_k(q) = 1 - 2k\zeta_q(k)/B_k$, where $B_k \in \mathbb{Q}$ are the Bernoulli numbers, is known as the *Eisenstein series*. Therefore, the modular origin (with respect to the parameter $\tau = \log q/2\pi i$) of the functions E_4, E_6, E_8, \ldots yields the algebraic independence of the functions $\zeta_q(2), \zeta_q(4), \zeta_q(6)$ over $\mathbb{Q}[q]$, while all other even q-zeta values are polynomials in $\zeta_q(4)$ and $\zeta_q(6)$. In this sense, the consequence of Nesterenko's theorem [18] "the numbers $\zeta_q(2), \zeta_q(4), \zeta_q(6)$ are algebraically independent over \mathbb{Q} for algebraic q, 0 < |q| < 1" reads as a complete q-extension of the consequence of Lindemann's theorem [22] " $\zeta(2) = \pi^2/6$ is transcendental." Moreover, the transcendence of values of the function

$$1 + 4\sum_{\nu=0}^{\infty} \frac{(-1)^{\nu} q^{2\nu+1}}{1 - q^{2\nu+1}} = \left(1 + 2\sum_{n=1}^{\infty} q^{n^2}\right)^2 \tag{10}$$

at algebraic points q, 0 < |q| < 1, also follows from Nesterenko's theorem (a proof of Jacobi's identity (10) can be found, e.g., in [23, Theorem 2]); the series on the left-hand-side of (10) is the q-analog of the series

$$4\sum_{\nu=0}^{\infty} \frac{(-1)^{\nu}}{2\nu+1} = \pi.$$

The best known estimate for the irrationality exponent of (10) in the case $q^{-1} \in \mathbb{Z} \setminus \{0, \pm 1\}$ was obtained in [24].

The limit relations (2) as well as the expected algebraic structure of the ordinary zeta values motivate the following questions (we also regard $\zeta_q(1)$ to be an odd q-zeta value, although the corresponding ordinary harmonic series is divergent as $q \to 1$).

Problem 1. Prove that the q-zeta values $\zeta_q(1), \zeta_q(2), \zeta_q(3), \ldots$ as functions of q are linearly independent over $\mathbb{C}(q)$.

Problem 2. Prove that the q-functional set involving the three even q-zeta values $\zeta_q(2)$, $\zeta_q(4)$, $\zeta_q(6)$ and all odd q-zeta values $\zeta_q(1)$, $\zeta_q(3)$, $\zeta_q(5)$, ..., consists of functions that are algebraically independent over $\mathbb{C}(q)$

The associated diophantine problems consist in proving the corresponding linear and algebraic independences over the algebraic closure of \mathbb{Q} for algebraic q with 0 < |q| < 1. In this direction, even irrationality and \mathbb{Q} -linear independence results for q-zeta values at the point $q \in \mathbb{Q}$ with $q^{-1} \in \mathbb{Z} \setminus \{0, \pm 1\}$ would be very interesting.

A problem of another type is to construct a model of multiple q-zeta values involving q-zeta values (1) and possessing properties similar to the model of multiple zeta values [25].

REFERENCES

- 1. G. Pólya and G. Szegö, *Problems and Theorems in Analysis*, Pt. 2, 3rd ed., Springer-Verlag, New York, 1976.
- M. Kaneko, N. Kurokawa, and M. Wakayama, E-print math.QA/0206171 (June 2002).
- 3. E. M. Nikishin, Mat. Sb. [Math. USSR-Sb.], 109 (151) (1979), no. 3 (7), 410-417.
- 4. L. A. Gutnik, Acta Arith., 42 (1983), no. 3, 255-264.
- 5. Yu. V. Nesterenko, Mat. Zametki [Math. Notes], 59 (1996), no. 6, 865–880.
- 6. G. V. Chudnovsky, Ann. of Math. (2), 117 (1983), no. 2, 325–382.
- E. A. Rukhadze, Vestnik Moskov. Univ. Ser. I Mat. Mekh. [Moscow Univ. Math. Bull.] (1987), no. 6, 25–29.
- 8. M. Hata, J. Reine Angew. Math., 407 (1990), no. 1, 99–125.
- 9. G. Rhin and C. Viola, Acta Arith., 77 (1996), no. 1, 23–56.
- 10. G. Rhin and C. Viola, Acta Arith., 97 (2001), no. 3, 269–293.
- 11. G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, Cambridge Univ. Press, Cambridge, 1990.
- 12. P. Bundschuh and K. Väänänen, Compositio Math., 91 (1994), 175–199.
- 13. Assche W. Van, The Ramanujan J., 5 (2001), no. 3, 295–310.
- 14. V. V. Zudilin (W. Zudilin), Manuscripta Math., 107 (2002), no. 4, 463–477.
- 15. E. Heine, J. Reine Angew. Math., 34 (1847), 285-328.
- 16. V. V. Zudilin (W. Zudilin), E-print math.NT/0206176 (August 2001).
- 17. V. V. Zudilin, Mat. Sb. [Russian Acad. Sci. Sb. Math.], 193 (2002), no. 8, 49–70.
- 18. Yu. V. Nesterenko, Mat. Sb. [Russian Acad. Sci. Sb. Math.], 187 (1996), no. 9, 65–96.
- 19. R. Apéry, Astérisque, **61** (1979), 11–13.
- 20. R. Askey, Appl. Anal., 8 (1978), 125–141.
- 21. H. Exton, q-Hypergeometric Functions and Applications, Ellis Horwood Ser. Math. Appl., Ellis Horwood, Chichester, 1983.
- 22. F. Lindemann, Math. Annalen, 20 (1882), 213–225.
- 23. G. E. Andrews, R. Lewis, and Z.-G. Liu, Bull. London Math. Soc., 33 (2001), 25–31.
- 24. T. Matala-aho and K. Väänänen, Bull. Austral. Math. Soc., 58 (1998), 15-31.
- 25. M. Waldschmidt, J. Théorie des nombres de Bordeaux, 12 (2000), 581-595.

M. V. Lomonosov Moscow State University

E-mail: wadim@ips.ras.ru