On the irrationality of the values of the zeta function at odd integer points

V. V. Zudilin

Only a few results are currently known on the arithmetic nature of the values of the Riemann zeta function $\zeta(s)$ for odd s > 1. The first of these is the irrationality of $\zeta(3)$, which was proved by Apéry [1] in 1978; the most recent is the result of Rivoal [2], who established in 2000 the following asymptotic estimate for the dimensions $\delta(a)$ of the spaces spanned over \mathbb{Q} by the numbers $1, \zeta(3), \zeta(5), \ldots, \zeta(a-2), \zeta(a)$ for odd a:

$$\delta(a) \ge \frac{\log a}{1 + \log 2} (1 + o(1))$$
 as $a \to \infty$. (1)

In particular, it follows from (1) that infinitely many of the values $\zeta(3), \zeta(5), \ldots$ are irrational. We generalize Rivoal's construction from [2] and prove the following results.

Theorem 1. Each of the sets

$$\{ \zeta(5), \ \zeta(7), \ \zeta(9), \ \zeta(11), \ \zeta(13), \ \zeta(15), \ \zeta(17), \ \zeta(19), \ \zeta(21) \},$$

$$\{ \zeta(7), \ \zeta(9), \ \zeta(11), \ \dots, \ \zeta(35), \ \zeta(37) \},$$

$$\{ \zeta(9), \ \zeta(11), \ \zeta(13), \ \dots, \ \zeta(51), \ \zeta(53) \}$$

$$(2)$$

contains at least one irrational number.

Theorem 2. There exists an odd integer $a \leq 145$ such that $1, \zeta(3)$, and $\zeta(a)$ are linearly independent over \mathbb{Q} .

Theorem 2 strengthens the corresponding result in [3]: $a \le 145$ instead of $a \le 169$.

Theorem 3. for every odd $a \geq 3$, the following absolute estimate holds:

$$\delta(a) > 0.395 \log a > \frac{2}{3} \cdot \frac{\log a}{1 + \log 2}$$
.

We fix positive odd parameters a, b, and c such that a > b(c - 1) and $c \ge 3$, and for each positive n we consider the rational function

$$R(t) = R_n(t) := \frac{\left((t \pm (n+1)) \cdots (t \pm cn) \right)^b}{\left(t(t \pm 1) \cdots (t \pm n) \right)^a} \cdot (2n)!^{a+b-bc}$$
$$= (-1)^n \left(\frac{\Gamma(\pm t + cn + 1)}{\Gamma(\pm t + n + 1)} \right)^b \cdot \left(\frac{\Gamma(t)\Gamma(1-t)}{\Gamma(\pm t + n + 1)} \right)^a \cdot (2n)!^{a+b-bc}, \tag{3}$$

where the symbol \pm means that the + and - signs both occur in the relevant product. On representing (3) as a sum of partial fractions, using the fact that it is odd, and recalling its behaviour as $t \to \infty$, we can conclude that

$$I = I_n := \sum_{t=n+1}^{\infty} \frac{1}{(b-1)!} \frac{\mathrm{d}^{b-1} R(t)}{\mathrm{d}^{b-1}} = \sum_{\substack{s \text{ odd} \\ b \leqslant s \leqslant a+b}} A_s \zeta(s) - A_0, \tag{4}$$

where the coefficients $A_s = A_{s,n}$ of the linear form I are rational numbers. (When b = 1 and c = 2r + 1, we get the same linear forms (4) as in [2].) We denote by D_n the least common multiple of $1, 2, \ldots, n$; as is well known,

$$\lim_{n \to \infty} \frac{\log D_n}{n} = 1.$$

This work was carried out with the partial support of the INTAS Foundation and the Russian Foundation for Basic Research (grant no. IR-97-1904)

AMS 2000 Mathematics Subject Classification. 11M06, 11J72.

DOI 10.1070/RM2001v056n02ABEH000389

Lemma 1. For every odd integer $c \geq 3$ there exists a sequence of integers $\Pi_n = \Pi_n^{(c)} \geq 1$, $n = 1, 2, \ldots$, such that the numbers $\Pi_n^{-b} D_{2n}^{a+b-1} A_{s,n}$ are integers and the following relation holds:

$$\varpi_c := \lim_{n \to \infty} \frac{\log \Pi_n^{(c)}}{n} = -\sum_{l=1}^{(c-1)/2} \left(2\psi \left(\frac{2l}{c-1} \right) + 2\psi \left(\frac{2l}{c} \right) + \frac{2c-1}{l} \right) + 2(c-1)(1-\gamma), \quad (5)$$

in which $\gamma \approx 0.57712$ is Euler's constant and $\psi(x)$ is the logarithmic derivative of the gamma function. (As $c \to \infty$, the value of the quantity ϖ_c in (5) is of order $2c(1-\gamma) + O(\log c)$.)

Lemma 1 strengthens the corresponding estimates for the denominators of the linear forms (4), at the expense of the appearance of the multipliers Π_n^{-b} , even in the case b=1 considered in [2]. This is pivotal in the deduction of Theorems 2 and 3.

The proof of the next assertion rests on the representation of the forms (4) as contour integrals and on application of the saddle-point method (cf. [4] and [5]). Additional restrictions are imposed on the parameters a, b, and c in the case where b > 1; they turn out to hold automatically in application to Theorem 1.

Lemma 2. The following limit relation holds for the linear forms (4):

$$\varkappa := \overline{\lim_{n \to \infty}} \frac{\log |I_n|}{n} = \log \frac{2^{2(a+b-bc)}|\tau_0 + c|^{bc}|\tau_0 - c|^{bc}}{|\tau_0 + 1|^{a+b}|\tau_0 - 1|^{a+b}},\tag{6}$$

where τ_0 is the real root of the polynomial $(\tau+c)^b(\tau-1)^{a+b}-(\tau-c)^b(\tau+1)^{a+b}$ in the interval $(c,+\infty)$ when b=1, and is one of the pair of complex conjugate roots with maximum possible value of $\text{Re }\tau_0$ when b>1. (For b=1, the upper limit in (6) can be replaced by the ordinary limit, and then the value of \varkappa in (6) does not exceed $(2a-c+3)\log 2-2(a-c+1)\log c$.)

By Lemmas 1 and 2, there is a least one irrational number among the values $\zeta(s)$ for odd s such that b < s < a + b, provided that $-b\varpi_c + 2(a + b - 1) + \varkappa < 0$. Theorem 1 now follows by taking the three sets of values a = 19, b = 3, c = 3; a = 33, b = 5, c = 3; a = 47, b = 7, c = 3 respectively for the alternatives in (2).

Lemma 3. The following estimate holds for the non-zero coefficients $A_s = A_{s,n}$ of the linear forms (4):

$$\overline{\lim_{n \to \infty}} \frac{\log |A_{s,n}|}{n} \le 2bc \log c + 2(a+b-bc) \log 2.$$

Theorems 2 and 3 are deduced from Lemmas 1–3 using the linear independence criterion to be found in [6] in the same way as it was used in [2]. For the proof of Theorem 2 (where a=145 and b=1) we choose c=21.

Bibliography

- [1] R. Apéry, Astérisque. **61** (1979), 11–13.
- [2] T. Rivoal, C. R. Acad. Sci. Paris. Sér. I Math. 331 (2000), 267–270.
- [3] T. Rivoal, Rapport de recherche SDAD, no. 2000-9, Univ. Caen, 2000.
- [4] Yu. V. Nesterenko, Mat. Zametki 59 (1996), 865–880; English transl., Math. Notes 59 (1996), 625–636.
- [5] T. G. Khessami Pilerud, Arithmetic properties of the values of hypergeometric functions, Candidate's Dissertation, Moscow State University, Moscow 1999. (Russian)
- Yu. V. Nesterenko, Vestnik Moskov. Univ. Ser. I Math. Mekh. 1985:1, 46-54; English transl.,
 Moscow Univ. Math. Bull. 40:1 (1985), 69-74.

Moscow State University E-mail: wadim@ips.ras.ru

Received 28/MAR/01