
Izvestiya: Mathematics 66:3 489–542 c©2002 RAS(DoM) and LMS

Izvestiya RAN : Ser. Mat. 66:3 49–102 DOI 10.1070/IM2002v066n03ABEH000387

Irrationality of values of the Riemann zeta function

W. Zudilin

Abstract. The paper deals with a generalization of Rivoal’s construction, which
enables one to construct linear approximating forms in 1 and the values of the
zeta function ζ(s) only at odd points. We prove theorems on the irrationality of the
number ζ(s) for some odd integers s in a given segment of the set of positive integers.
Using certain refined arithmetical estimates, we strengthen Rivoal’s original results
on the linear independence of the ζ(s).

Introduction

The study of the arithmetical nature of the values of the Riemann zeta function

ζ(s) =
∞∑
n=1

1

ns

at integers s > 1 is one of the most attractive topics of the modern number theory.
In spite of the deceptive simplicity of this problem, the results obtained in this area
in the course of more than two centuries are far from being exhaustive. Euler’s
formula

ζ(s) = −(2πi)
sBs

2s!
, s = 2, 4, 6, . . .,

in which the values of the zeta function at even integers are expressed in terms
of π ≈ 3.1415926 and the Bernoulli numbers Bs ∈ Q, which are defined by the
generating function

t

et − 1 = 1−
t

2
+
∞∑
s=2

Bs
ts

s!
, Bs = 0 for odd s � 3,

undoubtedly marked the first progress in this area. In 1882 Lindemann proved
that π is a transcendental number, which implies that ζ(s) is transcendental if s is
even.
The problem of the irrationality of the values of the zeta function at odd integers

seemed inaccessible until 1978, when Apéry [1] produced a sequence of rational
approximations proving that ζ(3) is irrational.
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Apéry’s Theorem. The number ζ(3) is irrational.

The history of this discovery and a rigorous mathematical justification of Apéry’s
observations can be found in [2]. The phenomenon of Apéry’s sequence was repeat-
edly interpreted from the point of view of various analytical methods of number
theory (see [3]–[8]). New approaches made it possible to strengthen Apéry’s result
quantitatively , that is, to obtain a “good” measure of the irrationality of ζ(3) ([9]
and [10] represent the latest stages of the competition in this area).
Unfortunately, natural generalizations of Apéry’s construction involve linear

forms containing values of the zeta function at both odd and even integers (the
interest in which faded after the Euler–Lindemann result). This circumstance
makes it impossible to obtain results on the irrationality of ζ(s) for odd s � 5
by this method. Interesting attempts to approach this problem can be found in the
preprints [11] and [12].
Finally, in 2000 Rivoal [13] equipped an auxiliary rational function with a sym-

metry and constructed linear forms containing the values of the zeta function only
at odd integers s > 1.

Rivoal’s Theorem. The sequence ζ(3), ζ(5), ζ(7), . . . contains infinitely many
irrational numbers. More precisely, the following estimate holds for the dimen-
sion δ(a) of the spaces generated over Q by 1, ζ(3), ζ(5), . . ., ζ(a − 2), ζ(a) with an
odd integer a:

δ(a) � log a

1 + log 2

(
1 + o(1)

)
, a→∞.

In this paper we generalize Rivoal’s construction [13] and prove the following
theorems.

Theorem 0.1. Each of the sets

{ζ(5), ζ(7), ζ(9), ζ(11), ζ(13), ζ(15), ζ(17), ζ(19), ζ(21)},
{ζ(7), ζ(9), . . . , ζ(35), ζ(37)}, {ζ(9), ζ(11), . . . , ζ(51), ζ(53)} (0.1)

contains at least one irrational number.1

Theorem 0.2. For every odd integer b � 1 at least one of the numbers

ζ(b + 2), ζ(b+ 4), . . . , ζ(8b− 3), ζ(8b− 1)

is irrational.

Theorem 0.3. There are odd integers a1 � 145 and a2 � 1971 such that 1, ζ(3),
ζ(a1), ζ(a2) are linearly independent over Q.

Theorem 0.3 strengthens the corresponding theorem in [15], where it was estab-
lished that 1, ζ(3), ζ(a) with some odd integer a � 169 are linearly independent.
1When the work on this paper was finished, I was informed that Rivoal [14] had obtained the

assertion of Theorem 0.1 for the first set in (0.1) independently, using another generalization of
the construction in [13].

Added in proof. I have recently obtained some refinements of Theorem 0.1. In particular, I
have shown [28] that at least one of the four numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational.
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Theorem 0.4. The following absolute estimate holds for every odd integer a � 3:

δ(a) > 0.395 loga >
2

3
· log a
1 + log2

. (0.2)

This paper is organized as follows. In § 1 we describe an analytical construction
of linear forms in the values of the zeta function at odd integers. In §§ 2–4 we
study the asymptotics of linear forms, their coefficients and denominators. Finally,
in § 5 we give complete proofs of the results. The main ingredient in the proofs of
Theorems 0.3 and 0.4 (as well as in [13]) is the following special case of Nesterenko’s
theorem [16].

Criterion for linear independence. Assume that for a given set of real numbers
θ0, θ1, . . . , θm, m � 1, one can find a sequence of linear forms

In = A0,nθ0 +A1,nθ1 + · · ·+Am,nθm, n = 1, 2, . . . ,

with integer coefficients and numbers α > 0 and β > 0 such that

log |In| = −nα+ o(n), log max
0�j�m

{
|Aj,n|

}
� nβ + o(n)

as n→∞. Then

dimQ(Qθ0 +Qθ1 + · · ·+Qθm) � 1 +
α

β
.

Let us note that the justification of Theorems 0.1–0.4 is based on the saddle-point
method and follows the scheme of proof of Apéry’s theorem in [8]. It should be
noted that some arithmetical results for the values of polylogarithms were obtained
in [17], where the saddle-point method was used. The dissertation [17] served a
link between our empirical observations and the rigorous justification in § 2. In § 4
we improve the arithmetical estimates (for the denominators of numerical linear
forms) following [18], [9], [10], which enables us to refine the lower estimate for δ(a)
in Theorems 0.3 and 0.4 for small values of a. Finally, in § 3 we obtain an upper
estimate for the coefficients of linear forms and asymptotics of their growth.
The main results of this paper were announced in [19].

I am grateful to Professor Yu.V. Nesterenko for his constant interest and valuable
advice, which have enabled me to improve this paper.

§ 1. An analytical construction
In this section we describe an analytical construction that enables us to obtain

“good” linear forms with rational coefficients in the values of the zeta function at
odd integers.
Let us fix positive integer parameters a, b, r such that 2rb � a and a+ b is even.

For every positive integer n we consider the rational function

R(t) = Rn(t) :=

(
(t± (n+ 1)) · · · (t± (n+ 2rn))

)b(
t(t± 1) · · · (t± n)

)a · (2n)!a−2rb. (1.1)
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Here and below (t ± l) means that the product (sum or set) contains the factors
(summands or elements) t− l and t+ l. We assign to the function defined by (1.1)
the sum

I = In :=
∞∑

t=n+1

1

(b− 1)!
db−1R(t)

dtb−1
. (1.2)

It is easy to see that the sum in (1.2) is taken only over integers t > n + 2rn.
The series on the right-hand side of (1.2) converges absolutely, since the degrees of
the numerator and the denominator of the rational function (1.1) are equal to 4rbn
and a(2n+ 1) � 4rbn+ a � 4rbn+ 2, respectively, whence

R(t) = O

(
1

t2

)
and

db−1R(t)

dtb−1
= O

(
1

t2

)
, t→∞. (1.3)

Applying Laplace’s method to the integral representation of the sum in formula (1.2),
we can calculate the quantity

κ = lim
n→∞

log |In|
n

> −∞ (1.4)

(the details can be found in § 2 below), following [8] and [17].
Lemma 1.1. For every n = 1, 2, . . . the number defined by formula (1.2) is a linear
form in 1 and the values of the zeta function at odd integers s, b < s < a+ b:

I =
∑
s is odd
b<s<a+b

Āsζ(s) − Ā0. (1.5)

Proof. Decomposing the function (1.1) into a sum of partial fractions

R(t) =
n∑

k=−n

(
Ak,a
(t+ k)a

+ · · ·+ Ak,2
(t+ k)2

+
Ak,1
t+ k

)
, (1.6)

we note that
n∑

k=−n
Ak,1 = − Res

t=∞
R(t) = 0 (1.7)

by (1.3). Since the function (1.1) is even (odd), that is,

R(−t) = (−1)aR(t), (1.8)

and the decomposition (1.6) is unique, we have

Ak,j = (−1)a−jA−k,j, k = 0,±1, . . . ,±n, j = 1, 2, . . . , a.

Hence,

n∑
k=−n

Ak,j = (−1)a−j
n∑

k=−n
Ak,j = 0 if a− j is odd, j = 2, . . . , a. (1.9)
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Substituting (1.6) into (1.2), we obtain that

(−1)b−1I =
∞∑

t=n+1

n∑
k=−n

((
a+ b− 2
b− 1

)
Ak,a

(t+ k)a+b−1

+

(
a+ b− 3
b − 1

)
Ak,a−1

(t+ k)a+b−2
+ · · ·+

(
b

b− 1

)
Ak,2

(t+ k)b+1
+
Ak,1

(t+ k)b

)
.

Simple transformations yield the formula

I = Āa+b−1ζ(a + b− 1) + Āa+b−2ζ(a + b− 2) + · · ·+ Ābζ(b) − Ā0, (1.10)

where

Āj = (−1)b−1
(
j − 1
b− 1

) n∑
k=−n

Ak,j−b+1, j = b, b+ 1, . . . , a+ b− 1, (1.11)

Ā0 = (−1)b−1
n∑

k=−n

k+n∑
l=1

((
a+ b− 2
b− 1

)
Ak,a

la+b−1
+ · · ·+

(
b

b− 1

)
Ak,2

lb+1
+
Ak,1

lb

)
.

(1.12)

By (1.7), we have Āb = 0. Hence, the expression on the right-hand side of (1.10)
is well defined even in the case when b = 1. Since a+b is even, formula (1.9) implies
that Āj = 0 if j � b is even. Hence, formula (1.10) means that I is a linear form
in 1 and the values of the zeta function at odd integers s, b+ 1 � s � a+ b− 1, as
was to be shown.

The following lemma enables us to calculate the denominators of linear
forms (1.2).

Lemma 1.2 (cf. [20], [13]). Assume that for some polynomial P (t) of degree � n
the rational function

R(t) =
P (t)

(t+ s)(t + s+ 1) · · · (t + s+ n) (1.13)

(this representation does not have to be irreducible) satisfies the conditions(
R(t)(t + k)

)∣∣
t=−k ∈ Z, k = s, s+ 1, . . . , s+ n. (1.14)

Then
Djn
j!

dj

dtj
(
R(t)(t+ k)

)∣∣∣∣
t=−k

∈ Z, k = s, s+ 1, . . . , s+ n,

for all non-negative integers j, where Dn is the least common multiple of 1, 2, . . . , n.

Proof. Decomposing the rational function (1.13) into a sum of partial fractions, we
obtain that

R(t) =
s+n∑
l=s

Bl
t + l

,
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where
Bl =

(
R(t)(t + l)

)∣∣
t=−l ∈ Z, l = s, s+ 1, . . . , s+ n.

Therefore,

R(t)(t+ k) = Bk +
s+n∑
l=s
l�=k

Bl
t + k

t+ l
= Bk +

s+n∑
l=s
l�=k

Bl

(
1 +
k − l
t+ l

)
,

whence

1

j!

dj

dtj
(
R(t)(t+ k)

)∣∣∣∣
t=−k

= (−1)j
s+n∑
l=s
l�=k

Bl(k − l)
(t+ l)j+1

∣∣∣∣
t=−k

= −
s+n∑
l=s
l�=k

Bl
(k − l)j .

This completes the proof of the assertion.

Remark 1.1. Lemma 1.2 was stated by Nesterenko [21]. Nikishin [20] applied it to
the polynomial

P (t) = (t+ p+ 1) · · · (t+ p+ n)
with p − s ∈ Z and p+ n < s or p � s + n. Rivoal observed [13] that (1.14) holds
for P (t) = n! . In each of these cases Bk, k = s, s + 1, . . . , s + n, are binomial
coefficients, and (1.14) is easily verified.
It is easy to see that the rational function (1.1) can be written as a product of

the functions

F (t) = Fn,m(t) :=
(t ± (m+ 1)) · · · (t± (m+ 2n))(

t(t ± 1) · · · (t ± n)
)2 , n � m, (1.15)

H(t) = Hn(t) :=
(2n)!

t(t± 1) · · · (t± n) (1.16)

(see formula (1.22) below).

Lemma 1.3. The following inclusions hold for functions (1.15) and (1.16):

Dj2n
j!

dj

dtj
(
F (t)(t + k)2

)∣∣∣∣
t=−k

∈ Z, k = 0,±1, . . . ,±n, j = 0, 1, 2, . . .,
(1.17)

Dj2n
j!

dj

dtj
(
H(t)(t+ k)

)∣∣∣∣
t=−k

∈ Z, k = 0,±1, . . . ,±n, j = 0, 1, 2, . . .,
(1.18)

where D2n is the least common multiple of 1, 2, . . . , 2n.

Proof. The inclusions (1.18) follow from Lemma 1.2 applied to the rational func-
tion (1.16). We prove (1.17) using Lemma 1.2 for the rational functions

R−(t) =
(t − (m+ 1)) · · · (t− (m+ 2n))

t(t ± 1) · · · (t± n) ,

R+(t) =
(t + (m+ 1)) · · · (t+ (m+ 2n))

t(t ± 1) · · · (t± n)

(1.19)
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and the Leibniz rule for the jth derivative of the product R−(t)R+(t) = F (t). The
assumptions (1.14) hold for each rational function in (1.16) and (1.19), since(

H(t)(t + k)
)∣∣
t=−k = (−1)

n+k (2n)!

(n+ k)! (n− k)! = (−1)
n+k

(
2n

n+ k

)
∈ Z,

(
R−(t)(t + k)

)∣∣
t=−k =

(
m+ 2n+ k

2n

)
· (−1)n+k

(
2n

n+ k

)
∈ Z,

(
R+(t)(t + k)

)∣∣
t=−k =

(
m+ 2n− k
2n

)
· (−1)n+k

(
2n

n+ k

)
∈ Z

for all k = 0,±1, . . . ,±n. This completes the proof of the lemma.
In what follows the denominator den(I) of the linear form I = A0 +

A1θ1 + · · · + Amθm is defined to be the least rational (not necessarily integer)
D > 0 such that every DA0, DA1, . . . , DAm is an integer.

Lemma 1.4. The following inclusions hold for the coefficients of the linear
form (1.5):

Da+b−1−s2n Ās ∈ Z, (1.20)

where s is zero or an odd integer, b < s < a+b. Therefore, den(In) divides D
a+b−1
2n

and

lim
n→∞

log den(In)

n
� lim
n→∞

logDa+b−12n

n
= 2(a+ b− 1). (1.21)

Proof. To determine the coefficients in (1.6), we use the formula

Ak,j =
1

(a− j)!
da−j

dta−j
(
R(t)(t + k)a

)∣∣∣∣
t=−k

, k = 0,±1, . . . ,±n, j = 1, 2, . . . , a,

and the representation

R(t) = (Hn(t))
a−2rb (Fn,n(t))

b (Fn,3n(t))
b · · · (F(2r−1)n,n(t))b (1.22)

of the rational function (1.1). The inclusions

Da−j2n Ak,j ∈ Z, k = 0,±1, . . . ,±n, j = 1, 2, . . ., a, (1.23)

follow from Lemma 1.3 and the Leibniz rule for the differentiation of a product.
Inclusions (1.20) follow from (1.11), (1.12) and (1.23). The limiting relation (1.21)
follows from the formula

lim
n→∞

logDn
n

= 1 (1.24)

(the prime number theorem). This completes the proof of the lemma.

So we have constructed a sequence of linear forms In, n = 1, 2, . . . . By (1.4),

it contains an infinite subsequence of non-zero forms. The forms Da+b−12n In,
n = 1, 2, . . . , have integer coefficients. Hence, for

κ + 2(a+ b− 1) < 0 (1.25)

at least one of the numbers ζ(s), where s is an odd integer and b < s < a + b, is
irrational. Moreover, upper estimates for the coefficients of the linear forms (1.10)
in the case when (1.25) holds enable us to obtain a lower estimate for the number
of irrational numbers in the given set of values of the zeta function. This is why our
next step will be to calculate (1.4) and to find the asymptotics of the coefficients
of the linear forms (1.10) as n→∞.
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§ 2. An asymptotic estimate for linear forms
We shall need some supplementary properties of the function cot z.

Lemma 2.1. The maximum value of the real-valued non-negative function h(y) =
| cot(x+ iy)|, y ∈ R, depends only on x (modπZ) ∈ R.
Proof. If x = πk for some integer k, then z = x is a (unique) pole of the func-
tion cot z on the line Im z = x (see (2.6) below). Therefore, in this case the
absolute maximum of h(y), which is equal to infinity, is attained at y = 0. In what
follows we assume that x /∈ πZ, whence cos 2x < 1. We have

h(y)2 =

∣∣∣∣cos(x+ iy)sin(x+ iy)

∣∣∣∣
2

=

∣∣∣∣ (e−y + ey) cos x+ i(e−y − ey) sinx(e−y − ey) cos x+ i(e−y + ey) sinx

∣∣∣∣
2

=
e−2y + e2y + 2 cos 2x

e−2y + e2y − 2 cos 2x = 1 +
4 cos 2x

e−2y + e2y − 2 cos 2x

� 1 + 4| cos 2x|
2− 2 cos 2x. (2.1)

Here we have used the inequality Y +1/Y � 2 for Y = e−2y > 0, which becomes an
equality only in the case when Y = 1. The estimate on the right-hand side of (2.1)
depends only on x (modπZ), which completes the proof of the lemma.

We define “differential iterations” of the cotangent:

cotb z =
(−1)b−1
(b− 1)!

db−1 cot z

dzb−1
, b = 1, 2, . . . . (2.2)

Lemma 2.2. For every b = 1, 2, . . .
(a) the function cotb z is a polynomial in cot z with rational coefficients:

cotb z = Ub(cot z), Ub(−y) = (−1)bUb(y), degUb = b;

(b) the function sinb z · cotb z is a polynomial in cos z with rational coefficients:

sinb z · cotb z = Vb(cos z), Vb(−y) = (−1)bVb(y), degVb = max{1, b− 2}.
(2.3)

Proof. We proceed by induction. For b = 1 we have cot1 z = cot z and
sin z · cot1 z = cos z, whence U1(y) = V1(y) = y.
(a) According to the differential equation

dy

dz
= −(y2 + 1), y = cot z,

and formula (2.2), the following recurrence relation holds for the polynomialsUb(y),
b = 1, 2, . . . :

Ub+1(y) =
1

b
(y2 + 1)U ′b(y), b = 2, 3, . . . .

The induction step from b to b+1 shows that Ub+1(−y) = (−1)b+1Ub+1(y) and the
degree of Ub+1 is one greater than the degree of Ub.
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(b) Assume that (2.3) holds for some integer b � 1. Then

sin z · d
dz
Vb(cos z) = sin z ·

d

dz
(sinb z · cotb z)

= b cos z · sinb z · cotb z + sinb+1 z ·
d

dz
cotb z

= b cos z · Vb(cos z)− b sinb+1 z · cotb+1 z,

whence

sinb+1 z · cotb+1 z = cos z · Vb(cos z)−
1

b
sin z · d

dz
Vb(cos z)

= cos z · Vb(cos z) +
1

b
sin2 z · V ′b (cos z)

= Vb+1(cos z),

where

Vb+1(y) = yVb(y) +
1

b
(1− y2)V ′b (y). (2.4)

Formula (2.4) and the induction hypothesis imply that Vb+1(y) is a polynomial
whose degree cannot exceed the degree of Vb(y) more than by one. Besides,
Ub+1(−y) = (−1)b+1Ub+1(y). Since V2(y) = 1 (by (2.4)), we have deg Vb+1 � b− 1.
The induction step from b to b+1 and relation (2.4) show that the coefficient of yb−1

in the polynomial Vb+1(y) is non-zero and equals 2
b−1/b! . Hence, (2.3) holds for

all b = 1, 2, . . . , which completes the proof of the lemma.

Lemma 2.3. For any b = 1, 2, . . . and any integer k the following representation
holds in the neighbourhood of t = k:

πb cotb πt =
1

(t − k)b + O(1), (2.5)

where the function in O(1) is analytic in the neighbourhood of t = k. The function
cotb πt is analytic in the neighbourhood of t ∈ C \ Z
Proof. The second assertion of the lemma follows from formula (2.2) defining the
function cotb z and the decomposition of the cotangent into a sum of partial frac-
tions:

π cot πt =
1

t
+

∞∑
m=1

(
1

t−m +
1

t +m

)
(2.6)

(see, for example, [22], Ch. X, § 3, formula (3)).
In the neighbourhood of t = k ∈ Z we have

π cotπt = π cot π(t− k) = 1

t− k ·
(
1 +

∞∑
s=2

Bs
(2πi)s(t− k)s

s!

)
, (2.7)

where Bs, s = 2, 3, . . . , are the Bernoulli numbers (see, for example, [22], Ch. X,
§ 3, formula (2)). Differentiating identity (2.7) b− 1 times, we obtain representa-
tion (2.5) and the first assertion of the lemma, which completes the proof.
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Lemma 2.4. The following integral representation holds for the sum in (1.2):

I =
πb−1i

2

∫ M+i∞
M−i∞

cotb πt ·R(t) dt, (2.8)

where M ∈ R is an arbitrary constant in the interval n < M < (2r + 1)n.
Proof. Consider the integrand in (2.8) on the contour of the rectangle with vertices
M ± iN , N + 1/2 ± iN (see Fig. 1), where the integer N is sufficiently large,
N > (2r + 1)n. Since the function R(t) is analytic inside this rectangle and on its
boundary, Cauchy’s theorem and Lemma 2.3 imply that the integral

πb

2πi

(∫ M−iN
M+iN

+

∫ N+1/2−iN
M−iN

+

∫ N+1/2+iN
N+1/2−iN

+

∫ M+iN
N+1/2+iN

)
cotb πt ·R(t) dt (2.9)

is equal to the sum of the residues of the integrand at t ∈ Z,M < t � N . Using (2.5)
and the expansion

R(t) = R(k) + R′(k) · (t− k) + · · ·+ R
(b−1)(k)

(b− 1)! · (t − k)
b−1 +O

(
(t− k)b

)
in the neighbourhood of t = k ∈ Z, M < k � N , we obtain that the integral (2.9)
is equal to

∑
M<k�N

Res
t=k

(
πb cotb πt ·R(t)

)
=
∑

M<k�N

R(b−1)(k)

(b− 1)! =
N∑

k=n+1

R(b−1)(k)

(b− 1)! . (2.10)

Figure 1. The neighbourhood of the point x∗
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Let us note that on the sides [N +1/2− iN,N +1/2+ iN ], [M− iN,N +1/2− iN ]
and [N +1/2+ iN,M + iN ] of the rectangle we have R(t) = O(N−2) by (1.3), and
the function cotb πt is bounded. The latter assertion follows from assertion (a) of
Lemma 2.2 and the boundedness of cotπt on the sides under consideration: for the
segment [N + 1/2− iN,N + 1/2 + iN ] we use Lemma 2.1, while for the other two
segments we use the trivial estimate

| cotπ(x+ iy)| =
∣∣∣∣1 + e±2πix · e−2π|y|1− e±2πix · e−2π|y|

∣∣∣∣ � 1 + e−2π|y|1− e−2π|y| , x ∈ R,

for y = ±N . Therefore,(∫ N+1/2−iN
M−iN

+

∫ N+1/2+iN
N+1/2−iN

+

∫ M+iN
N+1/2+iN

)
cotb πt ·R(t) dt = O(N−1).

Passing to the limit in (2.9) as N →∞, we obtain the right-hand side of (2.8). Pass-
ing to the limit in (2.10), we obtain the desired sum (1.2), which completes the proof
of the lemma.

Lemma 2.5. The following relation holds for (1.2) as n→∞:

I = Ĩ
(−1)bn(2

√
πn )a−2rb(2π)b

na−1
(
1 + O(n−1)

)
,

where

Ĩ = Ĩn := −
1

2πi

∫ µ+i∞
µ−i∞

sinb πnτ · cotb πnτ · enf(τ) · g(τ) dτ, (2.11)

f(τ) = b(τ + 2r + 1) log(τ + 2r + 1) + b(−τ + 2r+ 1) log(−τ + 2r + 1)
+ (a + b)(τ − 1) log(τ − 1)− (a+ b)(τ + 1) log(τ + 1) + (a− 2rb)2 log 2,

(2.12)

g(τ) =
(τ + 2r + 1)b/2(−τ + 2r + 1)b/2
(τ + 1)(a+b)/2(τ − 1)(a+b)/2 , (2.13)

and µ ∈ R is an arbitrary constant in the interval 1 < µ < 2r + 1.
Remark 2.1. To define the functions f(τ) and g(τ) unambiguously, we consider
them in the τ -plane with cuts along the rays (−∞, 1] and [2r + 1,+∞), fixing the
branches of logarithms that take real values on the interval (1, 2r + 1) of the real
axis. This choice of branches is motivated by the following proof.

Proof. Using the formula Γ(z + 1) = zΓ(z), we express the rational function (1.1)
in terms of the gamma function:

R(t) = (−1)an
(
Γ(±t + (2r + 1)n+ 1)
Γ(±t+ n+ 1)

)b(
Γ(t)Γ(1− t)
Γ(±t + n+ 1)

)a
(2n)!a−2rb, (2.14)

where, as before, ± stands for two factors in the product. We transform the inte-
grand in (2.8) using formula (2.14) for R(t) and the identity

Γ(t)Γ(1 − t) = π

sinπt
= (−1)nΓ(−t + n+ 1)Γ(t− n).
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We have

R(t) =
(−1)bn · sinb πt

πb
Γ(±t + (2r + 1)n+ 1)bΓ(t− n)a+b

Γ(t + n+ 1)a+b
(2n)!a−2rb. (2.15)

Substituting this expression into (2.8), we obtain the formula

I =
(−1)bni
2π

∫ M+i∞
M−i∞

sinb πt · cotb πt

× Γ(±t+ (2r + 1)n+ 1)
bΓ(t − n)a+b(2n)!a−2rb

Γ(t + n+ 1)a+b
dt

=
(−1)bn(2n)a−2rbi

2π

∫ M+i∞
M−i∞

sinb πt · cotb πt ·
(−t+ (2r + 1)n)b(t+ (2r + 1)n)b

(t + n)a+b

× Γ(±t+ (2r + 1)n)
bΓ(t− n)a+bΓ(2n)a−2rb

Γ(t + n)a+b
dt, (2.16)

where M ∈ R is an arbitrary constant in the interval n < M < (2r + 1)n. We put
M = µn for µ ∈ R in the interval 1 < µ < 2r + 1.
The asymptotics of the gamma function

log Γ(z) =

(
z − 1
2

)
log z − z + log

√
2π +O

(
|z|−1

)
(2.17)

(see, for example, [23], § 3.10) implies that the following formulae hold on the
contour of integration in (2.16):

log Γ(±t+ (2r + 1)n) =
(
±t + (2r + 1)n− 1

2

)
log(±t + (2r + 1)n)

− (±t+ (2r + 1)n) + log
√
2π + O(n−1),

logΓ(t + n) =

(
t+ n− 1

2

)
log(t + n)− (t+ n) + log

√
2π +O(n−1),

logΓ(t − n) =
(
t− n− 1

2

)
log(t − n)− (t− n) + log

√
2π +O(n−1),

logΓ(2n) =

(
2n− 1

2

)
log(2n)− 2n+ log

√
2π +O(n−1).

The change t = nτ in the integrals in (2.16) yields

I =
(−1)bn(2

√
πn )a−2rb(2π)b−1i

na−1

∫ µ+i∞
µ−i∞

sinb πnτ · cotb πnτ · enf(τ)

× (τ + 2r + 1)
b/2(−τ + 2r+ 1)b/2

(τ + 1)(a+b)/2(τ − 1)(a+b)/2
(
1 + O(n−1)

)
dτ,

where f(τ) is the function defined in (2.12) and µ = M/n ∈ R is an arbitrary
constant in the interval 1 < µ < 2r + 1. This completes the proof of the lemma.
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By assertion (b) of Lemma 2.2 the integral in (2.11) can be written as

Ĩ = − 1
2πi

b∑
k=−b

ck

∫ µ+i∞
µ−i∞

en(f(τ)−kπiτ)g(τ) dτ, ck = c−k, (2.18)

where the sum is taken over those k that have even parity with b, and c−b = cb = 0
if b > 1.

Lemma 2.6. For µ, λ ∈ R, 1 < µ < 2r + 1, and n a positive integer we put

Jn,λ =
1

2πi

∫ µ+i∞
µ−i∞

en(f(τ)−λπiτ)g(τ) dτ. (2.19)

Then
Jn,−λ = Jn,λ,

where the bar stands for complex conjugation.

Proof. Applying Schwarz’ reflection principle to the functions f(τ), g(τ) analytic
in C \ ((−∞, 1] ∪ [2r + 1,+∞)) and taking real values on the interval (1, 2r + 1)
(see, for example, [24], Ch. III, § 7, Proposition 7.1) and making the change τ �→ τ̄
in the integral in (2.19), we obtain that

Jn,λ =
1

2πi

∫ µ+i∞
µ−i∞

en(f(τ̄)−λπiτ̄)g(τ̄ ) dτ̄ = − 1
2πi

∫ µ+i∞
µ−i∞

en(f(τ̄)−λπiτ̄)g(τ̄) dτ

=
1

2πi

∫ µ+i∞
µ−i∞

en( f(τ)+λπiτ ) g(τ) dτ = Jn,−λ,

as was to be shown.

Corollary 2.1. The integral in (2.11) can be written as

Ĩ = −2
b∑
k=0

k≡b (mod 2)

ck ReJn,k, (2.20)

where ck are some (rational) constants, c1 = 1 for b = 1 and cb = 0, cb−2 �= 0
for b > 1.

Proof. The desired representation (2.20) follows immediately from assertion (b) of
Lemma 2.2, formula (2.18), and Lemma 2.6.

Now let us calculate the asymptotics of the integrals on the right-hand side
of (2.18) using the saddle-point method. We have to determine the saddle points of
the integrands, that is, the zeros of the derivatives of the functions f(τ) − kπiτ ,
k = 0,±1, . . . ,±b, k ≡ b (mod2). It is easy to verify that the roots of the derivative

d

dτ
(f(τ) − kπiτ) = b log(τ + 2r + 1)− b log(−τ + 2r+ 1)

+ (a + b) log(τ − 1)− (a+ b) log(τ + 1)− kπi,
k = 0,±1, . . . ,±b, k ≡ b (mod 2),
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are simultaneously the roots of the polynomial

(τ + 2r + 1)b(τ − 1)a+b − (τ − 2r− 1)b(τ + 1)a+b, (2.21)

whose quantity is equal to the degree a+ 2b− 1 of this polynomial.
Lemma 2.7. Let a, b, r be positive integers, let a+ b be even, a � 3rb, and let f(τ)
be the function defined by (2.12), where the corresponding branches of the logarithms
in the cut plane C\((−∞, 1]∪[2r+1,+∞)) take real values on the interval (1, 2r+1).
Then the equation

f ′(τ)− λπi = 0, λ ∈ R, (2.22)

has
(a) a pair of real solutions −µ0± i0 with µ0 symmetric with respect to the imag-

inary axis for λ = 0, where µ0 ∈ (1, 2r+ 1), and + ( −) in ±i0 corresponds to the
upper (lower) bank of the cut (−∞, 1],
(b) a pair of real solutions −µ1 ± i0 and µ1 ± i0 symmetric with respect to

the imaginary axis for λ = ±b, where µ1 ∈ (2r + 1,+∞), and + ( −) in ±i0
coincides with the sign of λ and corresponds to the upper (lower) banks of the cuts
(−∞, 1], [2r+ 1,+∞),
(c) a real solution ±i0 for λ = ±(a+ b), where + ( −) in ±i0 coincides with the

sign of λ and corresponds to the upper (lower) bank of the cut (−∞, 1],
(d) a solution on the imaginary axis for the real λ such that b < |λ| < a+ b,
(e) a pair of complex solutions symmetric with respect to the imaginary axis for

the real λ such that 0 < |λ| < b.
All solutions of equation (2.22) corresponding to positive λ are contained in the

half-plane Im τ > 0. All solutions corresponding to negative λ are contained in
the half-plane Im τ < 0. All solutions of equation (2.22) appear in the list (a)–(e).

Proof. Since

f ′(τ) = b log(τ + 2r + 1)− b log(−τ + 2r+ 1)
+ (a+ b) log(τ − 1)− (a + b) log(τ + 1) (2.23)

and log z = log |z|+ i arg z, −π < arg z < π, for the main branch of the logarithm
with the cut (−∞, 0] in the z-plane, we have

Re f ′(τ) = log
|τ + 2r + 1|b|τ − 1|a+b
| − τ + 2r + 1|b|τ + 1|a+b , (2.24)

Im f ′(τ) = b arg(τ + 2r + 1)− b arg(−τ + 2r + 1)
+ (a + b) arg(τ − 1)− (a+ b) arg(τ + 1), (2.25)

and the arguments arg( · ) take the value zero on (1, 2r + 1). Formula (2.25) has
the following geometrical interpretation in the notation of Fig. 2:

Im f ′(τ) = b(β− + β+) + (a + b)(α+ − α−) = b(π − β) + (a+ b)α, (2.26)
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whence Im f ′(τ) > 0 if Im τ > 0 and Im f ′(τ) < 0 if Im τ < 0. By (2.24) and (2.26),
the set of solutions of equation (2.22) for every λ is symmetric with respect
to the imaginary axis, and the symmetry τ �→ τ̄ maps it onto the set of solu-
tions of equation (2.22) with −λ instead of λ. In what follows we deal with λ > 0
and the upper half-plane. The results thus obtained can b transferred to the case
when λ < 0 by the symmetry with respect to the real axis.

Figure 2

By (2.23), any solution of equation (2.22) is a root of the polynomial

(τ + 2r+ 1)b(τ − 1)a+b − eλπi(−τ + 2r + 1)b(τ + 1)a+b, (2.27)

whose degree is equal to a + 2b − 1 if λ is an integer that has even parity with b
(otherwise, its degree is equal to a + 2b). If λ ≡ b (mod 2), then this polynomial
coincides with (2.21).
(a), (c). If λ = 0 (or, which is the same, λ = a + b), then the polynomial (2.27)

is an odd function. Therefore, 0 is one of its roots. The corresponding solution
+i0 of equation (2.22) corresponds to λ = a + b, since α = β = π in (2.26)
for τ = 0. Calculating the values of the polynomial at 1, 2r + 1 and using the
fact that this polynomial is odd, we obtain that it has a pair of real roots ±µ0,
where µ0 ∈ (1, 2r + 1). We shall show later that µ0 is the unique real root in
(1, 2r + 1), but until then we assume that µ0 is the real root nearest to 2r + 1 of
the polynomial (2.27) with λ = 0 in the above interval. By (2.26), the solutions
−µ0 + i0 and µ0 correspond to λ = 0 in equation (2.22).
(b) Calculating the values of (2.27) with λ = b at 2r+1,+∞, we likewise obtain

that this polynomial has a pair of real roots ±µ1. We assume for the moment that
among the roots in the interval (2r + 1,+∞) the root µ1 ∈ (2r + 1,+∞) is the
nearest to 2r+1. By (2.26), the solutions −µ1+ i0 and µ1+ i0 correspond to λ = b
in equation (2.22).
In the case when a � 3rb there is a better localization of the root µ1, namely,

µ1 ∈ (2r + 1, 4r + 1). Indeed, the value of the polynomial (2.27) at 4r + 1 is equal
to

(6r+2)b(4r)a+b−(2r)b(4r+2)a+b = (2r)b(4r)a+b
((
3+
1

r

)b
−
(
1+
1

2r

)a+b)
< 0,
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since

(3r + 1) log

(
1 +

1

2r

)
= 4 log

3

2
> 2 log 2 = log

(
3 +
1

r

)
if r = 1,

(3r + 1) log

(
1 +

1

2r

)
>
3r + 1

2r + 1
� 7
5
> 2 log 2 > log

(
3 +
1

r

)
if r � 2,

where we have used the elementary inequality

1

n+ 1
< log

(
1 +
1

n

)
<
1

n
, (2.28)

which holds for all positive integers n, whence

(a+ b) log

(
1 +

1

2r

)
� (3r + 1)b log

(
1 +

1

2r

)
> b log

(
3 +
1

r

)
.

(d) By (2.24), we have Re f ′(τ) = 0 on the imaginary axis. As τ ranges over
the ray iy, y > 0, the angles α, β decrease continuously from π to 0. Therefore, the
function Im f ′(τ) = b(π−β) + (a+ b)α takes all intermediate values in the interval
(bπ, (a+ b)π). In particular, for every real λ, b < λ < a+ b, we obtain at least one
solution of equation (2.22) that lies on the imaginary axis.
(e) We shall now localize the complex solutions of (2.22) corresponding to the

real λ, 0 < |λ| < b.
Consider the semicircle of radius 2ρ with centre 2r+1, where ρ < r, in the upper

half-plane. For τ = x+ iy on this semicircle we have

| − τ + 2r + 1|2 = 4ρ2, |τ + 2r + 1|2 = 4ρ2 + 4(2r + 1)x,
|τ − 1|2 = 4ρ2 + 4rx− 4r(r + 1), |τ + 1|2 = 4ρ2 + 4(r + 1)x− 4r(r+ 1).

(2.29)
By (2.24),

2Re f ′(τ) = log
(ρ2 + (2r + 1)x)b(ρ2 + rx− r(r + 1))a+b
ρ2b(ρ2 + (r + 1)x− r(r + 1))a+b . (2.30)

We denote the function in (2.30) by f̃(x), 2r+ 1− 2ρ < x < 2r +1 + 2ρ. It is a
monotonically increasing function of x, since

f̃ ′(x) =
b(2r + 1)

ρ2 + (2r + 1)x
+

(a+ b)r

ρ2 + rx− r(r + 1) −
(a + b)(r + 1)

ρ2 + (r + 1)x− r(r + 1)

=
b(2r + 1)

ρ2 + (2r + 1)x
+

(a + b)(r(r + 1)− ρ2)
(ρ2 + rx− r(r + 1))(ρ2 + (r + 1)x− r(r + 1))

=
4b(2r+ 1)

|τ + 2r+ 1|2 +
16(a+ b)(r(r + 1)− ρ2)
|τ − 1|2|τ + 1|2 > 0.
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Therefore,

f̃(2r+ 1− 2ρ) < f̃(x) < f̃(2r+1+ 2ρ), x ∈ (2r+1− 2ρ, 2r+1+ 2ρ), (2.31)

and

Re f ′(2r + 1− 2ρ) < Ref ′(τ) < Re f ′(2r + 1 + 2ρ+ i0) (2.32)

on the semicircle under consideration. Consider ρ = (µ1 − 2r − 1)/2, where
µ1 ∈ (2r + 1,+∞) is the real root of the polynomial (2.27) with λ = b.
As mentioned above, 2r + 1 < µ1 < 4r + 1 if a � 3rb, that is, the assumption
ρ < r holds. By (2.32), we have

Re f ′(τ) < Ref ′(µ1 + i0) = 0 (2.33)

for the points of the semicircle. Besides,

lim
τ→2r+1

Re f ′(τ) = +∞. (2.34)

Consider the rays starting from the point 2r+1 and contained in the upper half-
plane. By (2.33) and (2.34), each of these contains a point τ belonging to the domain
bounded by the above semicircle and the real axis and such that Re f ′(τ) = 0.
Hence, this domain contains a part of the continuously differentiable curve

Re f ′(τ) = log
|τ + 2r + 1|b|τ − 1|a+b
| − τ + 2r + 1|b|τ + 1|a+b = 0. (2.35)

(See Fig. 3, where this part of the curve is situated, according to (2.31), between
the two semicircles corresponding to ρ = (µ1− 2r− 1)/2 and ρ = (2r+ 1− µ0)/2.)
By (2.26), the values of Im f ′(τ) on this curve as it approaches the real axis are equal
to 0 (at µ0) and bπ (at µ1). Therefore, Im f

′(τ) takes on the curve all intermediate
values between 0 and bπ, that is, the values λπ, where 0 < λ < b. So we have
produced solutions of equation (2.22) for these λ. Every point obtained from these
by reflection in the imaginary axis also is a solution.

Figure 3
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We have produced all the solutions of equation (2.22) listed in (a)–(e). To
complete the proof, we have to show that there are no others. Assume the contrary,
that is, assume that for some λ0 ∈ R there is a solution of equation (2.22) that is not
listed in (a)–(e). As mentioned above, this solution is a root of the polynomial (2.27)
with λ = λ0. We claim that the number of roots of (2.27) listed in (a)–(e) is equal
to its degree, which will contradict our assumption.

If λ0 is not an integer, then we have a purely imaginary solutions (see (d))
corresponding to λ ≡ λ0 (mod 2), b < |λ| < a+ b, and b pairs of complex solutions
(see (e)) corresponding to λ ≡ λ0 (mod 2), |λ| < b. Therefore, the total number of
roots of (2.27) with λ = λ0 listed in (d) and (e) is equal to the degree a+ 2b of the
polynomial.

If λ0 is an integer (even or odd), then a solution of equation (2.22) with λ = λ0
is a root of the polynomial

(τ + 2r + 1)2b(τ − 1)2(a+b) − (τ − 2r− 1)2b(τ + 1)2(a+b). (2.36)

For this polynomial we have found two real roots ±µ0 in (a), two real roots ±µ1
in (b), one real root 0 in (c), 2(a − 1) purely imaginary roots in (d) and 4(b − 1)
complex roots in (e). The total number of roots of the polynomial (2.36) listed
in (a)–(e) is equal to its degree 2a+ 4b− 1.
Hence, any solution of equation (2.22) is contained in the list (a)–(e). This

contradiction completes the proof of the lemma.

Remark 2.2. We replaced the original assumption a � 2rb by the stronger assump-
tion a � 3rb in Lemma 2.7 only in order to localize the root µ1. Therefore,
Lemma 2.7 remains valid in the case when a � 2rb if

µ1 < 4r + 1. (2.37)

Corollary 2.2. The set of τ ∈ C for which (2.35) holds is the union of the imagi-
nary axis and a pair of closed curves symmetric with respect to the imaginary axis
(see Fig. 4). These curves divide the complex plane into four parts, in each of which
the sign of Re f ′(τ) is constant.

Figure 4
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Corollary 2.3. Any semicircle of radius ρ, 2r + 1− µ0 < 2ρ < µ1 − 2r − 1, with
centre 2r + 1 lying in the upper half-plane, intersects the curve (2.35) (see Fig. 3)
at precisely one point.

Proof. This assertion follows from inequalities (2.32), since the function Re f ′(τ) is
monotonic on any of these semicircles.

Lemma 2.8. Let a, b, r, n be positive integers, a � 2rb, let f(τ), g(τ) be as defined
in (2.12), (2.13), and let µ, λ ∈ R, 1 < µ < 2r + 1, |λ| � b. Then the contour of
integration Re τ = µ in the integral

∫ µ+i∞
µ−i∞

en(f(τ)−λπiτ)g(τ) dτ (2.38)

can be replaced by any other contour L joining infinitely remote points in the
domains Re τ � µ, Im τ < 0 and Re τ � µ, Im τ > 0 and intersecting the real
axis at precisely one point τ = µ. In particular, L can go along the upper and (or)
lower bank of the cut [2r+ 1,+∞).

Proof. For any real N > µ we join the points of the original contour Re τ = µ and
those of the new contour L by two arcs of radius N with centre at the origin. We
denote the corresponding points of intersection with the contours by M± and L±
(see Fig. 5).

Figure 5
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There are no singular points of the integrand in (2.38) inside the curvilinear
triangles µL+M+ and µM−L−. The lemma will be proved if we can show that

∫
L+M+

en(f(τ)−λπiτ)g(τ) dτ → 0,
∫
M−L−

en(f(τ)−λπiτ)g(τ) dτ → 0 (2.39)

as N →∞, where L+M+ andM−L− are arcs of the circle of radius N with centre
at the origin.
On the arcs L+M+ and M−L− of the circle τ = Ne

it we have the inequalities
0 � t < π/2 and −π/2 < t � 0, respectively (the value t = 0 is taken on the upper
and lower bank of the cut [2r + 1,+∞)). Using Taylor’s formula, we obtain the
relations

log(τ + 1) = log(Neit + 1) = log(Neit) + log

(
1 +
e−it

N

)

= logN + it+
e−it

N
+O

(
1

N2

)
, (2.40)

log(τ − 1) = logN + it− e
−it

N
+O

(
1

N2

)
, (2.41)

log(τ + 2r + 1) = log(Neit + 2r + 1) = log(Neit) + log

(
1 +
(2r + 1)e−it

N

)

= logN + it+
(2r + 1)e−it

N
+ O

(
1

N2

)
, (2.42)

log(−τ + 2r + 1) = ∓πi+ log(Neit − (2r + 1))

= ∓πi+ logN + it − (2r + 1)e
−it

N
+O

(
1

N2

)
, (2.43)

where − (+) in ∓πi in (2.43) corresponds to the arc L+M+ ( M−L−) according
to the choice of branches of the logarithm. The constant in O(1/N2) in formu-
lae (2.40)–(2.43) is absolute, since |e−it| = 1 for real t. Substituting these expan-
sions into (2.12), we obtain the formula

f(τ) = f(Neit)

= (logN + it)
(
b(τ + 2r+ 1) + b(−τ + 2r + 1) + (a + b)(τ − 1)− (a+ b)(τ + 1)

)
+
e−it

N

(
b(2r + 1)(τ + 2r + 1)− b(2r + 1)(−τ + 2r + 1)

− (a+ b)(τ − 1)− (a + b)(τ + 1)
)

∓ πi · b(−τ + 2r + 1) + (a− 2rb)2 log 2 +O
(
|τ |
N2

)

= −2(a − 2rb)
(
log
Ne

2
+ it

)
± bπi(Neit − 2r − 1) +O

(
1

N

)
,
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where the sign of ±bπ coincides with the sign of t (and sin t). Therefore,

Re(f(τ) − λπiτ) = −2(a − 2rb) log Ne
2
− (b∓ λ)πN | sin t|+ O

(
1

N

)
� 1
n

on the arcs L+M+ and M−L− as N →∞. (We have used the inequalities a � 2rb
and |λ| � b.) Hence, the estimate

|en(f(τ)−λπiτ)| = enRe(f(τ)−λπiτ) � e (2.44)

holds for all sufficiently large N . The following trivial estimate holds for the func-
tion (2.13) on the arcs L+M+ and M−L−:

|g(τ)| = O
(

N b/2N b/2

N (a+b)/2N (a+b)/2

)
= O

(
1

Na

)
= O

(
1

N2

)
as N →∞, (2.45)

since a � 2rb � 2. Since the length of each of the arcs L+M+ and M−L− does not
exceed πN/2, estimates (2.44) and (2.45) imply that every integral in (2.39) is of
order O(1/N). Hence, the limiting relations (2.39) hold, which completes the proof
of the lemma.

Lemma 2.9. Let a, b, r be positive integers, a � 2rb, let f(τ), g(τ) be the functions
defined in (2.12) and (2.13), and let λ ∈ R, |λ| � b. Assume, moreover, that (2.37)
and the assumption

µ0 +
√
µ20 − 1 � µ1 (2.46)

hold for the real roots µ0 ∈ (1, 2r+ 1) and µ1 ∈ (2r + 1,+∞) of (2.36).
Then the asymptotic behaviour of the integral (2.38) with µ = µ0 as n → ∞

is determined by the single saddle point τ0 (the solution of equation (2.22)) in the
domain Im τ > 0. More precisely, the following asymptotic formula holds:

Jn,λ =
1

2πi

∫ µ0+i∞
µ0−i∞

en(f(τ)−λπiτ)g(τ) dτ

= (2π)−1/2|f ′′(τ0)|−1/2enRe f0(τ0)|g(τ0)| · e−
i
2 arg f

′′(τ0)+i arg g(τ0)+in Im f0(τ0)

× n−1/2
(
1 +O(n−1)

)
as n→∞, (2.47)

where

f0(τ) = f(τ) − f ′(τ)τ
= b(2r + 1) log(τ + 2r + 1) + b(2r+ 1) log(−τ + 2r + 1)
− (a + b) log(τ + 1) − (a+ b) log(τ − 1) + (a− 2rb)2 log2. (2.48)

Proof. We shall prove the lemma only for λ � 0. The case when λ < 0 can be
reduced to this case by reflection in the real axis.
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According to Lemma 2.8, we replace the contour of integration in (2.38) with
µ = µ0 by a contour consisting of rectilinear rays and segments. Let us note at once
that the derivative of Re f(τ) on every such rectilinear part τ = τ1+ e

iϕt, t ∈ R, is
given by the formula

d

dt
Re f(τ) = Re

df(τ)

dt
= Re

(
dτ

dt
· df(τ)
dτ

)
= Re f ′(τ) cosϕ − Im f ′(τ) sinϕ.

(2.49)
If λ = 0, then µ0 is the unique maximum point of the function Re f(τ) on the

line τ = µ0 + it, −∞ < t < +∞, since

d

dt
Re f(τ) = − Im f ′(τ)

and Im f ′(τ) takes negative values in the domain Im τ < 0 and positive ones in
the domain Im τ > 0. So, in the case when λ = 0, we use the original contour
Re τ = µ0.
If λ = b, then we replace the ray going from µ0 to µ0 + i∞ in the contour of

integration in (2.38) with µ = µ0 by a ray going from µ0 to +∞ along the upper
bank of the cut [2r+ 1,+∞). The function

Re(f(τ) − λπiτ) (2.50)

increases on the set τ = µ0 + it, −∞ < t � 0, since

d

dt
Re(f(τ) − λπiτ) = − Im f ′(τ) + λπ � λπ > 0. (2.51)

On the set τ = t, µ0 � t < +∞, the function Re(f(τ) − λπiτ) = Re f(τ) has a
unique maximum point at t = µ1 (by Lemma 2.7 and Corollary 2.2).

Figure 6

It remains to consider the case when λ ∈ (0, b). We replace the ray going
from µ0 to µ0 + i∞ by the segment τ = µ0 + eiϕt, 0 � t �

√
µ20 − 1, passing

through the saddle point τ0 (the unique solution of equation (2.22) in the domain
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Re τ > 0) and the ray τ = eiϕ
√
µ20 − 1+ t, µ0 � t < +∞. By Corollary 2.3, the ray

τ = µ0+e
iϕt, t > 0, intersects the curve Ref ′(τ) = 0 at a single point (namely, τ0),

and 0 < ϕ < π/2. By (2.46), τ0 is an interior point of the above segment (see
Fig. 6). On the ray τ = µ0 + it, t � 0, the function (2.50) increases by (2.51). On
the ray τ = eiϕ

√
µ20 − 1 + t, t � µ0, it decreases, since

d

dt
Re(f(τ) − λπiτ) = Re(f ′(τ)− λπi) = Re f ′(τ) < 0

by Corollary 2.2. Hence, it is sufficient to show that τ0 is the unique maximum
point of the function (2.50) on the segment τ = µ0 + e

iϕt, 0 � t � t1, where
t1 =

√
µ20 − 1. Assume that t0 corresponds to the point τ0 = µ0 + eiϕt0 on the

segment under consideration. By Corollary 2.3,

Re f ′(µ0 + e
iϕt) < 0 for 0 < t < t0, Re f ′(µ0 + e

iϕt) > 0 for t0 < t � t1.
(2.52)

We claim that the function Im f ′(τ) increases monotonically on the segment
under consideration. Let us use the geometric interpretation (2.26) of the function
Im f ′(τ) once again. As t � 0 increases on the ray τ = µ0 + eiϕt, the angle β
decreases monotonically from π to 0, whereas the angle α first increases from 0 to
some α0 and then decreases from α0 to 0. We claim that the maximal value α0 is
attained on the ray at t = t1, which will imply that the function

Im f ′(τ) = b(π − β) + (a + b)α

is monotonically increasing on the segment τ = µ0 + e
iϕt, 0 � t � t1.

Figure 7

The points τ = x+ iy of the upper half-plane at which the real segment [−1, 1]
subtends less than a given angle α belong to an arc of the circle of radius 1/ sinα
with centre i cotα (this assertion for an acute angle α is depicted in Fig. 7):

x2 + y2 − 2y cotα = 1,
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whence

α = cot−1
x2 + y2 − 1
2y

.

On the given ray, x = µ0 + t cosϕ and y = t sinϕ if t � 0, whence

dα

dt
= −(2x cosϕ+ 2y sinϕ) · 2y− 2 sinϕ · (x

2 + y2 − 1)
(x2 + y2 − 1)2 + (2y)2

= −2 sinϕ · t2 − (µ2 − 1)
(x2 + y2 − 1)2 + 4y2 .

Therefore, the maximal value of α is attained at t =
√
µ20 − 1.

Since Im f ′(τ) is monotonically increasing on the segment τ = µ0 + e
iϕt, 0 �

t � t1, we have

Im f ′(µ0 + e
iϕt) < λπ for 0 � t < t0, Im f ′(µ0 + e

iϕt) > λπ for t0 < t � t1.
(2.53)

Combining (2.52), (2.53) and (2.49), we obtain that the function

d

dt
Re(f(τ) − λπiτ) = Re f ′(τ) cosϕ− (Im f ′(τ)− λπ) sinϕ

on the segment τ = µ0 + e
iϕt, 0 � t � t1, changes sign from plus to minus only

when τ passes through τ0 = µ0 + e
iϕt0. Hence, τ0 is indeed the unique maximum

point on the segment and on the whole contour of integration consisting of this
segment and two rays.
To prove the asymptotic formula (2.47), we write down the contribution of the

saddle point τ0:

(2π)1/2e
πi
2 −

i
2 arg f

′′(τ0)|f ′′(τ0)|−1/2en(f(τ0)−λπiτ0)g(τ0)n−1/2
(
1 + O(n−1)

)
(2.54)

(see, for example, [23], § 5.7, formula (5.7.2)). We have

f ′′(τ) =
b

τ + 2r + 1
+

b

−τ + 2r + 1 +
a+ b

τ − 1 −
a+ b

τ + 1

= 2
(a− 2rb)τ2 − (2r + 1)(a− 2rb+ 2ra)

(τ2 − 1)(τ2 − (2r + 1)2) �= 0

at those τ for which Re f ′(τ) = 0 (in particular, τ0). Using the equality

f(τ0)− λπiτ0 = f(τ0)− f ′(τ0)τ0 = f0(τ0)

and separating the modulus and argument in (2.54), we obtain (2.47), which com-
pletes the proof of the lemma.

Corollary 2.4. Let the assumptions of Lemma 2.9 hold. Assume, moreover, that

−1
2
arg f ′′(τ0) + arg g(τ0) �≡

π

2
(modπZ) or Im f0(τ0) �≡ 0 (modπZ). (2.55)
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Then the following limiting relation holds for the integral

ReJn,λ =
1

2
(Jn,λ + Jn,−λ) =

1

2πi

∫ µ0+i∞
µ0−i∞

enf(τ) cos(λπnτ)g(τ) dτ :

lim
n→∞

log |ReJn,λ|
n

= Ref0(τ0)

= log
22(a−2rb)|τ0 + 2r + 1|b(2r+1)| − τ0 + 2r + 1|b(2r+1)

|τ0 + 1|a+b|τ0 − 1|a+b
.
(2.56)

Moreover, in the case when

−1
2
arg f ′′(τ0) + arg g(τ0) ≡ 0 (modπZ) and Im f0(τ0) ≡ 0 (modπZ), (2.57)

the integral Jn,λ has the real asymptotics (2.47), which implies that the upper limit
in (2.56) becomes a limit.

Proof. Assumption (2.55) implies that the real part of the coefficient of n−1/2 in
the asymptotic formula (2.47) is non-zero for an infinite sequence of numbers n. It
is on this sequence that the limiting relation (2.56) is attained. If (2.57) holds, then
the principal term of the asymptotics (2.47) is a real number, and (2.56) with lim
instead of lim follows immediately from (2.47).

We now state our definitive results concerning

κ = lim
n→∞

log |In|
n

= lim
n→∞

log |Ĩn|
n

(2.58)

(see Lemma 2.5). If b = 1 or b = 2, then the results take a simple form, and the
upper limits in (2.58) can be replaced by limits. Our assertions in these cases will
be stated as separate propositions.

Proposition 2.1. Let b = 1, let r be a positive integer, let a > 2r be an odd
integer, and let µ1 ∈ (2r + 1,+∞) be a real root of the polynomial (2.21). Then

κ = lim
n→∞

log |In|
n

= log
22(a−2r)(µ1 + 2r+ 1)

2r+1(µ1 − 2r − 1)2r+1
(µ1 + 1)a+1(µ1 − 1)a+1

. (2.59)

Proof. In the case when b = 1, τ = µ1 is the unique maximum point of the function
Re f(τ) on the contour of integration for calculating the asymptotics of the inte-
gral Jn,1 in the proof of Lemma 2.9 (the ray τ = µ0 + it, t � 0, and the ray τ = t,
t � µ0, that goes along the upper bank of the cut [2r + 1,+∞)). This implies, in
particular, that f ′′(µ1) < 0, whence

−1
2
arg f ′′(µ1) ≡

π

2
(modπZ).

In the case when b = 1 we have for the function (2.13) that

arg g(µ1) = −
π

2
and Im f0(µ1) = −(2r + 1)π.



514 W. Zudilin

Using Corollary 2.4 with λ = 1 and τ0 = µ1, we obtain that (2.57) holds and

lim
n→∞

log |ReJn,1|
n

= Re f0(µ1).

The formula Ĩn = −ReJn,1 (see Corollary 2.1) and Lemma 2.5 imply that (2.59)
holds.

Proposition 2.2. Let b = 2, let r be a positive integer, assume that a � 4r is an
even integer, and let µ0 ∈ (1, 2r+ 1) be a real root of the polynomial (2.21). Then

κ = lim
n→∞

log |In|
n

= log
22(a−4r)(µ0 + 2r + 1)

2(2r+1)(−µ0 + 2r + 1)2(2r+1)
(µ0 + 1)a+2(µ0 − 1)a+2

. (2.60)

Proof. If b = 2, then Ĩn = −Jn,0, and τ = µ0 is the unique maximum on the
contour of integration τ = µ0 + it, t ∈ R, for calculating the asymptotics of
the integral Jn,0 in the proof of Lemma 2.9. Therefore, f

′′(µ0) > 0, whence

−1
2
arg f ′′(µ0) ≡ 0 (modπZ).

It is obvious that

arg g(µ1) = 0, Im f0(µ1) = 0.

Corollary 2.4 with λ = 0 and τ0 = µ0 implies that (2.57) holds and

lim
n→∞

log |Jn,0|
n

= Re f0(µ0) = f0(µ0).

Combining this with Lemma 2.5, we obtain (2.60).

Lemma 2.10. Assume that the real root µ1 ∈ (2r+1,+∞) of the polynomial (2.21)
satisfies the inequality

µ1 � 2r + 1 +min
{
br(r + 1)

2(a+ b)
,
r(r + 1)

3(2r + 1)

}
. (2.61)

Then Ref0(τ) regarded as a function of Re τ increases in the domain Re τ > 0,
Im τ � 0 on curve (2.35).

Proof. As was shown in the proof of Lemma 2.7 (see also Corollary 2.3), on the
smooth curve (2.35) in the domain Re τ >0, Im τ�0 the quantityρ= |τ−(2r+1)|/2,
τ = x+ iy, can be represented as an implicit function of x, µ0 � x � µ1, which is
continuously differentiable and increases. Using formulae (2.29), (2.30) and differ-
entiating with respect to x, we obtain the following formula on the curve defined
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by formula (2.35):

2ρρ′
(

b

ρ2 + (2r + 1)x
− b
ρ2
+

a+ b

ρ2 + rx− r(r + 1) −
a+ b

ρ2 + (r + 1)x− r(r + 1)

)

+

(
b(2r + 1)

ρ2 + (2r + 1)x
+

(a+ b)r

ρ2 + rx− r(r + 1) −
(a+ b)(r + 1)

ρ2 + (r + 1)x− r(r + 1)

)
= 0.

Simple transformations yield that

2ρρ′x

(
b(2r + 1)

|τ ± (2r + 1)|2 −
a + b

|τ ± 1|2

)
=
b(2r + 1)ρ2

|τ ± (2r + 1)|2 +
(a+ b)(r(r + 1) − ρ2)

|τ ± 1|2 .

(2.62)

Therefore, the function Ref0(τ) can be regarded on the curve (2.35) as a function
of x, µ0 � x � µ1. By (2.29), we have

f̃0(x) := 2Ref0(τ) = log
ρ2b(2r+1)(ρ2 + (2r + 1)x)b(2r+1)

(ρ2 + rx− r(r + 1))a+b(ρ2 + (r + 1)x− r(r + 1))a+b .

Combining this with (2.29) and (2.62), we obtain that

f̃ ′0(x) = 2ρρ
′
(
b(2r + 1)

ρ2
+

b(2r + 1)

ρ2 + (2r + 1)x

− a+ b

ρ2 + rx− r(r + 1) −
a + b

ρ2 + (r + 1)x− r(r + 1)

)

+

(
b(2r + 1)2

ρ2 + (2r + 1)x
− (a+ b)r

ρ2 + rx− r(r + 1) −
(a+ b)(r + 1)

ρ2 + (r + 1)x− r(r + 1)

)

= 32ρρ′(2ρ2 + (2r + 1)x)

(
b(2r + 1)

|τ ± (2r + 1)|2 −
a + b

|τ ± 1|2

)

+ 16(2r + 1)

(
b(2r+ 1)ρ2

|τ ± (2r + 1)|2 +
(a + b)(r(r + 1)− ρ2)

|τ ± 1|2

)

+
64ρρ′(a+ b)r(r + 1)

|τ ± 1|2 − 32(a+ b)r(r + 1)x|τ ± 1|2

=
32(ρ2 + (2r + 1)x)

x

(
b(2r+ 1)ρ2

|τ ± (2r + 1)|2 +
(a + b)(r(r + 1)− ρ2)

|τ ± 1|2

)

+
32(a+ b)r(r + 1)

|τ ± 1|2 (2ρρ′ − x). (2.63)
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The function ρ = ρ(x) increases on the curve (2.35). Hence, ρ′ � 0. Continuing
the chain in (2.63), we obtain that

f̃ ′0(x) �
32(ρ2 + (2r + 1)x)

x

b(2r + 1)ρ2

|τ ± (2r + 1)|2 + 32(2r+ 1)
(a+ b)(r(r + 1)− ρ2)

|τ ± 1|2

− 32(a+ b)r(r + 1)x|τ ± 1|2

=
2b(2r+ 1)

x
− 2(a+ b)((2r + 1)ρ

2 + r(r + 1)x− r(r + 1)(2r + 1))
(ρ2 + rx− r(r + 1))(ρ2 + (r + 1)x− r(r + 1)) .

Put

ε = min

{
br(r + 1)

2(a+ b)
,
r(r + 1)

3(2r+ 1)

}
. (2.64)

We have ε � µ1 − 2r − 1. The localization of the curve (2.35) (see Corollary 2.3)
implies that

2r + 1− ε � x � 2r + 1 + ε, 0 < ρ � ε
2
,

whence

f̃ ′0(x) >
2b(2r + 1)

2r + 1 + ε
− 2(a+ b)((2r + 1)ε/4 + r(r + 1))ε

r(r + 1)(r − ε)(r + 1− ε)

> 2(2r + 1)

(
b

2r + 1 + ε
− (a + b)(2r + 1 + ε)ε

4r(r+ 1)(r − ε)(r + 1− ε)

)

= 2(2r + 1) · 4br(r + 1)(r − ε)(r + 1− ε)− ε(a + b)(2r + 1 + ε)
2

4r(r + 1)(r − ε)(r + 1− ε)(2r + 1 + ε) .
(2.65)

Combining the inequalities

br(r + 1) � ε
2
(a + b) if ε � br(r + 1)

2(a+ b)
,

8(r − ε)(r + 1− ε) > (2r + 1 + ε)2 if ε � r(r + 1)
3(2r + 1)

,

with (2.64) and (2.65), we obtain that f̃ ′0(x) > 0. Hence, Re f0(τ), regarded as a
function of x = Re τ , increases on the curve (2.35), as was to be shown.

Proposition 2.3. Let a, b, r be positive integers, assume that a+ b is even, b � 3,
a � 2rb, and assume that (2.61) holds for the real root µ1 ∈ (2r + 1,+∞) of the
polynomial (2.21). Let

κ := log
22(a−2rb)|τ0 + 2r + 1|b(2r+1)| − τ0 + 2r+ 1|b(2r+1)

|τ0 + 1|a+b|τ0 − 1|a+b
,

where τ0 is a complex root of the polynomial (2.21) in the domain Re τ > 0, Im τ > 0
with maximal real part Re τ0. Assume, moreover, that (2.55) holds. Then

lim
n→∞

log |In|
n

= κ. (2.66)
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Proof. The inequality (2.61) implies that µ1 − (2r + 1) < r/3. Hence, (2.37)
and (2.46) hold. By Lemma 2.10, the maximal value of the function Re f0(τ)
on the roots of polynomial (2.21) is attained at τ = τ0, for which λ = k = b−2. By
Corollary 2.4, the asymptotics of the integral (2.20) is determined by the contribu-
tion of ReJn,b−2, since the contributions of the other quantities are exponentially
smaller in comparison with ReJn,b−2, and the coefficient cb−2 in (2.20) is non-zero
by assertion (b) of Lemma 2.2. Therefore,

lim
n→∞

log |Ĩn|
n

= lim
n→∞

log |ReJn,b−2|
n

= κ.

Using Lemma 2.5, we obtain the desired relation (2.66).

§ 3. Estimates for the coefficients of linear forms
Our first result will be an upper estimate for the coefficients of linear forms.

Proposition 3.1. Let a, b, r be positive integers, assume that a+b is even, a � 2rb,
and let the linear forms (1.5) be defined by (1.2) and (1.1). Then the following
estimate holds for the coefficients Ās, s = 0 or s = b+ 1, . . . , a+ b− 1:

lim
n→∞

log |Ās|
n

� 2b(2r + 1) log(2r + 1) + 2(a− 2rb) log 2,
s = 0 or s = b+ 1, . . . , a+ b− 1 and is odd.

(3.1)

Moreover, estimate (3.1) is exact in the case when a is even:

lim
n→∞

log |Ās|
n

= 2b(2r + 1) log(2r + 1) + 2(a− 2rb) log 2,
s = b+ 1, . . . , a+ b− 1 and is odd.

(3.2)

Proof. Consider decomposition (1.6), where the coefficients can be calculated using
the formulae

Ak,j =
1

(a− j)!
da−j

dta−j
(
R(t)(t + k)a

)∣∣∣∣
t=−k

, k = 0,±1, . . . ,±n, j = 1, 2, . . . , a.

First of all we claim that

max
k=0,±1,...,±n

|Ak,a| = |A0,a| =
((2r + 1)n)!2b(2n)!a−2rb

n!2(a+b)
. (3.3)
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Since |Ak,a| = |A−k,a| for k = 0, 1, . . . , n, it is sufficient to show that |Ak,a| decreases
as k increases from 0 to n. This can be verified directly:

|Ak,a|
|Ak−1,a|

=
((2r + 1)n+ k)b

((2r + 1)n− k + 1)b ·
(n− k + 1)a+b
(n + k)a+b

=

(
((2r + 1)n+ k) · (n− k + 1)
((2r + 1)n− k + 1) · (n + k)

)b
·
(
n− k + 1
n+ k

)a+b

=

(
(2r + 1)n2 − k(k − 1) + n(−2rk + 2r + 1)
(2r + 1)n2 − k(k − 1) + n(2rk+ 1)

)b
·
(
n − (k − 1)
n+ k

)a+b
< 1, k = 1, . . . , n.

We now fix an integer k, |k| � n, and denote the logarithmic derivative of
R(t)(t+ k)a by gk(t):

gk(t) = b

(2r+1)n∑
l=−(2r+1)n

l�=k

1

t+ l
− (a+ b)

n∑
l=−n
l�=k

1

t + l
.

Then for j = 0, 1, 2, . . . the modulus of the quantity

1

j!

djgk(t)

dtj

∣∣∣∣
t=−k

= b

−(n+1)∑
l=−(2r+1)n

(−1)j
(l − k)j+1 + b

(2r+1)n∑
l=n+1

(−1)j
(l − k)j+1

− a
n∑

l=−n
l�=k

(−1)j
(l− k)j+1

is bounded above by 2(2rb + a)n (we estimate every summand on the right-hand
side by 1). Using Leibniz’ rule for the differentiation of a product, we obtain that

Ak,a−j =
1

j!

dj−1

dtj−1
(
gk(t) ·R(t)(t+ k)a

)∣∣∣∣
t=−k

=
1

j

j−1∑
m=0

1

(j − 1−m)!
dj−1−mgk(t)

dtj−1−m

∣∣∣∣
t=−k

· Ak,a−m, j = 1, . . . , a− 1,
(3.4)

whence

|Ak,a−j| � 2(2rb+ a)n ·
1

j

j−1∑
m=0

|Ak,a−m|

� 2(2rb+ a)n · max
m=0,1,...,j−1

|Ak,a−m|, j = 1, . . . , a− 1. (3.5)

We obtain the following estimate from (3.5) by induction:

|Ak,a−j| �
(
2(2rb+ a)n

)j−1 |Ak,a|, j = 1, . . . , a.
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By (3.3), we have

|Ak,a−j| �
(
2(2rb+ a)n

)a−1 ((2r + 1)n)!2b(2n)!a−2rb
n!2(a+b)

,

k = 0,±1, . . . ,±n, j = 1, . . . , a.

Combining this with (1.11) and (1.12), we obtain that

|Ās| � 2a+b−2(2n+ 1)2
(
2(2rb+ a)n

)a−1 ((2r + 1)n)!2b(2n)!a−2rb
n!2(a+b)

,

s = 0 or s = b+ 1, . . . , a+ b− 1.
(3.6)

We obtain the limiting relations (3.1) from (3.6) using Stirling’s formula (2.17) for
Γ(z) = (z − 1)! with positive integers z →∞.
If a is an even integer and j is an even integer such that 0 � j < a, then

formula (3.4) with k = 0 implies that |A0,a−j| � |A0,a|. If a is even and s is odd,
b < s < a + b, then the summands on the right-hand side of (1.11) have the same
sign, whence

|Ās| � |A0,a|, s = b+ 1, . . . , a+ b− 1 and is odd.

So we have obtained both upper and lower estimates for the asymptotics of coef-
ficients of linear forms (1.5) for even a using Stirling’s formula. This proves the
limiting relations (3.2) and completes the proof of the proposition.

It turns out that the estimate (3.1) holds for odd values of a as well. The results
obtained in § 2 enable us to calculate the asymptotics of the coefficients (1.11) for
odd a. This will occupy the rest of this section.
For positive integers m the following expansion holds in the neighbourhood of

the point t = 0: (
sinπt

π

)2m
=

∞∑
l=m

d
(m)
l t

2l, (3.7)

where d
(m)
l , l = m,m+ 1, . . . , are real numbers, d

(m)
m = 1.

Lemma 3.1. Assume that a is an odd integer. Then the following recurrence
relations hold for the coefficients of the linear form (1.5):

Ā2m+b = −
(2m+ b− 1)!
(2m)! (b − 1)!

(−1)b
πi

∫ iM+∞
iM−∞

(
sinπt

π

)2m
R(t) dt

−
(a−1)/2∑
l=m+1

(2l)! (2m+ b− 1)!
(2m)! (2l + b− 1)!d

(m)
l Ā2l+b, m = 1, 2, . . . ,

a− 1
2
,
(3.8)

where M > 0 is an arbitrary real constant.

Proof. If m is a positive integer, then (3.7) implies that the following expansion
holds in the neighbourhood of t = −k ∈ Z:(

sinπt

π

)2m
=

(
sinπ(t+ k)

π

)2m
=

∞∑
l=m

d
(m)
l (t+ k)

2l.
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Formula (1.6) implies that the following formulae hold in the neighbourhood of
t = −k for the function defined by (1.1):

R(t) =
Ak,a

(t+ k)a
+
Ak,a−1
(t + k)a−1

+ · · ·+ Ak,1
t+ k

+ O(1),

where k = 0,±1, . . . ,±n, and R(t) = O(1) in the neighbourhood of t = −k ∈ Z,
|k| > n. Therefore,

Res
t=−k

((
sinπt

π

)2m
R(t)

)
=



0 if |k| > n,
(a−1)/2∑
l=m

d
(m)
l Ak,2l+1 if |k| � n,

for m < a/2 and any integer k. If the closed contour L goes around the points
0,±1, . . . ,±n anticlockwise, then

1

2πi

∮
L

(
sinπt

π

)2m
R(t) dt = (−1)b−1

(a−1)/2∑
l=m

(2l)! (b− 1)!
(2l+ b− 1)!d

(m)
l Ā2l+b

= (−1)b−1
(
(2m)! (b− 1)!
(2m+ b− 1)!Ā2m+b +

(a−1)/2∑
l=m+1

(2l)! (b− 1)!
(2l+ b− 1)!d

(m)
l Ā2l+b

)
,
(3.9)

which follows from (1.11) and the relation d
(m)
m = 1. We deduce from (3.9) the

following recurrence formulae:

Ā2m+b =
(2m+ b− 1)!
(2m)! (b− 1)!

(−1)b
2πi

∮
L

(
sinπt

π

)2m
R(t) dt

−
(a−1)/2∑
l=m+1

(2l)! (2m+ b− 1)!
(2m)! (2l + b− 1)!d

(m)
l Ā2l+b, m = 1, 2, . . . ,

a− 1
2
.
(3.10)

Figure 8
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Now let the contour of integration L be the rectangle with vertices ±N ± iM ,
where M > 0 is a fixed real constant and N > n is sufficiently large (see Fig. 8).
As N →∞, the following estimates hold on the vertical sides of the rectangle:

∣∣∣∣ sinπtπ
∣∣∣∣ � eπMπ , R(t) = O(N−2).

Therefore, we have

1

2πi

∮
L

(
sinπt

π

)2m
R(t) dt

=
1

2πi

(∫ iM−N
iM+N

+

∫ −iM+N
−iM−N

)(
sinπt

π

)2m
R(t) dt+ O(N−1) as N →∞

(3.11)

form = 1, 2, . . ., (a−1)/2, where the constant in O(N−1) depends only onM . Since
the integrand in (3.11) is an odd function (see (1.8)) and the contour L is symmetric
with respect to 0, it is sufficient to integrate over half the contour and double the
result. Passing to the limit as N → ∞, we obtain the recurrence formulae (3.8)
from (3.10), which completes the proof of the lemma.

It follows from Lemma 3.1 that the asymptotic behaviour of the coefficients of
the linear form (1.5) is closely connected with the asymptotics of the integrals

Kn,m =
1

πi

∫ iM+∞
iM−∞

(
sinπt

π

)2m
Rn(t) dt

=
(−1)bn
πi

∫ iM+∞
iM−∞

(
sinπt

π

)2m+b

× Γ(±t+ (2r + 1)n+ 1)
bΓ(t − n)a+b(2n)!a−2rb

Γ(t + n+ 1)a+b
dt, m = 1, 2, . . . ,

a− 1
2
,

(3.12)

as n→∞, where we have used formula (2.15). As in § 2, we assume that the cuts
(−∞, n] and [(2r + 1)n,+∞) are made in the t-plane.

Lemma 3.2 (compare [23], § 6.5). For any y0 > 0 the asymptotic equality

logΓ(z) =

(
z − 1
2

)
log z − z + log

√
2π +O

(
|z|−1

)
+ O
(
e−2π Im z

)
(3.13)

holds in the domain Im z � y0.

Proof. The asymptotic relation (2.17) holds in the domain | arg z| < π− ε, but the
identity

Γ(z)Γ(−z) = − π

z sinπz
=

2πi

ze−πiz(1− e2πiz) (3.14)
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enables us to write down asymptotics in the quadrant Im z > 0, Re z < 0 as well.
Making the cut (−∞, 0] in the z-plane and fixing principal values of the argument,
we deduce from (2.17) and (3.14) the following relation in this quadrant:

log Γ(z) = log(2πi) − log z + πiz − log(1 − e2πiz) − log Γ(−z)

=

(
log(2π) + πi

(
z +
1

2

)
− log z − log(1− e2πiz)

)

−
((
−z − 1

2

)
(log z − πi) + z + log

√
2π + O

(
|z|−1

))

=

(
z − 1
2

)
log z − z + log

√
2π + O

(
|z|−1

)
+ log(1− e2πiz). (3.15)

Observing that |e−2πiz| � u0 := e−2πy0 < 1 in the domain Im z � y0 and combin-
ing (3.15) with the relation | ln(1− u)| � C|u|, which holds for |u| � u0 with some
constant C depending only on u0, we complete the proof of formula (3.13).

Lemma 3.3. Let µ be a positive real constant. Then the relation

Kn,m = K̃n,m ·
(−1)bn(2√πn )a−2rb2b

π2mna−1
·
(
1 +O(n−1) +O(e−2πnµ)

)
holds for the integrals (3.12) as n→∞, where

K̃n,m =
1

πi

∫ iµ+∞
iµ−∞

sin2m+b πnτ · enf(τ)g(τ) dτ, m = 1, 2, . . . ,
a− 1
2
, (3.16)

and the functions f(τ), g(τ) are defined by (2.12) and (2.13) (see also Remark 2.1).

Proof. The proof repeats the proof of Lemma 2.5 except that we replace the asymp-
totics (2.17) by (3.13) (when integrating over the contour Im t =M = µn, µ > 0).

Lemma 3.4. Assume that (2.61) holds for the real root µ1 ∈ (2r + 1,+∞) of the
polynomial (2.21), and assume that

|η1| < min
{√
3,
log(r2 + r)

π

}
(3.17)

for the purely imaginary root η1 ∈ (0,+i∞) of minimal absolute value. Then the
following relation holds for integrals (3.16) as n→∞:

|K̃n,(a−1)/2| =
|g(η1)|

|f ′′(η1)|1/22a+b−1/2π1/2n1/2
enRe f0(η1)

(
1 + O(n−1)

)
,

|K̃n,m| = |K̃n,(a−1)/2| ·O(e−2πnµ), m = 1, 2, . . . ,
a− 1
2
− 1,

(3.18)

where the constant µ is defined by the equality iµ = η1.

Proof. By Lemma 2.7, λ = a + b − 1 in equation (2.22) corresponds to the root
iµ = η1 of the polynomial (2.21).
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Using the equality

sin2m+b πnτ =

(
eπinτ − e−πinτ

2i

)2m+b

= χm
(−1)(a+b)/2
2a+b−1i

e−πi(a+b−1)nτ +
a+b−1∑
l=1

hm,lie
−πi(a+b−2l−1)nτ ,

m = 1, 2, . . .,
a− 1
2
,

where

χm =

{
1 if m =

a− 1
2
,

0 otherwise

and hm,l, m = 1, . . . , (a − 1)/2, l = 1, . . . , a+ b − 1 are real coefficients, we write
the integrals (3.16) as

K̃n,m = −χm
(−1)(a+b)/2
2a+b−1π

Jn,a+b−1 +
1

π

a+b−1∑
l=1

hm,lJn,a+b−2l−1,

m = 1, 2, . . . ,
a− 1
2
,

(3.19)

where

Jn,k =

∫ iµ+∞
iµ−∞

en(f(τ)−kπiτ)g(τ) dτ, k = 0,±1, . . . ,±(a+ b− 1). (3.20)

First we shall study the asymptotics of the integral Jn,a+b−1. The path of inte-
gration passes through the saddle point η1 = iµ. We claim that x = 0 is a maximum
point of the function

f̃(x) = Re(f(τ) − (a+ b− 1)πiτ)
∣∣
τ=x+iµ

. (3.21)

We have

f̃ ′(x) = Re(f ′(τ) − (a+ b− 1)πi)
∣∣
τ=x+iµ

= Re f ′(x+ iµ).

Hence, the sole candidates for maximum points of (3.21), besides x = 0, are
x = ±x0, where x0 + iµ is the point of intersection of the ray τ = x+ iµ, x > 0,
with the curve Re f ′(τ) = 0 in the domain Re τ > 0 (see Fig. 4) at which Re f ′(τ)
changes the sign from + to − (if there is such a point). On the other hand,

f(τ) − (a + b− 1)πiτ = f0(τ) + f ′(τ)τ − (a+ b− 1)πiτ

for the function f0(τ) defined in (2.48). By Lemma 2.10 and the inequality
Im f ′(x0 + iµ) > 0, we have

f̃(±x0) = f̃(x0) = Re f0(x0 + iµ)− µ Im f ′(x0 + iµ) + (a+ b− 1)πµ
< Re f0(µ1) + (a + b− 1)πµ. (3.22)
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The inequality

2r + 1 < µ1 � 2r + 1 + 2ε, ε :=
r(r + 1)

6(2r + 1)
, (3.23)

which follows from (2.61), enables us to obtain an upper estimate for Re f0(µ1).
We have

Re f0(µ1) < b(2r+1) log((2r+1+ε)ε)−(a+b) log((r+1)r) < −(a−2rb) log(r2+r),
since (2r + 1 + ε)ε < r(r + 1) by (3.23). Continuing estimate (3.22) and using
inequality (3.17), we obtain the inequalities

f̃(±x0) < −(a − 2rb) log(r2 + r) + (a+ b)πµ
� −(a − 2rb) log(r2 + r) + (a+ b) log(r2 + r)
= b(2r + 1) log(r2 + r). (3.24)

To obtain a lower estimate for f̃(0), we use the inequalities

|iµ ± (2r + 1)| > 2r + 1, |iµ± 1| � |i
√
3± 1| = 2.

We have

f̃(0) = Re f0(iµ) > 2(a− 2rb) log 2 + 2b(2r + 1) log(2r + 1)− 2(a+ b) log 2

= 2b(2r + 1) log

(
r +
1

2

)
> b(2r + 1) log(r2 + r). (3.25)

Comparing (3.24) with (3.25), we obtain that f̃(0) > f̃(±x0). Hence, the saddle
point τ = iµ is a maximum point of the function Re(f(τ) − (a+ b − 1)πiτ) on the
contour Im τ = µ. Therefore, Jn,a+b−1 is equal to the contribution of the saddle
point iµ = η1:

Jn,a+b−1 =
(2π)1/2g(η1)

|f ′′(η1)|1/2n1/2
enRe(f(η1)−(a+b−1)πiη1)

(
1 + O(n−1)

)
=
(2π)1/2g(η1)

|f ′′(η1)|1/2n1/2
enRe f0(η1)

(
1 +O(n−1)

)
, (3.26)

and a similar estimate holds for the integral of the modulus of the integrand:∫ iµ+∞
iµ−∞

|en(f(τ)−(a+b−1)πiτ)g(τ)| dτ = (2π)
1/2|g(η1)|

|f ′′(η1)|1/2n1/2
enRe f0(η1)

(
1 + O(n−1)

)
.

(3.27)
For the integrals (3.20) with k < a+ b− 1 we use the relation

|en(f(τ)−kπiτ)g(τ)| = |en(f(τ)−(a+b−1)πiτ)g(τ)| · e−(a+b−1−k)nµ

on the contour Im τ = µ. Combining this with (3.27) and (3.26), we obtain the
inequality

|Jn,k| � Ce−(a+b−1−k)nµ|Jn,a+b−1|, k = 0,±1, . . . ,±(a+ b− 1), (3.28)

with some constant C > 0 that does not depend on n or k. (Inequality (3.28)
is obtained by integration along a finite segment, say [iµ − 1, iµ + 1], since the
contribution of the integral over the remaining infinite part is exponentially small
compared with the contribution of iµ.) Substituting estimates (3.26) and (3.28)
into (3.19), we obtain (3.18), which completes the proof of the lemma.
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Proposition 3.2. Let a, b, r be positive integers, let a, b be odd integers, a > 2rb,
assume that the real root µ1 ∈ (2r + 1,+∞) of the polynomial (2.21) is such
that (2.61) holds, and assume that (3.17) holds for the purely imaginary root
η1 ∈ (0,+i∞) of minimal absolute value. Then the following asymptotic formula
holds for the coefficients Ās of the linear form (1.5):

lim
n→∞

log |Ās|
n

� log 2
2(a−2rb)|η1 + 2r + 1|b(2r+1)| − η1 + 2r+ 1|b(2r+1)

|η1 + 1|a+b|η1 − 1|a+b
, (3.29)

where s = 0 or s = b+ 1, . . . , a+ b− 1 and is odd. In the case when s = a+ b− 1
the upper limit becomes a limit and the inequality becomes an equality.

Proof. The limiting relation

lim
n→∞

log |Āa+b−1|
n

= Re f0(η1)

follows from formula (3.8) with m = (a − 1)/2 by Lemmas 3.3 and 3.4. For the
other odd integers s, b < s < a+b−1, estimates (3.29) follow from Lemmas 3.1, 3.3
and 3.4. In the case when s = 0 formula (1.5) implies that

|Ā0| � |I|+
∑
s is odd
b<s<a+b

|Ās|ζ(s),

whence

lim
n→∞

log |Ā0|
n

� max{Re f0(τ0),Ref0(η1)}, (3.30)

where the root τ0 of polynomial (2.21) is defined in Proposition 2.3. Lemma 2.10
implies that Re f0(τ0) < Re f0(µ1). The inequality Re f0(µ1) < Re f0(η1) (even a
stronger one) was proved in Lemma 3.4. Therefore, the maximum on the right-hand
side of (3.30) is equal to Re f0(η1), which completes the proof of the proposition.

Remark 3.1. Estimate (3.29) is but a slight improvement of (3.1), and will not be
used in the proofs of Theorems 0.3 and 0.4. However, it is quite natural (and could
have been foreseen) that the asymptotics of linear forms and their coefficients is
determined by the values of the same function Re f0(τ) at different roots of the
same polynomial (2.21). (In the case when a is an even integer the asymptotics
of the coefficients of the linear form (1.5) is determined by the root η0 = 0 of
polynomial (2.21); see Proposition 3.1.)

§ 4. Refined estimates for the denominators of linear forms
The asymptotics of the denominators of linear forms (1.2) (as n→∞) obtained

in Lemma 1.4, although somewhat coarse, is sufficient for the proof of Rivoal’s theo-
rem. We shall refine our results on denominators using the following generalization
of Lemma 1.2.



526 W. Zudilin

Lemma 4.1. Assume that for some polynomial P (t), deg P (t) < m(n + 1), the
rational function

R(t) =
P (t)(

(t+ s)(t + s+ 1) · · · (t + s+ n)
)m

(which may be reducible) satisfies the conditions

Djn
j!

dj

dtj
(
R(t)(t + k)m

)∣∣∣∣
t=−k

∈ Z,

k = s, s+ 1, . . . , s+ n, j = 0, 1, . . . , m− 1,
(4.1)

where Dn is the least common multiple of the numbers 1, 2, . . . , n. Then

Djn
j!

dj

dtj
(
R(t)(t + k)m

)∣∣∣∣
t=−k

∈ Z, k = s, s+ 1, . . . , s+ n, (4.2)

for all non-negative integers j.

Proof. For the integers j = 0, 1, . . . , m − 1, the inclusions (4.2) follow directly
from (4.1). In what follows we consider only the integers j �m.
The rational function R(t) can be decomposed into a sum of partial fractions as

follows:

R(t) =
s+n∑
l=s

(
Bl,0

(t+ l)m
+

Bl,1

(t + l)m−1
+ · · ·+ Bl,m−2

(t + l)2
+
Bl,m−1
t+ l

)
, (4.3)

where

Bk,j =
1

j!

dj

dtj
(
R(t)(t+ k)m

)∣∣∣∣
t=−k

, k = s, s+1, . . . , s+n, j = 0, 1, . . . , m− 1.

Since differentiation is a linear operation and formulae (4.3) and (4.1) hold, it is
sufficient to show that

Dj−qn
j!

dj

dtj

(
(t+ k)m

1

(t+ l)m−q

)∣∣∣∣
t=−k

∈ Z,

q = 0, 1, . . ., m− 1, k, l = 0,±1, . . . ,±n.
(4.4)

Since

(t+ k)m
1

(t+ l)m−q
=
((t + l) − (l − k))m
(t + l)m−q

=
m∑
p=0

(−1)p
(
m

p

)
(t+ l)m−p(l − k)p
(t + l)m−q

=
m∑
p=0

(−1)p
(
m

p

)
(l − k)p(t+ l)q−p,

q = 0, 1, . . . , m− 1, k, l = 0,±1, . . . ,±n,
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we have for the integers j �m that

1

j!

dj

dtj

(
(t+ k)m

1

(t+ l)m−q

)∣∣∣∣
t=−k

=

( m∑
p=0

(−1)p
(
m

p

)
(q − p)(q − p− 1) · · · (q − p− j + 1)

j!

× (l− k)p(t + l)q−p−j
)∣∣∣∣
t=−k

=
1

(l − k)j−q
m∑
p=0

(−1)p+j
(
m

p

)
(p− q)j
j!

(4.5)

if l �= k and
1

j!

dj

dtj

(
(t + k)m

1

(t+ l)m−q

)
= 0

if l = k. Since

Dj−qn
(l− k)j−q ∈ Z and

(
m

p

)
(p − q)j
j!

∈ Z,

q = 0, 1, . . . , m− 1, p = 0, 1, . . . , m, k, l = 0,±1, . . . ,±n, k �= l,

the inclusions (4.4) follow from (4.5), which completes the proof of the lemma.

The next lemma strengthens the inclusions (1.17). It will be used in our expo-
sition of the general case.

Lemma 4.2. We denote by E = En,m the set of primes dividing each of the numbers

Bk,0 =
(
F (t)(t+ k)2

)∣∣
t=−k =

(m+ 2n± k)!
(m± k)! (n± k)!2 , k = 0,±1, . . . ,±n,

where the function F (t) is defined in (1.15). Let

Π = Πn,m =
∏
p∈E√

m+3n<p�2n

p. (4.6)

Then

Π−1
Dj2n
j!

dj

dtj
(
F (t)(t+ k)2

)∣∣∣∣
t=−k

∈ Z, k = 0,±1, . . . ,±n, (4.7)

for all non-negative integers j.

Proof. The fact that Π−1Bk,0 ∈ Z, k = 0,±1, . . . ,±n (inclusions (4.7) with j = 0)
follows from the definition of E and Π. Let us verify inclusions (4.7) with j = 1.
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We have

Bk,1 =
d

dt

(
F (t)(t+ k)2

)∣∣∣∣
t=−k

= Bk,0

(
m+2n∑
l=m+1

(
1

t + l
+
1

t− l

)
− 2

n∑
l=−n
l�=k

1

t + l

)∣∣∣∣∣
t=−k

= Bk,0

(
m+2n∑
l=m+1

(
1

l − k −
1

l+ k

)
− 2

n∑
l=−n
l�=k

1

l − k

)
, k = 0,±1, . . . ,±n.

(4.8)

By Lemma 1.3, we have D2nBk,1 ∈ Z, k = 0,±1, . . . ,±n. Therefore,
ordp(Π

−1D2nBk,1) = ordp(D2nBk,1) � 0 (4.9)

if p is coprime with Π. Now assume that a prime p divides Π, whence

ordpΠ = 1. (4.10)

For p >
√
m+ 3n we have ordp(l±k) � 1, where (l±k) is any denominator in (4.8).

Therefore,

ordp

(
m+2n∑
l=m+1

(
1

l− k−
1

l + k

)
−2

n∑
l=−n
l�=k

1

l− k

)
� −1, k = 0,±1, . . . ,±n. (4.11)

We have
ordpD2n � 1 (4.12)

for p � 2n. Finally,
ordp Bk,0 � 1, k = 0,±1, . . . ,±n, (4.13)

if p ∈ E .
Combining estimates (4.10)–(4.13) and taking (4.8) into account in the case

when p divides Π, we obtain that

ordp(Π
−1D2nBk,1) � 0. (4.14)

By (4.9) and (4.14), we have Π−1D2nBk,1 ∈ Z, k = 0,±1, . . . ,±n, which proves
that (4.7) holds for j = 1. In the case when j � 2 it remains to use Lemma 4.1
with m = 2.

Note that under the assumptions of Lemma 4.2 we have

ordpBk,0 =

⌊
m+ 2n

p
± k
p

⌋
−
⌊
m

p
± k
p

⌋
−2
⌊
n

p
± k
p

⌋
, k = 0,±1, . . . ,±n, (4.15)

for any prime p >
√
m+ 3n, since

ordp q! =

⌊
q

p

⌋
+

⌊
q

p2

⌋
+

⌊
q

p3

⌋
+ · · · , q = 1, 2, . . . , (4.16)

where � · � stands for the integer part of a number. Formula (4.15) enables us to
calculate the asymptotics of the factor (4.6) as n,m→∞, since

{p ∈ E : p >
√
m+ 3n } =

{
p >
√
m+ 3n : min

k=0,±1,...,±n
{ordpBk,0} � 1

}
. (4.17)

Consider, for example, the simplest version of (1.15) with m = n.
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Lemma 4.3.

�1 = lim
n→∞

logΠn,n
n

= ψ

(
1

2

)
− ψ
(
1

3

)
+ ψ(1) − ψ

(
5

6

)
− 1 ≈ 0.4820, (4.18)

where ψ(x) = Γ′(x)/Γ(x) is the logarithmic derivative of the gamma function.

Proof. In the case when m = n and p > 2
√
n, formula (4.15) implies that

min
k=0,±1,...,±n

{ordpBk,0} = min
|k/p|�|n/p|

ϕ1

(
n

p
,
k

p

)
, (4.19)

where
ϕ1(x, y) = �3x+ y�+ �3x− y� − 3�x+ y� − 3�x− y�. (4.20)

It is obvious that the function (4.20) is periodic (with period 1) in each argument:

ϕ1(x, y) = ϕ1({x}, {y}), {x} = x− �x�.

Therefore, it is sufficient to calculate the values of this function inside the unit
square. By the definition of the integer part of a number, the summands on the
right-hand side of (4.20) change their values only when the point passes through
the lines 3x± y = const ∈ Z and x± y = const ∈ Z (see Fig. 9). This enables us to
obtain the values of ϕ1(x, y) shown in Fig. 10.

Figure 9. The values of the functions �3x + y�, �3x − y� and
−3(�x+ y�+ �x− y�) inside the unit square

Figure 10. The values of the function ϕ1(x, y) inside the unit square
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Consider the perpendiculars to the x-axis passing through the points of inter-
section of the lines shown in Fig. 10. We have

min
|y|�x

ϕ1(x, y) = min
0�y�1

ϕ1({x}, y) =


 1 if {x} ∈ E1 =

[
1

3
,
1

2

)
∪
[
5

6
, 1

)
,

0 otherwise.

(4.21)

Formulae (4.17), (4.19) and (4.21) imply that

{p ∈ En,n : p > 2
√
n } =

{
p > 2

√
n :

{
n

p

}
∈ E1

}
,

whence

Πn,n =
∏

p:{n/p}∈E1
2
√
n<p�2n

p =
∏

p:{n/p}∈E1
p>2

√
n

p

/ ∏
2n<p�3n

p. (4.22)

We have the following formula for the denominator of the fraction on the right-hand
side of (4.22): ∏

2n<p�3n
p =
D3n

D2n
. (4.23)

We can find asymptotics of the numerator using following lemma (cf. [25], Theo-
rem 4.3 and § 6, and [26], Lemma 3.2).
Lemma 4.4. The limiting relation

lim
n→∞

1

n

∑
p>
√
Cn

{n/p}∈[u,v)

log p = ψ(v) − ψ(u)

holds for any C > 1 and any interval [u, v) ⊂ (0, 1).
Using Lemma 4.4 and relations (4.22), (4.23) and (1.24), we obtain the desired

asymptotics (4.18), which completes the proof of Lemma 4.3.

Remark 4.1. Simple as it is, the calculation of (4.21) can be made four times simpler.
It is easy to verify that function (4.20) is not only periodic, but invariant under the
transformations

ϑ1 : (x, y) �→
(
x+
1

2
, y +

1

2

)
, ϑ2 : (x, y) �→ (x, 1− y) (4.24)

(in the last map we use the shift by 1 and the fact that ϕ1(x, y) is odd with respect
to y). Therefore, it is sufficient to find the values of the function (4.20) on the
square 0 � x, y < 1

2 and then use the transformations ϑ1, ϑ1 ◦ ϑ2 and ϑ2 to extend
this function to the unit square and so by periodicity to the whole of R2.
The next object of our study is the rational function

G(t) = Gn(t) :=
(t± (n + 1)) · · · (t ± (n + 2rn))(

t(t± 1) · · · (t± n)
)2r . (4.25)

Lemma 1.3 and the Leibniz rule for differentiating a product imply that

Dj2n
j!

dj

dtj
(
G(t)(t+k)2r

)∣∣∣∣
t=−k

∈ Z, k = 0,±1, . . . ,±n, j = 0, 1, 2, . . . . (4.26)
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Lemma 4.5. For every integer r � 1 there is a sequence of integers Πn = Π(r)n � 1,
n = 1, 2, . . . , such that

Π−1n
Dj2n
j!

dj

dtj
(
G(t)(t+ k)2r

)∣∣∣∣
t=−k

∈ Z, k = 0,±1, . . . ,±n, (4.27)

for all non-negative integers j, and

�r = lim
n→∞

logΠ
(r)
n

n
= −2

r∑
l=1

(
ψ

(
l

r

)
+ ψ

(
l

r + 1/2

))
− (4r +1)

r∑
l=1

1

l
− 4rγ + 4r,

(4.28)
where γ ≈ 0.57712 is Euler’s constant.
Proof. For n � 2r we put Πn = 1. Then the inclusions (4.27) follow from (4.26).
This finite part of the sequence has no influence on the limit (4.28). In what follows
we assume that n > 2r.
For every prime p we consider the quantity

νp = min
k=0,±1,...,±n

{
ordp

((2r + 1)n+ k)! ((2r + 1)n− k)!
(n+ k)!2r+1(n − k)!2r+1

}
. (4.29)

Put
Πn =

∏
p:
√
(2r+2)n<p�2n

pνp . (4.30)

We fix an integer k in the interval |k| � n and consider the function

Gk(t) := G(t)(t+ k)
2r. (4.31)

We claim that

Π−1n
Dj2n
j!

djGk(t)

dtj

∣∣∣∣
t=−k

∈ Z, j = 0, 1, 2, . . . . (4.32)

By Lemma 4.1, it is sufficient to prove the inclusions (4.32) for j � 2r.
If p is a prime that does not divide Πn, then (4.26) implies that

ordp

(
Π−1n

Dj2n
j!

djGk(t)

dtj

∣∣∣∣
t=−k

)
= ordp

(
Dj2n
j!

djGk(t)

dtj

∣∣∣∣
t=−k

)
� 0. (4.33)

Now assume that p is a prime dividing Πn. We shall prove by induction on
j = 0, 1, . . . , 2r that

ordp

(
Π−1n

Dj2n
j!

djGk(t)

dtj

∣∣∣∣
t=−k

)
� 0. (4.34)

For j = 0 relation (4.34) follows from the definition of Πn, since

Gk(t)
∣∣
t=−k =

((2r + 1)n+ k)! ((2r + 1)n− k)!
(n+ k)!2r+1(n − k)!2r+1 .
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We claim that (4.34) holds for j +1 if it holds for all preceding j. We shall use the
following notation for the logarithmic derivative of the function (4.31):

gk(t) =
G′k(t)

Gk(t)
=

(2r+1)n∑
l=−(2r+1)n

l�=k

1

t+ l
− (2r + 1)

n∑
l=−n
l�=k

1

t+ l
.

We have

1

(j + 1)!

dj+1Gk(t)

dtj+1
=

1

(j + 1)!

dj

dtj
(
gk(t)Gk(t)

)

=
1

j + 1

j∑
m=0

1

(j −m)!
dj−mgk(t)

dtj−m
· 1
m!

dmGk(t)

dtm
. (4.35)

We also have

ordp
1

j + 1
= 0, (4.36)

since p >
√
(2r + 2)n > 2r + 1 � j + 1. Further, we have

ordp

(
1

(j −m)!
dj−mgk(t)

dtj−m

∣∣∣∣
t=−k

)

= ordp

(
(2r+1)n∑

l=−(2r+1)n
l�=k

(−1)j−m
(l− k)j−m+1 − (2r + 1)

n∑
l=−n
l�=k

(−1)j−m
(l − k)j−m+1

)

� −(j −m+ 1) (4.37)

for m < j, since p >
√
(2r + 2)n and |l − k| � (2r + 2)n for all denominators

in (4.37). The inequality

ordpD
j−m+1
2n � j −m+ 1 (4.38)

holds, since p � 2n. Finally,

ordp

(
Π−1n

Dm2n
m!

dmGk(t)

dtm

∣∣∣∣
t=−k

)
� 0 (4.39)

by the induction hypothesis. Substituting t = −k into (4.35) and using esti-
mates (4.36)–(4.39), we obtain that relation (4.34) holds for j + 1. This completes
the justification of the induction step.
Combining estimates (4.33) for p � Πn and (4.34) for p | Πn, we obtain that the

inclusions (4.32) and (4.27) hold for j = 0, 1, . . . , 2r. Therefore, they hold for all
non-negative integers j. We claim that the limiting relation (4.28) holds for the Πn,
n = 1, 2, . . . .
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By (4.29) and (4.16),

νp = min
|k/p|�|n/p|

ϕr

(
n

p
,
k

p

)
(4.40)

for every integer n > 2r and prime p >
√
(2r + 2)n, where the function

ϕr(x, y) = �(2r+1)x+y�+�(2r+1)x−y�−(2r+1)�x+y�−(2r+1)�x−y� (4.41)
is periodic (with period 1) in each argument. We claim that

min
y∈R
ϕr(x, y) = ν if {x} ∈ Eν, ν = 0, 1, . . . , 2r− 1, (4.42)

where

E2l =

[
l

2r
,
l+ 1

2r + 1

)
∪
[
1

2
+
l

2r
,
1

2
+
l+ 1

2r + 1

)
, l = 0, 1, . . ., r − 1,

E2l−1 =

[
l

2r + 1
,
l

2r

)
∪
[
1

2
+

l

2r + 1
,
1

2
+
l

2r

)
, l = 1, 2, . . ., r.

(4.43)

Taking into account that (4.41) is an odd function, we can easily show that this
function is invariant under the transformations (4.24). Hence, relations (4.42) will
be proved if we prove them in the domain 0 � x, y < 1

2 . In this domain

min
0�y<1/2

ϕr(x, y) = min
0�y�x

ϕr(x, y) = min
0�y�x

(
�(2r + 1)x+ y� + �(2r + 1)x− y�

)
,

since

−(2r + 1)�x+ y� − (2r + 1)�x− y� =
{
0 if 0 � y � x < 1

2
,

2r + 1 if 0 � x < y < 1
2
.

To complete the proof of relations (4.42), it remains to calculate the values of
the function �(2r + 1)x + y� + �(2r + 1)x − y� in the domain 0 � y � x < 1

2
(see

Fig. 11) using arguments similar to those used in the proof of Lemma 4.3.

Figure 11. The values of the function ϕr(x, y) in the domain 0 � y < x < 1
2
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By (4.30), (4.40) and (4.42), (4.43), we have

Πn =
2r−1∏
ν=1

∏
p:{n/p}∈Eν√
(2r+2)n<p�2n

pν

=

(
2r−1∏
ν=1

∏
p:{n/p}∈Eν
p>
√
(2r+2)n

pν

)/(
r−1∏
l=1

∏
2r+1
l+1 n<p�2rl n

p2l ·
r∏
l=1

∏
2r
l n<p�2r+1l n

p2l−1

)
.

To obtain the limiting relation (4.28), we use Lemma 4.4, the identity

ψ(x) + ψ

(
x+
1

2

)
= −2 log 2 + 2ψ(2x)

(see formula (4.47) below with r = 2) and the relation

lim
n→∞

1

n

∑
αn<p�βn

log p = β − α, where α < β,

which follows from the prime number theorem (the asymptotic law of distribution
of primes). We have

�r =
r−1∑
l=1

2l

(
ψ

(
l+ 1

2r + 1

)
− ψ
(
l

2r

)
+ ψ

(
1

2
+
l+ 1

2r + 1

)
− ψ
(
1

2
+
l

2r

)

−
(
2r

l
− 2r + 1
l+ 1

))

+
r∑
l=1

(2l − 1)
(
ψ

(
l

2r

)
− ψ
(

l

2r + 1

)
+ ψ

(
1

2
+
l

2r

)
− ψ
(
1

2
+

l

2r + 1

)

−
(
2r + 1

l
− 2r
l

))

= 2
r−1∑
l=1

2l

(
ψ

(
l+ 1

r + 1/2

)
− ψ
(
l

r

))
+ 2

r∑
l=1

(2l − 1)
(
ψ

(
l

r

)
− ψ
(

l

r + 1/2

))

−
r−1∑
l=1

2l

(
2r

l
− 2r + 1
l+ 1

)
−

r∑
l=1

(2l − 1)
(
2r + 1

l
− 2r
l

)

= 2
r∑
l=1

ψ

(
l

r

)
(2l− 1− 2l) + 4rψ(1) + 2

r∑
l=1

ψ

(
l

r + 1/2

)(
2(l− 1)− (2l − 1)

)

−
r∑
l=1

1

l

(
4rl− 2(l− 1)(2r + 1) + (2l− 1)

)
+ 4r

= −2
r∑
l=1

(
ψ

(
l

r

)
+ ψ

(
l

r + 1/2

))
− (4r + 1)

r∑
l=1

1

l
+ 4rψ(1) + 4r.

Since ψ(1) = −γ (see, for example, [27], § 1.1, formula (8)), we obtain the desired
result, which completes the proof of the lemma.
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Lemma 4.6. The following estimates hold for the quantity defined by (4.28):

− log(r + 1)− 4 < �r − 4r + (4r + 1)γ < log(r + 1) +
1

r
+ 2. (4.44)

In particular,
�r = 4r(1− γ) +O(log r) as r→∞. (4.45)

Proof. Since ψ(x) is monotonically increasing on (0, 1], we have

−ψ(1) +
r+1∑
l=1

ψ

(
l

r + 1

)
<

r∑
l=1

ψ

(
l

r + 1/2

)
<

r∑
l=1

ψ

(
l

r

)
. (4.46)

We can calculate the sums in the upper and lower estimates using the formula

r∑
l=1

ψ

(
x+
l− 1
r

)
= −r log r + rψ(rx) (4.47)

(see, for example, [27], § 1.1, formula (6)).
Inequality (2.28) implies that the sequence

1 +
1

2
+
1

3
+ · · ·+ 1

r
− log r

decreases and the sequence

1 +
1

2
+
1

3
+ · · ·+ 1

r
− log(r + 1)

increases. Therefore, their common limit γ lies between the elements of these
sequences, that is,

log r <
r∑
l=1

1

l
− γ < log(r + 1). (4.48)

Substituting estimates (4.46)–(4.48) into (4.28), we obtain that

−4r log r + 1
r
− log(r + 1) < �r − 4r + (4r + 1)γ < (2r + 1) log

r + 1

r
+ log(r + 1).

Using inequality (2.28) once again, we complete the proof of estimates (4.44). The
limiting relation (4.45) follows immediately from (4.44). The lemma is proved.

Proposition 4.1. The denominator den(In) of the linear form (1.5) divides

Π−bn D
a+b−1
2n , where the sequence of integers Πn = Π

(r)
n , n = 1, 2, . . . , is defined

in Lemma 4.5. Hence,

lim
n→∞

logden(In)

n
� lim
n→∞

logDa+b−12n − b logΠn
n

= 2(a+ b− 1)− b�r .
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Proof. We prove this proposition by replacing (1.22) in the proof of Lemma 1.4 by
the representation

R(t) = Hn(t)
a−2rbGn(t)

b,

applying Lemmas 1.3 and 4.5 to the functions (1.16) and (4.25), and using the
Leibniz rule for the differentiation of a product.

To conclude this section we give some particular values of (4.28) (for r = 1
see (4.18)):

�2 ≈ 2.01561, �3 ≈ 3.64442, �10 ≈ 15.38202, �50 ≈ 82.98948,
�100 ≈ 1.67541 · 100, �1000 ≈ 1.68956 · 1000, �r ≈ 4(1− γ)r ≈ 1.69114 r.

§ 5. Proof of the results on linear independence
The following theorem is based on the results obtained in § 2 and § 4.

Theorem 5.1. Let the assumptions of Proposition 2.3 hold, let b be an odd integer,
and let

κ + 2(a+ b− 1) − b�r < 0,

where

�r = −2
r∑
l=1

(
ψ

(
l

r

)
+ ψ

(
l

r + 1/2

))
− (4r + 1)

r∑
l=1

1

l
− 4rγ + 4r.

Then at least one of the numbers

ζ(b+ 2), ζ(b+ 4), . . . , ζ(a+ b− 1) (5.1)

is irrational.

Proof. By Lemma 1.1, for any integer n � 1 the quantity defined by (1.2) is a
linear form in 1 and the numbers (5.1). Assuming that every number in (5.1)
is rational and denoting their least common denominator by D, we obtain that
Jn = D|In| den(In) is a positive integer for infinitely many n � 1. This contradicts
the limiting relation

lim
n→∞

log Jn
n
� κ + 2(a+ b− 1)− b�r < 0,

which follows from Propositions 2.3 and 4.1.

Proof of Theorem 0.1. We use Theorem 5.1 with suitable a, b and r = 1 for each
set of numbers. Note that µ1 < 3.05 in each of the cases considered below. Hence,
assumption (2.61) holds.
We prove that at least one of the elements of the first set in (0.1) is irra-

tional by putting a = 19 and b = 3 in Theorem 5.1. In this case µ1 ≈ 3.04028,
τ0 ≈ 2.98027 + 0.02985i, and Im f0(τ0) + 3π ≈ 0.09308 �≡ 0 (modπZ). Combining
the estimate

κ + 2(a+ b− 1)− b�r ≈ −0.72567 < 0
with Theorem 5.1, we complete the proof of the assertion for the first set in (0.1).
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For the second we put a = 33 and b = 5. Then

µ1 ≈ 3.03309, τ0 ≈ 3.00783+ 0.03046i, Im f0(τ0) + 9π ≈ 0.14978,
κ + 2(a+ b− 1)− b�r ≈ −0.76662 < 0.

Finally, putting a = 47 and b = 7 for the third, we obtain

µ1 ≈ 3.03043, τ0 ≈ 3.01730+ 0.02406i, Im f0(τ0) + 15π ≈ 0.16232,
κ + 2(a+ b− 1)− b�r ≈ −0.82928 < 0.

The theorem is proved.

Proof of Theorem 0.2. We put a = 7b and r = 1 for every odd integer b � 3
and denote by τb the root of the corresponding polynomial (2.21) in the domain
Re τ > 0, Im τ > 0 with the maximal possible Re τb. Note that the root of poly-
nomial (2.21) in the interval (3,+∞) coincides with the root of the polynomial

(τ + 3)(τ − 1)8 − (τ − 3)(τ + 1)8,

which is equal to µ1 ≈ 3.02472. Since (2.61) holds, Lemma 2.10 implies that
Re f0(τb) � Re f0(µ1), whence

κ � bκ0 := b log
22(a−2)(µ1 + 3)

3(µ1 − 3)3
(µ1 + 1)8(µ1 − 1)8

≈ −15.56497 b.

Therefore,

κ + 2(a+ b− 1)− b�r < bκ0 + 16b− b�1 ≈ −0.04701 b < 0.

We shall be able to use Theorem 5.1 if we can show that (2.55) holds. It is easy to
verify that

g0(b) = Im f0(τb) + 3(b− 2)π
= 3b
(
arg(τb − 3) + arg(−τb + 3)

)
− 8b
(
arg(τb − 1) + arg(τb + 1)

)
+ 3(b− 2)π

= 2b
(
3 arg(τb − 3) + 8 arg(τb − 1)− 16 arg(τb + 1)

)
,

regarded as a function of b � 3, increases, whence g0(b) � g0(3) ≈ 0.05935 > 0.
The relations

arg(−τb + 3) ∼
b− 2
b
π, |−τb + 3| ∼ |µ1 − 3| as b→∞, b is odd,

enable us to calculate the limit

lim
b→∞
b is odd

g0(b) < π.
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Therefore, Im f0(τb) �≡ 0 (modπZ). An application of Theorem 5.1 completes the
proof.

Proof of Theorem 0.3. By Lemma 1.1 and Proposition 4.1 with b = 1, the Ĩn(a, r) =

InD
a
2n/Π

(r)
n defined by (1.2) are linear forms in 1, ζ(3), ζ(5), . . . , ζ(a) with integer

coefficients. By Propositions 2.1, 3.1, and 4.1 the α, β in the criterion for linear
independence (see the introduction) are defined by the formulae

α(a, r) = −κ(a, r)− 2a+�r ,
β(a, r) = 2(2r+ 1) log(2r + 1) + 2(a− 2r) log 2 + 2a−�r ,

(5.2)

where κ = κ(a, r) is defined by (2.59). For a = 145, r = 10 and a = 1971, r = 65
we have

µ1(145, 10)− 21 ≈ 0.38013 · 10−4, 1 +
α(145, 10)

β(145, 10)
≈ 2.000397,

µ1(1971, 65)− 131 ≈ 0.22019 · 10−10, 1 +
α(1971, 65)

β(1971, 65)
≈ 3.000103,

where µ1(a, r) is the real root of polynomial (2.21) with b = 1 in the interval
(2r + 1,+∞). The criterion for linear independence implies that

δ(145) � 3, δ(1971) � 4, (5.3)

since the dimension of space is an integer. By Apéry’s theorem, δ(3) = 2. The
assertion of the theorem follows from the estimates obtained.

Lemma 5.1. Assume that the positive integers a, r are such that

a > 2(r + 2) log(r + 1) + 1, (5.4)

and let µ1 = µ1(a, r) be a real root of the polynomial

h(τ) = (τ + 2r + 1)(τ − 1)a+1 − (τ − 2r − 1)(τ + 1)a+1 (5.5)

in the interval (2r + 1,+∞). Then

0 < µ1 − (2r + 1) < 2ε, where ε :=
2r + 1

(r + 1)2
< 1. (5.6)

Proof. Direct calculations show that

h(2r + 1) = 2a+2(r + 1)ra+1 > 0, (5.7)

h(2r + 1 + 2ε) = 2a+2
(
(2r + 1 + ε)(r + ε)a+1 − ε(r + 1 + ε)a+1

)
. (5.8)

Inequality (5.4) implies that

(r + 1 + ε)a−1 > (r + ε)a+1, (5.9)
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since

(a− 1) log(r + 1 + ε) − (a + 1) log(r + ε)

= (a− 1) log
(
1 +

1

r + ε

)
− 2 log(r + ε)

> (a− 1) log
(
1 +

1

r + 1

)
− 2 log(r + 1)

>
a− 1
r + 2

− 2 log(r + 1) = a − 1− 2(r + 2) log(r + 1)
r + 2

> 0.

Besides,

ε(r + 1 + ε)2 =
(2r + 1)(r + 1 + ε)2

(r + 1)2

>
(2r + 1)(r + 1 + ε)2

(r + 1)2
− ε(3r

2 + 4r + 1+ 2εr + ε)

(r + 1)2
= 2r+ 1 + ε.

(5.10)

Substituting inequalities (5.9) and (5.10) into (5.8), we obtain that h(2r+1+2ε)<0.
Combining this inequality with (5.7), we obtain that the interval (2r+1, 2r+1+2ε)
contains at least one root of the polynomial (5.5). Now (5.6) follows from the fact
that µ1 is the unique real root in the interval (2r + 1,+∞) (Lemma 2.7). The
lemma is proved.

Corollary 5.1. Let the assumptions of Lemma 5.1 hold with r > 6. Then the
following estimate holds for κ = κ(a, r) in (2.59):

κ(a, r) < 2(2r + 1) log(2r + 1)− 2(a+ 1)(1 + log r).

Proof. Since h(µ1) = 0, we have

κ = log
22(a−2r)(µ1 + 2r + 1)

2(2r+1)(µ1 − 1)2(a+1)r
(µ1 + 1)2(a+1)(r+1)

.

Combining this with (5.6), we obtain that

κ

2
− (a− 2r) log 2

= (2r + 1) log

(
1 +

2r

µ1 + 1

)
− (a + 1)r log

(
1 +

2

µ1 − 1

)
− (a− 2r) log(µ1 + 1)

< (2r + 1) log

(
1 +

r

r + 1

)
− (a + 1)r
r + 1

− (a− 2r) log(2r + 2)

= (2r + 1) log(2r + 1)− (a+ 1)
(
r

r + 1
+ log(r + 1)

)
− (a− 2r) log 2

< (2r + 1) log(2r + 1)− (a+ 1)(1 + log r)− (a− 2r) log 2.
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Here we have used the inequality

log

(
1 +

2

µ1 − 1

)
> log

(
1 +

1

r + ε

)
> 2 log

(
1 +

1

2r + 1

)
>

1

r + 1

(see also (2.28) with n = 2r + 1), which holds for r > 6 since

1 +
1

r + ε
−
(
1 +

1

2r + 1

)2
=
r − 4εr − 3r + 1
(r + ε)(2r + 1)2

=
r3 − 5r2 − 7r− 2

(r + ε)(r + 1)2(2r + 1)2
> 0 if r > 6.

The corollary is proved.

Proof of Theorem 0.4. Since δ(a) is an integer and

0.395 · log 3 ≈ 0.43395, 0.395 · log 145 ≈ 1.96581, 0.395 · log 1971 ≈ 2.99659,

Apéry’s theorem and estimates (5.3) imply that inequality (0.2) holds for all odd
integers a < e4/0.395, that is, a < 24999. In fact we shall show that the following
estimate holds for odd integers a � 20737 = 124 + 1, which is stronger than (0.2):

δ(a) >
log a

log 12
, (5.11)

or, which is the same,

δ(12m + 1) > m, m = 4, 5, 6, . . . . (5.12)

For every a = 12m + 1 we put

r =

⌊
log2 12

3
· a

log2 a

⌋
=

⌊
12m + 1

3m2

⌋
, m = 4, 5, 6, . . .,

and obtain a lower estimate for δ(a) using the criterion for linear independence,
formulae (5.2), and the inequalities in Lemma 4.6 and Corollary 5.1:

δ(a) � 1 + α(a, r)
β(a, r)

>
2(a+ 1)(1 + log r) + 2(a− 2r) log 2

2(2r + 1) log(2r + 1) + 2(a− 2r) log 2 + 2a− 4r(1− γ) + log(r + 1) + 4 + γ .

(5.13)

Now for m = 4, 5, 6, 7 estimate (5.12) follows immediately from (5.13):

m a = 12m + 1 r =

⌊
a

3m2

⌋
δ(a)

4 20737 432 > 4.00882

5 248833 3317 > 5.15339

6 2985985 27648 > 6.35168

7 35831809 243753 > 7.58967
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For the remaining values of m we combine (5.13) with the trivial estimates

0 <
r

a
� 1

3m2
,

2r+ 1

a
� 2

3m2
+
1

a
� 2

m2 log 12
,

log r � log 12
m

4m2
=m log 12− 2 log 2− 2 logm,

log(2r + 1) � log(a− 1) = m log 12.

We have

δ(a) = δ(12m+1) >
m log 12− 2 logm+ 1− log 2− 1/(3m2)

1 + log 2 + 2/m
>
m log 12− 2 logm
1 + log 2 + 2/m

.

Now (5.12) with m � 8 follows from the fact that the function

∆(m) = (m log 12− 2 logm)−m
(
1 + log 2 +

2

m

)
= m(log 6− 1)− 2 logm− 2

increases monotonically and takes a positive value, ∆(8) ≈ 0.17519, at m = 8. This
completes the proof of the theorem.

In fact we have proved estimate (5.11) for odd integers a � 3 with the exception
of finitely many values in the range 123 + 1 = 1729 � a � 1969.
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entiers impairs”, C. R. Acad. Sci. Paris Sér. I Math. 331:4 (2000), 267–270; http://
arXiv.org/abs/math/0008051.

[14] T. Rivoal, Propriétés diophantiennes des valeurs de la fonction zêta de Riemann aux entiers
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