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Introduction

0.1 Let Shi(G,X) be a Shimura variety. We call an irreducible subvariety Z — Shg(G,X) a
“subvariety of Hodge type” if, up to a Hecke correspondence, Z is an irreducible component of a
Shimura subvariety—see Section 2 for a more precise definition. The Deligne formalism of Shimura
varieties provides a clean, almost purely group theoretical, description of the Shimura subvarieties of
Shi (G,X). In some situations, however, it remains very difficult to describe which subvarieties are of
Hodge type. We will illustrate this with some examples in 0.3 below.

The central theme of this paper is that we try to find criteria for an algebraic subvariety Z of a
Shimura variety to be a subvariety of Hodge type. The general shape of our results is that subvarieties
of Hodge type can be characterized by certain “linearity properties”, to be tested at one single point.
In this first part of the paper we work with an arbitrary Shimura variety Shy (G, %) over C. Here
the linearity property of interest is that of being “totally geodesic” (see 4.1). We give a complete
description of totally geodesic algebraic subvarieties Z < Shy (G, X), and in particular we prove that
an algebraic subvariety Z is of Hodge type if and only if it is totally geodesic and it contains at least
one special point.

Next we discuss in some detail an example which demonstrates that a Shimura variety may contain
totally geodesic algebraic subvarieties which are not of Hodge type (i.e., which do not contain any
special points). We show that this example, which we think is very instructive, provides a negative
answer to two problems posed in André’s book [1].

Another spin-off is that the example makes clear, in very geometrical terms, how non-rigid families
of abelian varieties arise. Here we recall that, writing Ay 1, for the moduli space of principally
polarized g-dimensional abelian varieties with a level n structure, we can describe Ag;, ® C as a
Shimura variety associated to the group CSpy, - In its simplest form the idea describing non-rigid
families of abelian varieties is that, inside some Ay 1, ® C, we have a Shimura variety S of Hodge
type which, as a variety, is the product S; x S of two Shimura varieties (which themselves are not
of Hodge type). Non-rigid families of abelian varieties are then obtained by looking at subvarieties
of the form S; x {a}, where deformations are given by “moving the point a € Sy”. Notice that the
decomposition of S as a product is due to the fact that its adjoint Shimura variety is a product—see
Section 3 for more on this. The surprising fact, proved in Section 6, is that non-rigidity of abelian
schemes always arises from such a product decomposition (on the adjoint level) of a Shimura variety.

For a precise statement we refer to Theorem 6.4.

0.2 In Part II of this paper we study subvarieties of Hodge type in mixed characteristics, and in
particular their local structure at the ordinary locus in characteristic p. Our main result in this
context is that subvarieties of Hodge type are characterized by a certain “formal linearity property”,

i.e., linearity with respect to Serre-Tate coordinates.



To make the analogy between the two characterizations even clearer, we introduce in Section 5
a “Serre-Tate group structure” over C, and we re-interpret the total geodesicness of an algebraic
subvariety Z — Shi(G,X) in terms of this formal group structure. In this way, we arrive at a
uniform formulation of our characterizations over C and in mixed characteristics, respectively.

Our proof that linearity w.r.t. Serre-Tate coordinates (over C) is equivalent (for algebraic varieties)
to the property of being totally geodesic, makes essential use of a monodromy argument. We consider
a component Z of the preimage of Z under a uniformization map X C X — Sh k(G X%). If Z is
linear w.r.t. Serre-Tate coordinates at some point y, then we obtain very precise information about
the equations defining Z < X locally at a point  above y. A monodromy argument, combined
with a result of Y. André, then allows us to show that there is a “sufficiently big” algebraic subgroup
H C G such that Z is stable under the action of H(R)* on X, from which we deduce that Z is totally

geodesic.

0.3 To conclude this introduction, let us mention two problems that have motivated our research.
These problems should explain why it is of interest to have a direct characterization of subvarieties of
Hodge type.

Conjecture. (Coleman, cf. [12]) For a fixed g > 4, there are finitely many smooth projective genus
g curves C over C (taken up to isomorphism) such that Jac(C) is of CM-type.

As a matter of fact, the conjecture is false for ¢ = 4 and g = 6. The reason for this is that for these
genera one can find subvarieties of Hodge type which are contained in the Torelli locus—see the paper
[13] by A.J. de Jong and R. Noot. For ¢ = 5 and g > 7 the Coleman conjecture remains, to our

knowledge, at present completely open.

Conjecture. (Oort, cf. [24]) Let Z — A, 1, ® C be an irreducible algebraic subvariety such that the
CM-points on Z are dense for the Zariski topology. Then Z is a subvariety of Hodge type.

This conjecture will be discussed in more detail in the second part of this paper, where we prove that
it is equivalent to a certain statement about the reduction behaviour of the CM-points on the variety
Z in question, and where we prove the conjecture in a special situation. Very recently, Y. André has
obtained a proof of Oort’s conjecture for subvarieties of A; x A;.

Oort’s conjecture can be viewed as a first step towards the Coleman conjecture—the second step
then would be to decide wether there exist subvarieties of Hodge type which are contained in the
Torelli locus. In this connection, let us mention that R. Hain recently obtained some results, giving
restrictions on the possible subvarieties of Hodge type that can be contained in the (open) Torelli

locus.
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§1 Hodge-theoretical preliminaries

1.1 For the basic definitions from Hodge theory we refer to [16], especially Sect. 2. Set S :=
Resc/r Gm, and write w: Gmr — S for the cocharacter which on real-valued points is given by R* C C*.
As explained in loc. cit., a polarizable pure Q-Hodge structure of weight n with underlying Q-vector

space V can be described by giving a homomorphism of algebraic groups
h:S —- GL(V)g,

such that h o w is given by C* = S(R) 3 z — 2z " - Idy. (Sign conventions as in [17], i.e., opposite
to [16, (2.1.5.1)].) We define the Mumford-Tate group MT(V') as the smallest algebraic subgroup of
GL(V) such that h factors through MT(V)g.

Fix an element i € C with i> = —1, and use this to identify the Z-modules Z and Z(n) as in [16,
(2.1.14)]. Via this identification a polarization 1: V®? — Q(—n) gives a bilinear form on V, which
we again call ¢. This form is symmetric if n is even, skew-symmetric if n is odd, and MT(V) is a
reductive subgroup of the group of elements g € GL(V') which preserve ¢ up to a scalar.

The Mumford-Tate group as defined here is the image of the Mumford-Tate group MT'(V) C
GL(V) X Gy, defined in [18] (called the extended Mumford-Tate group in [23]) under the projection
to GL(V). If the weight n is non-zero then the projection MT'(V) —» MT(V) is an isogeny; for n = 0
it has {1} x Gy, as its kernel.

1.2 Let S be a connected complex manifold. Recall (see [9, Sect. 2] for example) that a polarized
variation of *Hodge structure (abbreviated VHS) of weight n over S is a triplet V = (Vo, F", Q),
where Vg is a local system of finite-dimensional Q-vector spaces, F" is a filtration of Vo := Ogs ®@q Vg
by holomorphic subbundles, and Q: Vg xs Vg — Q(—n)s is a flat bilinear form, such that Griffiths
transversality condition VFP C Q}g ®og FP~! holds, and such that V induces a polarized Q-Hodge
structure (Vg s, F;, Qs) of weight n on every fibre.

Let m: S — S be a universal covering, and choose a trivialization 7*Vg = SxV. Fors € S ,
let MT; C GL(Vg,s) denote the Mumford-Tate group of its fibre. The choice of a point § € S with
7(8) = s gives an identification Vg, = V, whence an injective homomorphism iz: MT, — GL(V).

There exists a countable union ¥ C S of proper analytic subspaces of S with the following prop-

erties:
(i) for s € S\ X, the image M :=Im(iz) C GL(V) does not depend on s, nor on the choice of §,

(ii) for all s and § as above with s € X, the image of i5 is a proper subgroup of M.



We call S\ ¥ the “Hodge-generic” locus. The group M in (i) is called the generic Mumford-Tate
group of V. More intrinsically, for any s € S\ £ we refer to MT; as “the” generic Mumford-Tate
group of V.

If S is a nonsingular complex algebraic variety, then X is a countable union of algebraic subvarieties
of S; this was shown in [10].

1.3 From now on we assume that S is a connected, nonsingular complex algebraic variety and
that V admits a Z-structure (i.e., Vg = Vz ® Q, where V7 underlies a polarizable variation of Z-
Hodge structure). Choose a base-point s € S and a point 5 € S with m(3) = s. The local system
Vo underlying V then corresponds to a representation p: m(S,s) — GL(V), called the monodromy
representation. The algebraic monodromy group is defined as the smallest algebraic subgroup of GL(V)
defined over Q which contains the image of p. We write Hy = Hy,on s for its connected component of
the identity, called the connected algebraic monodromy group. Given the trivialization of 7*Vg, the

group Hpon s € GL(V) is independent of the choice of s and 3.

1.4 Theorem. Assumptions as in 1.3 and notations as above.
(i) The group Hmen, s is a normal subgroup of the derived group M4,
(ii) Suppose there is a point t € S such that MT; is abelian (hence a torus). Then Hpon s = M9,

For the first statement we refer to Deligne’s paper [15]. The second statement was proven in the

more general context of variation of mixed Hodge structure by André in [2].

§2 Subvarieties of Hodge type

2.1 For the basic theory of Shimura varieties, we refer to Deligne’s papers [14] and [17]. We follow
some notations and conventions of [17, Sect. 0], in particular we write a superscript © for algebraic
connected components, a superscript * for analytic connected components, and if G is a reductive
group over Q then we write G(Q)4 for the intersection of G(Q) and the inverse image of G2 (R)*
under the adjoint map. If G is a reductive group then we write Z(G) for its center.

A Shimura datum is a pair (G, X) consisting of an algebraic group G defined over Q and a G(R)-
conjugacy class X C Hom(S, Gr), satisfying the axioms [17, (2.1.1.1-3)]. We write Shx(G,X) for
the Shimura variety (over C) associated to a Shimura datum (G, %) and a compact open subgroup
K C G(Ay); by definition we thus have

Shic(G,%)(C) = GQ\X x G(ay)/K .

We adopt the notational convention that symbols X, ) etc. represent the conjugacy classes which are
part of a Shimura datum, and that symbols X, Y etc. represent connected components (which are
hermitian symmetric domains).

A morphism f: (G1,X1) = (G2, X2) of Shimura data is defined as a homomorphism f: G; — G»

of algebraic groups over @Q which induces a map from X; to Xo. We call f a closed immersion if it



identifies G; with a closed subgroup of Gs. If f: (G1,%X1) — (G2, X2) is a morphism of Shimura data,
and K1 C G1(Ay), Ko C G2(Ay) are compact open subgroups with f(K;) C Ky, then we write

fk1,k2) Shic, (G1, %1) = Shic,(Ga, X2)

for the morphism induced by f. In the particular case that (G1,X1) = (G2, X2) and f is the identity,
we write Sh(x, K,) instead of fix, K,)-

If (G, %) is a Shimura datum then we write ¥4 for the G2(R)-conjugacy class of homomorphisms
containing the image of X in Hom(S,G&Y). The pair (G*,%2d) is again a Shimura datum, called
the adjoint datum of (G, %). The natural map ¥ — %X2¢ identifies X with the union of a number of
components of ¥2d.

A point = € X is called a special point if there exists a torus T C G, defined over (Q, such that
hy: S — Gr factors through Tk. A point of Shi(G,X) is called a special point if it is of the form
[z, nK] for some special point x € X.

2.2 Let K, K> C G(Ay) be compact open subgroups, let g € G(Ay) and write K’ = K NgKyg 1.
The Hecke correspondence 7, from Sk, (G, X) to Shi,(G,X%) is defined by the diagram

Shgi(G, %) 25 Shg,(G,%),  mo: [z,0K'] = [z,09K>)]

m1=Sh (gt k) l
Shi, (G, %)
In general, we will not indicate Ky and K> in the notation; this should not cause any confusion. Even
though the 7, are correspondences, we will apply the usual terminology for morphisms to them. In
particular, for a subvariety Z of Shy, (G, %) we write T,(Z) := ma(m, (Z)) C Shi,(G,X) for the

image of Z in the sense of correspondences.

2.3 Let (G,X) be a Shimura datum, and consider a representation &: G — GL(V) such that the
weight w: G, ¢ = (G/Ker(§))( is defined over Q. Then § gives rise to a polarizable VHS over X with
underlying bundle X x V. The axioms of a Shimura datum imply that the generic Mumford-Tate
group of this VHS is a normal subgroup of £(G) containing &(G)%.

Let C be the center of G/Ker(¢), and assume that C? is an almost direct product C° = Cy - Oy,
where C is a Q-split torus and C3(R) is compact. Using arguments as in [22, Prop. I1.3.3(a)], one can
show that for K sufficiently small, the VHS over X descends to a polarizable VHS V(&) on Shik (G, %).
Notice that both the condition on the weight and the condition on C° are satisfied if £ factors through
the adjoint group G4.

2.4 Let H C G be an algebraic subgroup defined over Q, and let
VDo = {x € X| hy: S — G factors through Hg}.

By using the fact that there are finitely many H (R)-conjugacy classes of maximal tori T C Hp
defined over R, and an argument similar to the proof of [17, Lemma 1.2.4], one can show that g is

a finite union of H (R)-conjugacy classes.



2.5 Definition. An irreducible algebraic subvariety S C Shy (G, X)c is called a subvariety of Hodge
type if there exist an algebraic subgroup H C G (defined over Q), an element n € G(A;) and
a connected component Yy of Ppy such that S(C) is the image of Yy x nK in Shx(G,X)(C) =
GQ\X x G(Ay)/K.

Observe that if K; C K, are two compact open subgroups of G(Ay), then S C Shk,(G, %) is a
subvariety of Hodge type if and only if it is the image under the map Sh(k, k,) of a subvariety of
Hodge type of Shg, (G, X).

2.6 Remark. Let f: (G1,%X1) — (G2,X2) be a closed immersion of Shimura data, and let K; C
G1(Ay) and Ko C Go(Ay) be compact open subgroups with f(K;) C Ko. If S C Shy,(G2,%2) is an
irreducible component of the image of the associated map f(x, k,): Shk,(G1,%1) — Shk,(G2,X2),
then S is a subvariety of Hodge type. Let us call an S obtained in this way a subvariety of Shimura
type.

In general it is not true that all subvarieties of Hodge type are of Shimura type. The point is
that S may lie in a component of Shx, (G2, X2) which is not in the image of f(x, x,). Up to a Hecke
correspondence, all subvarieties of Hodge type are of Shimura type, however. More precisely: let S
be the image of Yy x nK as in Def. 2.5, and write € C Qg for the H(R)-conjugacy class containing
Yy. Then the pair (H,€) is a Shimura datum, and if K’ C H(Ay) is a compact open subgroup
contained in K, the inclusion H C G induces a morphism Shy(H,€) — Shi(G,%). Writing S¢ for
the image of Yy x K in Shi (G, X), we see that S€ is of Shimura type, and that S is an irreducible
component of 7,(S¢). In particular, this shows that for every algebraic subgroup H C G over Q and
every 1 € G(Ay), the image of Py x nK in Shi (G, X) is an algebraic subvariety.

2.7 Lemma. Let H be a subgroup of G such that Qg is non-empty. Then Yy =D z(c).u-

Proof. Since h, factors through Z(G) - H if and only if it factors through the connected component
(Z(G)-H)° C Z(G)° - H, it suffices to show that Yy = DzG)o.u- Write

7Z°=27(G)°, T=(Z2°nH)-(Z2°nGi¥)c 2°,
and, for y € Yy (g)o.y, consider the homomorphisms
fir S G — G > 20/(2° N Gler) — 20T,
for S 20 H (20 H)/H=2°/(Z°NH), and

m Z°/(Z°nH) — Z°%T.

One easily checks that m o fo = fi;. The image of f; does not depend on y, since the image of S
in G¥ is already independent of y. The condition that 9y is non-empty means that there exists a
Y € Dy.z(a)e for which the image of f, is the identity element in Z°/(Z° N H). Therefore the image
of fo is contained in Ker(r) for every y € 9 p.z(gyp- Since 7 is an isogeny (Z° N GYeT being a finite

group) and S is connected, we conclude that fs is trivial for every y, which proves the lemma. O



The condition that ) g is non-empty puts strong restrictions on H; it implies, for instance, that

HY is a reductive subgroup of G.

2.8 Proposition. Given a subvariety S C Shi(G,X) of Hodge type, there exists a compact open
subgroup K' of G(Ay) contained in K, a representation §&: G — GL(V') which is induced from a faithful
representation of G*, and an algebraic subgroup M C GL(V'), such that

1. ¢ induces a polarizable VHS V() over Shg:/(G,%),

2. S is the image under the map Sh(k: k) of an irreducible subvariety S" C Shi(G,X) such that

S’ is a maximal irreducible subvariety with generic Mumford-Tate group M.

Note that it makes sense to state that V(§)|s has generic Mumford-Tate group M, since the irre-
ducible component of Shg: (G, X) containing S’ is a quotient of X, and over X the bundle underlying
V() is just X x V.

Proof. Using the lemma we can describe S as the image of some Yy x nK, where H contains Z(G).
Choose a faithful representation £24: G2 — GL(V'), and write ¢ for the induced representation of G.
For K’ C K sufficiently small we get a polarizable VHS V(&) over Shg: (G, X), as explained in 2.3.
Let S’ be an irreducible component of Sh7}, .(S), and define M C £(H) as the generic Mumford-

(K',K)
Tate group of V(£)|sr. Clearly, ¢&~1{(M)° C H and Yy C De-1(my) € Yu, hence Yp is a connected
component of P¢-1(57)- The proposition readily follows. 0

2.9 Let Z be an irreducible algebraic subvariety of a Shimura variety Shy(G,X). There exists a
unique smallest subvariety of Hodge type, say S, containing Z. (Notice that the intersection of two
subvarieties of Hodge type is again of Hodge type.) By definition, S is an irreducible component of the
image of P x nK in Shi (G, X), where M C G is an algebraic subgroup (over Q) and 1 € G(Ay). If
Yum C Yum is a connected component such that S is the image of Yas x K then we write S = Sy (Yar)-

This description does not uniquely determine the group M. However, as we have seen, we can take
for M the “generic Mumford-Tate group on Z”. More precisely, let K’ C G(A;) be a compact open
subgroup contained in K and let {: G — GL(V) be a representation such that we obtain a polarizable
VHS V(£) over Shg/(G,X). Let Z' — S’ be irreducible components of Sh(_é,’K)(Z) and Sh(_é,,K)(S)
respectively. The generic Mumford-Tate group MT of V(£)|z is equal to that of V(£)|sr and we may
choose M in the above such that MT is conjugated to £(M) (for all representations ¢ which induce
a VHS for K’ sufficiently small). Up to conjugation by elements of G(Q) this uniquely determines
Z(G)-M CG.

§3 Decomposition of the adjoint group

3.1 Consider a closed immersion i: (M,9)) < (G, %) of Shimura data. Let M = M; x M, be
a decomposition of the adjoint group of M. (We do not assume M; and Ms to be non-trivial or

Q-simple.) There is a corresponding decomposition 224 = 91 x Lo, where ; (i € {1,2}) is a union



of Hermitian symmetric domains, and M;(RR) acts transitively on );. One easily checks that (M;,9);)
is a Shimura datum, so we have a decomposition of Shimura data (M?d,93d) = (My,91) x (Ma,D2).

Choose compact open subgroups C; C M;(Ay), and C C M(Ay), with ad(C) C C x Ca. For Cy
and C sufficiently small the associated morphism

ad(c,cyxCy)t Sha (M, D) — Shoyxoy (M, DY) = She, (M1,D1) x She, (Ma,D2)

is finite étale on irreducible components. Given a connected component Y7 C )1, a point yo € Lo and
a class 0C € M(Ay)/C, let

Soc(Y1,y2) C She(M,D)

denote the image of (Y1 x {y2}) x C in Shc(M, ).} If 0C, x 6C; is the image of 8C in My (Ay)/Cy x
Ms(Ay)/Cs, then Spc(Y1,y2) is an irreducible component of the inverse image of Shc, (M1,91) %
[y2, 02C2] under ad(c,c;xc,)- In other words, the Shimura variety Shc, xc,(M ad gmad) i a disjoint

union

Shayx ey (M, 9*) = Shoy (M1, D1) x Shoy(M2,D2) = [[ Ti\Y1) x (T;\Y2)
i€l jed

of product varieties, and Syc(Y1,y2) is an irreducible subvariety of Sho(M,2)) covering some (I';\ Y1) x

[y2]-
More generally, if K C G(Ay) is a compact open subgroup and nK € G(A;)/K, then we define

Snr (Y1, 92)

as the image of (Y1 x {y2}) x nK in Shk(G,X). Notice that S,k (Y1,y2) is an algebraic subvariety.
This follows from the remark that Syx(Y1,y2) is an irreducible component of 7, (Sex (Y1,y2)), and
for C small enough Sc(Y7,y2) is the image of Sec(Y1,y2) C She(M,9)) under the finite morphism
{(C,K)-

The subvarieties of the form S,k (Y1,y2) C Shi(G,X) are totally geodesic (see Section 4.1), since
Y1 x {y2} is a complete totally geodesic submanifold of 2 =21 X 92, and ) is totally geodesic in X.
Note that S,k (Y1,y2) contains special points if and only if ¥ is a special point of 99, in which case

the special points are dense.

3.2 As before, let (G,X) be a Shimura datum and let K C G(Ay) be a compact open subgroup. We
consider an irreducible algebraic subvariety Z of Shx(G,X). As discussed in Section 2.9, there is a
smallest subvariety of Hodge type containing Z, which we denote by S,k (Yar). It corresponds to a
closed immersion i: (M, ) < (G, %) of Shimura data, a connected component Yy, C 9y and a
class nKK € G(Ay)/K. If there is no risk of confusion we simply write Y = Y, and S = Sk (Yar). We
write j: Z — S for the inclusion map.

Possibly after replacing K by a subgroup K’ of finite index and Z by an irreducible component of

its preimage in S,k (Yy) we may assume that the following conditions hold.

When using this notation, we shall always tacitly assume that Y1 x {y2} CQ C 9*¢. (Without this assumption the
definition obviously would not make any sense.)



1. there exists a representation £: G — GL(V) with Ker(¢) C Z(G) which induces a polarizable
VHS V() on Shi (G, X) such that S is a maximal irreducible subvariety with generic Mumford-
Tate group £(M) (cf. Proposition 2.8).

2. K is neat; in particular, Shg(G,X) is a union of quotients I';\ X such that the natural maps
X — I';\ X are topological coverings and the algebraic monodromy group associated to the VHS
V() over T';\ X is connected.

3. the natural map ug: ¥ - S = S,k (Y) is a topological covering.

For the last condition we need a lemma.

3.3 Lemma. (i) For K sufficiently small the natural map ug: Y =Yy — S = Sy (Yar) is a topolog-
ical covering.

(i) Let a decomposition (M?3,9*d) = (My,91) x (My,9)2) be given. For K sufficiently small the
map Yy — Syi (Y1, y2) is a covering map for every y, € Lo and n € G(Ay).

Proof. Take a compact open subgroup C' C M (As) such that Shc(M,Q) is non-singular. By [14,
Prop. 1.15] there exists a compact open subgroup K C G(Ay) such that i(C) C K and such that
i(c,k): Sha(M,9) — Shk(G,X) is a closed immersion. For this choice of C' and K the map ¥V —
Sex (Y') therefore is a topological covering.

Let K' = K Nnn~'Kn. Clearly, both K’ and nK'n~! are contained in K; in particular, ¥ —»
Seim-1)(Y) is a covering. Let X be the component of X containing Y. As one easily verifies,
the map S(,xry-1)(X) = Syrr(X) obtained by sending the class [z,eK] to the class [z,nK] is an
isomorphism, compatible with the uniformization maps from X. Restricting this to Y we conclude
that Y — S,/ (Y') is a covering, which proves the first part of the lemma.

The second statement easily follows from the first one and [6, Cor. 8.10]. O

3.4 Let Z be a connected component of ug'(Z). The map uz = us|z: Z — 7 is again a topological
covering. If Cov(ug) and Cov(uz) denote the groups of covering transformations, then Cov(uz) =
{y € Cov(ug) | NZ =12 }. In general the analytic space Z is not irreducible?, and in some arguments
to follow this causes problems. To circumvent these, we consider the normalization n: Z" — Z of
Z. Let ugn: Z" —» Z" be a universal covering of Z". (Caution: our notations may be somewhat
misleading, since Z need not be a universal covering of Z, whereas we do write Z" for a universal
covering of Z™.) The analytic space Z" is connected and normal; in particular it is irreducible.

Let C C Z be an irreducible component. Choose a Hodge generic and regular base point z € Z,
i.e., a regular point outside the locus ¥ as in Section 1.2 (applied to the VHS V() over S). This
is possible, since Z C X would contradict the fact that S is the smallest subvariety of Hodge type
containing Z. Also choose base points € C, ( € Z" and ¢ € Z" with uz(2) = z, n(¢) = z and
uzn(C) = ¢. There is a well-determined morphism 7 Z" — Z with () =% and uz ot = nouzn.
We have 7(Z") = C C Z.

*We do not know whether it is possible in general to choose K small enough such that Z is irreducible.



In a diagram, the situation looks as follows:

2’3—%»6’<—>Z<—> Y —

X
wl Nl e ]
VAL — = Z = S=8Sk(Y) < Shk(G,X)
The choice of the point Z above z gives an identification of the fibre V(§), with V, and we identify
the Mumford-Tate group at z with £(M) C GL(V). This is also the generic Mumford-Tate group of
the VHS n*V(€) over Z", via the identification (n*V(£)), = V(£), = V. Since Ker(¢) C Z(G) there is
a natural surjective homomorphism f: £(M) — M?4, and composing the monodromy representation
ps: T1(S, 2) = E(M)(Q) C GL(V) with f we obtain a homomorphism f o pg: m1(S,2) — M?*(Q) C
M(R).

3.5 Lemma. We have Im(f o pg) C M2(R)*, and there is a commutative diagram

m(Z7,¢) e m(Z,2) 2 m(8,z) L2 MRt

- L 1

Cov(uzn) — Cov(uz)e — Cov(uz) < Cov(ug) Aut(Y)

where Cov(uz)e = {v € Cov(uz) | vC = C}.

Proof. It is clear that m (2", () = Cov(uzn) maps into Cov(uz)c and that the two diagrams on the
left are commutative. We therefore only have to consider the right-hand square. Let I'\X be the
irreducible component of Shy (G, X) containing Z, where T is of the form T' = G(Q)y N gKg~'. The
local system V() over I'\ X is the quotient of the trivial bundle X x V over X under the action of I’
given by y(z,v) = (v - z,£(7) - v).

Take a € m1(S,z) and let v € " be an element mapping to i.(a) € m1(I'\X,z). Then 7Y =Y,
and the image of « in Aut(Y) is given by the action of . The given description of V(¢) shows that
ps(a) = £(v). In particular, v € Z(G) - M. It now readily follows that f o ps(a) € M*(R)T (since

the action of v stabilizes Y'), and that the right-hand square is commutative. O

3.6 As in the proof of the lemma, let I'\ X be the irreducible component of Sk (G,X) containing Z.
The choice of a T'-stable lattice in V' induces a Z-structure on V(§), which enables us to apply Theorem
1.4. The connected algebraic monodromy group H¢; = Hmen associated to the VHS n*(V(£)z) is
therefore a normal subgroup of &(M)der = ¢(Mder). Since M is reductive, we can find a normal
algebraic subgroup Ha <M (defined over Q) such that M is the almost direct product of ¢! (H;) and

Hs. In this way we obtain a decomposition
(Madvgjad) = (H?daﬁjl) X (HQadag)Q) :
3.7 Proposition. The image of C under the projection map pry: I — )2 is a single point, say ys €

2. We have Z C Syk (Y1,y2) for some connected component Y1 C Q) and a class nKK € G(As)/K.
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Proof. It follows from the lemma that Cov(uzn) acts trivially on 2o, hence the composition A
C C 9 — Y- factors through Z". Because the components of )2 have a realization as a bounded
domain in some CV, the map Z" — ), is given by an N-tuple of bounded holomorphic functions.
Since Z" is a connected quasi-projective variety these must be constant functions hence the image of
C is a single point.

The last assertion is an immediate consequence of the first. O

If Z contains a regular special point then Hy = £(M )4er by the second statement of Theorem 1.4.
This means that ) = 21, Y2 is a point and that S,k (Y1,y2) = S is a subvariety of Hodge type. In
this case, the proposition does not give us any information. However, the very fact that Hy = {(M )der
can be used to establish a second decomposition of (A2, )2d),

Consider the group {m € M(Q)y+ | mC = C}, and write N for its closure inside M(R) for the
analytic topology. By Cartan’s theorem A and its connected component of the identity N'* are Lie

subgroups of M(R). Clearly they are contained in M (R)¢ = {m € M(R) | mC = C}.

3.8 Proposition. Assume that Z contains a non-singular special point. Then there exists a normal,
reductive algebraic subgroup Ny < M, defined over Q, such that NT = Nz(R)™".

Proof. The center Z(M)(R) of M(R) acts trivially on g), and Z(M)(Q) is analytically dense in
Z(M)(R), so Z(M)(R) C N. Furthermore, Lemma 3.5 shows that

ad™? (Im(f o psofson m(Z" () — Mad(Q)+)) CWN,

and since Hy = £(M)4" it follows that A is Zariski dense in M.

Let ¢: Mr — GL(W) be a finite-dimensional irreducible representation of Mr with Ker(yp) C
Z(M) (which exists, since M is reductive). Let W’ C W be the largest fully reducible N’ "-submodule
of W. Then W' is an A/-submodule, since N normalizes N'*. But N is Zariski dense in Mg, so W' =
W. Therefore, Nt /(N T NKer(p)) has a faithful, fully reducible representation. Since N T NKer(yp) is
contained in the center of AT, this implies that N’ is analytically reductive, i.e., Lie(N 1) is reductive.

Write n = Lie(NT), which can be decomposed as n = ¢ @ n%", where ¢ is the center and nd®" is
the derived algebra. From [11, Chap. II, Thm. 15] (alternatively, [7, Chap. II, Cor. 7.9]) we know that

nd

°r i algebraic, so n®8 = ¢2l& @ nder,

Let N 128 C Mg be the algebraic envelope of N't, and let 91 be the normalizer of N'T:218 inside M.
Clearly, N' C M(R). On the other hand, 9N is an algebraic subgroup of My and N is Zariski dense, so
M = Mg and N 738 is a normal subgroup. This implies that n'8 = Lie(N T38) is an ideal of Lie(Mg),
hence ¢ C ¢*8 C Lie(Z(M)(R)). But, as remarked above, Z(M)(R) C N, so ¢ = ¢ = Lie(Z(M)(R)).
We conclude that N 728 is a normal, reductive algebraic subgroup of Mg and Nt is the connected
component of the identity of the Lie group N T-28(R).

Since N is open in N and {m € M(Q)y+ | mC = C} is analytically dense in N, the group
{m € M(Q)+ NN™T | mC = C} is dense in N'* for the analytic topology and hence is Zariski dense
in N t:218 Since it consists of Q-valued points of M we conclude that N *218 is defined over Q, which

proves the proposition. O
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In the next section we need the following, similar, statement.

3.9 Variant. Consider the inclusion Z C Spi(Yi,y2) as in Proposition 3.7, corresponding to the
decomposition (M*?,9?%) = (H2,91) x (H3%,92) and let C C Z be an irreducible (analytic) com-
ponent, as introduced after Lemma 3.3. There exists a normal algebraic subgroup H¢ ¢ < H¢ g such
that Hc’c(R)_F = {h € H((R) | hC = C}+

Proof. The arguments are analogous to those in the previous proof, except that we leave out the last

few lines. N

Assume that Z contains a regular special point. Choose a normal algebraic subgroup Ny <« M
such that M is the almost direct product of Nz and No. From this we obtain a decomposition
(M3 9ad) = (N34 91) x (N34, D)) (We write ) and ) to avoid confusion with the decomposition
224 = 9); x P, introduced before.)

From the remark that N34(R)* stabilizes C it easily follows that there exists a component Y{ and
a class 'K € G(Ay)/K such that Sy i (Y{,P) C Z for every point P in the image of the projection
map C — 2)5. Notice that this gives interesting information only if Z (M) is a proper subgroup of N.

84 Totally geodesic subvarieties

4.1 Let Z — Shi(G,X) be an irreducible subvariety of a Shimura variety. Choose a connected
component X C X and a class nK € G(Ay)/K such that Z is contained in the image of X x nK in
Shi(G,%). We say that Z is a totally geodesic subvariety if there is a totally geodesic subvariety
Y C X (in the sense of [20, Chap. 1, §14]) such that Z is the image of Y x nK in Shi (G, X).

We can of course express total geodesicness directly in terms of the metric on Shy (G, X), provided
that we take possible singularities into account. For example, if Shyx(G,X) is non-singular then
7Z — Shk(G,X) is totally geodesic if and only if every geodesic in Shg (G, %) which is tangent to Z
at a regular point P € Z"8 is a curve in Z.

It is immediate from the definitions that subvarieties of Hodge type, and, more generally, subvari-

eties of the form S,k (Y1, y2) are totally geodesic.

4.2 Remark. The fact that we are working in an ambient space (Shg (G, X)) of constant curvature
implies that total geodesicness needs to be tested only at one point. To formulate this more precisely,
consider an irreducible subvariety Z < Shi(G,X) as above, and let P € Z be a regular point of
Shk(G,%). Then Z is called totally geodesic at P if every geodesic in Shg (G, %) which is tangent to
Z at P is locally a curve in Z. The remark now is that if Z is totally geodesic at one such point P

then Z is totally geodesic in the sense of the previous definition. See also [5, p. 195].

Building on the results of the previous sections, we can now establish one of the main results of

this paper. This result was suggested to us by D. Kazhdan.

4.3 Theorem. Let (G, X) be a Shimura datum, and let K be a compact open subgroup of G(Ay). An
algebraic subvariety Z — Shg (G, X) is totally geodesic if and only if there exists a closed immersion of

12



Shimura data i: (M,9)) < (G, %), a decomposition (M?d,93) = (My,91) x (M2,9)2), a component
Y1 € D1, a point y» € P and a class nK € G(Ay)/K such that Z = Sy (Y1,y2) (as defined in Section
3.1).

If Z contains a special point, then Z is totally geodesic if and only if it is of Hodge type.

Proof. It suffices to prove the theorem for K sufficiently small, so we may assume that the notations
and results of Section 3 apply. Take a totally geodesic subvariety Z, and consider the inclusion
Z C S,k (Y1,y2) as in Proposition 3.7. By (ii) of Lemma 3.3 we may assume that Y7 — S, (Y1, y2) is
a covering map. By Variant 3.9 there is a normal algebraic subgroup H¢ ¢ < H¢ g such that

Hee(R)* = {h € H(R) | hC = C}F. 1)

If H' is a complement for H;c in H;r then we obtain a decomposition ¥Y; = W7 x Wy, such that
H¢c(R)™ acts transitively on Wy and H'(R)™ acts transitively on Wh.

By assumption, C is a complete, totally geodesic submanifold of Y. The group H¢ ¢(R)* therefore
acts transitively on C. It follows that

C = W1 X {wg} (2)

for some wo € Ws.

Let H;, C H' be the stabilizer subgroup of the point wy, which is an algebraic subgroup of H'.
Combining (1) and (2) we see that H, (R)™ = {1}. On the other hand, H' is a semi-simple group
over R and H;, (R)" is a maximal compact subgroup of H'(R)*. We conclude that H' = {1}, hence
Wy is reduced to the single point ws. It follows that C = Y7 x {y2}, which proves the first statement
of the theorem.

Next, suppose Z contains a special point. Since Syx (Y1,¥2) is non-singular for K sufficiently small
we may assume this special point to be regular. As remarked after Proposition 3.7, this implies that
Z = Sy (Y1,y2) is of Hodge type. O

4.4 Corollary. Let Z — Shg(G,X) be a totally geodesic subvariety, then there exists a subgroup
K' C K of finite index, algebraic varieties S1, So, a closed immersion g: S1 x Sy < Shy/ (G, X) and
points a,b € Ss such that

1. S1x{s2} and {s1} x Sy are totally geodesic subvarieties of Shy: (G, X) for every s; € S1, s2 € Sa,
2. Z is the image of S1 x {a} under Sh g k),
3. S1 x {b}, hence also Sh g )(S1 x {b}) is a subvariety of Hodge type.

Proof. The map ¢: Y1 xY; — Shi (G, X) obtained by sending (y1, y2) to the class [y1, y2, nK] factors
through a finite morphism of algebraic varieties ¢': T'\ (Y1 X Y2) — Shi (G, %), where I' is an arithmetic
subgroup of M24(Q). There are arithmetic subgroups 'y C H24(Q) and 'y C H34(Q) such that Ty x Ty
is of finite index in I" ([6, Cor. 8.10]). Taking S; = I';\Y; we arrive at the corollary. O
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4.5 To conclude this section, let us discuss an example. The example concerns a subvariety S —
Asdin (d > 2) of Shimura type, such that for a generic point n € S, the abelian variety Y}, is simple,
whereas the generic Mumford-Tate group G on S has a non-simple adjoint group. This then leads to
non-trivial totally geodesic subvarieties Z which are not of Hodge type, and for which the connected
algebraic monodromy group H, is a proper subgroup of G*. We also obtain a negative answer to
two problems formulated in [1, Chap. X].

A sketch of a special case of the example can be found in [2], where a reference is given to Borovoi’s
paper [8]. However, we have not had the opportunity to read (a translation of) Borovoi’s paper, so it
is not clear to us to whom the example is due.

Let F' be a totally real field of degree d > 2 over Q, and write oco1,...,004 for its places at
infinity. Take two quaternion algebras Di, Dy which both have at least one invariant 0 at infinity
and which moreover have “complementary” invariants at infinity, i.e., inve,(D1) = 0 if and only if
inveo, (D2) = 1/2. Then Dy @ Dy =2 Mg (D) for some other quaternion algebra D over F' (using that
inv,(D; @ D3) = inv,(D1) + inv, (D) in Q/Z, and the fact that D; and Dy have different invariants
at infinity). Let G1 = Resp/gD7, G2 = Resp)gD3, let V.= D @ D as a Q-vector space, and define the
homomorphism

f: G1 x Gy — GL(V)

as the composition of G1 X G2 — Resp/g(GL2(D)) and the natural map
Resp/g(GLa(D)) — GL(Resp/g(D & D)) = GL(V).

Let X; be the G1(R)-conjugacy class in Hom(S, G r) of the homomorphism h; given on R-valued
points by

5 a+bin—>(HId < I1 (_“b Z)) e [ = x [] CL:(®) = Gi(R),

jE€J1 JjE€J2 JjE€J1 JEJ2

where J1 = {j | inveo;(D1) = 1/2}, Jo = {j | inveo,;(D1) = 0}. Notice that X is well-defined since
all automorphisms of GLy g are inner. Likewise we get a G2(IR)-conjugacy class X2 in Hom(S, Gog).
One easily checks that (G, X;) is a Shimura datum, i.e., a pair satisfying conditions (2.1.1.1-3) of [17,
Sect. 2.1]. In this way we get Shimura varieties Sh(G1,X1) and Sh(G2,%2). Notice that these are not
of Hodge type, since their weight is not defined over Q—see the lemma below.

Let G be the image of G; X G2 under f and consider the G(R)-conjugacy class X in Hom(S, Gg)
which is the image of X; X X under the natural map Hom(S, G1r) x Hom(S, Gog) = Hom(S, Gr).

The pair (G, X) thus obtained is again a Shimura datum. Note that we have an exact sequence
1 = RespjgCmr ~3 G1 x Go = G = 1,

where A~ is (the Weil restriction of) the antidiagonal map F* > f +— (f, f~!) € D} x Dj}. It follows
from this that X1 x X &2 X.
For a compact open subgroup K of G(Ay) let K; = fz-_l(K ), where f; is the restriction of f to Gj.

Then Kj; is a compact open subgroup of G;(Ay) and we get a morphism

f(leszK): ShleK2(G1 X GQ,%l X 32) — ShK(G,X).
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We choose connected components X1, Xo and denote the corresponding connected Shimura varieties
by Sh(G;, X;). For Kj, Ks sufficiently small the map f(OK1>< K K) 01 connected Shimura varieties is

finite étale.

4.6 Lemma. The weight homomorphismsw;: Gy, — G;r (i = 1,2) are not defined over Q; the weight
homomorphism w: Gy, — GR is defined over Q.

Proof. Let Z; := Z(G;), and Z := Z(G). Then Z; = RespqGmr (i = 1,2), and Z = Z; X
Z>/Im(A™). The character group X*(Z;) is the free abelian group on the set {co1,...,004}, with its
natural structure of a Gal(Q/Q)-module. If f;1,..., fiq is the dual basis for the cocharacter group
X, (Z;), then

X Z)=(Z - fin+-+Z f140) D (Z- for+ - +L- fou)/(f1i— f2.:1 <i<d).

As is always the case for Shimura data, the weight homomorphisms w; (resp. w) take values in the

center Z; g (resp. Zg). It is immediate from the definitions that

w1 =Y fi; €Xu(Z1), wr= )Y fo; € Xu(Z),

JjeJ2 Jjen

which are not Gal(Q/Q)-invariant since J; and J, are both nonempty. The weight w is given by

w=w; ®wy mod (f1; — foi) = fi1 +---+ fr,a mod (f1; — foi) = fo1 + -+ foa mod (fi; — fa,i)

and this clearly is Galois invariant. O

By considering the representation of G on Vg one sees that there does not exist a symplectic form
¥ on V such that G acts through symplectic similitudes. Essentially the problem is that the center
of G is “too large”. Therefore, we introduce the algebraic subgroup G’ = w(Gy,) - G C G, which,
by the lemma, is defined over Q. All hy: S — Gg for x € X factor through G}, and we have a closed
immersion of Shimura data (G',X) — (G, X).

The lemma shows that (G’, X) satisfies condition (2.1.1.4) of [17, Sect. 2.1]. It also satisfies loc. cit.,
condition (2.1.1.5), as one easily verifies. Furthermore, for x € X the representation h, on V' is of type
(—=1,0)4(0,—1). From [17, Prop. 2.3.2] it now follows that there exists a symplectic form ¥ on V' such
that the inclusion G’ — GL(V') induces a morphism of Shimura data i: (G', %) < (CSp(V;, ¥), H7,).
Here we identify the Siegel double space ﬁffd as the space of R-Hodge structures h: S — GL(V) of
type (—1,0) + (0, —1) such that =¥ is a polarization. This shows that Sh(G’,X) is a Shimura variety
of Hodge type.

For a compact open subgroup K C G(Ay), write K’ = G'(Ay) N K. For K sufficiently small we

get a “universal” family a: (Y, \,0) — Sh%: (G’,%) of 4d-dimensional principally polarized abelian

0
(K1><K2,K

through Sh% (G’,%). We can choose a point x5 € X5 such that the subvariety
K

varieties with a level K'-structure. The morphism f ) on connected Shimura varieties factors

Zyy = Sh(f)(Shi, (G1,X1) X [w2,eK2]) = Sexr(X1,22) C Shg (G, X)
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is not contained in the locus ¥ (applying the discussion of Section 1.2 to S = Shg/(G', X) and the
natural VHS with local system R'a,Zy). The generic fibre Y,, on Z = Z,, has Mumford-Tate group
G’, and the representation of MT(Y;) on H!(Y,(C),Q) is isomorphic to G' — GL(V). In particular,
V being an irreducible G’-module, Y;, is simple. On the other hand, it is clear that the connected
der

algebraic monodromy group of the restricted family (Y, \, ) over Z is contained in f(G2)%", so it is

strictly contained in (G’)der = Gaer.

As remarked by André ([2], footnote on p. 13) the example contradicts the conjectural statement
IX, 3.1.6 in [1]. We claim that it also gives a negative answer to op. cit., Chap. X, Problems 2 and 3.

Loc. cit., Problem 2 is essentially the following. Consider a subvariety Z < A, 1, ® C satisfying
(i) dim(Z) = 1, (ii) the generic fibre in the family of abelian varieties over Z is simple, (iii) there
are infinitely many points on Z which lie on a proper subvariety of Hodge type. Does it follow
that Z is of Hodge type? We see that the answer is negative in general: in the above example we
choose D; and Dj such that #J> = 1, which implies that dim(Z,,) = 1. As we have seen, Z,,
satisfies condition (ii) and it is not of Hodge type. Finally, for all special points x; € Xj, the point
Sh(f)([x1,eK1] X [x2,eK3]) € Zy, lies on a proper subvariety of Hodge type.

A special case of loc. cit., Problem 3, is the following question. Consider a subvariety Z < Ay 1,®C
satisfying conditions (i) and (ii) and also satisfying (iv) there are infinitely many points on Z such
that the corresponding abelian varieties are all isogenous. Does it follow that Z is of Hodge type?
Again, the answer is negative. The example is the same as above; for (iv) we only have to remark that
for a fixed z1 € X1, the fibres over the points Sh(f)([g1 - z1,eK1] X [x2,eK>3]) € Z,, with g1 € G1(Q)

are all isogenous.

§5 Serre-Tate group structures over C

5.1 In this section we reformulate Theorem 4.3 in terms of what we call a “Serre-Tate group structure”
over C. This is to be compared to classical Serre-Tate theory (see [21]) which is at the basis of the
“linearity property” studied in the second part of the paper. The formulation of “total geodesicness”
in terms of a formal group structure reveals a close analogy between the theory over C studied so far

and the theory in mixed characteristics which is the main topic of Part II.

5.2 Consider a Shimura datum (G,X) and let K C G(Ay) be a compact open subgroup. Given a

connected component X C X and a class n/{ € G(Ay)/K, we have a uniformization map

u: X — Shg(G,X)
x +— [z,nK]

We assume that K is small enough such that the map u from X to its image Sh® C Shy (G, %) is a
topological covering.

Write X < X for the Borel embedding of the hermitian symmetric domain X into its compact
dual. Choose a point z € X, let # = 6, := Inn(h,(¢)) denote the associated Cartan involution, and

write G() for the corresponding compact real form of Gﬁ‘{d. The domain X is a homogenous space
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under G()(R). One also has a realization
X =G*(0)/P:(C),

where P, C G%d is the stabilizer of the point x, which is a parabolic subgroup. It should be noted
that if X has positive dimension then G?3(C) does not act on X by isometries.

Let Koo = P,(C) N G*(R) denote the stabilizer of the point x € X inside G&, and write g =
Lie(G&) and € = Lie(K,). The Hodge decomposition of g¢ with respect to Ad o hy, is of the form

gc=u" +tc+u",

where tc + ut = Lie(P,). If P, C Gf(":d is the parabolic subgroup with Lie algebra €c + u~ then P,
and P, are opposite parabolic subgroups with common Levi factor Ko, ® C.

Write U for the unipotent radical of P, (with Lie(U;) = u~). The natural map U; (C) — X
gives an isomorphism of U (C) onto its image U C X, which is the complement of an ample divisor
DcCX.

Via the uniformization map u: X — Sh® C Shx (G, %) we can now describe Sh® “locally at the
point y = u(x) as the germ of U, at the identity element. To make this more precise, we consider
formal completions: write i, for the completion of U, at the identity element, and let &b, denote
the formal completion of Sh® at the point y = u(x). Then {, is isomorphic to the formal completion
of X at x, and u induces an isomorphism ,: i, = G&bh,. In this way the formal completion &b,
inherits the structure of a formal group isomorphic to @g (d = dimShk (G, X) = dimX). One readily
verifies that this structure does not depend on the choice of a point z € X with u(z) = y.

Our results in this paper and in Part IT will show that this structure of a formal group on &b, is
analogous to the Serre-Tate group structure on the formal deformation space of an ordinary abelian
variety in characteristic p > 0. Therefore we will refer to the group structure on &b, just defined as
the “Serre-Tate group structure”. Notice, however, that in this case we are working with formal vector
groups (i.e., formal groups isomorphic to a power of @a), whereas the theory in mixed characteristics

produces formal tori.

5.3 Definition. Let Sh® C Shy (G, %) be an irreducible component as before, and let Z < Sh° be
an irreducible algebraic subvariety. We say that Z is formally linear at the point y if the formal

completion 3, = Z,1,3 < &b, is a formal vector subgroup of &h,,.

5.4 Proposition. Let Sh® C Shy(G,%) be an irreducible component, and suppose that the uni-
formization map u: X — ShY is a topological covering. Let Z < Sh® be an irreducible algebraic

subvariety, and let y € Z. Then Z is totally geodesic at y if and only if Z is formally linear at y.

Proof. 1In the “only if” direction this is not difficult: if Z is totally geodesic at y then, as pointed out
in 4.2, Z is totally geodesic everywhere, hence Z is of the form Z = S,k (Y1,y2) as in Theorem 4.3.
From this it follows directly that Z is formally linear at y.

For the converse, suppose that Z is formally linear at the point y. With some minor exceptions,
we return to the notations of Section 3. In particular, we write S = Syx (Yar) — ShY for the smallest
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subvariety of Hodge type containing Z. Since in proving the proposition we may pass to a higher level,
we may assume that the conditions in 3.2 are satisfied, and that the algebraic monodromy group H,
of the local system n*V(&) over the normalization Z™ is connected. This last assumption is only made
to avoid some clumsy formulations.

Consider the inclusion Z — S,k (Y1,y2) as in Proposition 3.7 (resulting from the decomposition
Mad = Hgd x H3%). Choose C C Z as in 3.4, and let x € C be a point mapping to y. We are back in
the situation of the diagram in 3.4, with the additional information that C CY; x {y2}.

The group U, is connected unipotent and abelian (since [u~,u~] C g¢ is of type (—2,2), hence
zero), so we have U, = G¢, for d = dim(X). Let t1,...,t4 be the pull-backs to U, of the standard
coordinates on Gg. The t;, viewed as functions on &/ C X, extend to global sections ¢; € T'(X, L),
where £ = Oy (k- D) for a suitable & > 0. We can choose this k such that there is an action of
G(acd on the line bundle £, making it a G%d—bundle over X. (This is probably well-known to experts.
The point is that ¢/ is the big open cell f = R,(B~) - P, in the Bruhat decomposition relative to a
Borel subgroup B C P,. If A is the corresponding basis of the root system, then P, is a standard
parabolic subgroup corresponding to a subset I C A. The divisor D has a number of components
Dy ={Ry(B7)-8q-P;} ", one for each « € A\ I. Write w, for the fundamental weight corresponding
to a, and choose k such that A :=k - ZaeA\I wq € X*(T), where T is the maximal torus B N B~.
Then A gives a character of P, and it follows from the results in [4] that O (k- D) is the associated
line bundle £(\) on X = G¥/P,.)

Define

I={seDl(X,L)]|sc=0},

and write V(I) for the zero locus of I. We claim that C is an irreducible component of V(I) N X. To
see this we argue as follows. Let 7, ..., 74 be the coordinates on i, induced by the ¢;. The assumption

that Z is formally linear at the point y implies that the formal completion
Cliay — Xgay 2t

is defined by a number of linear equations » , m;-7; = 0. The corresponding sections »  m;-t; € F(X L)
are elements of I, since they define holomorphic functions on C with vanishing Taylor expansion at x.
The claim readily follows from this.

Recall that we have chosen a representation ¢ of G as in 3.2. We have a monodromy action
ps: m (S, x) — £(M)(Q), and since £ is a G2-bundle over X this induces an action of 71(Z",¢) on
T'(X,L). Tt follows from Lemma 3.5 that the subspace I C T'(X, L) is stable under 71(Z",¢). Since
the image of 71 (Z", () is Zariski dense in H¢ r (by definition of H it is dense in H¢ @, and this implies
that it is dense in H¢ ), this implies that V(1) N X is stable under the action of H¢(R). It follows
that (y1,b) € C = Y1 x {b} CC for y; € Y7, b € Ys, and since we already know that C C Y7 x {y2} for
some point yo € Yo, this proves that Z is a subvariety of the form Sy (Y1, v2). O

5.5 Corollary. An irreducible algebraic subvariety Z — Shy (G, X) is of Hodge type if and only if Z

is formally linear at some point and Z contains a special point.
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§6 Non-rigid families of abelian varieties

6.1 In his paper [3], Arakelov proved that, given a complete and non-singular curve B over C, a
finite set of points S C B and an integer g > 2, the set

isomorphism classes of non-constant families of
non-singular irreducible curves of genus g over B \ S

is finite. (For S = () this was done by Pargin.) One of the main steps in the proof was to show that if
X is such a non-constant family of non-singular curves of genus g over B\ S, then X does not have
non-trivial deformations.

In [19], Faltings gave an example showing that in general the analogous statement for abelian
varieties is not true. His example concerns a non-rigid family of abelian eightfolds. After that, several
people came up with related results. As for the non-rigid families of abelian varieties, Masa-Hiko
Saito obtained in [26] a classification of the endomorphism algebras of the underlying local systems.
In particular, he determined for which (relative) dimensions there exist such non-rigid families (without
isotrivial factors).

Using the notations and results discussed before, we can add to Saito’s work. We describe the
non-rigid families of abelian varieties in terms of the corresponding subvarieties of the moduli space
and we “explain” the non-rigidity geometrically. Before we do so, let us first discuss the problem in a

rather general setting.

6.2 Suppose we are given a polarized Z-VHS V = (Vz, F*, Q) of pure weight n over a non-singular,
irreducible, complex algebraic variety Z. We can ask if there are non-trivial deformations of V, fixing
the base space Z. We are in fact most interested in the infinitesimal deformations. To give this a
precise meaning one has to set up some theory.

Part of the structure of V is discrete, and therefore cannot vary continuously. Specifically, let T
be the set of equivalence classes of 4-tuples (Vz, Q, 7, p), where V7 is a free Z-module of finite rank,
Q: Vz x Vg, — Z is a bilinear form, 7 is a group and p: 7 — Aut(Vz, Q) is a homomorphism. Two
such 4-tuples (Vz,Q, 7, p) and (Vy,Q',7',p') are said to be equivalent if there exist isomorphisms
a: (Vz,Q) = (Vy, Q') and B: m =% 7’ such that a, o p = p’ o 5. For z € Z we get such a 4-tuple by
taking (Vz,Q) = V,,Q.), 7 = m(Z, 2) and p: m1(Z,z) — Aut(V, Q) the monodromy representation.
The class of this 4-tuple in 7 does not depend on the choice of z, and therefore we get a well-determined
element 7(V) € T associated to V.

In Peters’ paper [25] it is shown that the set

isomorphism classes of polarized Z-VHS }

ZNHS,(Z) =
2 { Vover Z with7(V)=1€T

has a natural structure of an analytic variety such that the tangent space to the class [V] is isomorphic
to (EQ ®@g C)~1!. Here E = H%(Z,&nd(Vg)), the algebra of global (flat) endomorphisms of the local
system Vg, and

E? ={ec E|Q(ev,w) + Q(v,ew) =0 for all sections v, w of Vg}
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is the subspace of elements of E which are skew-symmetric with respect to (). We conclude that the
polarized Z-VHS V over Z is rigid (i.e., it has no infinitesimal deformations over Z) if and only if
(E9 ®gC)~1! = 0. The problem that we are interested in is to describe, or to classify, the polarizable

Z-VHS V over Z such that V is non-rigid over some finite covering of Z.

6.3 Let z € Z be a Hodge-generic point, and write M = MT,, and (V,Q) = Vg, Q.). The Hodge
group Hg = Hg, is defined as the intersection of MT, and SL(V'). Since we allow finite coverings of

Z we may assume the algebraic monodromy group to be connected. Then we have algebraic groups
H, « M9 = Hgd®r C Aut(V,Q),

and E€ is just the space of H,-invariants in End?(V) := {e € End(V) | Vo,w € V : Q(ev,w) +
Q(v, ew) = 0}.

From now on we assume the VHS V to be of type (—1,0)+ (0, —1), which means that it corresponds
to a family of abelian varieties over Z. We will make free use of the correspondence between polarizable
Z-VHS of type (—1,0) 4+ (0, —1) and families of abelian varieties; in particular, we say that a family
of abelian varieties is non-rigid if the corresponding VHS is non-rigid.

One of the main advantages of restricting our attention to abelian varieties is that in this case the
endomorphism algebra E = End(V)#: is of type (—1,1) + (0,0) + (1,—1). Therefore, the family is
rigid if and only if E? is purely of type (0,0), which is equivalent to saying that H, and Hg have the

same invariants in End? (V). We will prove the following statement.

6.4 Theorem. Let f: X — Z be a principally polarized abelian scheme over a normal irreducible
complex algebraic variety Z, and assume that X admits a Jacobi level n structure 6 for some n > 3.
Let py: Z — Ag1,n @ C be the corresponding morphism of Z into the moduli space. Then there
exists a closed immersion of Shimura data i: (N,Qn) < (CSpQg,f);t), a decomposition (N34, 93d) =
(N1,91) X (N2,932) and a diagram

S1 X {a} —> S1 %X So —> Agyl’Kl ®C

a o l

7 L 5=8kM,0) = Sik(VixYa) < Ay, ©C

such that there are natural isomorphisms
T,Y2 = Ty Sy = Tigepw)(Z-VHS(S1)) <=~ Thyy)(Z-VHS(S)) == Ty (Z-VHS(Z)) .

Here we write V, W and U for the VHS corresponding to the first homology of the abelian schemes
over Z, S and S1 x So respectively, and the map T,S2 = Tjgyw)(Z-VHS (4 (S1)) is the map on
tangent spaces induced by the map Sy — Z-VHS -y (S1) sending sy € Sz to the class of U g, x {s,}
in ZVHS (o) (S1).

Proof. Write \: X — X! (X! denoting the dual abelian scheme) for the given polarization and V for
the polarized Z-VHS over Z corresponding to X. Without loss of generality, we may assume that the
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algebraic monodromy group is connected. We keep the notations z € Z, H,, M, Hg and (V,Q) as
above.

Fix an integer n > 3. Possibly after passing to a finite covering of Z we can choose a Jacobi level
n structure on X over Z. The family (X, ) plus the choice of this level structure corresponds to a
morphism ¢s: Z — Ag1,(C). The fact that the generic Mumford-Tate group is M means that ¢
maps Z into a subvariety of Hodge type Syx (Yar) (with K C CSpyy(Ay) the compact open subgroup
corresponding to level n structures).

Recall the decomposition of Shimura data (M3, 3d) = (Hgd, 1) x (H34,9),) that was introduced
in Section 3.6, where H; < M is the connected algebraic monodromy group of the family X — Z. It
follows from Proposition 3.7 that ¢f(Z) C Sy (Y1,y2) for some component ¥; C 2); and a point
y2 € Yo. Let W be the Z-VHS corresponding to the universal family over S = S,k (Y1,y2), then
we can identify the fibres V, and W, (2)5 and the monodromy representation of V factors through
that of W. Pulling back by ¢y defines a map ¢}: Z-VHS, (y)(S) — Z-VHS,(y)(Z) which induces an
isomorphism on the tangent spaces at [W] and [V] respectively. Therefore, it remains to explain the
non-rigidity of the family over S. In order to keep the notations as clear as possible, we assume from
now on that Z =5 = S,k (Y1,72) and V = W.

The basic idea now becomes apparent: Z is totally geodesic, and after Corollary 4.4 there is
a product variety S; x Sy covering Sy,x (Y1 X Y3), such that Z is the image of S; x {a} for some
a € So. If'Y; (hence also S2) is not reduced to a single point then we can vary the point a € Sy,
and this gives global deformations of the VHS over S; x {a}. However, if Y5 is a single point
(which happens if Z is of Hodge type) then this idea does not seem to work. It does, but in
general we first have to replace (M,Qas) by a “larger” Shimura datum (N,Qn). We do this as
follows.

Consider the algebraic group C' = Cgy(v,q)(H?), the centralizer of H, inside Sp(V, @). Its connected
component C? is a reductive subgroup of Sp(V, Q). Notice that E? = Lie(C). Similarly, (E?)%0 is
isomorphic to the Lie algebra of Cgp(y,q)(Hg), so the fact that E® is not purely of type (0,0) is
equivalent to saying that Csyv,q)(Hg)? & C° = Csp(v,0) (H.)°.

The reductive group C° is the almost direct product of its center Zoo and a number of Q-simple
semi-simple factors C’? . Let C, be the product of the factors C’? for which CZQ (R) is compact, and let
C’ be the product of Zg and the factors C’ZQ which are not compact over R. The intersection H, NC? is
contained in the center of H, and is therefore finite, so H,-C° C Sp(V, Q) is the almost direct product
of H, and C°. Clearly, M C Gy, - H, - C° C CSp(V, Q) (using that H, is normal in M), and it follows
from [17, 1.1.15] that Inn(h(i)) is a Cartan involution of H, - C° (where h: S — Mg C CSp(V, Q)r is

the homomorphism giving the Hodge structure on V' = Vg ;). The composite map
S — (G - H, - CO)p 2% 24 x 024 x (") 2, ¢ad

must therefore be trivial, hence h factors through Gy, - H, - C".

Let N =Gy, - H, - C', and let Yy be the N(R)-conjugacy class of h. The above arguments show
that (V,9 ) is a Shimura datum. We have a decomposition (N34, 93d) = (H24,9)) x (C'*, D),
and S = Sy i (Y1,y2), which we can also write as Sy (Y1,v) for a point v € Y¢r. Notice that if there
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are non-trivial infinitesimal deformations, then )¢ is not reduced to a single point, or, equivalently:
C' has non-trivial semi-simple factors. This follows from the fact that Lie(C) is not purely of type
(0,0). Alternatively: C’ being a torus would contradict the above remark that C’Sp(V,Q)(Hg)O ¢ Y
since Hg C H, - C'.

This brings us to a situation where we can apply Corollary 4.4. We have a commutative diagram

S1 X {a} — 51 X SQ

| I

S = ST]K(Yl,U) — SnK(Yl X YC’)

where g and ¢’ are finite surjective morphisms, and where S1 = Y3 /T'1, So = Y /T3 for some arithmetic
subgroups I'y C H*(Q) and I's C C'24(Q). We may take I'y and T'y small enough such that S; and
Sy are non-singular.

The morphism g*: Z-VHS ) (S) — Z-VHS,(4+1y)(S1) induces an isomorphism on tangent spaces
at W and g*W respectively; this follows from the description of the tangent space given above and
the fact that both the generic Mumford-Tate group and the connected algebraic monodromy group
on S and S; are the same.

Varying the point a € Sy then gives global deformations of the VHS ¢*W over S;. We remark
that this indeed “explains all deformations”: we have seen that the tangent space to Z-VHS,(S)
at the point [V] is isomorphic to Lie(C) 1!, and since Lie(C,) is purely of type (0,0) this is equal
to Lie(C') b1, Our remark then follows from the fact that there are natural isomorphism 7Sy =
T,Ycr = Lie(C')~b! (where Yor 2 v = a € Sp), which is an infinitesimal version of the correspon-
dence

varying the point v € Yor  ~»  deformations of the VHS ¢*V over S7,

see [25, Sect. 1 and 2] (notice that in our case the horizontal tangent bundle to the period domain Y¢r

is equal to the full tangent bundle). O

6.5 Remarks. (i) Inspection of the proof shows that the same result is valid for arbitrary VHS,
provided that the Lie algebra of the centralizer C' is of type (—1,1) 4 (0,0) 4+ (1, —1), for this is what
we need to conclude that (IV,9y) is a Shimura datum.

(ii) Clearly, non-rigidity is interesting only if the family of abelian varieties over Z is not isotrivial.
To exclude this possibility, we can first reduce (cf. [26, §3]) to the case where V is isotypic and
non-trivial as H,-module.

(iii) The assumption that we have a principal polarization is not essential; it was included only to

make the result easier to state.

6.6 Corollary. Let X be a simple abelian variety over C with dim(X) < 7. Then MT(X )2 is either

trivial or it is a Q-simple algebraic group.

Proof. This now follows immediately from the fact that there are no (non-trivial) non-rigid families

of abelian varieties of relative dimension < 7, see [26, Cor. 8.4]. O
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