
Explicit Primality Criteria for h #2k ± 1

Wieb Bosma

Mathematics of Computation, Vol. 61, No. 203, Special Issue Dedicated to Derrick Henry
Lehmer. (Jul., 1993), pp. 97-109.

Stable URL:

http://links.jstor.org/sici?sici=0025-5718%28199307%2961%3A203%3C97%3AEPCF%3E2.0.CO%3B2-8

Mathematics of Computation is currently published by American Mathematical Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/ams.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Fri Mar 28 07:25:50 2008

http://links.jstor.org/sici?sici=0025-5718%28199307%2961%3A203%3C97%3AEPCF%3E2.0.CO%3B2-8
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/ams.html


MATHEMATICS OF COMPUTATION 
VOLUME 61, NUMBER 203 
JULY 1993, PAGES 97-109 

EXPLICIT PRIMALITY CRITERIA FOR h 2" 1 

WIEB BOSMA 

Dedicated to the memory o fD .  H. Lehmer 

ABSTRACT.Algorithms are described to obtain explicit primality criteria for 
integers of the form h 2k i 1 (in particular with h divisible by 3 )  that 
generalize classical tests for 2k & 1 in a well-defined finite sense. Numerical 
evidence (including all cases with h < l o 5 )  seems to indicate that these finite 
generalizations exist for every h , unless h = 4m - 1 for some m , in which 
case it is proved they cannot exist. 

In this paper we consider primality tests for integers n of the form h .2k + 1 . 
Since every integer is of that form, we first specify what we mean by this. 

Throughout this paper, h will denote an odd positive integer. We shall 
consider the question of obtaining primality criteria for nk = h .2k + 1 ,for all 
k such that 2% h . 

Two classical results express that primality of 2k k 1 can be decided by a 
single modular exponentiation; indeed, for 2k + 1 one has 

( 1 . 1 )  n = 2k + 1 is prime ++ 3(*-')I2= -1 modn , 

whereas for 2k - 1 the formulation is usually in terms of recurrent sequences, 
as given by Lucas [9] and Lehmer [7] (see also 52): 

( 1.2) 
kn = 2 - 1 is prime ekP2= 0 mod n , 

where eo = - 4 ,  and e,+~= e: - 2 for j > 0 .  Similar primality criteria exist 
for n of the form h 2k + 1 kith h not divisible by 3. 

For fixed h divisible by 3, however, one has to allow a dependency on k 
in the starting values for the exponentiation (or the recursion, as in (1.2))in 
the criterion for h -2" 1 . The generalizations of the above primality criteria 
described in this paper will be explicit in the sense that for every k with 2k > h 
an explicit starting value will be given, and finite in the sense that the set of 
starting values for fixed h will be finite. 

It seems that with the exception of h of the form 4m - 1, such an explicit, 
finite generalization always exists. As part of the research for this paper, I 
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constructed such solutions for every h up to 100000. For h of the form 4m- 1 
it is proved that a finite set of starting values will never suffice. 

2. PRIMALITYCRITERIA 

Explicit primality criteria for numbers of the form h 2k + 1 are based on 
the following theorem. (For proofs of statements in this section, see [2, 101.) 

(2.1) Theorem. Let n = h .2k + 1 with 0 < h < 2k and h odd. If  (5)= -1 ,  
then 

(2.2) n is prime uD ( ~ - ' ) / ~= -1 mod n . 
Thus, finding D with Jacobi symbol (i)= -1 suffices to obtain an explicit 

primality criterion for n = h 2k + 1 . In practice, finding such D for given 
k is easily done by picking D at random, or by searching for the smallest 
suitable D . The latter strategy was for instance used by Robinson [12] in an 
early computer search for primes of the form h 2k + 1 with h < 100 and 
k < 512 ; he found that he never needed D larger than 47. 

However, one wonders whether it would be possible to prescribe D for fixed 
h . For that it suffices to solve the following problem. 

(2.3) Problem. Given an odd integer h > 1 .  Determine a finite set 9and 
for every positive integer k 2 2 an integer D E 53 such that (&) # 1 and 
D $ O  m 0 d h . 2 ~ + 1 .  

(2.4) Remarks. In what follows below, we will often write about a solution 9 
to Problem (2.3), when we mean such a set together with a map Z>2 -+ 9 ,  
which provides the explicit value for every k . This map will in ourconstruc-
tions be constant on the residue classes modulo some 'period' r . 

Let some odd h be fixed. Suppose that 9 forms a solution to the problem 
described in (2.3), and let Dk E9 such that (h)# 1 . If (&) = -1 , 
then Theorem (2.1) provides an explicit primality test for h 2k + 1 ,provided 
that 2k > h . If, on the other hand, = 0 and h 2k + 1+ Dk , then both 
sides of (2.2) are false. 

Since ( ) = ( ) for k > 1 ,  we will henceforth assume that 9 
consists of positive integers. 

(2.5) Remark. Notice that for some h it is even possible to solve Problem 
(2.3) with the stronger requirement that (h.f;+l) = 0 .  This is for instance 
true for h = 78557 : Selfridge noticed that 78557 .2k + 1 has a divisor in 

= (3 ,  5 ,  7 ,  13,  17, 241) for every k 2 1 [6, p. 421. 
Next we describe primality criteria for numbers of the form h .2k - 1 .  

Whereas tests for h 2k + 1 all took place within Z (or rather ZInZ) ,  we 
now pass to quadratic extensions. For a quadratic field Q(@) with ring of 
integers OD we let denote the automorphism of order 2 obtained by sending
0 to -0.Theorem (2.6) is the analogon of Theorem (2.1). 

(2.6) Theorem. Let n = h .2k - 1 with 0 < h < 2k and h odd. Suppose there 
Dexist D = 0 ,  1 mod4 ,  and a E O D ,such that (,) = -1 and (F)= -1 .  

Then 

n is prime e 1 mod n .  
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The way Theorem (2.6) is used for an explicit primality test for h 2k - 1 
will be clear: one looks for a pair D and cu such that both D and the norm of 
cu have Jacobi symbol -1 . 

(2.8) Problem. Given an odd integer h > 1 . Determine a finite set 9 and 
for every positive integer k > 2 a pair ( D ,  a) E 9x OD,such that either 

(2.9) Remarks. As in the previous case, for a solution of (2.8) to be explicit 
we want the finite set 9 together with a map telling which pair to choose for 
each k 2 2 .  Solving (2.8) again leads to an explicit primality criterion by (2.6), 
or a factor. Sometimes we will be sloppily using prime D = 3 mod 4 instead 
of the associated discriminant 4 0 .  

It remains to be explained how (2.6) relates to the formulation of the Lucas-
Lehmer test (1.2) in the introduction. For that, let cu E OD and let P = & . 
Furthermore, let eo = ph + PPh and ej+l = e j  - 2 for j 2 0 .  Then, by 
induction, for j > 0 : 

. - ph.2 '
J - + P-h.2' . 

Hence, 
h.2k-2 + p-h .2k-2  -ekP2= 0 modn  up = 0 mod n 

e p(n+l)14+ p-(n+l)/4= 0 mod 

e p("+')I2= -1 mod n . 
Thus, a solution to Problem (2.8) immediately yields a finite generalization of 
(1.2). Notice that eo can itself be deduced from P by a recurrent sequence: if 
we put fo = 2 and fi = p + P-' , then the relations f,+i = f ,  .J; - (for 
j > i) give f, = pj  + P-J for every j > 0 .  In particular, f2, = d2- 2 and, 
importantly, fh = ph+ P-h = eo . 

Also note that it follows immediately that the starting value eo is in fact a 
rational number, and that its denominator is coprime to n (since it is a divisor 
of the hth power of N(cu)). Thus, one in general obtains a recurrence relation 
for rational numbers rather than for integers as in the classical Lucas-Lehmer 
case. Since one is only interested in the values modulo n ,  multiplying with 
the inverse of the denominator modulo n yields an integer recurrence relation, 
but this formulation has as a disadvantage that one ends up with recurrence 
relations for which the starting value depends on k (not just on a ) .  For an 
example, see (3.5) below. 

3. SPECIALCASES 

First of all, we deal with the case where h is not divisible by 3. 

(3.1) Theorem. Let n = h . 2 k +  1 ,  with h $ 0 mod3 and k > 2 .  Then 
9 = (3) and Dk = 3 Cfor k 2 2) solves Problem (2.3). In particular, If 
2k > h ,  then 

n is prime e 3(n-1)12= -1 mod n . 
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Proof. Since n = 1 mod 4 ,  we have (2)= ( f ). Also, n = h .2k + 1 =. 0 or 
2 mod 3 , and the first assertion is immediate. The second follows by (2.1).  

(3 .2)  Theorem. Let n = h . 2k - 1 ,  with n 9 0 mod 3 and k > 2 .  Then 
= ( 1 2 )  and (Dk  , a k )  = ( 1 2 ,  2 + m)solves Problem (2.8) .  In particular, 

if 2k > h ,  then 

n is prime e = - 1  modn u e k P 2  - 0 modn ,  

where eo = - ( ( 2 +  f i)h+ ( 2 - 6jh)and e,+l = e,'- 2 for j > 0 .  

Proof. N ( a )  = ( 2  + m ) ( 2-v%)= - 8 ,  and therefore, for k 2 2 ,  

using quadratic reciprocity and the fact that n = h .2k - 1 - 3 mod 4 .  Also, 
if k > 3 ,  then n = 7 mod 8 ,  and hence 

N ( a )( )  = ( )  1 . 

This proves the first assertion. 
Using the notation of (2 .9) ,  we have 

and the other assertions follow from (2 .6)  and (2 .9) .  

Note that (3 .1)  and (3 .2)  include the classical case h = 1 quoted in the 
introduction. Of course, much more is known for numbers 2k f 1 ,but we are 
not interested in that here. 

We would like to know whether we can generalize (3 .1 )  and (3 .2)  for h 
divisible by 3. Not much seems to be known for that case [ I ,  10, 1 1 1 .  In 
general, it will certainly not be possible to use the same D for every k , but it 
might be possible to use only finitely many different values. 

The first observation we make is that a solution to Problem (2.3) for one 
particular h will in general lead to a solution for every h' in the same residue 
class modulo nDE9D . In that light, (3 .1)  is in fact a consequence of (1 .1 )and 
the special case h = 5 and 9= ( 3 )  . 

Similarly, a solution for Problem (2.8) for some h will lead to solutions for 
all h in some residue class with respect to a modulus depending on the D and 
the norms N ( a )  for the pairs (D,  a )  used. 

Next we show that for h = 4m - 1 , finite generalizations of (3 .1)  and (3 .2 )  
do not exist. 

(3 .3)  Theorem. Let m > 1 . For everyfinite set 53 c Z there exist k > 2 szlch 
that 

In other words, Problem (2.3)  does not have a j n i t e  solution for h = 4'" - 1 
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Proof. Let 53 be a finite set. Let 9 be the finite set of prime numbers dividing 
at least one D E 53 : 

9= {pip prime , 3 0  E 9:plD).  

By multiplicativity of the Jacobi symbol, it suffices to prove that there exists 
k > 2 such that 

for every p in 9 . To do so, simply choose k > 2 such that k is a multiple of 
ord,(2) for every oddp E9, where ord,(2) denotes the multiplicative order 
of 2 modulo p . Then 

If necessary, we also take k > 3 ,  so that (4m- 1) .2k + 1 = +1 mod 8 to 
ensure that 

((4'" - 1) .2' + 1 
This proves (3.3). 

(3.4) Theorem. Let m > 1 .  For every jinite set 53 of pairs ( D ,  a ) ,  with 
D = 0 ,  1 mod 4 and a E OD,there exist k > 2 such that for every (D , a)  E 53 

In other words, Problem (2.8) does not have ajinite solution for h = 4m- 1 
Proof. Let L3 be a finite set of pairs as in the statement of the theorem. Note 
that of the pair of integers D and N(a) at least one is positive. Let 9 be the 
finite set of all prime numbers dividing the positive D's and the positive norms 
N ( a ) ,  and ( D ,  a )  E L3: 

9= {pip prime, 3(D,  a)  E9:(D > 0 andplD or N(a) > 0 and p lN(a) ) ) .  

By multiplicativity of the Jacobi symbol, it suffices to prove that there exists 
k > 2 such that 

for every p in 9'. TO do so, simply choose k > 2 such that k E -2m mod 
ordp(2) for every odd p E 9' , where ordp(2) denotes the multiplicative order 
of 2 modulo p . Then 

If necessary, we also take k > 3 so that (4m- 1) 2k - 1 = -1 mod 8 to ensure 
that 

(4m - 1 ) .2k - 1 
This proves (3.4). 
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(3.5) Remarks. The best one could hope for in case h = 4" - 1 is to find 
infinite sets as in (2.3) and (2.8), parametrized by k . We easily obtained such 
results for m = 1, 2 ; for example, let nk = 3 .2k - 1 for k > 2 ,  and define 

( 7 ,  2 + J ? )  i f k = 0 , 2  m o d 3 ,  

(3.6) ( 4 ,  a k )  = i f k =  1 , 4  m o d 9 ,  
(2(k-1)/3+ 1, 1 + J2(k-1)/3 + 1) if k = 7 mod 9 .  

Then (2)= -1 = (-N ( " k ) )  for every k > 1; furthermore,
nk 

Borho [ I ]  presents a different parametrized infinite solution for (2.8) with h = 

3 .  He also gives a parametrized solution for h = 9 ,  but as we will see below, 
for that case a finite solution exists. 

As a final example of an explicit primality test in terms of a recurrent se-
quence we indicate how the first case of (3.6) translates. So let h = 3 and 
k = 0 ,  2 mod 3 . In the notation of (2.9), p = *$ and eo = p3 + P-' = 

-y. We have here a denominator 33 in the starting value for our recurrent 
sequence; however, since n = 3 2k - 1 ,  one has 3-I e 2k mod n and (3.6) 
implies for k - 0 ,  2 mod 3 : 

nk is prime uekP2= 0 mod nk , 

where eo = -10054. 23k and ej+l = e; - 2 for j > 1 . 

4. THEGENERAL CASE 

The next question is: what happens for h = 3 mod 6 not of the form 4m- 1 ? 
Although I have not been able to prove it, all the evidence (including all cases 
for h up to 100000) seems to suggest that for such h there always exists a 
solution of Problems (2.3) and (2.8)! 

A natural but naive first attack to Problem (2.3) consists of finding a suitable 
Dk for k = 2 ,  3 ,  . . . in succession, by using the smallest one that works, and 
by keeping track of the k for which a given value D works. What is wrong 
with this approach is that it uses an ordering of the D's according to size, while 
it is the order of 2 modulo D that is important, because this determines the 
modulus for the residue classes of k for which D is suitable. 

The next attempt, therefore, is to run through the primes D in order of 
increasing multiplicative order of 2 in (Z/DZ)*. This resulted in the first 
algorithm that we tried out in practice, by writing a very short program in 
the Cayley language [4]. We used a table of the complete factorizations of all 
integers 2"- 1 for 2 5 u 5 U = 250, obtained from [3] and direct factorization 
in Cayley. 

This worked in fact so well, that we tried it for every h e 3 mod 6 up to 
10000. Out of the 1667 positive such h less than 10000, six are of the form 
4m- 1 , and only 36 others were not dealt with by this algorithm. 

To deal with the remaining cases, one could try to increase the bound U ,but 
for that we would have to overcome the difficulties of factoring 2U- 1 for large 
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u , which would soon become unfeasible. Instead, we have tried to predict for 
which values of u we might be successful. It turns out that the main problem 
lies in the possibility that n = h .2k + 1 is a square. 

(4.1) Example. Let h = 33 ; this is the smallest h for which our first algorithm 
failed. We show in this example that squares form a problem. 

If we list the factorizations of nk = 33 2k + 1 for the first few values of k , 
one notices that nk is the square of an integer for k = 4 and k = 7 : indeed 
n4 = 33 .24 + 1 = 232 and n7 = 33 .27 + 1 = 52 . 13'. Therefore, the only 
D > 1 for which ( f )  # 1 is D = 2 3 .  Since the order of 2 modulo D is 
11, this forces us to consider residue classes modulo 11. For n7 we may use 
D = 5 ,  so already we need to consider k modulo 44 because of these squares. 
In fact, these two are the only squares among nk = 33 .2k + 1 for k > 1 (this 
will follow from the proposition below). 

However, even if nk is not a square, it may be that (E)= 1 for every finite 
set of primes D not dividing some integer b , for all k in a residue class with 
respect to some modulus. This happens in case h + 2k is a square. In this 
example, take for instance b = 3 4 ,  and define for any finite set 9 of primes 
not dividing b the integer k by k = -8 mod ord2(D) for every D E9 . Then 

which equals 1. As a consequence, for every 9we will be stuck with the 
residue class for k = -8 mod u , for some modulus u , unless we include D = 

1 + 24 = 17 ; that forces u to be divisible by 8. Similarly, we will need D = 7 
(and hence u a multiple of 3)  to deal with the case k = -4 .  

These considerations lead us to consider k modulo 264 for h = 33 .  It turns 
out that the primes contained in 9 2 6 4 ,  the set of divisors of 2264- 1 ,do indeed 
solve Problem (2.3) for h = 33 ; in fact, we do not need a primitive divisor of 
2264- 1 for this, and hence we were able to solve the problem for h = 33 
without extra factorizations! 

The following proposition shows that it is very easy to detect the squares; we 
will use it to predict what the modulus u will be. Since for h .2k - 1 we will 
use basically the same strategy, we deal with that case here at the same time. 

(4.2) Proposition. (i) Let n = h .2k + 1 for some odd h > 1 and some k 2 2 . 
Then n is a square in Z if and only if there exists an odd positive integer f 
such that h =  f . ( f  . 2 k - 2 &  1 ) .  

(ii) Let n = h + 2k for some odd h > 1 that is divisible by 3, and some 
k > 2 .  Then n is a square in Z if and only if k is even and there exists an 
odd positive integer f such that h = f .(2k12+1+ f )  . 

(iii) Let n = h .2k - 1 for some odd h > 1 and some k > 2 .  Then n is 
never a square in Z . 

(iv) Let n = 2k - h for some odd h > 1 that is divisible by 3, and some 
k > 2 .  Then n is a square in Z if and only if k is even and there exists an 
odd positive integer f such that h = f .(2k12+1- f ) .  
Proof. (i) Suppose that n = he 2k + 1 = d 2 ,with d some positive odd integer. 
Then d 2  - 1 = h .2k and d = f .  2k -1& 1 for some odd f .  Thus, h .2k = 

( d  - 1) ( d  + 1) = 2k( f  22k-2+ f )  , from which the assertion follows. 
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Conversely, if h = f ( f  2k-2 i I ) ,  then n = f .(f .2k-2 + 1) 2k + 1 = 
(f .2k-' * 1)2. 

(ii) Suppose that n = h + 2k = d 2 ,  with d a positive odd integer. Looking 
modulo 3, we find that k must be even, say k = 21. Let f E Z be such that 
d = f +2' ;note that f must be odd and positive. Then d 2  = f +f 2'+' +221= 
h + 22', and, therefore, h = f + f 2'+' ,whence the assertion follows. 

Conversely, if h = f + f .2k/2+1, then h + 2" f + f 2k12+1+ 2k = 

( f+ 2kl2)2. 
(iii) Since h .2k - 1 = 3 mod 4 for k > 2 ,  it cannot be a square. 
(iv) Suppose that n = 2k - h = d 2, with d a positive odd integer. Looking 

modulo 3, we find that k must be even, say k = 21. Let f E Z be such that 
d = 2'-f ; note that f must be odd and positive. Then d 2  = 221-f 2l+l+f = 
221- h , and, therefore, h = f 2'-I - f 2  = f .(2k/2+'- f )  

Conversely, if h = f . (2k/2+1- f ) ,  then 2k - h = 2k - f 2k/2+1+ f = 

(2h/2- f ) 2 .  This ends the proof of (4.2). 

(4.3) Algorithm. 
Input. An integer h - 3 mod 6 ,  an integer U > 1, and for all 2 5 u 5 CT a 

set 9"consisting of divisors of 2" - 1 . 
Output. A positive integer r 5 U and a sequence of integers g = (C1, 

C2,  ... , C,) of length r such that 

for every k = i mod r , with k > 3 .  
( I )  Find a multiplier m 2 1 which is a positive integer with the property 

that if h .2k + 1 is a square, then g ~ d ( 2 ' ~- 1, h .2k + 1) > 1 , and if h + 2k is 
a square, then g ~ d ( 2 ~- 1 ,h + 2k) > 1, for every positive integer k . 

(2) Put r = 1 , u = m , 9= 0 ,  and g = (0) . Repeat the following steps 
until termination. 

(a) Let k be the smallest integer in 3 5 k 5 r + 2 such that k f 9 
(b) If there does not exist D EPUsuch that 

proceed to step (c); else let D be the smallest such value, let r' = 

lcm(r ,u) , replace 9 by 

(3 5 i 5 r1+21i =: k m o d u  or i =  d modr  for somed ~9): 

replace g by (C; , . .. ,C,!,) , where 

C, if Cj # 0 ,  where j = i mod r , 
D i f j ~ k m o d r ' ,  

0 otherwise; 

next replace r by r' . 
(c) Terminate and return 5? if either #9= r or u > U -m . In all other 

cases: increase u by m . 
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(4.4) Remarks. The sequence returned by Algorithm (4.3) represents a solu- 
tion to Problem (2.3) if it does not contain a zero entry, that is, if it terminated 
in step (2)(c) with #3= r . 

In the cases I have considered, h was sufficiently small to allow complete 
factorization without effort, and inspection of all possible factorizations to ob- 
tain the multiplier m , using the above proposition. Alternatively, one could 
check all of the finitely many possible k that yield squares. 

Of course 2mu - 1 is soon too big to be factored completely; if that happened, 
all known prime factors were used, as well as (very occasionally) composite 
factors (in particular, divisors of the form 2d - 1 of 2mU - 1,with d a divisor 
of mu) .  

Our strategy for attempting to solve Problem (2.8) for h .2k - 1 is much the 
same as that employed in Algorithm (4.3) for h .2k+ 1,except that we have to 
build in an extra step to find a suitable element. We describe this subalgorithm 
first. 

(4.5) 	 Algorithm. 
Input. An integer h - 3 mod 6 ,  positive integers k and r ,as well as a prime 

D .  
Output. Either an element a E OD such that 

for every j = k mod r , or 0. 
(1) If D = 1 m o d 4 ,  solve x 2 + y 2= D ,  and return a = x + @ .  
(2) Choose a suitable bound b , and perform step (a) for pairs x , y with 

0 5 y 5 b and 0 5 x 5 y a (but x , y not both 0) until it is successful, in 
which case a is returned, or the pairs are exhausted without success, in which 
case 0 is returned. 

(a) Let the integer g coprime to 6 be determined by x2- =y * ~- 2 q C g ,  
with 6 ,  E > 0 .  This step is successful if g is a square or 

thena = x + y @ .  

(4.7) Remarks. We briefly comment on Algorithm (4.5) which will be used 
below to find a suitable element a ,  once D has been found. The search for 
solutions will be organized in such a way that D will always be positive (recall 
that either D or N(a) has to be positive) and usually prime (except that it 
should be replaced by 4 0  if D = 2 ,  3 mod 4) . Since h .2k - 1 -- 7 mod 8 and 
h ~ 2 ~- 1 - - 2 m o d 3 ,  

That means not only that D = 8 and D = 12 will be unsuitable, but also that 
any factors 2 and 3 in N(a) can be ignored, and that N(a)  = -s2 will always 
be a suitable value. That explains most of step (2) above; the condition given 
by (4.6) ensures that N(a)  not only works for the current value of k , but in 
fact for the whole residue class of k modulo the current modulus r . 
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It is well known that every prime p = 1 mod 4 can be written in the form 
p = x 2  + y 2 .  In step ( I )  this is used: if D = x2  + y 2 ,  then N(x + a)= 
x 2 - D = -y2,  hence suitable! Of course, we should explain how to obtain x 
and y to make everything explicit. There are several methods for solving this 
problem, some of which work very well in practice, even if D gets big (in our 
calculations we used D of up to 106 decimal digits). One method is to find the 
square root of -1 modulo D and recover x and y from such root. We refer 
the reader to [8, 51 and the references therein for details about these algorithms. 

For prime D = 3 mod 4 such a general solution does not exist. Still, in step 
(2) of the above algorithm one will often still find a suitable solution, particularly 
for small D . We give a few examples in Table 0. 

Table 0 contains for certain prime D = 3 mod 4 less than 100 an element 
a such that N(a)  = -2QE as found from Algorithm (4.5) with bound b = 25 
on y . It shows that such a solution (which is suitable for any h and k)  was 
found for every such D with the exception of D = 23, 47, 7 1. (It is of course 
no coincidence that for D = 23 mod 24 no solution was found: it is easy to 
see that for these we are trying to solve x 2  -Dy2 = -s2 or x 2  -Dy2 = -2s2, 
which is impossible.) Note that 2S3E may appear in the denominator of the 
starting value eo as in (2.9) and (3.5). 

Still, D = 23 (or 47 or 71) may be useful in combination with an element 
that only works for particular h and k ; such a value is sought after in the last 
part of the algorithm. For instance, with h = 33, let k = 8 ; then 

Since the order ord7(2) = 3 ,  the element 3+v"% is suitable for all k = 8 mod r 
if this current modulus r is a multiple of 3. 

(4.8) 	 Algorithm. 
Input. A positive integer h = 3 mod 6 ,  an integer U > 1 , and for all 

2 5 u 5 U a set PUconsisting of divisors of 2" - 1 . 
Output. A positive integer r 5 U and a sequence F = ( (Dl, r t l ) ,  ( D 2 ,t i 2 ) ,  

.. . , (D,, a,)) of length r 5 U ,  with integers 0 < D, = 0 ,  1 mod 4 and 
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ai E 00,, such that 

for every k E i mod r (with k 2 2 ) .  
(1) Find a multiplier m ,which is a positive integer with the property that if 

2k - h is a square, then g ~ d ( 2 ~  1, 2k - h) > 1 for every positive integer k .-

(2) Put r = 1 , 9= 0 ,  u = m , and 5? = ( (0 ,  0 ) ) .  Repeat the following 
steps until termination. 

(a) Let k be the smallest integer in 3 < k < r + 2 such that k $ 9. 
(b) If there exists no D E Pusuch that 

then proceed to step (c); else, let D be the smallest value satisfying this, 
let r' = lcm(r , u) , and perform Algorithm (4.5) with h , k , r' , and D 
to find an element a .  If a = 0 ,  proceed to step (c); else replace 9 by 

{ 3 < i < r ' + 2 ~ i ~ k m o d u o r i ~ d m o d r f o r s o m e d ~ 9 ) ;  

replace Z? by ((Dl , a l ) ' ,  . . . , (Dr/, a,!) '),  where 

( D i , a j )  i f ( D i , a i ) # ( O , O ) ,  w h e r e j ~ i m o d r ,  

(D, , a,)' = ( D ,  a) if j E k mod r' , 
(0 ,  0) otherwise ; 

next replace r by r ' .  
(c) Terminate and return the sequence 5? if either # 9= r or u > C'- m . 

In all other cases: increase u by m . 
The sequence returned by Algorithm (4.8) represents a solution to Problem 

(2.8) for h if it does not contain entries of the form (0 ,  0 ) ,  that is, if it 
terminated in step (2) (c) with # 9= r . 
(4.9) Numerical results. Six tables (see the Supplement at the end of this issue) 
summarize the results of running our Cayley implementations of Algorithms 
(4.3) and (4.8) for h up to l o 5 .  In these tables, m signifies the multiplier 
found in step (1)  to trap a factor for every possible square, and r denotes the 
modulus ('period') for the explicit primality test, as returned by the algorithms. 
Subscripts + and - indicates tests for h .2k + 1 and h .2k - 1 . 

In Table 1 multipliers and periods are shown, found using (4.3) for all h = 
3 mod 6 with h < 1000. Tables 2 and 3 show the hardest cases for h up to 
100000: in Table 2 all cases for which r+ is at least 50 times m+ are listed, 
and Table 3 shows all cases where m+ 2 500. The largest period found was 
just over 100000. 

Tables 4-6 show the corresponding results obtained with Algorithm (4.8), but 
Table 6 lists all cases with m- > 100. The largest period encountered is over 
half a million. 

Notice in the tables that the period r is not always an integral multiple of 
the multiplier m ; the reason for this is that a solution found with r a multiple 
of m sometimes shows an 'accidental' periodicity with modulus a divisor of r 
that is not a multiple of m . 
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Finally, we explicitly describe the solutions for h = 9 implied by our calcu- 
lations. According to Table 1, there exists a solution for 9 .  2k + 1 with r = 24 
(and m = 8 ,  because the squares 9 + 24 = 52 and 9 .25+ 1 = 1 72 are trapped 
by 28 - 1 = 3 .  5 . 17) ,  and by Table 4 there is a solution for 9 .  2k - 1 with 
r = 4 .  

(4.10) Theorem. Let nk = 9 .  2k + 1 and dejne Dk E ( 5 ,  7 ,  17,  241) for 
k 2 2 as follows: 

Then (?)# 1 for k t 2  Hence, if k t  4 ,  then 

I?k is prime eDP-~) '~-= 1 mod nk 

(4.11) Theorem. Let nk = 9 .2k - 1 and define Dk , a k  for k 2 by 

Then (2) = -1 for every k 2 2 .  Hence, if k 2 4 ,  then # 	1 and (y) 
nk is prime u 	 -1 modnk.  
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