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1 Introduction

Dirac operators were introduced by Dirac [6, 7] in 1928 to treat the elec-
tron quantum mechanically. The idea was that to make this treatment
consistent with Lorentz transformations in special relativity, the Laplace



operator that occurs in the Schrédinger equation should be written as the
square of some first-order differential operator D.

Dirac considered this problem on four-dimensional space-time with
the Minkowski metric. Let us now consider the case of n-dimensional
Euclidean space. Then the Laplacian is (up to a sign convention)

n az
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For a first-order operator with constant coefficients of the form
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a short computation shows that on smooth functions, we have the desired
relation D? = A if and only if for all j and k,

da* + a*d = 2§,

where 8, is the Kronecker 5. This is clearly impossible if D and A act
on scalar functions (so the coefficients @’ are numbers), so one needs to
consider vector-valued functions (so the coefficients a’ are matrices).

Apart from their motivation from physics, Dirac operators have turned
out to be very relevant to several areas of mathematics. These include
representation theory [1, 15], existence of Riemannian metrics of positive
scalar curvature [14], and geometry and topology more broadly. Many
applications involve the Atiyah-Singer index theorem [3, 2], which relates
the space of solutions of the equation Ds = 0 to the geometry and topology
of the space under consideration.

The goal of this course is to introduce Dirac operators and their index
theory. We discuss the important special case of Spin-Dirac operators. We
state the Atiyah-Singer index theorem for such operators, and deduce a
consequence to existence of Riemannian metrics of positive scalar curva-
ture.

Prerequisites are basic theory of (Riemannian) manifolds and vector
bundles, and bounded and compact operators on Hilbert spaces.

Standard references on Dirac operators are [4, 8, 9, 13]. We will cite
these in various places.



Notation

If X is a set, then we write Idx for the identity map on X.

We write M, (C) for the space of complex r x r matrices, and End(V) for
the space of linear endomorphisms of a finite-dimensional vector space V.

If M is a smooth manifold, then C*(M) denotes the space of smooth
functions on M, and C°(M) denotes the space of compactly supported
smooth functions on M. More generally, if V is a finite-dimensional real
vector space, then C*°(M, V) denotes the vector space of smooth functions
from M to V.

If E = M is a smooth vector bundle, then I'*°(E) denotes the space of
smooth sections of E, and I'?°(E) denotes the space of compactly supported
smooth sections of E. We write Q%(M; E) := I'°( /\kT*M ® E) for the space
of differential forms of degree k with values in E. The endomorphism
bundle of E is denoted by End(E) = E ® E* — M.

2 Dirac operators

Throughout these notes, M is a smooth manifold of dimension n, with a
Riemannian metric g. (Some constructions and results extend to pseudo-
Riemannian manifolds.) Furthermore, we consider a complex vector bun-
dle S — M of rank r.

Definition 2.1. A first order, linear differential operator on S is a linear map
D: I'°(S) — I'*°(S) such that every point in M has an open neighbourhood
U that admits local coordinates (x',...,x™) and a trivialisation of S, such
that there are smooth functions a',...,a™,b: U — M,(C), so that for all
s € '*°(S), supported in U,

n D
Ds = g a]a—s + bs, (2.1)
=1

xJ

if s is viewed as a smooth function from an open set in R™ to C" via the
local coordinates and trivialisation on U.

Lemma 2.2. A linear operator A: T>°(S) — T'*°(S) that commutes with point-
wise multiplication by smooth functions is given by a vector bundle endomor-
phism of S.



Lemma 2.3. Let D be a first order, linear differential operator on S.

(a) Forall f € C*(M), viewed as an operator on '*°(S) by pointwise multi-
plication, the commutator [D, f] is given by a vector bundle endomorphism

of S.

(@) If m € M, and f,,f, € C®(M) satisfy dnfi = dnf2, then the vector
bundle endomorphisms [D, fi] and [D, f,] of S are equal at m.

See Exercise 2.1.

Definition 2.4. Let D be a first order, linear differential operator on S. The
principal symbol of D is the vector bundle homomorphism op: T"M —
End(S) such that forall f € C*(M) and m € M,

op(dmf) = [D, flm,

where the right hand side is the value of the endomorphism [D, f] of S at
m.

Lemma 2.5. In local coordinates and a trivialisation, where D is given by (2.1),
we have

op(&) = Z ajéj
j=1

forallm € Wand & = Z?:] EdnX € TEM.
See Exercise 2.2.

Definition 2.6. A first order, linear differential operator D on S is a Dirac
operator if forallm € M and & € T; M,

op(&)? = —gm(&, &) 1ds,, .

Here gy, is the inner product on T; M induced the the inner product g, on
TaM.

From now on, we will assume that a smooth Hermitian metric (—, —)s
on S is given. We also assume that M is oriented.

We write voly for the Riemannian volume form associated to g. We
consider the inner product (—, —);2(s) on I>(S) given by

(Shsz)LZ(S) ZZJ (s1,82)s VOlg) (2.2)
M

4



for all s;,s, € T°(S). We denote the completion of I'?°(S) in this inner
product by L*(S). A first-order differential operator D* is a formal adjoint
of a first-order, linear differential operator D if for all s;,s, € T°(S),

(Ds1,82)12(5) = (81, D"s2)12(5).

(Differential operators between different vector bundles and their formal
adjoints can be defined analogously; this is used in Proposition 3.8 and
Theorem 8.10.)

Lemma 2.7. Let S = A\T"M @ C — M, and D = d, the exterior derivative.
Then

(a) d has a formal adjoint d*, and
(b) d + d* is a Dirac operator.

Proof. For part (a), see Definition 4.1 and (4.4) in [20]. Part (b) is Exercise
2.6. O

The operator d+d* is the (complexification of the) Hodge-Dirac operator.

If f € C*°(M), then the endomorphism op(df) of S defines an opera-
tor on I'2°(S). If the operator op(df) is bounded with respect to the inner
product (2.2), then we denote its operator norm by ||op(df)|. We denote
the Riemannian distance on M by d.

Proposition 2.8. If D is a Dirac operator on M, then for all m,m’ € M, and
any Hermitian metric on S,

d(m, m’) = sup{/f(m) — f(m')[;f € C*(M), op(df)|| < 1}.

Proof. See Proposition 9.12 in [10] or Formula 1 on page 544 of [5]. See also
Exercise 2.7 for the inequality in one direction, for the other inequality one
can use smooth approximations of the function f(m’) = d(m,m’), for a
given m € M. O

Exercises

Exercise 2.1. Prove Lemma 2.3. Hint: use the local expression for D.



Exercise 2.2. Prove Lemma 2.5.

Exercise 2.3. Let M =R"and S = M x C". Let ay,...,a, € M,(C). Define
D: T*(S) — I'°(S) by (2.1), with b = 0.

(a) Prove that D is a Dirac operator for the Euclidean metric on M if and
only if for all j, k, . .
o Clk + (lk(l) = _26jkI‘r)
where §j is the Kronecker §, and [, is the v x r identity matrix.

(b) Prove that if D is a Dirac operator, then

(¢) In the case n = r =1, conclude that id% is a Dirac operator on R.

(d) Inthecasen =1 =2, let

(0 1 (0 1
a) = i 0 ap ;= 1 0/
Use these matrices to prove that the operator D: C®(R?, C?) — C®(R?, C?)
given by
S1 . 93
D =21 66521 ’
52 a_’Z
for s1,s, € C®°(R? C), is a Dirac operator on R* = C. Here
o 1(0 Y
oz 2\ox dy)’
o 1(0 0
0z 2\ox oy)’

Exercise 2.4. Let D by any first-order differential operator on S, and D* a
formal adjoint of D. Prove that for all £ € T*M,

op+ (&) = —0op(&)7,

where the star on the right is the fibre-wise adjoint of vector bundle endo-
morphisms on S.



Exercise 2.5. Let V be a finite-dimensional vector space with an inner
product (—,—)y. For all k € Zs,, consider the inner product on A*V*
such that

{ej1 /\.../\ejk;j1 < o<yt

is an orthonormal basis of /\kV*, for an orthonormal basis {e',...,e"} of
V*. Letve V,and let & .= (v,—)y € V*. Let

ENA—: NV — ATV
L /\k+1v* — /\kv*

be give by exterior multiplication and contraction, respectively. Prove that
these two maps are each other’s adjoints.

Exercise 2.6. Let S = AT"M ® C — M, and D = d, the exterior derivative.
(a) Prove that d is a first order, linear differential operator.
(b) Prove that the principal symbol of d is given by
oa(&)w = EN w,
foralme M, £ € T:Mand w € AT M.
(d) Prove part (b) of Lemma 2.7. (Hint: use earlier exercises.)
Exercise 2.7. Let D be a Dirac operator on M.

(a) Prove that for all f € C*(M),

lon(df)|| = sup [|dnfl,

meM

where || d.,f|| is the operator norm of d,,f as a linear map from T,,M
to R.

(b) Prove that for all m,m’ € M, and all f € C*(M) with ||op(df)|| <1,

[f(m) — f(m')] < d(m,m’).



3 Clifford actions

Definition 3.1. A Clifford action is a vector bundle homomorphism c: T*M —
End(S) such that forallm € M and & € T M,

c(&)? = —g(&, &) Ids,, -

If ¢ is a Clifford action, then we denote the composition of the isomor-
phism TM = T*M defined by g with c by c as well.

A connection on S is Hermitian if for all s;,s; € I'°(S) and smooth
vector fields von M,

V((s1,52)s) = (Vys1,82)s + (51, Visa)s
We denote the Levi-Civita connection on TM for g by V9.

Definition 3.2. Let c be a Clifford action. A Clifford connection on S is a
Hermitian connection V such that for all smooth vector fields v and w on
M, and all s € T*°(S),

Vye(w)s = c(w)Vys + ¢(VIiw)s.

If c is a Clifford action on S, then we also write c for the map from
T*"M ® S to S given by
c(&®x) = c(&)x,
formeM,EeT:Mandx € S,,.

Definition 3.3. Given a Clifford action ¢ and a Clifford connection V on S,
the associated Dirac operator is the composition

D:T®(S) LT (T*M ®S) 5 I'(S).

Lemma 3.4. The Dirac operator associated to a Clifford action and a Clifford
connection is indeed a Dirac operator.

See Exercise 3.2.

Lemma 3.5. Let U C M be an open set admitting a local frame {ey, ..., en} for
TM. Let{e', ..., e"} be the dual frame for T*M. Then, on U, the Dirac operator
associated to a Clifford action ¢ and a Clifford connection V is given by

D|roo(s|u) = Z c(ej)Vej.
j=1
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See Exercise 3.3.

Example 3.6. The Dirac operator D = d + d* in Lemma 2.7 is associated to
a Clifford action and a Clifford connection; see (4.16) in [20].

Lemma 3.7. Let D be the Dirac operator associated to a Clifford action and a
Clifford connection. Then for all si,s; € T>(S),

(Dsi,82)12(5) = (51, Ds2)12(s).
Proof. See the proposition on page 69 of [8], or Proposition 3.44 in [4]. [

Proposition 3.8. Let c be a Clifford action on S, and V a Clifford connection. Let
D be the Dirac operator associated to these data. Let RS be the curvature tensor of
V. Then in terms of any local orthonormal frame {e,, ..., ey} of TM, we locally
have

T
D2 =V V"‘szkC(ej)C(ek)RS(ej,ek), (31)

for a formal adjoint V*: Q'(M;S) — I'(S) of V.
Proof. See page 73 of [8]. O

Exercises

Exercise 3.1. Let D be a Dirac operator on S. Use D to define a Clifford
action on S.

Exercise 3.2. Prove Lemma 3.4.

Exercise 3.3. Prove Lemma 3.5.

4 Essential self-adjointness and resolvents

Definition 4.1. Let H be a Hilbert space, and W C H a dense linear sub-
space. Let T: W — H be a linear map.

(@) The operator T is closable if the closure of its graph in H x H is the
graph of a linear map T. Then T is the closure of T.



(b) The operator T is symmetric if for all vyiw € W, we have (Tv,w)y =
p Y
(v, Tw)n.

(c) The operator T is self-adjoint if it is symmetric, and all vectors v € H
such that the linear functional w — (v, Tw) on W is bounded lie in
W.

(d) The operator T is essentially self-adjoint if it is closable, and its closure
is self-adjoint.

Proposition 4.2. Let T: W — H be a self-adjoint operator. Then the operators
T +1i: W — H are invertible, with bounded inverses.

See Theorem VIIL.3 in [16].
Let D be the Dirac operator associated to a Clifford action and a Clif-
ford connection. By Lemma 3.7, the operator

D: >(S) — L*(S) 4.1)
is symmetric. In fact, something stronger is true if M is complete.

Theorem 4.3 (Wolf, 1973). If M is complete, then the operator (4.1) is essentially
self-adjoint.

Proof. The original result is in [19]. See also Proposition 10.2.10 in [11]. [

For k = 0,1,..., let W5(S) be the completion of I'*(S) in the inner
product

k
(s1,52)wiss) = )_(DVs1, DVsy)pags).
=0

Lemma 4.4. The closure of the operator (4.1) is the continuous extension of (4.1)
to W) (S).

See Exercise 4.1.

Definition 4.5. Suppose that M is complete. Then the closure of (4.1) plus
i is invertible by Proposition 4.2 and Theorem 4.3. The resolvent of the
operator (4.1) is the bounded operator

(D +1)7": L3(S) — L(S).

10



Exercises

Exercise 4.1. Let D be the Dirac operator associated to a Clifford action
and a Clifford connection, viewed as an operator from I'*(S) to L?(S).

(@) Let p: graph(D) — T°(S) be projection onto the first factor. Prove
that p extends to a unitary isomorphism from graph(D) to W}, (S).

(b) Prove that the domain of D is W[, (S).
(c) Prove Lemma 4.4.

Exercise 4.2. We prove Theorem 4.3 in the example where M = S', S =
S'xCand D =if.

(a) Prove directly that the operator (4.1) is symmetric in this example.

(b) Use the Fourier transform and Lemma 4.4 to prove that D is essen-
tially self-adjoint.

5 The index of a Dirac operator

Let D be a Dirac operator associated to a Clifford action and a Clifford
connection.

Theorem 5.1 (Rellich lemma). Suppose that M is compact. For all k, the in-
clusion map W&T(S) — WX(S) is a compact operator.

Proof. See 10.4.3 and 10.4.4 in [11] for the case k = 0, or Lemmas 1.3.4(a)
and 1.3.5 in [9] in general. ]

Corollary 5.2. If M is compact, then the resolvent of D is a compact operator on
WK (S) for all k.

See Exercise 5.3.

Theorem 5.3 (Atkinson’s lemma). Suppose that H; and H, are Hilbert spaces,
and that T: Hy — H; is a bounded operator. Then the following are equivalent:

1. thereis a bounded operator Q: Hy — Hy such that the operators QT —Idy,
on Hy and TQ — Idn, on H, are compact;

11



2. im(T) is closed and ker(T) and H,/im(T) are finite-dimensional.

Proof. See Remark 2.1.3 and Theorem 2.1.4 in [11]. O
Corollary 5.4. Suppose that M is compact. Then the operator

D: WL (S) — L(S) (5.1)
is Fredholm.

See Exercise 5.4.

Theorem 5.5 (Elliptic regularity). The kernel of the operator (5.1) consists of
smooth sections.

This is a special case of elliptic regularity; for the general version see
Lemma 1.3.5 in [9]. In the setting of Theorem 5.5, if s € W], (S) satisfies
Ds = 0, then it is immediate that s € ﬂ;’i o WE(S). It then remains to
show that the latter space consists of smooth sections, using the Garding
inequality (see Lemma 1.3.1(c) in [9] or 10.4.4 in [11]) and the Sobolev em-
bedding theorem (see Lemma 1.3.4(b) in [9]).

From now on, we suppose that the vector bundle S is Z/27Z-graded; i.e.
that it decomposes as an orthogonal direct sum of sub-bundles S = S* &
S™. Suppose that the Clifford connection used to define D preserves the
spaces of sections of S* and S~, whereas the Clifford action interchanges
the grading. Then D maps sections of S* to sections of S~ and vice versa.
If M is compact, then by Corollary 5.4 and Theorem 5.5, the kernel of D in
['>°(S) is finite-dimensional.

Definition 5.6. If M is compact, then the index of D is
index(D) = dim(ker(D) NT*°(S*)) — dim(ker(D) N T (S7)).

Example 5.7. Suppose that M is compact. Let S = AT*"M and D = d + d*
as in Lemma 2.7. Consider the grading on S by parity of degrees: S* is
the direct sum of the even-degree exterior powers of T*M, and S~ is the
direct sum of it odd-degree exterior powers. By the Hodge theorem (see
Theorem 6.11 in [18]; here the Rellich lemma and elliptic regularity are
used),

ker(D)NT>(SH) = @ H¥,

k even
ker(D) N T (S @ HE,
k odd
So index(D) = Y, (—1)*dim H% (M) is the Euler characteristic of M.

12



Exercises

Exercise 5.1. We prove the Rellich lemma in an example. Let M = S/,
S=S'"xCand D =1i%. Let W, (S) be the space of f € 12(Z) such that

= (T +n3) " (n)
lies in 1>(Z). Consider the inner product on this space given by
(f1, F2)vin () == ) fi(m)H(n)(1 +n?).
nez

(a) Prove that W, (S) is a Hilbert space with this inner product, and that
the Rellich lemma for k = 0 in this case is equivalent to compactness
of the inclusion map j: W}, (S) — 13(Z).

(b) Forn € N, let p,,: W},(S) — 13(Z) be given by

o= { ) <

Prove that, in the operator norm of bounded operators from W{,(S)
to 12(Z),
. 1
H] _anB(Wf)(S),lZ(Z)) < (] + (TL + ])2)1/2'

(c) Prove the Rellich lemma in this case. (You may use that a bounded
operator is compact if and only if it can be approximated in operator
norm by operators with finite-dimensional images.)

Exercise 5.2. We show with an example that compactness is important in
Theorem 5.1. Let M = RandD—l ,onS =R x C. Let s € C°(R). For
j € N, define s; € C°(R) by s;(x) = ( —j).

(a) Prove that the sequence (s;)52; is bounded in WL (S).

(b) Prove that the sequence (s;)2; does not have a convergent subse-
quence in L%(S).

(c) Prove that the inclusion W}, (S) — L?(S) is not a compact operator.
Exercise 5.3. Prove Corollary 5.2.
Exercise 5.4. Prove Corollary 5.4.
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6 Spin-groups

For n > 3, the group Spin(n) is the universal cover of SO(n). Because
m(SO(n)) = Z/27Z for n > 3, Spin(n) is a double cover of SO(n). It can be
constructed in terms of Clifford algebras.

Definition 6.1. Let V be a finite-dimensional real vector space, with a
quadratic form Q. The Clifford algebra C1(V, Q) of V with respect to Q is
the quotient of the tensor algebra

o9}

T(V) = Ve

j=0

(where V¥ is the tensor product of j copies of V if j > 1, and V*° := R),
with the tensor product as multiplication, by the two-sided ideal gener-
ated by the set

{vev—Q(W);ve VL
If V.= R" and Q is minus the Euclidean norm-squared function, then we
write Cl,, := CI(R™, Q).

The Clifford algebra C1(V, Q) is finite-dimensional, of dimension 24m(V);
see the second proposition on page 7 of [8]. The inclusion map V = V®'! —
T(V) induces an injective linear map V — CI(V, Q); see the corollary on
page 5 pf [8]. We will use this map to identify V with a linear subspace of
Cl(v, Q).

Definition 6.2. The group Spin(n) consists of products in Cl,, of even num-
bers of unit vectors in R™.

Lemma 6.3. The set Spin(n) is a group with respect to the multiplication in Cl,,.
See Exercise 6.1.

Proposition 6.4. Let V be a finite-dimensional real vector space, with a quadratic
form Q. There is a unique linear map y: C1(V, Q) — CL(V, Q) such that y* =
Idciv,q), Yiv = Idy. and for all x,y € C1(V, Q),

Yix-y) =vy) -vx).

Proof. See the proposition on page 6 of [8]. O
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Lemma 6.5. Forall v € R" and x € Spin(n),
x-v-y(x) € R",
Proof. See the lemma on page 15 of [8]. O
Proposition 6.6. For all x € Spin(n), the map A(x): R™ — R™ given by
Ay =x-v-y(x),

forv € R, lies in SO(n). The map A: Spin(n) — SO(n) is a surjective group
homomorphism, and ker(A) = {—1,1}. The group Spin(n) is connected ifn > 2,
and simply connected if n > 3.

Proof. See the proposition on page 16 of [8]. O

A certain standard representation of Spin(n) will play an important
role. We discuss the most relevant case, where n is even. Consider the
matrices

Proposition 6.7. Suppose that n is even. There is a unique isomorphism of
complex algebras

Cl, ®C — M,(C)*™* = End(C*"")
mapping the jth standard basis vector of R™ to

LR - LOAL®B® - ®B, (6.1)
where the number of factors Bis |(j —1)/2].

Proof. See the proposition on page 13 of [8]. O
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Definition 6.8. Suppose that n is even. The vector space C**, equipped
with the representation of Cl, ®C in Proposition 6.7, is denoted by A,,.

Lemma 6.9. Suppose that n is even. Let {ey, ..., ey} be an oriented orthonormal
basis of R™. The element
i*e; - e, € Cl, ®C (6.2)

squares to 1 and commutes with all elements of Spin(n).

See Exercise 6.6. For even n, let « € End(A,) be the image of (6.2)
under the representation from Proposition 6.7. By Lemma 6.9, the only
possible eigenvalues of x are 1, and « commutes with the representation
of Cl,, ®C. So « defines a Cl,, ®C-invariant Z/2Z-grading

An =A@ A, (6.3)

where A is the +1 eigenspace of «, and the subspaces AL C A, are in-
variant under the representation of Spin(n).

Exercises
Exercise 6.1. Prove that the subset Spin(n) C Cl, is a group.

Exercise 6.2. Verify explicitly that Spin(2) is the circle, and that the map
A: Spin(2) — SO(2) in Proposition 6.6 maps an element of the circle to its
square.

Exercise 6.3. Let V be a finite-dimensional real vector space with an inner
product (—,—)y. Let Q(v) = —(v,v)y. Let {v,...,v,} be an orthonormal
basis of V. Prove that in CI(V, Q),

Vij + Vk\)]' = —Zéjk,
for all j, k.

Exercise 6.4. Let E; be the tensor product of matrices (6.1). Prove that
EjEx +ExE; = —20jk,. Explain why this relation is necessary for Proposition
6.7 to be true.

Exercise 6.5. Write out the representation of Spin(2) in A; = C? explicitly.

Exercise 6.6. Prove Lemma 6.9.
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7 Spin-manifolds

We still suppose that M is oriented. Let SOF(TM) — M be the oriented,
orthonormal frame bundle of M. Its fibre at m € M is the set of ori-
ented, orthogonal linear isomorphisms R* — T,,M. This is a principal
SO(n)-bundle. The fibred product SOF(TM) xsom) R™ is the quotient of
the Cartesian product SOF(TM) x R™ by the action by SO(n) given by

x - (f,v) = (fox’1,xv),

for x € SO(n), f € SOF(TM) and v € R". This is a vector bundle over
M. The map (f,v) — f(v) descends to a vector bundle isomorphism
SOF(TM) Xsom) R™ = TM. Under this isomorphism, the Riemannian met-
ric on M corresponds to the Euclidean inner product on R™.

A Spin-structure on M is a variation on this construction, where SO(n)
is replaced by Spin(n). If this exists, then it allows us to define an impor-
tant type of Dirac operator: the Spin-Dirac operator.

If G is a Lie group, P — M a principal G-bundle, and V a finite-
dimensional representation space of G, then we write P x¢ V for the cor-
responding associated vector bundle over M. This is the quotient of P x V
by the diagonal action by G. If p € P and v € V, then we denote the class
of (p,v) in P xg V by [p,v]. We consider R™ as a representation space of
Spin(n) via the covering homomorphism Spin(n) — SO(n).

Definition 7.1. A Spin-structure on a smooth manifold M is a pair (P, ),
where P — M is a principal Spin(n)-bundle, and {: P Xgpinim) R — TM a
vector bundle isomorphism. A Spin-manifold is a manifold together with a
Spin-structure.

The orientation on M induced by a Spin-structure (P, 1) is the one cor-
responding to the standard orientation on R" via {p. The Riemannian met-
ric on M induced by the Spin-structure (P,1) is the one corresponding to
the Euclidean metric on R™ via 1. If an orientation and a Riemannian met-
ricon M are given, then a Spin-structure on M is compatible with these data
if the orientation and Riemannian metric induced by the Spin-structure
agree with the given ones.

Let M be an oriented, Riemannian manifold as before. The second
Stiefel-Whitney class of M is an invariant w,(M) € H?(M;Z/27Z), see Defi-
nition II.1.6 in [13].

17



Theorem 7.2. There is a Spin-structure on M compatible with the given orien-
tation and Riemannian metric if and only if w,(M) = 0.

Proof. See Theorem I1.2.1 in [13] or Lemma 3.3.1(a) in [9]. O

Example 7.3. Every manifold M with trivialisable tangent bundle has the
Spin-structure (M x Spin(n), 1), where \{ is the vector bundle isomor-
phism

P: (M x Spin(n)) Xspinm) R" =M x R" = TM.

This includes all Lie groups.

Example 7.4. The sphere S* = SO(n + 1)/SO(n) has the Spin-structure
(Spin(n+1),1), where the double covering map Spin(n+1) — SO(n+1)
induces

1])2 Spin(n + 1) XSpin(n) R™ — SO(TL + ]) Xs0(n) R"™ = TS™,

Example 7.5. A complex manifold M has a Spin-structure of and only if
the image of ¢;(TM) € H*(M;Z) in H*(M;Z/2Z) is zero. Indeed, this im-
age is w,(M); see Remark I1.1.8 in [13].

Example 7.6. The complex projective space CP* admits a Spin-structure
if and only if k is odd; see the proposition on page 42 of [8], or Lemma
3.3.2(c) in [9].

8 Spin-Dirac operators

Definition 8.1. Suppose that n is even. Suppose that (P,1) is a Spin-
structure on M. The spinor bundle associated to this structure is Sp :=
P Xspinn) An — M. We consider the Hermitian metric on Sp corresponding

to the standard Hermitian metric on A,, = C2"*.
The Clifford action c: TM — End(Sp) is defined by

C(lb([f) V]))[f) (1] = [f) C(V) Cl], (81)

for f € P,v € R"and a € A,. On the right hand side, c(v) is the action
by v € R* — Cl, — Cl, ®C on A, from Proposition 6.7. Also, we have
identified T*M = TM via the Riemannian metric.

We consider the Z/2Z-grading on Sp induced by (6.3).
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To construct a Dirac operator on a spinor bundle, we will use a Clifford
connection canonically induced by the Levi-Civita connection.

Definition 8.2. Let G be a Lie group, and P — M a principal G-bundle. A
connection one-form on P is an w € Q'(P) ® g such that

1. forall g € G, we have (g* ® Ad(g))w = w; and

2. forall X € g,
(w, XP) = X.

Here X" is the vector field on P induced by X € g; at p € P it equals

d
Xt ==
L4 dt

exp (tX)p.
t=0

If {e1, ..., en}is alocal orthonormal, oriented frame for TM, on an open
set U, then we write wjy for the one-forms on U such that for all j,

n
Vgej = E wj,k & €k.

The frame {e;, .. ., ey} defines a section of SOF(TU), which we denote by e.
Let {e}",...,e%"} be the standard basis of R". Let E;y € so(n) be the
basis element given by
Eix(v) = v ef — vke?{n
forv=(vi,...,vy) € R™

Proposition 8.3. There is a unique connection one-form w on SOF(TM) such

that for all local orthonormal, oriented frames {es, ..., e,} for TM,
e*(wlsor(ru Z wix @ Ex € Q'(U) @ so(n).
j<k
Proof. See Proposition I1.4.4 in [13]. H

Fix a Spin-structure (P,1{) on M for the rest of this section, assuming
it exists. If p € Py,, then we obtain an oriented, orthogonal linear isomor-
phism q(p): R™ — T,M, given by

q(p)v =v(lp,vl),
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for v € R™. This defines a double covering map q: P — SOF(TM). Let
w € Q'(SOF(TM)) ® so(n) be any connection one-form on SOF(TM).
Because Spin(n) is a double cover of SO(n), the Lie algebra spin(n) of
Spin(n) equals so(n). Hence we obtain

q*w € Q'(P) ® spin(n).
Lemma 8.4. This element q*w is a connection one-form on P.

See Exercise 8.2.

Let G be a Lie group, P — M a principal G-bundle, and V a finite-
dimensional representation space of G. Let w be a connection one-form
on P. Via the derivative of 7, also denoted by 7, this induces

now € (Q'(P) ® End(V))C.

Define
d+mow: (C*°P)@ V)¢ = (Q'(P)@V)°

by
((d+mow)s)(p) = dps + (o w)p(s(p)) €T PRV,

foralls € (C*(P)®@ V)¢ andp € P. Let E = P xg V — M be the vector
bundle associated to P and 7. We write (Q'(P) ® V)& _ for the space of
w € (Q'(P) ® V)€ such that for all X € g,

(w, X"y = 0.

Proposition 8.5. The image of d+ o w lies in (Q'(P) @ V)&, .. Via the isomor-
phisms

M(E) = (C*(P)® V)
(MM E) = (Q'(P) ®@ V),
the operator d 4 1t o w defines a connection on E.

Definition 8.6. In the setting of Proposition 8.5, the connection on E de-
tined by d + 7o w is denoted by V¢.

Now let w be as in Proposition 8.3. Let q*w be as in Lemma 8.4. Apply-
ing Proposition 8.5 with G = Spin(n) and V = A,;, we obtain a connection
V4@ on Sp.
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Definition 8.7. The connection V9% is the connection on Sp induced by the
Levi—Civita connection.

Proposition 8.8. The connection V9" * on Sp is a Clifford connection.
Proof. See Proposition I1.4.11 in [13]. H

Definition 8.9. The Dirac operator on Sp associated to ¢ and V9'® as in
Definition 3.3 is the Spin-Dirac operator on Sp.

Let k be the scalar curvature associated to g via V9. In terms of the
Riemann tensor R, we have for any m € M and any local orthonormal
frame {ey, ..., e,} for TM near m,

n

K(m) - Z Q(R(e)'aek)eka ej)'

),k:]

Alternatively, if BM(m) denotes the geodesic ball in M with radius r and
centre m, and BE"(0) is the Euclidean ball of radius r around the origin,
then for all m € M, k(m) is determined by

VOIBL\A(TTL) . K(m) ) 4
volBE ' T gmtay’ O

as r | 0. This can be proved via an asymptotic expansion of the Rieman-
nian density in suitable coordinates; see Lemma 5.3.4 in [17].

Theorem 8.10 (Lichnerowicz). If D is the Spin-Dirac operator, then
D? = V*V + k/4,
for a formal adjoint V* of V.

Proof. See Theorem I1.8.8 in [13], the proposition on page 74 of [8], or [14].
The idea is to prove that the curvature term in (3.1) equals k/4. O

Corollary 8.11. If M is compact and « is positive everywhere, then ker(D) =
{0}.

See Exercise 8.4.

21



Exercises
Exercise 8.1. Prove that (8.1) is a well-defined Clifford action on Sp.
Exercise 8.2. Prove Lemma 8.4.

Exercise 8.3. Suppose that n is even. Consider the trivial Spin-structure
on R™" from Example 7.3.

(a) Prove that the Clifford connection on S = R"™ x A, — R™ is the trivial
connection d ® 14,.

(b) Forj =1,...,mn,lety) € Myn2(C) be the image of (6.1). Prove that

the Spin-Dirac operator on R" is

D= Zy —: C®(R™, A,) — C2(R™, A,).
Exercise 8.4. Prove Corollary 8.11.

9 The Atiyah-Singer index theorem and positive
scalar curvature
There is a well-defined fibre-wise trace map
tr: T°(End(TM)) — C®(M). 9.1)

Indeed, in terms of a local frame for TM, a section of End(TM) is a matrix-
valued function. Its trace does not depend on the local frame by conjugation-
invariance of the matrix trace, and hence is well-defined globally.

For every k, (9.1) extends to a unique map

tr: QX(M;End(TM)) — Q*(M) (9.2)
such that for all x € Q¥(M) and s € I'*(End(M)),
trla ®s) = tr(s)a.
There is a unique bilinear product

Q%(M;End(TM)) x QY(M;End(TM)) — Q*Y(M;End(TM))
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such that for all o7, 0, € Q%(M) and sq,s; € I°(End(M)),
(o1 @s1)(02 ®52) = 01 A\ oxg @ (87 082).

Let f(x) = 3%, aj¥) be any formal power series. Then for any w € Q¥(M;End(TM)),
the terms in the sum

flw) =) aw € @ QY(M;End(TM)),
j=0 j

for which kj > n are zero. So this sum is well-defined, without conver-
gence issues.
Let @ be the Taylor series of the function

X l1 —X/z
2 %8 Sinh(x/2)"
Then we obtain a map
A: Q*(M;End(TM)) — @D Q% (M), (9.3)
j=0

given by
Alw) = exp(tr(@(w))).
The exponential function on the right is defined via the Taylor series of the
exponential map. The degrees of forms in the image of (9.3) are divisible
by 4 because the power series @ only contains even powers of x.
Suppose that M is compact and even-dimensional. Let R € Q*(M;End(TM))
be the Riemann curvature tensor associated to g via V9. Let

J A(R) (9.4)
M

be the integral over M of the top-degree part of A(R); this is zero if dim(M)
is not divisible by 4.

Proposition 9.1. The number (9.4) is independent of g.

Proof. See Theorem 1.11 in [20]. The idea is that if R’ is the curvature for
a different Riemannian metric, then A(R) — A(R’) is exact. The claim then
follows from Stokes” theorem. O
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Definition 9.2. The number
( ) (2'“) /2 JM ( )

is the A-genus of M.

Remark 9.3. The construction of invariants like the A-genus is the subject
of Chern—Weil theory [20].

Theorem 9.4 (Atiyah-Singer, 1963). Suppose that M is a compact, even-dimensional
Spin-manifold. Let D be the Spin-Dirac operator on M. Then

index(D) = A(M).
Proof. See Theorem 5.3 in [2], or page 151 of [4]. H
Corollary 9.5. The A-genus of a compact Spin-manifold is an integer.

Example 9.6. If k is even, then the complex projective space CP* is not
Spin (see Example 7.6), and its A-genus is not an integer. For example,
A(CP?) =—1/8 (see the example on page 111 of [8]).

Kazdan and Warner showed that any smooth function on a compact
manifold of dimension at least 3 that is negative somewhere occurs as the
scalar of some Riemannian metric, see Theorem 1.1. in [12]. It still an open
question what compact manifolds admit Riemannian metrics whose scalar
curvature is positive everywhere. The following result by Lichnerowicz
[14] initiated the use of index theory of Dirac operators to study this prob-
lem.

Corollary 9.7 (Lichnerowicz, 1963). If a compact Spin-manifold M has nonzero
A-genus, then it does not admit any Riemannian metric with positive scalar cur-
vature.

Proof. This follows from Corollary 8.11 and Theorem 9.4. O]
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