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1 Symplectic linear algebra

In Exercises 1.1-1.4, we work out the details of the proof of Lemma 1.2 in
the lecture notes. This will be used in the proof of the Darboux theorem
in Section 6, and in particular shows that any symplectic vector space is
even-dimensional.

Let (V,w) be a symplectic vector space. Fix a nonzero e; € V.

Exercise 1.1. Show that there is an f; € V such that
w(er, f1) = 1.

Exercise 1.2. Show that the restriction of w to
U=Re; +Rfy

is nondegenerate.

We now work out some details of the third paragraph on page 5 of the
lecture notes.

Exercise 1.3. Let b be a nondegenerate bilinear form a finite-dimensional
vector space V. Let U C V be a subspace such that b is nondegenerate on
U. Prove that

V=UqU

and that b is nondegenerate on U?. To be more precise, show that
(a) dimU + dim U® = dim V;
Hint: Apply the rank-nullity theorem to the map
v:V=U"

given by



(b) UNU" = {0};
(c) b is nondegenerate on U°.

Exercise 1.4. Use induction on the dimension of V' to conclude from the
preceding exercises that Lemma 1.2 is true.

2 Flows of vector fields
Exercise 2.1. (a) Let v € X(R?) be given by
v(z,y) = (1,0).
What is the flow of v?

(b) The same question for
v(z,y) = (y,0).
Exercise 2.2. Let v € X(R?) be given by!

()-(2) -0 G

(a) Draw a picture of the vector field v, and guess what the flow curves
of v are.
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(b) Let ¢; be the flow of v over time ¢. Prove that

& x \ [ cos(t) —sin(t) x
"\ 'y ) \Usin@t) cos(t) y )’
What does this mean for the shape of the flow curves?

(c) Let f € C*(R?), and consider the two-form

w:=fdyndr € Q*R?).

Consider a point m = ( g

v:<vl>,w:<w1>€TmR2:R2.
V2 w3

'In this exercise we denote points in R? by column vectors, so we can apply matrices
to them from the left.

2A flow curve of a vector field v on a manifold M is a curve v of the form v(t) = ¢¢(m),
for an m € M.

> on the z-axis, and two vectors




Compute that

x cos(t)
x sin(t)

(@idn(o.0) = 1 ) san = ra)

The next exercise will later be an illustration for the exponential map of
a Lie group.

Exercise 2.3. Let M, (R) be the vector space of real n x n matrices. For
any X € M,(R), consider the vector field X on M,(R) given by

Xy=9g-X €M,®R)=T,M,(R),

for g € M,,(R). Prove that the flow ¢; along X over time ¢ is given by

o

¢u(g) =g =g

J=0

I X7
4!

: (1)

for all g € M, (R). (Here X7 is the jth matrix power of X.)

Hint: You may use the following result in analysis. If ( fj);')io is a se-
quence of smooth maps
fj R — Rn,
and if the series > f; converges pointwise, while the series » 7% f} con-
verges uniformly, then the function defined by Z;io f; is differentiable, and

S = fs). (2)
§=0

t=s =0

d

In your solution, you may use the fact that the series (1) converges
uniformly on compact subsets of R?. Since (2) is a local statement, it is
enough that Z;io fJ’- converges uniformly on compact sets.

Exercise 2.4. Consider the vector field v € X(R?) given by
v(z,y) = ((@° + D(y* + 1)),
for (z,y) € R2. Let ¢; be the flow along v over time ¢.

(a) Show that
¢1(0,y) = (tan((y* + 1)t), y),
for ¢,y € R for which the right hand side is defined.

(b) Conclude that there is no single ¢ # 0 such that ¢, is defined as a map
defined on all of R2.



3 Lie derivatives

Exercise 3.1. Let M be a smooth manifold, f € C°°(M) a smooth function,
and v a vector field on M. Prove that

Ly(f) = o(f).

The following fact is useful for computing the derivative of a function
with respect to a real parameter that plays two different roles in the defini-
tion of the function. It is often called a chain rule, although the chain rule
does not necessarily have to be applied to prove it.

Exercise 3.2. Let M be a smooth manifold,® and let

F:R* 5 M
be a smooth map. Prove that
d d
— F(t,t) = — F(t — F(0,t).
dt t=0 ( ’ ) dt 0 ( 70) + dt o (07 )

Exercise 3.3. Let M be a smooth manifold, ¢ : M — M a diffeomorphism.
Let a € QP(M) be a p-form, and let v € X(M) be a vector field. Prove that

¢ (iper) = igepP* .

Exercise 3.4. Let M be a smooth manifold. For a vector field v on M,
denote the Lie derivatives of differential forms by v by £,,. Let i, be contrac-
tion of differential forms by v. Prove that for all differential forms o € Q(M)
and all vector fields v, w on M,

o] @ = Lylwa — iy Ly, (3)
Deduce from this equality that for all functions f € C*°(M),
[v, w](f) = v(w(f)) — w(v(f)).

Hint: See the paragraph below the proof of Theorem 2.1, on page 17 of
the lecture notes. Explain all steps in the argument given there in detail.

3This exercise can be applied in the solutions of some other exercises, where the man-
ifold M is often a vector bundle over another manifold N, such as M = AT*N.



4 Poisson brackets

Exercise 4.1. Let (M,w) be a symplectic manifold, and let {—, —} be the
Poisson bracket defined by w. Prove that for all functions f,g € C*°(M),
one has

[vr, vg] = V(s gy

Hint: This exercise is Theorem 4.2 in the lecture notes. A short proof is
given just above that theorem, so it is only necessary to fill in some details,
and briefly mention why all equalities are true.

A Lie bracket on a real vector space V is a map

VxV =V, (v,w)w—[v,w),
such that
1. (bilinearity) for all u,v,w € V, A € R:

[u+ v, w] = [u, w] + A\v, w];

2. (anti-symmetry) for all v,w € V,
[v,w] = —[w, v];
3. (Jacobi-identity) for all u,v,w €V,
[[u, v], w] + [[v, w], u] + [[w, u], v] = 0.

Exercise 4.2. Let (M,w) be a symplectic manifold. Prove that
(a) the Poisson bracket {—, —} defined by w is Lie bracket on C*°(M);
(b) for f,g,h € C>°(M), one has

{f.gh}y = g{f,h} +{f,g}h.

Remark 4.1. e In general, a Poisson bracket on a smooth manifold M
is defined as a Lie bracket on C°°(M) with the property in part (b).
So Exercise 4.2 shows that the bracket defined by the symplectic form
is in fact a Poisson bracket in this sense.

e Exercise 4.1 is exactly the statement that the map f +— vy is a Lie
algebra homomorphism from C°°(M) to the Lie algebra of vector fields
on M.



5 Examples of symplectic manifolds

5.1 Vector spaces

Exercise 5.1. Consider the situation of Exercise 1.4. Now view V as a
smooth manifold, equipped with coordinates x;,§; : V' — R, such that for
allv eV,

We view the symplectic form w on the vector space V as a symplectic form
on the manifold V' by identifying all tangent spaces to V with V. Prove that

w=Y d& Adx;.
7j=1

So in particular, w = df is exact, hence closed, for
n
0= Z §j Ndxj.
j=1

5.2 Cotangent bundles

Exercise 5.2. Prove the local equality

=7 ¢&du;
j=1

above Definition 3.6 in the lecture notes. Conclude that w = d@ is indeed a
symplectic form on M = T*N.
5.3 Smooth projective manifolds

Exercise 5.3. Let A be a Hermitian form on a complex vector space V.
Write h = B + iw, with B and w real-valued. Prove that for all v,w € V,

B(iv,w) = —w(v,w).

Exercise 5.4. In this exercise, we will make it plausible that the standard
Hermitian form on C**! indeed induces a symplectic form on the projective
space P"(C). (See Example 3.19 in the lecture notes.)



Let h = B + iw be the standard Hermitian form on C"*1:

n+1

h(’l), w) = Z ViWy,

j=1

for v,w € C**!. Consider the sphere S?"*! as the unit sphere in C*"*! =
R?7"*2 and the restricted two-form w|gzn+1 on this sphere. Fix a point
pe Sl

(a) Consider the submanifold
U(l)p = {e“p;a € R} C §2" 1,

Show that
Tp(U(l)p) = iRp.

(b) Let kerw, be the subspace of all vectors v € T,,5?" ! such that for all
w € T,9%" 1,
wp(v, w) = 0.

Prove that
kerw, = iRp = T,,(U(1)p).

The conclusion is that, intuitively, the directions in which w is degenerate
are the tangent spaces to the sets U(1)p. Passing from $2"*! to P*(C), one
therefore gets rid of all these degenerate directions, and obtains a nonde-
generate form. This will be made more precise in the proof of the Marsden—
Weinstein theorem that symplectic reduction is well-defined.

Hint: For part (b), use the fact that a tangent space to a sphere can be
identified with the orthogonal complement of its base point on the sphere:

7,8 = {v € C"*Y; B, (v, p) = 0}.

Also, use Exercise 5.3.

6 Darboux theorem

In the lecture notes, Moser’s proof of the Darboux theorem (Theorem 3.24)
is given. In this set of exercises, we work out the details of this proof.

Let (M,w) be a symplectic manifold, and fix a point z € M. Let V.C M
be a coordinate neighbourhood of x, with a chart

k:V =W cR™,



such that x(z) = (0,0). Then
wo = (K1) (wlv)

is a symplectic form on W. We write

V= (wo)(o,o)

for the symplectic form (wo)o,0) on T(o,0)W = R?". Let
{61,...,€n,f1,...,fn}

be a basis of R?" as in the linear Darboux lemma (Lemma 1.2 in the lecture
notes), with respect to this form v. For j = 1,...,n, consider the linear
coordinates

yj7 77j : R2n — R

determined by

for all v € R?".
Let w1 € Q*(W) be the translation-invariant extension of v to all of W,
ie. forallpe W and v,w € T,W = R2",
(wW1)p(v,w) = v(v, w).
Exercise 6.1. Prove that
w1 = Z:d’l’]J A dy;.
J

The forms wg and w; on W are not the same in general; we only know
they are the same at (0,0). In the remainder of the proof, we will deform
w1 to wp in a small enough neighbourhood of (0,0), in a way that allows us
to prove the Darboux theorem.

For r > 0 we will write B, for the open ball in R?" around (0, 0) of radius
r. Since W is open and contains (0, 0), there is an € > 0 such that B. C W.

Since B is contractible, and

d(w1 — UJO) == dwl - dwo == 0,
there is a one-form A € Q!(B.) such that on B,
w1, — Wy = dA.

(This is the Poincaré lemma.)



Exercise 6.2. Show that one may choose A such that A ) = 0.
For t € [0, 1], set
wp = (1 —two +twr € Q*(Be).
Exercise 6.3. Prove that there is a ( with 0 < ¢ < ¢, such that for all
t € [0,1], the form w; is nondegenerate on Be.

Hint: In any set of local coordinates {a;}", (such as {y;,n;}), the form
wt can be written as

2n
(W)p =Y (My)(p, t)da; A day,.

l,m=1

This form is nondegenerate at p if and only if the matrix

M(p,t) == (Mim(p, )75
has nonzero determinant. Now use the function
D:[0,1] x B » R
given by
D(t,p) = det M(p,t).
and the tube lemma in topology.

Exercise 6.4. Prove that for all ¢ € [0, 1], there is a unique vector field v,
on B such that

inywi + A = 0. (4)
Furthermore, the map

(t,p) = vi(p) (5)
from [0,1] x B¢ to R?", is continuous (smooth on ]0, 1[x B¢).

Next, consider the family of smooth maps*
¢ :[0,1] x B; — R*"

given by
d)(t,p) = ¢t(p)7
such that for all s € [0,1] and p € B,

d

dt - ¢t(p) = 'Us(¢s(p))-

“Smooth on ]0, 1[x B¢; continuous on [0,1] x B¢. Existence of such a family of maps
follows from a slight generalisation of the proof of existence of flow of vector fields.
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Exercise 6.5. Prove that there is a ¢ > 0 such that for all ¢ € [0, 1],
¢1(Bs) C Be.
Hint: Analogously to Exercise 6.3, use the continuous map
¢ :[0,1] x Bp — R*",
The following property of the maps ¢; is important to Moser’s trick.

Exercise 6.6. In this exercise, we prove that for all differential forms o« €
Q(B¢), one has

d * *
% s ¢ta = ¢8£vsa' (6)

Note that for constant families of vector fields vy, this relation is easier to
prove.
In this exercise, you may use all properties of Lie derivatives.

(a) Prove that (6) holds if & = f € C*°(M) is a smooth function.

(b) Prove that if (6) holds for a differential form « € Q(M), then it also
holds for dov.

(c) Prove that if (6) holds for two differential forms a, 8 € Q(M), then it
also holds for o A 5.

(d) Conclude from parts (a)—(c) that (6) holds for all & € Q(B¢).

We are now ready for the key step in Moser’s proof of the Darboux
theorem.

Exercise 6.7. Prove that for all ¢ € [0, 1],
¢ (wi|B.) = wolBs- (7)

Hint: See the proof of Theorem 2.12 in the lecture notes.
Exercise 6.7 finally allows us to prove Darboux’s theorem. Consider the
coordinates

Tj = Yj 0 P10K;
§ji=mnjop1ok
on U := xk~(Bs).
Exercise 6.8 (Darboux theorem). Prove that
wly =Y d&; Adx;.
J

Exercise 6.9. Compute the Poisson bracket in Darboux coordinates.

11



7 Groups and actions

7.1 Proper maps

Exercise 7.1. Let X Y, Z be topological spaces, and ¢ : X — Y x Z
a continuous map. Show that ¢ is proper if and only if for all compact
subsets Cy C Y and Cz C Z, the set gofl(C’X x Cy) is compact.

Exercise 7.2. Let G be a locally compact topological group, H < G a
subgroup. Consider the action by H on G by right multiplication, and let
G/H be the orbit space of this action. Consider the quotient map

q:G— G/H,
given by ¢(g) = gH. Prove that ¢ is proper if and only if H is compact.

Hint: If H is compact, let C C G/H be a compact subset. Show that
there are finitely many relatively compact open sets Uy,...,U, C G such
that

') c|JH U,
Jj=1

7.2 Proper and free actions

Exercise 7.3. Prove that a proper action has compact stabilisers.

Exercise 7.4. Let G be a topological group acting on a topological space
X. Prove the following statements.

(a) If G is compact, the action is proper.
(b) If X is compact, the action is proper if and only if G is compact.

Exercise 7.5. Let G be a topological group, H < G a closed subgroup.
Consider the action by H on G by right multiplication. Let G/H be the
orbit space of this action. Consider the action by G on G/H defined by

g-(g'H)=gg'H,
for g,¢' € G.

(a) Show that the action by H on G by right multiplication is proper, so
that G/H is a Hausdorff space.

(b) If G is Lie group, show that G/H has a smooth manifold structure.

12



(c¢) Determine the stabiliser of any point gH € G/H.

(d) Show that the action by G on G/H is free if and only if H is the trivial
group.

(e) Show that the action is proper if and only if H is compact.

Exercise 7.6. Let T? = R?/Z? be the two-torus. For A\ € R, define the
subgroup
H := {(a,\a) + Z*a € R} < G.

Consider the action by H on G by multiplication (addition). For which
values of A is this action proper? And when is it free? What is the relation
with Exercise 7.5 (a)?

Hint: Draw a picture of H for A = 1/2, and try to draw one for A = 1//2.

To draw these pictures, it is easiest to depict T? as the square [0, 1]?, with

appropriate identifications on the boundaries.

8 Lie groups

8.1 General

Exercise 8.1. Let G be a Lie group, and consider the multiplication map
m:GxG— G.

Prove that its derivative at the identity element is give by addition:

Tom(X,Y)=X+Y,

for all X,Y € g.

Exercise 8.2. Consider the determinant map
det : GL(n) — R.

Prove that
Trdet = tr

is the trace map.

Exercise 8.3. Consider the Lie group

SL(n) = {g € GL(n);det(g) = 1}.

13



(a) Prove that the determinant map det : GL(n) — R is a submersion at
I

(b) Prove that the Lie algebra sl(n) of SL(n) equals
sl(n) ={X € M,(R); tr(X) = 0}.

Exercise 8.4. Consider the Lie group
O(n) = {g € GL(n);¢"g = I}.

Here g7 is the transpose of ¢, and I is the identity matrix.
Let S, (R) be the vector space of all symmetric real n x n matrices,” and
let SGL(n) be the open subset

SGL(n) := S,(R) N GL(n).
(a) Prove that the map f: GL(n) — SGL(n) given by
flo)=9g"9g

has tangent map
Trf : Mp(R) = Sp(R)

given by
Trf(X)=XT+ X.

(b) Prove that f is a submersion at I.
(c) Prove that the Lie algebra o(n) of O(n) equals

o(n) ={X € M,(R); X + X =0}.

Exercise 8.5. Consider the Lie group
SO(n) = SL(n) N O(n) = {g € GL(n);¢" g = I and det(g) = 1}.
Prove that the Lie algebra so(n) of SO(n) equals
so(n) = {X € M,(R); X + XT =0} = o(n).

(In fact, orthogonal matrices have determinant £1. The group O(n)
has two connected components: SO(n), and the subset of matrices with
determinant —1.)

®The symbols S, (R) and SGL(n) are not standard.
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8.2 The exponential map

Exercise 8.6. Consider the Lie group G = R, with addition as the group
operation. Fix an element X € g =R.

(a) What is the left invariant vector field vx associated to X?

(b) What is the differential equation defining the flow curve ax along vy
starting at e = 07

(c) What is the solution of this equation?
(d) What is exp(X)?

Exercise 8.7. Consider the Lie group G = R, of positive real numbers,
with multiplication as the group operation. Fix an element X € g = R.

(a) What is the left invariant vector field vx associated to X?

(b) What is the differential equation defining the flow curve ay along vx
starting at e = 17

(c) What is the solution of this equation?
(d) What is exp(X)?

Exercise 8.8. Let G < GL(n) be a linear group, and let X € g C M, (R).
Use Exercise 2.3 to show that

0o s
X7
— X .
exp(X) =e* = E_l R
J_
Exercise 8.9. Consider the Lie group SO(2).

(a) Show that the Lie algebra of SO(2) equals

50(2):{75((1) _01>;t€]R}.

(b) Prove that for all j € N:



(c) Prove that

exp [ t 0 -1 [ cost —sint
P 1 0 ~ \ sint cost )
Exercise 8.10. Let G and H be Lie groups, with Lie algebras g and b, unit
elements eg and ey, and exponential maps exps and expy, respectively.

Let
v:G—H

be a Lie group homomorphism.
Fix an element X € g. Consider the left invariant vector field vz, ,(x)
°G
on H associated to T,,p(X) € b.

(a) Prove that for all s,t € R,

o(exp((s + 1) X)) = ly(expa(sx)) (P(expa(tX))).

(b) Let aﬁgw(X) : R — H be the flow curve along the vector field vr, 4 (x),
starting at the unit element ef;. Prove that for all ¢,

ol o)) = plexpa(iX). (8)

(c) Conclude that
expy (Tep(X)) = p(expe(X)),

i.e. Lemma 3.9 in the lecture notes on Lie groups is true.

8.3 The Lie bracket

Exercise 8.11. Let G be a Lie group, and g = T.G its Lie algebra. For
X € g, we denote the associated left invariant vector field by vx. In this
exercise, we will show that for any two X,Y € g, one has

vix,y] = [vx, vy, 9)

the Lie bracket of the vector fields vy and vy. The conclusion is that the
space of left invariant vector fields with the usual Lie bracket of vector
fields, is isomorphic, as a Lie algebra, to g with the Lie bracket defined via
the adjoint action.

Fix X,Y € g and g € G. For any Lie algebra element Z € g, we denote
the flow along vz over time ¢ by ¢7.

16



(a) Prove that

d

[Ux,vy]g = & o Te(ﬁb)_(t @) l(bg((g))(Y)

(b) Prove that, for all s,t € R
(6% 0 Lyx () (exp(5Y)) = gax (H)ay (s)ax(t).

Hint: At the start of the proof of Lemma 3.2 in the notes on Lie
groups, it is shown that for all Z € g, h € G and v € R,

04 (h) = haz(u). (10)
(c¢) Conclude from parts (a) and (b) that

d d
[vx,vyly = a . s - gax (t)oy (s)ax(—t).

(d) Prove that for all t € R,

Ad(exp(tX))Y = — y ax (t)ay(s)ox(—t).
(e) Prove that
e, = 7| g sox(Box(ax(-1),

completing the proof of (9).

9 Infinitesimal actions

Exercise 9.1. Consider the natural action by SO(3) on the two-sphere
S? C R? by rotations.

(a) Prove that the matrices

00 O
R, = 0 0 -1
01 0
0 0 -1
R,=| 00 0
1 0 O

17



—1
R, := 0
0

—~ O = O
o O O

form a basis of the Lie algebra so(3) = Lie(SO(3)).

Hint: Use Exercise 8.5.

Generalise Exercise 8.9 to show that for all ¢t € R,
exp(tR;) € SO(3)

is rotation over angle ¢t around the z-axis, and similarly for the expo-
nentials of tR, and tR,. (Give explicit expressions for these exponen-
tials.)

Let
T
_ 2
m=|y | €S
z

be given. Let (Ry)g2, (Ry)s2 and (R,)g2 be the vector fields on S?
induced by R,, R, and R, via the infinitesimal action. Compute

(Ra)s2(m), (Ry)s2(m) and (R.)g2(m).
For j =1,2,3, let e; be the jth standard basis vector of R3. Conclude
that in particular,

(Rz)s2(e1) = 0;

(Ry)s2(e1) = es;

(RZ)SE (el) = €2.

In other words, the vector fields induced by R,, R, and R. indeed
point “in the direction of the action”.

Exercise 9.2. To generalise Exercise 9.1, let G < GL(n) be a linear group,
and let M C R? be a G-invariant submanifold. Consider the natural action
by G on M. Prove that, for all X € g and m € M,

Xy(m)=X-m.

Here Xy is the vector field on M induced by the infinitesial action, and the
dot in X - m denotes the product of the matrix X and the vector m.

18



10 The slice lemma

The next set of exercises is about a proof of the slice lemma (Lemma 13.7
in the notes on Lie groups). Since we focused on left actions, we will state
this result for left actions rather than right actions.%

Let G be a Lie group acting smoothly, properly and freely on a smooth
manifold M. We will prove the following result:

Lemma 10.1 (Slice lemma). For every m € M, there is a submanifold S
of M containing m, such that the map

w:GxS—->M

given by ©(g,s) =g-s forallg € G and s € S, is an equivariant diffeomor-
phism onto an open, G-invariant neighbourhood U of M.

The slice lemma is the key step in the proof that proper, free, smooth
actions have smooth quotients. Indeed, it implies that locally, M /G looks
like the smooth manifold S. More on this in Exercise 10.7.

Fix a point m € M. Consider the map

G —> M
given by a,,(g) = g-m, for g € G.
Exercise 10.1. Prove that a,, is injective.

Let g be the Lie algebra of G, and consider the tangent map
Teo, : g — ThM.
Exercise 10.2. Let X € g be in the kernel of T.q,:
Team(X) =0.

We will show that X = 0, so that T.a,, is injective.
Consider the curve ¢ : R — M given by

c(t) =exp(tX) -m

for t € R.

5But recall that any left action a corresponds to a right action 8 (and vice versa) via

Blg) = alg™).
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(a) Prove that ¢/(0) = 0.
(b) Prove that ¢/(t) =0 for all t € R.
(c) Prove that X = 0.
Choose a linear subspace s C T,, M such that
TonM =5 ® Tea,(g).

Since T, is injective, s has dimension dim M — dim G. Choose a subman-
ifold S’ C M containing m, such that

7,5 =s.
Define the map ¢ : G x 8" — M by ¢(g,s) =g - s, for g € G and s € S'.
Exercise 10.3. (a) Prove that for all X € g and v € s,

T(e,m)SO(Xv U) =v+ XM(m)7

where X is the vector field on M induced by X via the infinitesimal
action.

(b) Prove that T\ )¢ is bijective.

(c) Prove that T\, 4 is bijective for all s in an open neighbourhood S”
of min S’

(d) Prove that T, . is bijective for all g € G and s € S".

We conclude that, by the inverse function theorem, ¢ : G x S” — M is
a local diffeomorphism onto its image. So there are open neighbourhoods O
of e in G, and S” of m in S”, such that

0:0xS" 5 M

is a diffeomorphism onto its image. (We use the same notation for ¢ and its
restrictions to various subsets.) Furthermore, if the closure S of §" is not
compact, we can always replace S be a smaller neighbourhood of m, such
that S is compact. Assume this has been done.
Set
C:={geG;gS" nS" +0}.

This set is compact by properness of the action, and Lemma 13.3 in the
notes on Lie groups. Set

Co:=C\O.
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Exercise 10.4. Prove that there is an open subset S C S such that for
all g € Cy,
gSnNSs=40.

Hint: Use Lemma 13.6 in the notes on Lie groups.
Exercise 10.5. Prove that ¢ : G x S — M is injective.

Set
U:=p(GxS).

Exercise 10.6. Finish the proof of Lemma 10.1, by showing that U is a
G-invariant open neighbourhood of m, and

0:GxS U

is an equivariant diffeomorphism.

As mentioned above, the slice lemma can be used to prove that M/G
has the structure of a smooth manifold. Indeed, by the slice lemma, M can
be covered by open subsets U; for which there are submanifolds S; of M
and equivariant diffeomorphisms

QDj:GXSj—)Uj,

given by ¢;(g,s) = g-s for g € G and s € S;. Consider the induced
homeomorphisms on orbit spaces

Xj = (pj)g' 1 Uj/G = (G x S;)/G = 8.

By shrinking the Sj, one may assume that S; is diffeomorphic to an open
subset of R™. Then the maps x; form a smooth atlas on M/G, if the
transition maps xj o X].*l are smooth where they are defined.

Exercise 10.7. Let j, k be such that U; N Uy, # (). Use Lemma 12.4 in the
notes on Lie groups to show that the map

Xk OXj_l : Xj(Uj/Gﬂ Ui/G) — Xk(Uj/Gﬁ Ur/G)

is smooth.
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11 Hamiltonian group actions

Exercise 11.1. Consider the manifold M = R2, with coordinates (q,p).
Let w = dp A dq be the standard symplectic form on M. Consider the Lie
group G = R, acting on M be translation in the g-direction:

9-(¢:p) = (¢ +9:p),

for g € G, (q,p) € M.
Prove that this action is Hamiltonian, by showing that the map u : M —
R, given by
p(a,p) =p
is a momentum map. Here we identify g* = R, using the fact that any linear
function on g = R is given by multiplication by a real number.

Exercise 11.2. Let a Hamiltonian action by a Lie group G on a symplectic
manifold (M,w) be given. Let u : M — g* be a momentum map. Let
H < G be a closed subgroup, and consider the map

p:g-— b
given by restricting linear functions on g to b.
Prove that the action by H on (M,w) is Hamiltonian, with momentum
map pt =pop.
Exercise 11.3. Let a Hamiltonian action by a Lie group G on a symplectic
manifold (M,w) be given. Let u : M — g* be a momentum map. Let
N C M be a G-invariant symplectic submanifold, and consider the inclusion

map
t: N — M.

Then, by assumption, ¢t*w is a symplectic form on N.
Prove that the action by H on N is Hamiltonian, with momentum map
N

p =1

Exercise 11.4. Let (M, w) be a symplectic manifold, and let a Hamiltonian
action by a Lie group G on (M, w) be given. Let u : M — g* be a momentum
map. Let X € g, and let v,, be the Hamiltonian vector field of jx.

(a) What is the Hamiltonian vector field of the function pyx, for X € g?

(b) Prove that for all X,Y € g,
{ux,py}t = “HX)Y]
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Exercise 11.5. Let ¢ : G — H be a Lie group homomorphism between
two Lie groups G and H. Let (M,w) be a symplectic manifold, and let
a Hamiltonian action by H on (M,w) be given. Let puf : M — bh* be a
momentum map for this action.

Consider the action by G on M given by

g-m:=(g)-m,

for g € G and m € M. Prove that this action is Hamiltonian, with momen-
tum map p& : M — g* given by

(1€ (m))(X) = (1" (m))(Tep(X)).

Remark 11.1. This exercise generalises Exercise 11.2, where ¢ is the in-
clusion map of a closed subgroup. (The roles of G and H are interchanged
between the two exercises.)

12 Symplectic reduction

In this set of exercises, we prove a slight simplification of Theorem 5.17 in
the lecture notes.

Let (M,w) be a symplectic manifold, and let G be a Lie group. Let a
Hamiltonian action by G on (M,w) be given, and let u : M — g* be a
momentum map. Let & € g* be a regular value of pu, i.e. for all m in the
nonempty subset p~1(¢) C M, the tangent map

Toope : TryM — g*

is surjective. Then p~!(€) is a smooth submanifold of M, by the submersion
theorem.
e (€)= M

be the inclusion map.
Let G¢ be the stabiliser of { with respect to the coadjoint action, and
suppose G¢ acts properly and freely on x~1(£). Then

Mg := =" (€)/Ge
is a smooth manifold, as we saw in Section 10. Let
Te s N (E) = Mg

be the quotient map.
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Theorem 12.1 (Marsden—Weinstein). There is a unique symplectic form
we on Mg, such that

riwe = w € (1 (Q)). (1)
Note that the quotient map ¢ is a submersion.” Hence the tangent map
T : Trnp ™ (€) = TomMe

is surjective for all m € p=1(¢). Hence (11) indeed determines we uniquely.
Indeed, any two tangent vectors in T, M¢ are of the form

Trme(v), Tinme(w) € TomMe,

for v,w € Tpu '(€). (Though these may be equal even if v and w are
different.)

Exercise 12.1. Show that for all for v,w € Tp,u~(£),
(we)am (Tinme (v), T (w)) = wpy (v, w), (12)

where we consider Tj,,u~1(€) as a subspace of T, M via the map Tnte.

It therefore remains to show that

1. we is well-defined by (12);

2. wg is nondegenerate;

3. wg is closed.

The first two points will follow from the facts in the following exercise.
Exercise 12.2. Fix m € p=1(¢).

(a) Show that
TG -m) = {Xn(m); X € g}. (13)

(b) Show that
T (&) = (Ton(G - m))*™,
where the superscript w,, denotes the annihilator (orthogonal com-
plement) of a space with respect to wy,. (See page 5 in the lecture
notes.)

"See the proof of Theorem 12.5 in the notes on Lie groups.
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(c¢) Show that
Tin(Ge - m) = ker(Ty,me).

Hint: use the slice lemma to prove that these spaces have equal di-
mensions.

Exercise 12.3. Prove that wg is well-defined by (12). Le. if m € p=1(¢),
v,w € T 1(€), and Tp,me(v) = 0, then wy,(v,w) = 0. (And similarly if
Tm7r§(w) = O.)

Exercise 12.4. Let W be a vector space, and b a bilinear form on W. Let
V C W be a linear subspace. Prove that

(Vht =w.

Hint: For the inclusion (V?)® C V, consider a vector w € (V?)?, and the
annihilator of the space U :=V + Ruw.

Exercise 12.5. Prove that wg¢ is nondegenerate.

Exercise 12.6. (a) Argue that we is closed if and only if m{ (dw¢) = 0.

(b) Prove that we is closed.

13 Cotangent bundles

Let N be a smooth manifold, and consider its cotangent bundle T*N. Let
0 € Q(T*N) be the tautological one-form, and let w := df be the standard
symplectic form on T*N.
Let G be a Lie group acting smoothly on N. The induced action on T*N
is given by
(g ’ 77)(”) = U(Tg-ng_l(v))a (14)
forge G,ne N,neT;N and v € Ty, N.

13.1 Momentum map
Exercise 13.1. (a) Prove that 6 is G-invariant.
(b) Prove that the action is symplectic.
(c) Prove that for all X € g,
A(ix ey 0) = =X yW-
Here X7+ is the vector field on T* N induced by X via the infinites-

imal action.
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Consider the map u: T*N — g* given by

() (X) =n(Xn(n)),

forne N,neTyN and X € g. Let 7 : T*N — N be the cotangent bundle
projection.

Exercise 13.2. (a) Prove that forall X e g, n€ N and n € TN,

Tnﬂ'(XT*N(T])) = XN(H) e T,N.

(b) Prove that for all X € g,
px =ixp.y0 € CP(T*N).
(c) Prove that for all X € g,
dpx = —ix,. W.

It remains to check equivariance of p.

Exercise 13.3. (a) Prove that for all X € g, n € N and g € G,
Tng(Xn(n)) = (Ad(9)X)n(g - n).

(b) Prove that p is equivariant.

13.2 Symplectic reduction

We have seen that the action by G on T* N is Hamiltonian, with momentum
map p. We now suppose that G acts properly and freely on N. Then N/G is
a smooth manifold. Let 0 € Q*(T*(N/G)) be the tautological one-form on
T*(N/G), and let wg := dfg be the standard symplectic form on T*(N/G).
We are going to construct a symplectomorphism

((T*N)o,wo) = (T*(N/G),wa).

Here ((T *N)o, wo) is the symplectic reduction at zero of T*N by the action
by G.
Consider the quotient map ¢ : N — N/G. For n € N, the tangent map

T,q dualises to
(Tha)" : T (N/G) — TN,

(Tng)"(€)) (v) = ¢(Tna(v)),
forne N, (e T¢, (N/G) and v € T,,N.
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Exercise 13.4. Prove that for alln € N

(T00)" (T (N/G)) € = (0).

Consider the quotient map p : p~1(0) — My = p~1(0)/G, and the
inclusion map ¢ : £~ (0) < T*N. Then, for all n € N, we have the diagram

T (N/G) 20 i (0) = TN,

P
le

(T*N)o

Consider the map

U T*(N/G) — (T*N)q

given by
T(¢) = (po (Tng)")(C),
for all ¢ € T¢.,,(N/G).

Exercise 13.5. Show that the map V is well-defined, in the sense that for
allne N, (e€Tg, (N/G) and g € G,

(po (Tyna)*) () = (po (Tng)") (<)
We first show that VU is a diffeomorphism.

Exercise 13.6. (a) Let f : X — Y be a submersion between smooth
manifolds X and Y. Prove that, for each x € X, the map

defined in the same way as T, q above, is injective.
(b) Prove that ¥ is injective.

Next, we use the fact that (T*N)g is a vector bundle over N/G. The
vector bundle projection map is induced by the equivariant cotangent bundle
projection 7 : u~1(0) — N.

Exercise 13.7. Prove that, at all G -n € N/G, the map VU is a linear
isomorphism

Ve : Tn(N/G) = (T*N)o) -

n
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The above exercise implies that ¥ is a bijection. It follows from the
theory of vector bundles that ¥, and its inverse, are smooth. Hence ¥ is
indeed a diffeomorphism.

It remains to show that the diffeomorphism ¥ is in fact a symplectomor-
phism. Fix a point ng € N. We will prove the equality

\I/*(,UO = wqg-

locally, in a neighbourhood ng. Since ng is an arbitrary point in N, this
proves the claim.

Since the action by G on N is proper and free, the slice lemma implies
that there is a G-invariant neighbourhood U of G - ng in N/G such that
there is an equivariant diffeomorphism

T (U) S UG
This allows us to choose a smooth map
o:U—q HU)
such that o(G -n) € G-n for all G-n € U. For example, one can set
o(G-n):=1YG n,e).
Using o, we define the map
Tq: T*(N/G) — T*N

by
T7q9(n) = (Trang)™n,

for all n € T, (N/G). By definition of the map ¥, we have
Uy =poTyq

onU.
Now consider the diagram

T*(N/G) > U 7% 1)~ T*N.



Exercise 13.8. (a) Prove that, on U,
gomoTl;q=mclu,

where 7 : T*N — N is the cotangent bundle projection of N, and
g : T*(N/G) — N/G is the cotangent bundle projection of N/G.

(b) Prove that
(L o T;q)*ﬁ = (9(;’(].

(c) Prove that
(¥wo)|lv = walu-

14 Coadjoint orbits

Let G be a Lie group, with Lie algebra g. Let g* be the dual vector space
of g. Consider the coadjoint action (representation)

Ad*: G — GL(g")
defined by
(Ad*(9)¢)(X) = £(Ad(g™1)X),

for all g € G, € € g* and X € g. This induces the infinitesimal coadjoint
action
ad® : g — End(g"),

given by
ad* =T, Ad".

That is,
(ad(X)¢) (V) = —¢(1X, Y)),
forall X,Y € g, £ € g*.

Definition 14.1. A coadjoint orbit of G is an orbit of the coadjoint action
Ad*. That is, a subset O of g* of the form

O = AdY(G)§ = {Ad"(9)§; 9 € G},

for some & € g*.
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Exercise 14.1. Let O be a coadjoint orbit of G, and let £ € O be a point
on O. Show that®

TeO={Xg X eg}={ad"(X)§; X €g} Cyg".
Let O be a coadjoint orbit.

Definition 14.2. The Kostant-Kirillov-Souriau two-form w on O is given
by
we(Xe, Ye) := =¢([X, Y]),

forall £ € O and X,Y € g.
We will show that the form w is a well-defined symplectic form on O.

Exercise 14.2. (a) Prove that the above expression for w is well-defined.
Le.if £ € O, X,Y € gand X¢ =0, then —{([X,Y]) = 0, and similarly
for Y.

(b) Prove that the form w is nondegenerate.
(c) Prove that the form w is closed.
Hint: For part (c), show that for all X € g — C*(g*),
ixw=—dX.

Then show that
ixdw =0

for all such X.
Exercise 14.3. Show that the symplectic form w is G-invariant.
The coadjoint action by G on O is in fact Hamiltonian.
Exercise 14.4. Prove that the inclusion map
w: O —g*

is a momentum map for the coadjoint action by G on O.

8In this section, we write X instead of Xo(€) for the value at £ of the vector field Xo
on O induced by the infinitesimal action.
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15 Smooth projective manifolds

Consider the complex vector space C", equipped with the standard hermi-
tian form h:

n
h(z,2") = szzg,
j=1
for 2,2’ € C". Then
h =B +iw,

with B the standard inner product on R?* = C", and w the standard sym-
plectic form on R?" =2 C™.

The natural action by U(n) on C" preserves h (by definition), hence also
B and w. Hence the action is symplectic.

Exercise 15.1. Prove that the Lie algebra of U(n) is
u(n) =4{X € M,,(C); X* + X =0}.
Here X* is the conjugate transpose of X.

Hint: see Exercise 8.4.
We will show that the map

w:C" = u(n),
given by .
(1(2)) (X) = Sh(Xz,2),
for z € C" and X € u(n), is a momentum map for this action.
Exercise 15.2. Prove that the map p is equivariant.
Exercise 15.3. Prove that for all z € C*, v € T.,CN =2 C" and X € g,
(dpx)2(v) = —w(Xcn (2),0).

Hint: Use Exercise 9.2. What is the simplest curve y in C" with v(0) = z
and +/(0) = v?

Exercise 15.4. Let G be a Lie group, and p : G — U(n) a Lie group
homomorphism. Prove that the induced action by G on C" is Hamiltonian,
and give a momentum map.

Hint: Use Exercise 11.4. Your answer may be short.
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