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Abstract
These notes are a summary of the description of the reduced C*-

algebra C;G of a connected linear reductive Lie group G outlined
by Wassermann and worked out further by Clare, Crisp and Higson.
We give the background information in representation theory needed
to understand this description, and then state the results. We also

describe the K-theory of C;G.
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1 Introduction

Let G be a connected, linear reductive Lie group. Its reduced C*-algebra
C:G is the closure in the operator norm of the algebra of convolution op-
erators on L?(G) by functions in L'(G). The algebra C;G contains a lot of
information about the the tempered representations of G. If G is semisim-
ple, these are precisely the irreducible representations of G that occur in
the Plancherel decomposition of L?(G). For this reason, it is useful to have
an explicit description of C;G.

Wassermann gave an outline of such a description in [18]. Part of this
description was worked out in more detail by Clare, Crisp and Higson
in [5]. In these notes, we give the representation theoretic background
needed to understand that description, and state the result. We also dis-
cuss the K-theory of C;G.

These notes are aimed at readers who are familiar with C*-algebras and
K-theory, but not necessarily with Lie groups and representation theory.



2 Preliminaries

Throughout these notes, G will be a Lie group, with Lie algebra g. All Lie
algebras and Lie groups are assumed to be finite-dimensional. We fix a
maximal compact subgroup K < G, with Lie algebra . We also fix a left
Haar measure dg on G. (All Haar measures used will be left invariant.)

2.1 Reductive and semisimple groups

The Lie algebra g is reductive if for every ideal a C g thereis anideal b C g
such that g = a @ b. It is simple if it has no nontrivial ideals, and semisimple
if the equivalent conditions of Proposition 2.1 hold.

Proposition 2.1. The following conditions on a finite-dimensional Lie algebra g
are equivalent.

1. g has no nonzero solvable ideals;
2. gis a direct sum of simple Lie algebras;
3. the Killing form B on g, defined by
B(X,Y) = tr(ad(X) o ad(Y))
for X,Y € g, is nondegenerate.
If these conditions hold, g is called semisimple.

Proof. See Theorem 1.42 and 1.51 in [10]. O

A Lie algebra is reductive if and only if it is the direct sum of an abelian
and a semisimple Lie algebra. (In particular, semisimple Lie algebras are
reductive.)

The group G is called reductive or semisimple if g has the correspond-
ing property. We will call G linear if it is a closed subgroup of GL(n, C) for
somen € N.



2.2 Cartan subalgebras and subgroups

Let g be a complex Lie algebra. Let ) C g be a nilpotent complex subalge-
bra. For « € b*, set

Jo =
{X e gforall Y € b there is an n € N such that (ad(Y) — «(Y))"X = 0}.
(2.1)

Then one has the decomposition

g= @ [11°%)

xeh* s.t. go#0
and since b is nilpotent, h C go. (See Proposition 2.5 in [10].)

Definition 2.2. The subalgebra b C g is a Cartan subalgebra if h = go. Then
the roots of (g, h) are the nonzero o« € h* for which g, # 0. The root space
associated to a root « is the space g,. The Weyl group associated to these
roots is the subgroup of the orthogonal group of the real span of the roots
generated by the reflections in the orthogonal complements of the roots,
with respect to some inner product.

Cartan subalgebras of complex Lie algebras are unique up to conjuga-
tion.

Theorem 2.3. If b and b, are Cartan subalgebras of a complex Lie algebra, then
there is a a € Int(g), the analytic subgroup of Autg(g) with Lie algebra ad(g),
such that

b2 = a(hy).
Proof. See Theorem 2.15 in [10]. H

For semisimple Lie algebras, Cartan subalgebras and the associated
root spaces have additional properties.

Theorem 2.4. If g is a complex semisimple Lie algebra, then
e all Cartan subalgebras are abelian;

e asubalgebraly C gis a Cartan subalgebra if and only if ady(b) diagonalises
simultaneously and b equals the zero weight space in this diagonalisation;
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e all root spaces are one-dimensional, and one may taken = 1in (2.1).
Proof. See Proposition 2.10, Corollary 2.13 and Proposition 2.21 in [10]. [

Definition 2.5. If g is a real Lie algebra, then a Cartan subalgebra of g is a
subalgebra h C g whose complexification h¢ is Cartan subalgebra of the
complexification gc. For a reductive group G, the Cartan subgroup associ-
ated to a Cartan subalgebra b of g is the centraliser of h in G.

Note that not all Cartan subalgebras of a real Lie algebra need to be
conjugate in g; only their complexifications are conjugate in gc¢. This does
imply that all Cartan subalgebras have the same dimension. This dimen-
sion is the rank of g.

2.3 The Plancherel theorem

Suppose G is linear, connected and reductive. Let G be the unitary dual of
G, i.e. the set of all equivalence classes of unitary irreducible representa-
tions of G. For 7t € G, we denote its representation space by 3. Consider
the field of Hilbert spaces

&= ]%H® ;- G.
neG

Here H{, ® J is the completion in the natural inner product on the al-
gebraic tensor product. So 3, ® I} is isomorphic to the Hilbert space of
Hilbert-Schmid operators on H.

For f € C°(G) and 7t € G, the operator

() = J f(g)n(g) dg

on H, is trace-class, hence Hilbert-Schmid. So n(f) € H, ® H:. In this
way, we obtain a section J(f) of £, given by

F(f)(m) = m(f),

for all m € G. Let p be the Plancherel measure on G, and let L2(&, 1) be
the Hilbert space of square-integrable sections of € with respect to p. The
Plancherel theorem states that J extends to a unitary isomorphism

F:L3(G) S LA(E, ). (2.2)
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See Theorem 13.11 in [9] for this fact and the form of .

The map JFis G x G-equivariant, in the following sense. Let L and R be
the left and right regular representations of G in L*(G), respectively. Then
forall f € CX(G), me G and gi,g2 € G,

F(L(g1)R(g2)f)(7) = 7(g1) © 7 (g2) F(f) (7).
In this sense, the isomorphism J is a decomposition of the representation
L?(G) of G x G into irreducibles. One usually writes
@
L(6) = | 96096 duln) = (e, .
G

Remark 2.6. Unitarity of the map (2.2) is equivalent to the equality

mazkmmmmmm 2.3)

for all h € C°(G). Here tr(mt(h)) is the global character of 7 applied to f.
Let f € C®(G), and let f* € C°(G) be given by f*(g) = §(g~')f(g™") for all
g € G, where § is the modular function. If h = f x *, then (2.3) is precisely
the equality

HfH%Z(G) = ||3r(f)||%2(s,u)-

2.4 Tempered representations

Let 7t be a unitary representation of G in a Hilbert space J{. Let (—, —)s
be the inner product on J{. A vector v € I is K-finite if 7t(K)v spans a
finite-dimensional linear subspace of J{. A K-finite matrix coefficient of 7 is
a function on G of the form

mv,w: g — (V) W(Q)W)}b
for K-finite vectors v,w € H.

Definition 2.7. The representation 7t is tempered if all its K-finite matrix
coefficients are in L?*¢(G), for all £ > 0.

Let Gtemp c G be the subset of equivalence classes of tempered irre-
ducible representations. The relevance of tempered representations is that
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the Plancherel measure is supported in Gtemp. (Again, see Theorem 13.11
in [9] and point (2) at the start of Section VIIL.11 in [9] .) So

b
L2(6) = L& ) = L(Elg,,0) =5 | 3G dulm). @4
temp

For f € L'(G), let the bounded operator f+ — on B(L*(G)) be given
by left convolution with f. A central role in the description of group C*-
algebras will be played by the following consequence of the Plancherel
theorem.

Corollary 2.8. Forall f € C(G), we have

I+ — ll32(6) = sup [|7(f){|s(gcn-

7€ Cremp
Proof. Since the map (2.2) is unitary, we have for all f € C(G),
15 — a2y = I1F o (Fx =) 0 F ' [ln2e,))-
And for all ¢ € L?(&,u) and 7t € G, one computes that
(F(F+ T @) (1) = (7e(f) @ Toez ) ().
In other words,
Fo(fx—)oF ' = (n(f) @ g¢z) -

Since p is supported in Gtemp, one can use ¢ supported near any given 7
to deduce that

|F o (fx =) o F a2 = sup [|7(f)||n@e-

e G temp

2.5 Reduced group C*-algebras

Let G be any locally compact group. Its reduced group C*-algebra is the
closure in the operator norm of the algebra

{fx —f € L'(G)} c B(L*(G))
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of convolution operators on L*(G) by functions in L'(G). This algebra is
isomorphic to the completion of the convolution algebra L'(G) in the norm

Ifllce = I = lls2(6))
with *-operation defined by
f*(g) =8(g (g™,

for f € L'(G) and g € G. Here  is the modular function on G.
Now suppose that G is connected, linear and semisimple. Then Corol-
lary 2.8 implies that for all f € L'(G),

If

cic = sup ||7t(f)]|s(e,- (2.5)

s Gtemp

The aim of these notes is to give an explicit description of C;G and its K-
theory for such groups, or more generally for connected, linear reductive
groups. This involves the notions of discrete series representations, dis-
cussed in Section 3 and parabolic induction, discussed in Section 4. Those
notions will be used to classify the tempered representations of G, which
is an important step in the description of C;G.

3 The discrete series

3.1 Discrete series representations

Suppose G is linear, connected and reductive. We consider a unitary irre-
ducible representation 7 of G in a Hilbert space .

Definition 3.1. The representation 7t belongs to the discrete series of G if all
its matrix coefficients are in L%(G).

The set of equivalence classes of discrete series representations of G
will be denoted by Ggs.

Proposition 3.2. An irreducible unitary representation belongs to the discrete
series if and only if it is equivalent to a closed subspace (i.e. a direct summand) of
the left reqular representation of G in L*(G).



Proof. See Theorem 8.51(b) in [9]. If the matrix coefficients of a represen-
tation 7t are in L?(G), an equivariant isometric embedding B : 5 — L*(G)
can be defined as follows. Fix a nonzero vy € H, and define the map B by

(B(v))(g) = (m(g™" v, vo)x,
forve Hand g € G. O

Proposition 3.2 implies that the discrete series representations are ex-
actly those with positive Plancherel measure. The term discrete series is
also motivated by the fact that the discrete series is a discrete subset of G
in the Fell topology.

Definition 3.3. The Fell topology on G is defined as follows. The closure of
aset X C G is the set of all T € G such that all matrix coefficients of 7t can
be approximated uniformly on compact subsets by matrix coefficients of
representations in X.

3.2 Classification of discrete series representations

Suppose that G is linear, connected and semisimple. One has the following
explicit criterion for the existence of discrete series representations.

Theorem 3.4. The group G has discrete series representations if and only if
rank(G) = rank(K), i.e. G has a compact Cartan subgroup.

Proof. See Theorem 12.20 in [9]. H

For the non-exceptional simple real Lie groups, this criterion leads to
Table 3.2, which was taken from [7].

Now suppose that there is a maximal torus T < K which is a Cartan
subgroup of G, so that G has discrete series representations. Let R be the
root system of (gc, tc). Let R, denote the set of compact roots, i.e. those of
(€, tc), and let R, := R\ R, be the set of noncompact roots. Fix an element
A € it*. Suppose A is nonsingular, in the sense that (A, &) # 0 for all roots
o € R. Let R" be the set of positive roots defined by

R :={x € R; (o, A) > O} (3.1)

Let p be half the sum of the roots in R", and let p. be half the sum of the
positive compact roots in R := R" N R..
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Group G Max.cpt. K< G rank(G) rank(K) Discrete series?

SL(n,C) SU(n) 2n—2 n—1 no
SL(TL, R) SO(n) n—1 15) iffn=2
SL(n,H) Sp*(n) 2n —1 n no
SU(p, ) S(UMP)xU(q)) p+qg—1 p+q—1 yes
SO, C) SO 2(1] 1) no
SO(p,q) S(O(p)xOa)  [59] [3]514)  iffpqeven
O*(2n) U(n) n n yes
Sp(n, C) Sp*(n) 2n n no
Sp(n,R) Umn) n n yes
Sp*(p,q) Sp"(p) xSp*(q) p+q p+q yes

Table 1: Harish—Chandra’s criterion rank(G) = rank(K) for the existence
of discrete series representations, for the non-exceptional real Lie groups

Theorem 3.5. If A + p is analytically integral, there is a discrete series represen-
tation T of G such that

1. if v := N+p—2p,, and 7i¥ is the irreducible representation of K with highest
weight v, then the multiplicity of 5 in |« is one;

2. if wis the highest weight of an irreducible representation of K with nonzero
multiplicity in |, then there are nonnegative integers n, such that

Two such discrete series representations T, and Tty are equivalent if and only if
there is an element w of the Weyl group of R such that N’ = wA.

Proof. See Theorem 9.20 in [9]. H

In the setting of Theorem 3.5, the element A € it* is called the Harish—
Chandra parameter of . The representation 7% is the lowest K-type of m,,
and v is the Blattner parameter of .

Theorem 3.6. Every discrete series representation of G equals one of the repre-
sentations T of Theorem 3.5.

Proof. See Theorem 12.21 in [9]. H
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Theorems 3.5 and 3.6 give a complete classification of the discrete series
representations of G.

We will need to consider discrete series representations of possibly dis-
connected groups. See for example [12] for the classification of these.

3.3 Example: SL(2,R)

For any n € N, consider the semisimple Lie group G = SL(n,R). Then
K = SO(n) is a maximal subgroup of G. Write n = 2k if n is even, and
n = 2k + 1 if n is odd. Then a maximal torus in SO(n) is isomorphic to

SO(2) x --- xSO(2).

NV
k factors

Hence K has rank k. A Cartan subalgebra of the complexified Lie algebra
sl(n,C) is formed by the diagonal elements, and has complex dimension
n — 1. Hence rank(G) = n — 1. By Theorem 3.4, SL(n,R) therefore has
discrete series representations if and only if

e n=2kiseven,and k =n—1; or
e n=2k+1lisodd,and k =n—1.

In other words, SL(n, R) has discrete series representations precisely if n =
2.
For the rest of this subsection, we consider the group SL(2,R).

3.3.1 Cartan subgroups

The Lie algebra s[(2,R) has two conjugacy classes of Cartan subalgebras.
One is represented by t = RX, where

x::(?‘o]).

The other is represented by h = RY, where
1 0
(30,
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The corresponding Cartan subgroups are the compact group
T:=50(2),

and the noncompact group

ae{(5 2 Yrsol.

Since we are going to construct discrete series representations of SL(2, R),
we focus on the compact Cartan subgroup T.
The corresponding root space decomposition is

5[(2,C) =CX @ CE, + CE_,,

1/ 1 —i 1/1 i
E“'_E(—i —1>’ E“'_E(i—1)'

One can compute that

where

X, Exol = £21E4q.
Hence the root system of (s[(2,C), t¢) is {£«}, with  determined by
o(X) = 2i.

There are no compact roots, i.e. R, = (), since K = T is abelian.

3.3.2 Discrete series representations

Let a nonzero element A € it* be given. Write A = l, for an 1 € R. The
choice of positve roots determined by A is R = {a}if | > 0, and R* = {—«}
if 1 < 0. Hence

1
p= sign(l)zoc; p. = 0.
For any a € R, one has
cosa —sina
exp(aX) = ( sina cosa )
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Hence ker exp = 2nZX. Since p(27X) = sign(1l)2mi, we see that p is analyt-
ically integral. Hence A 4 p is analytically integral if and only if A is, which
is the case precisely if A(27X) = 4mil € 27iZ, i.e. if

A=A = =

2

for a nonzero integer n. The discrete series representations of SL(2,R) are
precisely the representations 7, given in Theorem 3.5, for these values of
A. Write 7, := m, .. No two of these are equivalent, since the Weyl group
of the compact roots is trivial.

4 Induced representations

4.1 Non-unitary induction

Let G be a locally compact topological group, and H < G a closed sub-
group. Let m: H — GL(V) be a continous representation of H in a topolog-
ical vector space V. Let C(G, V) be the space of continuous functions on G
with values in V. Consider the action by H on C(G, V) given by

(hf)(g) = m(h)f(gh),

forh e H, f € C(G,V) and g € G. Let indg(V) .= C(G, V)" be the fixed
point set of this action.

Definition 4.1. The induced representation of 7 from H to G is the represen-
tation indg(n) of G in the vector space indS(V) given by

(indfj(m)(g)f)(g') = (g 'g),
for g,g’ € G and f € ind§(V).

An issue is that ind{j(71) may not be unitarisable, even if 7t is unitary.

4.2 Unitary induction

Now suppose that G, and hence H, is a Lie group. Suppose V is a Hilbert
space, with inner product (—, —)v (complex-linear in the first entry). Then
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one can slightly modify the definition of induced representations so that
the induced representation is unitary (or unitarisable) if 7t is.

Let g and b be the Lie algebras of G and H, respectively. The adjoint
representation Ad: G — GL(g) restricts and projects to

Adgn: H — GL(g/b).
Consider the function 6: H — R given by
8(h) = |det(Adg (W)™,

fro all h € H. For any homomorphism x: H — C*, we write C, for the
complex numbers with the representation of H defined by x.

Lemma 4.2. For any « € C, the line bundle
G XH C5o¢ — G/H
is the bundle of x-densities on G/H.

By this lemma, every element of C(G, C;)" defines a continuous den-
sity on G/H. Consider the sesquilinear map

(——): VRCsiraxV®Csha— Cs (4.1)
given by i
(Vi ® A1, v2 @ A2) = (vi, va)vAiAg,

for vi,v; € Vand Ay, A; € Ci/2. Now suppose that 7t is unitary. Then for
all p,p € C(G,V ® Cg,2)", the function (¢,) on G mapping g € G to
(¢(g),WP(g)) is in C(G,Cs)". Hence it defines a density on G/H, so it can
be integrated. For @, € C.(G,V ® Cs,2)", we define

(o ble=]| (o)
G/H
Let Indﬁ(V) be the completion of C.(G,V & Cg1,2)" in this inner product.

Definition 4.3. The unitarily induced representation of 7 from H to G is the
representation Indﬁ(ﬂ) of G in Indﬁ(V), given by

(Indii(m)(g)f)(g) = f(g'g"),
for g,g’ € G and f € Ind5(V).
Lemma 4.4. If 7t is unitary, then so is Indg; (7).

If G/H is compact, as it is if H is a parabolic subgroup, then Ind;j(V) is
the completion of indf(V ® Cg1/2) in the inner product (4.1).
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4.3 Cuspidal parabolic subgroups

Suppose G is linear, connected and reductive. Let s C g be an Ad(K)-
invariant subspace such that g = ¢ © s. Let h C g be a Cartan subalgebra
such that

h=(bnt) o (hns).
(Any Cartan subalgebra is conjugate to one with this property.) Set
o H:=Zg(h);

a:=hnNs;
e A := the analytic subgroup of G with Lie algebra a;

e m := the orthogonal complement to a in Z,(a);

M, := the analytic subgroup of G with Lie algebra m;

M = ZK(a)Mo.

The subgroup M may be disconnected.
For 3 € a*, set

gp :={XegforalYeaql[Y,X =(BY)X.
Consider the restricted root system

L:=1(g,a):={B € a” \{0}gp #{0}.
Fix a positive system X* C X. Consider the nilpotent subalgebra
ni= @ gp-
pes+
of g. Let N be the analytic subgroup of G with Lie algebra n.

Definition 4.5. The cuspidal parabolic subgroup of G associated to h and Z*
is P := MAN.

Let T < K be a maximal torus. Then t " m C mis a Cartan subalge-
bra, so M has discrete series and limits of discrete series representations.
There is a more general notion of parabolic subgroups P = MAN. Such a
group is called cuspidal if M has discrete series representations. All cusp-
idal parabolic subgroups (up to conjugacy) arise as described in this sub-
section.
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4.4 Parabolic induction

Now suppose that G is reductive, and H = P = MAN is a cuspidal'
parabolic subgroup. Let 0: M — U(V,;) be a unitary representation of
M and v € a*, so that e' is a one-dimensional unitary representation of A.
Let p € a* be half the sum of the positive restricted roots corresponding to
N. Let 1y be the trivial representation of N; then we have the unitary rep-
resentation 0 ® e'¥ ® 1y of P, in the space V, ® C,iv. Let K < G be maximal
compact. Let p € a* be half the sum of the elements of .

Lemma 4.6. The space Indy (V, ® Ceuv) is the completion of the space

{f € C(G, Vo)
forallge G, me M, ae Aandn € N, f(gman) = e’w*p(a)(f(m)’]f(g)}

in the inner product

(mﬁmszmmwmww, (4.2)

where dk is the Haar measure on K such that vol(K) = 1.

Proof. In this setting, the space g/h = g/p identifies with the direct sum of
the negative restricted root spaces. Hence §'%[, = e °, while §'[y; = 1
and 8'/?|y = 1. Also G/P identifies with a quotient of K, since G = KP. See
Subsection 2.1 in [2] for more details. [

The realisation of Indg (Vs ® C,iv) in this lemma is called the induced
picture.

By Lemma 4.4, the representation Indj (¢ ® e ® 1y) is unitary. Fur-
thermore, Ind; (0 ® e¥ @ 1y) is tempered if o is. (See Proposition 7.14 and
page 198 of [9].)

There are two other realisations of the representation Indg (c®eV®1N).
First, via restriction to K, we have a G-equivariant unitary isomorphism
from the space in Lemma 4.6 onto the completion of the space

{fe C(K,Vy):forallk € K, m € KN'M, f(km) = o(m) ' f(k)},

'What follows is true for general parabolic subgroups, but we will only apply it to
cuspidal ones.
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in the inner product (4.2). The action by G on this space is defined as
follows. For any g € G, write g = k(g)u(g)a(g)n, for k(g) € K, u(g) e M,
a(g) €e Aandn € N. Then for all g € G, k € K, and f in the space just
defined,

(gf) (k) = e"™(a(g))o(u(g k) f(k(g k).
The advantage if this realisation is that the representation space does not
depend on v € a*. This is the compact picture.

In the noncompact picture of Indy (6 ® e ® 1y) is the restriction of the
space in Lemma 4.6 to N. The representation space is then independent
of 0. It is the space of L*-functions on N with respect to the measure
e’Re(q(fn))dn, with h as above. Forany g € G, write g = fi(g)u(g)a(g)n,
fori(g) € N, u(g) € M, a(g) € Aandn € N. Then forallg € G, € N,
and f € L2(N, e2ReM (a(@i))dii),

(gf) (1) = e ™ (a(g ') o(u(g 'n)) ' F(Rlg'R)).

If P = MAN is a minimal parabolic subgroup, then M is compact, so P
is cuspidal.

Definition 4.7. The principal series of G is the set of representations
{PG’W = Indg((f R Coiv ® In);0 € mds, v E a*},
for a minimal parabolic P = MAN < G.

4.5 Parabolic induction via Hilbert C*-modules

(The contents of this subsection are not used in the rest of these notes.)

We continue using the notation and assumptions from the previous
section. Write L := MA. Fix left Haar measures dg, dl and dn on G, L and
N, respectively. Let d(gN) be the G-invariant measure on G/N such that
forall f € C.(G),

L f(g)dg = L/N JN f(gn) dnd(gN).

We define a Hilbert C;L-module C:(G/N) as follows. (See [4].) Con-
sider the space C(G/N). We have a right action on this space by the
convolution algebra C°(L), given by

(fom - L) (gN) = L 52 (U fe (gl N)FL(L) dl,
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forall fg,n € C°(G/N), fL € CX(L) and g € G. Here 8 is the same function
as before, for h = p, so g/h = 7, the direct sum of the negative restricted
root spaces. Consider the C2°(L)-valued inner product on C*(G/N) given

by

(fo/n, fon) e (L) = 51/2(UJ fon (gl NIFG N (gn) d(gN).
G/N
for all fg/n, fgn € C2°(G/N), and 1 € L. By Proposition 1 in [4], we can
use these structures to complete C2°(G/N) to a right Hilbert C;(L)-module
Ci(G/N).
The action by the convolution algebra C°(G) on C°(G/N) given by

(f-fon)(gN) = L f(g")fen(g"'gN) dg/,

for f € CX(G) and fg,n € CP(G/N), extends to an action by C;G on
C:(G/N) by adjointable operators.

Proposition 4.8. Let o: M — U(V,) be a unitary representation of M, and
v € ia*. There is a unitary isomorphism of Hilbert spaces

C;(G/N) ®cit (Vo ® Cenv) = Indy (Vo ® Cerv)
intertwining the given x-representations of C;G.

This is Corollary 1 in [4].

4.6 Intertwining operators

Let P = MAN < G be a parabolic subgroup, ¢ € M and v € a*. Let
w € Ng(MA). Then conjugation by w preserves M and A. So composing
o with conjugation by w, we obtain another representation wo € Mys.
Furthermore, w acts on ac and af via the adjoint action. For any v € af,
the induced representation Ind,f (0 ® e ® 1) is still defined even though
e is not unitary, for example as the representation in Lemma 4.6 with iv
replaced by v. For v € af, define

Ap(w, 0,v): IndS (Ve ® Cev) — IndS (Viwe @ Cewv )
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by
Aslw, o, ))g) = | rlgwn)an

for f € Indg (Vo ® C.iv) and g € G. This integral converges if Re(v) is
large enough, in the appropriate sense. If o is tempered, then the integral
converges if f is K-finite and Re(v) lies in the open positive Weyl chamber
defined by =¥, see Theorem 7.22 and page 198 in [9]. (The convergence
issue is especially subtle if M is noncompact.) For arbitrary, in particular
imaginary, v, we use analytic continuation. The map Ap(w, 0, V) is a uni-
tary intertwining operator. See Subsection VII.4 of [9] and Proposition 8.5
in [11].

Example 4.9. Let G = SL(2,R). Let o, be the trivial representation of
M = {£L,}, and o_ the nontrivial representation. Let W = Z/2Z be the
Weyl group of (SL(2,R),SO(2)). Let w € W be the nontrivial element. For
v € R, consider the principal series representation

pEY = Ind,?((rjE Qe ®1y).

In the noncompact picture (see Subsection 4.4), we have for all x € R,

: L f(x—y)
(sl o, )0) ) = lim | 5=
and (x —y) sgn(y)
. o x —y) sgn(y
(Aslow, o, )1)(x) = lim | B g
See (7.13) in [9].

4.7 The classification of tempered representations

Discrete series representations and parabolic induction can be used to clas-
sify tempered representations.

Theorem 4.10. Every irreducible tempered representation 7 of G can be obtained
by induction from a cuspidal parabolic subgroup P = MAN < G as

ﬂ:IndS(G(X)eW@U,

where v € a*, and o is a discrete series representation of M, or a limit of discrete
series representations of M.
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Proof. See Theorem 14.76 in [9]. O

Knapp and Zuckerman also determined which P, o and v occur in The-
orem 4.10, completing the classification of tempered representations. See
Theorem 14.2 in [13].

The definition of limits of the discrete series is given in Section XIL7 of
[9]. However, even if one needs a limit of the discrete series in the setting
of Theorem 4.10, then 7t is still contained in a representation induced from
a discrete series representation of M.

Theorem 4.11. If P = MAN is a cuspidal parabolic subgroup, v € ia*, and o is
a limit of discrete series representations of M, then there are a parabolic subgroup
P’ = M'A'N’ C G, a discrete series representation ¢’ of M’ and a v' € ia”,
such that .= Ind$ (0 @ e¥ @ 1) is contained in ' := IndS, (0’ @ €' ® 1), in
the sense that the global character of  equals the sum of the global character of T
plus another global character.

Proof. See Corollary 14.72 in [9]. H

Combining Theorems 4.10 and 4.11, see also Corollary 8.8 in [12], we
obtain the following result.

Corollary 4.12. Every tempered representation of G is contained in a repre-
sentation of the form Indg (o ® e ® 1) for a cuspidal parabolic subgroup
P = MAN < G, a discrete series representation o € Ny and v € a*.

5 Group C*-algebras

5.1 Bundles of compact operators

Let P = MAN < G be a cuspidal parabolic subgroup, and let ¢ € Mg.
Consider the bundle of Hilbert spaces &, — A whose fibre at e € A is
Ind; (V,®C,iv). Using the compact picture of parabolic induction (see Sub-
section 4.4), we can realise &, as a trivial bundle. This defines the topology
on &,. Let Iy(&,) be the Hilbert Cy(A)-module of continuous sections of
&, vanishing at infinity. Consider the bundle of C*-algebras X(&,) — A
whose fibre at el¥ € A is K (Inds (Vo ® Ceiv)). Again, we topologise this
bundle by identifying it with a trivial bundle in the compact picture. Let
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(X (Es)) be the C*-algebra of continuous sections of K(&;) vanishing at
infinity.
Consider the map
11)0: L](G) — rO(:K(ac))
given by
(Vo(F)) () =IndS (0 @ e ® 1) (f) € K(Ind§ (Vo @ Cewv)),
for f € L'(G) and v € a*. This map extends to a *-homomorphism

bo: CH(G) = To(K(Eq)).

Let Pds(G) be a set of pairs (P, ), where P runs over a set of represen-
tatives of conjugacy classes of cuspidal parabolic subgroups P = MAN,
and o € M.

Consider the C*-algebraic direct sum

B rxKE)) = {T=Todpoerasc € [ RoXK(&));forall P, lim [Ty, = 0}.
0—00

(P,0)€Pds(G) (P,0)€Pds(G)
The maps 1, assemble into a x*-homomorphism

VGG = D TK(E).

(P,0)€Pds(G)

This allows us to decompose C;G.
Lemma 5.1. The map \p is injective.

Proof. Let x € ker(1). Let 7t be a tempered representation of G. By Corol-
lary 4.12, 7t is equivalent to a subrepresentation of Indg (c®e™ ®1y) fora
pair (P = MAN, o) € Pds(G) and e!¥ € A. Now

IndS (0 ® e ® 1n)(x) = Ps(x)(e?¥) = 0.
So 7t(x) = 0. So (2.5) implies that ||x||c:g = 0. O
Proposition 5.2. The image of \ is

imp) = P im(o).

(P,o)ePds(G)

This is Proposition 5.15 in [5].
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5.2 A decomposition of C;G

Because of Lemma 5.1 and Proposition 5.2, an explicit description of the
images of the maps 1, yields an explicit description of C;G. Fix (P =
MAN, o) € Pds(G). Consider the finite group

W := Ny(a)/Zk(a).

Since Ny (a) < Nk(M), this group acts on M by conjugation. Hence it acts
on My via pullbacks by conjugation. Consider the stabiliser

W, :={w € W;wo = o}.
For eachw € Wy and e™ € A, we have the unitary intertwining operator
Ap(w, 0,v): IndS (Ve ® Ceiv) — IndS (Ve @ Cinv)
as in Subsection 4.6. Define the map

Uy To(K(Eq)) — To(X(Eq))

by
(U T)(e™) = Ap(w, 0, v)T(e™ V) Ap(w™ 0, v).

forall T € Ty(K(&y)) and e € A.
Consider the subalgebra

No(K(EN)We :={T € Ty(K(&y)); for allw € Wy, U,, T =T
Theorem 5.3. The image of ) is
(K (€)™,
See Proposition 6.7 in [5].

Corollary 5.4. The map \p defines an isomorphism

CiG= P RK(EN"
(P,0)€Pds(G)

This follows from Lemma 5.1, Proposition 5.2 and Theorem 5.3.
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5.3 R-groups

To compute the K-theory of C:G, we give a more explicit description of the
C-algebras Iy (K(€,))Ve, up to stable isomorphism.

Definition 5.5. Let ¢ € M. Consider the group
W. :={w e W,; Ap(w, 0,0) € CI}.
Theorem 5.6. If 0 € My, then
W, =W. xR,
for a subgroup R, < W, isomorphic to (Z/27)* for some 1 € Zso.
See [11, 18].

Theorem 5.7. The dimension of the algebra of G-equivariant operators on Ind§ (V,®
C,) is the number of elements of R.

This is Theorem 13.4(iv) in [11]. In particular, this theorem implies that
R; is trivial (i.e. W, = W}) if and only if Indg (Vs ® C4) is irreducible. More
generally, suppose that Indj (V, ® C;) is the direct sum of inequivalent
irreducible representations 7, . . . , 75, with multiplicities my, ..., m,. Then
by Schur’s lemma, the above theorem states that

Z mj2 = #R,. (6.1)
j=1

Proposition 5.8. We have a stable isomorphism
Mo(K(E6))M = Cola®/Wg) x R

See Corollary 7 and Theorem 9 in [18].
Combining Corollary 5.4 and Proposition 5.8, we obtain the following
description of C;G up to stable isomorphism.

Theorem 5.9. We have a stable isomorphism

CiG= @ Co(a*/W.) x Rs.

(P,0)ePds(G)
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5.4 The K-theory of C;G
Lemma 5.10. If W is nontrivial, then K, (Co(a*/W[) x Rs) = 0.

See Lemma 10 in [18].

Let Pmax = MmaxAmaxNmax < G be the cuspidal parabolic subgroup cor-
responding to a maximally compact Cartan subgroup. Set 1 := dim(A) —
dim(Amax). (Note that A. has the lowest dimension among all factors A
of cuspidal parabolic subgroups MAN < G.)

Lemma 5.11. If W/ is trivial, then
Re = (Z/27)".

The vector space a* is (Z/27)'-equivariantly isomorphic to RY™®) where (Z./27.)"
acts on R vig reflections in the first L entries. So

Cola*/W)) x Ry = (Co(RY) % (Z/27)") @ Co(REmAm),

See Lemma 12 in [18].
Because of this lemma. we have, if W/, is trivial,

Ki(Co(a* /W) % Ry) = Kidim(Ane ((Co(R) x (Z/27))%)

Now Ky(Co(R) x (Z/27Z)) = Z and K;(Co(R) x (Z/27Z)) = 0, see Lemma 14

in [18]. Also, dim(Ama.x) = dim(G/K) mod 2. So by the above arguments

and the Kiinneth theorem (see for example Theorem 23.1.3 in [3]), we have,
if W/ is trivial,

Kaim(c/x) (Cola®/Wg) x Ry)

Kaim(c/k)+1(Cola™/Wg) % R;)

Let b(P, 0) € Kgim(g/x)(Cola*/W[) x Rs) be a generator.

Combining this with Theorem 5.9 and Lemma 5.10, we reach the fol-
lowing conclusion.

Z;
0

Theorem 5.12. We have

Kaim(c/x) (CrG) = B  zbro).
(P,0)€Pds(G);Wj=(e}

and Kgim(c/x)+1(C;G) = 0.
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By Theorem 5.7 and (5.1), we have W/ = {e} if and only if

where my, ..., m, are the multiplicities of s inequivalent irreducible repre-
sentations into which Inds (c®Cy) decomposes. If P is a minimal parabolic,
then by Theorem 7.2 in [9], the number of irreducible components of Indg (o®
Cy) is at most equal to #W,,. Hence in that case, we have W/ = {e} if and
only if Indj (0 ® C;) is maximally reducible.

5.5 Example: discrete series classes

Suppose G has discrete series representations. Then G is a cuspidal parabolic
subgroup of itself (corresponding to a Cartan subalgebra t C €). For this
parabolic subgroup, we have A = {e}, and the group W = K/K is trivial.
So by Corollary 5.4, C;G has the subalgebra

P x(vo).

O'Géds

Hence K, (C;G) = Ko(C;G) has the subgroup

P zb(G, o),

aeGdS

where b(G, o) is a generator of Ko(K(V,;)) = Z. This generator can be
described explicitly.
Fix 0 € Gg. Let x € V, be a unit vector. Then the matrix coefficient

m,, is in L?(G). Set
)
(G)°

de = ||mux

This is the formal degree of o, which is its Plancherel measure. Now d T,
is an idempotent in C;G, and its class is b(G, o) (up to a sign).

We see that the discrete series embeds into Ky(C:G) without loss of
information. This is exploited in [14] to prove results about the discrete
series. In [8], this is used to deduce Harish—-Chandra’s character formula
for the discrete series from a fixed point formula in index theory.
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5.6 Example: the reduced C*-algebra of SL(2,R)

Let G =SL(2,R). Let o be the trivial representation of M = {£I,}, and o_
the nontrivial representation. Now W = Z/2Z. W,, = W. Letw € W be
the nontrivial element. For v € R, consider the principal series represen-
tation

PEY = IndS (o) @ e @ 1\).

We have —iv = wiv forall v € R = a*, and woy = 04 since M < Z(G).
Consider the operators

Ap(w, oy, iv): PPV — pEYY

as in Example 4.9.
The summand (K (€,, ))"¥e+ can now be identified via the following
special case of Proposition 5.8.

Lemma 5.13. If P = MAN < G is a cuspidal parabolic, and o € Ny is such
that Inds (0 ® Cy) is irreducible, then

To(K(E))We = Co(a*/We) @ K.

Here X is the algebra of compact operators on the fibre of the trivial
bundle €,. Note that in the setting of this lemma, we have W, = W,.
Since P is irreducible, it follows that

No(K(€0.))"+ = Co([0,00)) ® K, (5.2)

O+

Lemma 5.14. We have

N(X(Es ))Wo = (Co(R) x (Z/2Z)) @ K.

Proof. For any v € R, the representation space of P™" can be identified
with L*(R). For v = 0, this representation decomposes into the two limits
of discrete series 3. Let V.= be the representation space of 3. Then Ve
is the space of holomorphic functions f on the upper half plane for which

supJ If(x +1y)| dy
y>0 JR

is finite. And V.- is the space of all complex conjugates of functions in V..
(See section 2.4 of [9] for details about these representations.) These spaces
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embed into L*(R) by continous extension and restriction to the real line. So
the complex conjugation operator C on L*(R) interchanges V,, sand V-

It follows from the explicit formula for Ap(w,0_,1iv) in Example 4 9
that forall v € R,

Ap(w,0_,—1iv) = CAp(w,0_,1iv)C.

Since C interchanges the subspaces V,+ and V.- of L?(R) (which are only
G-invariant if v = 0), the claim now follows from Lemma 5.15 below. [

Lemma 5.15. Consider the action by 7./27 on R such that the nontrivial element
of Z /27 corresponds minus the identity on R. Let

cz($ ;)

®: Co(R)x(Z/27) = {a € Co(R)@M;,(C);forall x € R, a(—x) = Ca(x)C},

We have a x-isomorphism

given by
f(0,x)  f(1,x)
O(f)(x) = (f(h—x) f(0, —X))

for f e Co(Z/2Z x R) and x € R, where Z./27Z = {0, 1}.

See Proposition 2.52 in [19].
Combining (5.2) with Lemma 5.14 and with the arguments from Sub-
section 5.5, we find that

CiSL(2,R) = (Co([0,00)) ® K) & ((Co(R) % (Z/27)) ® K)

with 7, as in Subsection 3.3. So K,(C;SL(2,R)) is free abelian, with one
generator for every nonzero integer n, generating Ky(X(Vy, )), and one ad-
ditional generator, generating Ko( (CO(R) X (Z/ZZ)) ®X). And K;(C:SL(2,R)) =
0.
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5.7 Example: complex groups

Let G be a complex semisimple Lie group. Then all parabolic subgroups
of G are conjugate to the minimal parabolic P = MAN. For that group, we
have M = T" and A = R" for an n € N. So My, = M = Z". The principal
series representations

POty — IndS(o‘ ®e™ @ In)

for o € mds and v € a*, are all irreducible, and exhaust the irreducible
tempered representations of G. Two principal series representations P>
and P°"Y" are equivalent if and only if there isa w € W such that wo = ¢
and wv = v’. Hence

Gtemp = (Zn X Rn)/w

By Lemma 5.13, we have
(K (€)™ = Cola™/Wo) @ K.
By Corollary 5.4, we conclude that
CiG = P Cola”/Ws) @ K = Co(Giemp) @ X.
o€Mys

Hence ’ '
K](C:G) - KJ(Gtemp) = @ K](Rn)-
0_elolds §WCF :{e}
Since n = dim A = dim(G/K) mod 2, we find that
Kimex(CiG) = € 7

o€ mds We={e}

and Kgim(c/x)+1(C;G) = 0. See [17] for more details.

5.8 Dirac induction

In [1, 16] discrete series representations are realised geometrically in the
[?-kernel of a Dirac operator on G/K, defined as follows. Letg = ¢ ® s
be a Cartan decomposition. Consider the inner product on s given by the
restriction of the Killing form. The adjoint representation

Ad: K — GL(s)
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of K on s takes values in SO(s), because the Killing form is Ad(K)-invariant,

and K is connected. We suppose that it has a lift Ad to the double cover
Spin(s) of SO(s). It may be necessary to replace G and K by double cov-
ers for this lift to exist; we indicate how to handle the general case below.
Then the homogeneous space G/K has a G-equivariant Spin-structure

PS/K .= G xg Spin(s) — G/K.

Here G xx Spin(s) is the quotient of G x Spin(s) by the action of K defined
by
k(g,a) = (gk', Ad(k)a),

fork € K, g € G and a € Spin(s).

Set d := dim(s) = dim(G/K). Fix an orthonormal basis {X;, ..., X4} of
s. Let A, be the canonical representation of Spin(d). Consider the G-vector
bundle

Ev =G x¢x (As® V) — G/K.

Note that .
M (G/K,Eyv) = (C*(G)® A, ® V)", (5.3)
where K acts on C*(G) ® A, ® V by
k-(fRd®v)=(foli1 @ Ad(k)§ @ k - v) (5.4)
forallk € K, f € C*(G), 6 € A;and v € V. Here 1,1 denotes left multipli-

cation by k™.
Using the basis {Xj,..., X4} of s and the isomorphism (5.3), define the
differential operator
DV: T°(Ey) — I'™°(Ey) (5.5)

by the formula
d
DY:=) X;@c(X) @ lv. (5.6)
j=1

Here in the first factor, X; is viewed as a left invariant vector field on G, and
in the second factor, c: s — End(A,) is the Clifford action. The operator
(5.5) is the Spin-Dirac operator on G/K (see e.g. [16], Proposition 1.1.

Let V be an irreducible representation of K. Lafforgue (see also Wasser-
mann [18]) uses the Dirac operator DV defined in (5.6) to define a Dirac
induction map

D-Inds : R(K) — K,(C*(G)) (5.7)
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by
D-Ind{[V] := | (C;(G) @ A, V)", b(DY)] (5.8)

where b: R — R is a normalising function, e.g. b(x) = ﬁ The ex-
pression on the right hand side defines a class in Kasparov’s KK-group
KK, (C, C:(G)), which is isomorphic to the K-theory group K.(C;(G)). If
G/Kis even-dimensional, A, splits into two irreducible subrepresentations
A and A;. Then DV is odd with respect to the grading on A,, and Dirac in-
duction takes values in Ko(C;G). If G/K is odd-dimensional, then it takes
values in K; (C7G).

If the lift Ad does not exist, one uses a double cover K of K, and takes
the irreducible representations V of K for which A, ® V descends to a rep-
resentation of K.

In [18], Wassermann outlined a proof the Connes-Kasparov conjecture,
which states that this Dirac induction map is a bijection, for linear reduc-
tive groups. This is based on Theorem 5.12. Lafforgue gave a different
proof for semisimple Lie groups, in [15]. The latter proof is not based on
the explicit structure of C;G as in Theorem 5.12. Lafforgue’s result was
generalised to general almost connected Lie groups in [6].

One of the strengths of using K*(C;G) is that Dirac induction always
defines a nonzero element of this group, even though the L*-kernel of DY
IS zero in many cases.
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