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Abstract

Higher twisted K-theory is a recent generalisation of topological K-theory introduced by
Ulrich Pennig which captures all of the homotopy-theoretic twists of topological K-theory
in a geometric way. We explore a variety of basic properties belonging to higher twisted
K-theory including functoriality, cohomology properties and the existence of a graded
module structure, and provide an alternative formulation of the higher twisted K-theory
groups from a topological perspective. We then investigate ways of producing explicit
geometric representatives of the higher twists of K-theory viewed as cohomology classes
in special cases using the clutching construction and when the class is decomposable.
Spectral sequences are developed to allow for explicit computations to be performed,
and finally a variety of computations are performed both for spaces with torsion-free
cohomology – which is the case largely discussed by Pennig – as well as in the torsion
case where additional difficulties are present.
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Introduction

Background and motivation

Topological K-theory is a rich area of study in algebraic topology, first developed by
Atiyah and Hirzebruch in the late 1950s [AH59]. It has become an indispensable tool in
topology, for instance Adams and Atiyah were able to use it to provide a simple proof
that S1, S3 and S7 are the only spheres which can be provided with H-space structures
and Adams also shows that a large amount of stable homotopy theory can be derived
from topological K-theory, and has found further application in differential geometry,
mathematical physics and index theory.

Since it forms a cohomology theory, there is an abstract notion of twist for K-theory
which was first introduced by Donovan and Karoubi in a limited setting [DK70], before
a setting with greater generality was introduced by Rosenberg [Ros89]. This was further
developed by Bouwknegt, Carey, Mathai, Murray and Stevenson [BCM+02], after which
more work was done by Mathai and Stevenson [MS03, MS06a] as well as by Atiyah and
Segal [AS04, AS06]. Twists of K-theory over a topological space X were geometrically
viewed as either (isomorphism classes of) principal PU -bundles over X or (stable iso-
morphism classes of) bundle gerbes over X, both classified by the third-degree integral
cohomology of X, and this allowed the twisted K-theory groups to be defined in a number
of different ways. Work by Antieau, Gómez and Gepner [AGG14] showed that these defi-
nitions of classical twisted K-theory did indeed agree. Twisted K-theory was found to be
relevant in numerous aspects of mathematical physics. In the presence of a B-field, the
charges of D-branes – fundamental objects in string theory – on a spacetime take values
in an appropriate twisted K-theory group of the spacetime [BM00]. Equivariant twisted
K-theory has also been linked to the Verlinde ring, and allowed for a deeper understanding
of this object which arises in conformal field theory [FHT11a, FHT13, FHT11b].

From a homotopy-theoretic point of view, however, the geometric twists considered
up until this point did not capture the entire picture – there existed a wider class of
abstract twists for which no geometric interpretation was known. This changed with
the introduction of a Dixmier–Douady theory for strongly self-absorbing C∗-algebras by
Pennig and Dadarlat [DP16, DP15a], analogous to the Dixmier–Douady theory for the
compact operators on a Hilbert space which is integral to the construction of the classical

xiii



xiv Introduction

twists. Using this theory, Pennig was able to propose a geometric model which captures
all of the twists of K-theory, extending what was classically known as twisted K-theory
to its greatest generality which he has termed higher twisted K-theory [Pen15]. The work
in this thesis is inspired by Pennig’s formulation of higher twisted K-theory, and we aim
to fill in some of the details which have already been worked out in the classical case and
perform computations in this new setting.

A major result of Pennig and Dadarlat’s work in [DP15b] shows that the full set of
twists of K-theory over a locally compact Hausdorff space X is equivalent to the set
of isomorphism classes of algebra bundles over X whose fibres are isomorphic to the
stabilised infinite Cuntz algebra O∞⊗K, or equivalently isomorphism classes of principal
Aut(O∞ ⊗ K)-bundles over X. They also prove that when the space X has torsion-free
cohomology, this set of twists can be identified with the direct sum of the odd-degree
integral cohomology groups of X. These two facts are critical in our work that follows.

Thesis goals

Since higher twisted K-theory was only developed very recently, there are a number of
directions for our work to go in, ranging from exploring basic properties to advanced
computational techniques.

The first task to perform in exploring higher twisted K-theory is ensuring that it
satisfies some expected properties analogous to those satisfied by topological and classical
twisted K-theory. These include functoriality, cohomology properties and the existence
of a graded module structure, as well as a formulation in terms of Fredholm operators.

The second major goal of this thesis was to investigate the higher twists themselves.
While Pennig provides a geometric interpretation of the higher twists, it is often desir-
able to view twists of K-theory as cohomology classes where possible, for example in
computations involving spectral sequences. In the case that twists can be identified with
cohomology classes, however, there is no general method to construct an explicit bundle
associated to a cohomology class, nor is there a method to do the reverse.

Of course, when studying something computable such as higher twisted K-theory,
performing computations for a variety of spaces should be one of the main aims. Therefore
the final and most major aim was to develop and apply tools for computation. These range
from straightforward tools such as the Mayer–Vietoris sequence to tools which are more
difficult to apply but gain deeper results, including spectral sequences. Although Pennig
and Dadarlat’s results apply only to the torsion-free setting, we also perform computations
for some spaces with torsion in their cohomology.

Results

We begin by addressing the first goal, to explore the basic properties of higher twisted
K-theory. Indeed, in Proposition 2.3.7 we show that higher twisted K-theory is a functor
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from an appropriate category of topological spaces equipped with twists to the category
of abelian groups, where a twist over X is geometrically interpreted as an algebra bundle
over X with fibres isomorphic to O∞⊗K and a morphism f : (X,AX)→ (Y,AY ) of spaces
equipped with twists is a continuous proper map f : X → Y together with an isomor-
phism θ : f ∗AY → AX . We also show that higher twisted K-theory forms a generalised
cohomology theory in Proposition 2.3.8, i.e. given a topological space X equipped with a
twist and a closed subspace A ⊂ X, there is a notion of relative higher twisted K-theory
and these groups satisfy the axioms for a generalised cohomology theory. Furthermore,
to show that higher twisted K-theory truly is a generalisation of both topological and
classical twisted K-theory, we prove that higher twisted K-theory reduces to topologi-
cal K-theory when a trivial twist is taken in Proposition 2.3.10, and similarly show in
Proposition 2.3.11 that it reduces to classical twisted K-theory in the appropriate setting.

While Pennig has proved a variety of basic results about higher twisted K-theory, he
does this using mostly homotopy-theoretic notions and C∗-algebraic K-theory, and so we
aim to explore these results and more using an alternative, more topological viewpoint.
To do so, we generalise a result of Rosenberg [Ros89] in Theorem 2.5.1 and prove that
the higher twisted K-theory groups can be identified with

K0(X, δ) = [Eδ,FredO∞⊗K]Aut(O∞⊗K);

K1(X, δ) = [Eδ,Ω FredO∞⊗K]Aut(O∞⊗K);

where Eδ is the principal Aut(O∞ ⊗K)-bundle over X representing the abstract twist δ,
FredO∞⊗K denotes the Fredholm operators on the standard Hilbert (O∞ ⊗ K)-module,
Ω denotes the based loop space and [−,−]Aut(O∞⊗K) = π0(C(−,−)Aut(O∞⊗K)) denotes
unbased homotopy classes of Aut(O∞⊗K)-equivariant maps. This formulation allows for
greater insight into the structure of the K-theory groups, and will allow us to equip the
higher twisted K-theory functor with additional properties.

Using this topological characterisation, we investigate the algebraic properties of higher
twisted K-theory. We construct a general product of the form

Km(X, δX)×Kn(Y, δY )→ Km+n(X × Y, pX∗δX + pY
∗δY )

where pX and pY denote projection from X×Y , and explore its properties in Proposition
4.1.6. Fixing X = Y and pulling this external product back along the diagonal map
X → X ×X provides a product map

Km(X, δ)×Kn(X, δ′)→ Km+n(X, δ + δ′),

but for a general twist δ we do not obtain a graded ring structure on the higher twisted
K-theory groups K∗(X, δ). Restricting this map further to the case that one of the twists
is trivial we see in Proposition 4.1.8 that K∗(X, δ) forms a graded module over the graded
ring K∗(X) via the map

Km(X)×Kn(X, δ)→ Km+n(X, δ).
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To address the second goal of this thesis, we work with special cases. In the simplest
case, when the topological space is an odd-dimensional sphere S2n+1, we note that the
clutching construction can be used to construct principal Aut(O∞ ⊗ K)-bundles over
S2n+1 by specifying a gluing map S2n → Aut(O∞ ⊗ K). These maps are classified up
to homotopy by an integer, and using Pennig and Dadarlat’s link between twists and
cohomology classes [DP16] we see that the principal Aut(O∞⊗K)-bundles over S2n+1 are
also classified by an integer, providing an explicit geometric way of describing the twist
over S2n+1 associated with a particular cohomology class in Section 3.1. Another case that
we consider involves removing the assumption on the space but restricting to a particular
type of cohomology class. For a general CW-complex X with torsion-free cohomology, we
take a 5-class δ given by the cup product of a 2-class α and a 3-class β. By associating a
principal U(1)-bundle to α and a principal PU -bundle to β and constructing an effective
action of U(1) × PU on O∞ ⊗ K, we are able to construct a principal Aut(O∞ ⊗ K)-
bundle over X corresponding to the cohomology class δ, and obtain a more general result
in Theorem 3.2.1.

Moving towards our final goal of performing computations, we highlight the Mayer–
Vietoris sequence in higher twisted K-theory developed by Pennig in Proposition 2.3.9.
This proves useful in some computations, but most spaces require more powerful machin-
ery in the form of spectral sequences. Hence in order to be better equipped to perform
these computations, we have developed an analogue of the twisted Atiyah–Hirzebruch
spectral sequence for higher twisted K-theory. We show in Theorem 4.2.3 that when
X is a CW complex, there is an analogue of the Atiyah–Hirzebruch spectral sequence
with E2-term Ep,q

2 = Hp(X,Kq(pt)) and which strongly converges to the higher twisted
K-theory K∗(X, δ). In particular, when the abstract twist δ can be identified with a
cohomology class δ ∈ H2n+1(X,Z) we see in Theorem 4.2.4 that the d2n+1 differential will
be of the form d2n+1(x) = d′2n+1(x) + δ ∪ x where d′2n+1 is the differential in the ordinary
Atiyah–Hirzebruch spectral sequence in topological K-theory, which is in particular an
operator whose image is torsion. There is, in fact, a more general Segal spectral sequence
that can be applied in this setting and we generalise a result of Rosenberg [Ros17] to
obtain this sequence. Letting F

ι−→ E
π−→ B be a fibre bundle of CW complexes with

δ a twist over E, we prove in Theorem 4.2.5 that there is a spectral sequence with E2-
term Ep,q

2 = Hp(B,Kq(F, ι∗δ)) which strongly converges to the higher twisted K-theory
K∗(E, δ). We also obtain more explicit information about the differentials of this se-
quence in Theorem 4.2.6, which is useful in proving general results about the higher
twisted K-theory of Lie groups.

To conclude the thesis, we use these spectral sequences and other techniques to perform
computations, generalising a wide variety of results of [BCM+02] from the classical case.
Beginning with the simplest case, we compute the higher twisted K-theory of the odd-
dimensional spheres in Proposition 5.1.1 using both the Mayer–Vietoris sequence and the
spectral sequence, and obtain the same results as in the classical setting for S3. Due to
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the simplicity of this computation, we are able to explicitly determine the generator of
K1(S2n+1, δ) ∼= ZN where the twist δ ∈ H2n+1(S2n+1,Z) ∼= Z is N 6= 0 times a generator,
and present this in Proposition 5.1.3. We also compute the higher twisted K-theory of
various products of spheres in Propositions 5.1.4 and 5.1.5. Another important class of
spaces with torsion-free cohomology are the compact, connected, simply connected Lie
groups. We use the spectral sequence to obtain information about the higher twisted K-
theory groups of SU(n) for twists of specific degree in Theorem 5.1.8, and follow techniques
of Rosenberg [Ros17] to draw more general conclusions about the higher twisted K-theory
of SU(n) in Theorem 5.1.9.

Although the major result of Pennig and Dadarlat linking twists of K-theory to coho-
mology classes only applies when the space X has torsion-free cohomology, we show that
this condition can be somewhat relaxed in order to allow for a wider class of spaces to be
considered. This allows computations to be performed for real projective space and for
Lens spaces in Propositions 5.2.1 and 5.2.2 respectively. A class of examples which may
be of greater physical interest are SU(2)-bundles over 4-manifolds. These spaces belong
in the setting of spherical T-duality in M-theory, and Bouwknegt, Evslin and Mathai
prove that the spherical T-duality transformation induces a degree-shifting isomorphism
on the 7-twisted K-theory groups of these bundles [BEM15a, BEM15b, BEM18]. They do
not, however, consider the 5-twisted K-theory of these SU(2)-bundles, and this is what
we compute in Subsection 5.2.3. We place restrictions on the base space M in order to
ensure that the 5-twists of the bundle correspond exactly to the integral 5-classes of the
bundle, and then use the spectral sequence to compute the 5-twisted K-theory. These
groups are heavily dependent on the ring structure of the cohomology of M , and so several
specific base 4-manifolds M are chosen to obtain complete computations.

Outline of this thesis

The first chapter of this thesis contains preliminaries on topologicalK-theory and operator
algebraic K-theory, including background on vector bundles and Fredholm operators on
both Hilbert spaces and Hilbert C∗-modules. This allows for a motivated introduction
to higher twisted K-theory to be presented in the second chapter using Pennig’s original
formulation, after which various basic properties of higher twisted K-theory are explored
and an alternative topological characterisation of the higher twisted K-theory groups
is provided. In the third chapter, we describe methods of producing explicit geometric
representatives for twists of K-theory described by cohomology classes using both the
clutching construction and by considering decomposable cohomology classes. The fourth
chapter describes the external product and graded module structure on higher twisted
K-theory, and develops spectral sequences for computations. Finally, the fifth chapter
contains explicit computations of higher twisted K-theory for various spaces. This chapter
is separated into two sections; in the first we consider spaces with torsion-free cohomology
while in the second we consider spaces where torsion must be taken into account.
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Chapter 1

Preliminaries

This chapter serves to explore the notion of topological K-theory from a variety of view-
points which will be relevant in the exploration of higher twisted K-theory, and also to
introduce operator algebraic K-theory through which higher twisted K-theory was orig-
inally formulated. We present only the basic definitions and results required to obtain
insight into these areas, and the reader who is familiar with this content can proceed
directly to Chapter 2.

1.1 Topological K-theory

The idea of topological K-theory goes back to 1959, at which time Atiyah and Hirze-
bruch modified Grothendieck’s recently defined algebraic K-theory to the topological
setting [AH59]. At its core, complex topological K-theory is a generalised multiplicative
cohomology theory whose zero-dimensional piece classifies complex vector bundles over
topological spaces up to isomorphism.

We begin our exposition with a brief survey of topological vector bundles as could be
found in [Ati67, Par08, Hat17] for instance. Using this, we follow the standard approach of
these same references in defining topological K-theory, and provide results to show that it
forms a generalised cohomology theory. We then define topological K-theory from a more
analytic perspective using Fredholm operators on an infinite-dimensional Hilbert space,
and conclude by presenting another useful way to view K-theory groups using classifying
spaces.

1.1.1 Vector bundles

Definition 1.1.1. A complex vector bundle of rank k over a topological space X is a
topological space E and a continuous surjective map π : E → X such that

• π−1(p) is a complex vector space of dimension k for all p ∈ X;

1



2 Chapter 1. Preliminaries

• there is an open cover {Uα}α∈A of X such that for every α ∈ A there exists a
homeomorphism Φα : π−1(Uα)→ Uα × Ck making the following diagram commute:

π−1(Uα) Uα × Ck

Uα,

Φα

π
πUα

and Φα restricts to a linear isomorphism π−1({x}) ∼= Ck for each x ∈ Uα.

More generally, a complex vector bundle over X need not have constant rank if X is not
connected, but the rank is locally constant.

This shows that a complex vector bundle consists of data (E , π,X) where E is referred
to as the total space, X is the base space, π is projection and Ep = π−1(p) is the fibre over
p ∈ X. Although there is a notion of real vector bundle which leads to real topological
K-theory, this will not concern us. There exists a far more extensive literature in the
case of complex K-theory, and so by vector bundle we will always mean complex vector
bundle. We will often denote a vector bundle simply by the total space E where the base
space is understood, and the projection will be denoted πE where there are multiple vector
bundles over the same space.

A morphism of vector bundles over X is a continuous map ϕ : E → F such that
πE = πF ◦ ϕ and which restricts to a linear map ϕx : Ex → Fx for all x ∈ X. An
isomorphism of vector bundles is a morphism with an inverse which is also a morphism,
and if there exists an isomorphism between E and F then we say that these vector bundles
are isomorphic. The set Vect(X) is defined to be the set of isomorphism classes of vector
bundles over X.

Definition 1.1.2. A section of a complex vector bundle E over X is a continuous map
s : X → E such that π ◦ s = idX . The space of sections of a vector bundle is denoted
C(X, E).

Example 1.1.1. The product vector bundle X × Ck over X with π given by projection
onto the first factor is called the trivial bundle of rank k over X. Any vector bundle which
is isomorphic to a trivial bundle is said to be trivial. For this reason, the second point in
Definition 1.1.1 is often referred to as local triviality, and the elements of {(Uα,Φα)}α∈A
are referred to as local trivialisations. A section of the trivial bundle of rank k over X is
simply a continuous map s : X → Ck, and therefore C(X,X × Ck) is equal to the set of
continuous functions X → Ck, denoted C(X,Ck).

Example 1.1.2. If M is a manifold, then the suggestively named tangent bundle TM and
cotangent bundle T ∗M are vector bundles over M (see, for instance, [Lee03]). A section
of the tangent bundle is a vector field and a section of the cotangent bundle is a 1-form,
thus C(M,TM) is the space of all vector fields on M and C(M,T ∗M) = ∧1M .
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Example 1.1.3. Consider the complex projective space CP n of lines through the origin in
Cn+1, with the equivalence class of the point z = (z1, · · · , zn+1) ∈ Cn+1 \ {0} under the
equivalence relation z ∼ λz for all λ ∈ C \ {0} denoted by [z1 : · · · : zn+1] ∈ CP n. There
is a canonical line bundle over CP n whose total space is the subspace E of CP n × Cn+1

consisting of pairs (l, z) such that z ∈ l, and which is equipped with the obvious projection
map π : E → CP n. We will show that this is indeed a vector bundle over CP n. In
order to construct local trivialisations, we define an open cover {Ui}i∈{1,··· ,n+1} of CP n by
Ui = {[z1 : · · · : zn+1] : zi 6= 0}, and observe that the map Ui × C → π−1(Ui) defined by
([z1, · · · , zi−1, 1, zi+1, · · · , zn+1], λ) 7→ ([z1, · · · , zi−1, 1, zi+1, · · · , zn+1], (λz1, · · · , λzn+1)) is
a homeomorphism. Thus E is a line bundle over CP n.

We now move towards placing a richer structure on our set Vect(X) by introducting
ways of constructing new vector bundles from old.

Definition 1.1.3.

• Given a vector bundle π : E → Y and a continuous map φ : X → Y , we define the
pullback bundle of E over X to have total space

φ∗E = {(x, v) ∈ X × E : f(x) = π(v)}

and the natural projection onto X.

• Given two vector bundles πE : E → X and πF : F → X, we define the sum E ⊕ F
to be the fibred product of E and F , i.e.

E ⊕ F = {(e, f) ∈ E × F : πE(e) = πF(f)}

with the natural projection map, and then (E ⊕ F)x ∼= Ex ⊕Fx for all x ∈ X.

• Given two vector bundles E ,F over X, the tensor product bundle may be defined
in a similar manner such that (E ⊗ F)x ∼= Ex ⊗Fx for all x ∈ X.

The pullback operation interacts nicely with direct sum and tensor product as follows.

Lemma 1.1.4. Let X, Y and Z be topological spaces, with E1 and E2 vector bundles over
Y and F a vector bundle over Z. Furthermore, let φ : X → Y and ψ : Y → Z be
continuous maps. Then

(i) (ψ ◦ φ)∗F ∼= φ∗(ψ∗F);

(ii) idZ
∗F ∼= F ;

(iii) φ∗(E1 ⊕ E2) ∼= φ∗E1 ⊕ φ∗E2;

(iv) φ∗(E1 ⊗ E2) ∼= φ∗E1 ⊗ φ∗E2.
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As mentioned at the beginning of the chapter, we are interested in classifying vector
bundles up to isomorphism, and so we must show that the constructions given in Definition
1.1.3 are well-defined on Vect(X) to place additional structure on this set.

Proposition 1.1.5. Let φ : X → Y be a continuous map between topological spaces with
E1
∼= E ′1 and E2

∼= E ′2 vector bundles over X and F ∼= F ′ vector bundles over Y . Then

(i) φ∗F ∼= φ∗F ′;

(ii) E1 ⊕ E2
∼= E ′1 ⊕ E ′2;

(iii) E1 ⊗ E2
∼= E ′1 ⊗ E ′2.

Therefore the operations φ∗[F ] = [φ∗F ], [E1]⊕ [E2] = [E1 ⊕ E2] and [E1]⊗ [E2] = [E1 ⊗ E2]
are well-defined on Vect(X).

These results allow us to place an algebraic structure on Vect(X). In particular,
(ii) shows that Vect(X) forms a monoid under direct sum, where the identity element
is the zero bundle (X,X, idX). Furthermore, it can be shown that E1 ⊕ E2

∼= E2 ⊕ E1

and so Vect(X) actually forms an abelian monoid. In fact, (iii) along with the simple
observation that taking the tensor product with the zero bundle gives the zero bundle
implies that Vect(X) is a commutative semiring, which can informally be viewed as a
commutative ring in which the underlying “group” is actually a monoid. Now, we would
like K-theory to have the structure of a ring and so the final hurdle in defining K0(X) for
a topological space X is constructing an abelian group from our abelian monoid Vect(X),
which becomes a ring when equipped with the induced multiplication from Vect(X). This
is done through a construction known as the Grothendieck group, which we outline in the
following. Informally, we add “negative” elements into the abelian monoid in order to give
each element an inverse – this is recognisable as the process by which the commutative
semiring of natural numbers N is used to form the commutative ring of integers Z. The
formal construction and its basic properties are outlined below.

Definition 1.1.6. Let M be an abelian monoid. Define an equivalence relation on M×M
by (m1,m2) ∼ (n1, n2) if and only if there is an l ∈M such that m1 +n2 + l = m2 +n1 + l.
We define the Grothendieck group of M to be the set of equivalence classes of this relation
in M ×M with the operation [(m1,m2)] + [(n1, n2)] = [(m1 + n1,m2 + n2)]. An element
[(m,n)] is commonly denoted m − n ∈ G(M). If M is a commutative semiring, then
G(M) becomes a commutative ring with multiplication defined by

(m1 −m2)(n1 − n2) = m1n1 +m2n2 −m1n2 −m2n1.

Lemma 1.1.7. Let M be a commutative semiring. Then G(M) is a well-defined commu-
tative ring, i.e. the relation defined is truly an equivalence relation, addition is well-defined,
commutative and associative; the class of (0, 0) is the identity; the class of (n,m) is an
inverse for the class of (m,n); and multiplication is well-defined, associative, commutative
and distributive.
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We have now laid out enough groundwork to present the first definition in topological
K-theory.

Definition 1.1.8. For X a compact Hausdorff space, we define the K-theory K0(X) to
be the Grothendieck group of the commutative semiring Vect(X) of isomorphism classes
of complex vector bundles over X.

Unraveling this definition, we see that the elements of K0(X) are formal differences
of isomorphism classes of vector bundles over X, i.e. a general element of K0(X) is of the
form [E ]− [F ] for E ,F vector bundles over X. Note that K0(X) inherits the structure of
a commutative ring, since Vect(X) forms a commutative semiring.

Example 1.1.4. While the definition is relatively simple to state, K-theory can be quite
difficult to compute in general, at least until we build up some machinery to use in
computations. At this stage, we can compute the K-theory of the simplest non-empty
topological space: a single point. It is clear from the definition that a vector bundle over a
point consists of a single vector space, and therefore these vector bundles will be classified
up to isomorphism by a natural number. Hence Vect(pt) ∼= N and thus K0(pt) ∼= Z.

To each compact Hausdorff space X we have associated a commutative ring K0(X).
We now wish to slightly broaden our viewpoint to look at a wider class of spaces – locally
compact Hausdorff spaces – and to turn K-theory into a graded ring by introducing
higher groups Kn for n ∈ Z. To the reader who is well-versed in algebraic topology
and cohomology theories, K-theory ends up defining a generalised cohomology theory
and so many of the techniques available for cohomology theories may be applied to K-
theory. In particular, there is a notion of relative and reduced K-theory that we will
briefly introduce. This will allow us to explore the fundamental result which separates
K-theory from other cohomology theories: Bott periodicity. This result will imply that
our K-theory groups are 2-periodic, making calculations immensely easier, but the proof
is technical and we will not present the details here. For now, we explore the functorial
properties of K-theory, allowing the notion of reduced K-theory to be introduced.

Proposition 1.1.9. The assignment X 7→ K0(X) defines a contravariant functor from
the category of compact Hausdorff spaces with continuous maps to the category of com-
mutative rings with unital ring homomorphisms.

We use this functoriality to define the reduced K-theory ring.

Definition 1.1.10. Let (X, x0) be a pointed space such that X is compact Hausdorff,

and denote inclusion by j : {x0} ↪−→ X. The reduced K-theory ring K̃0(X) of (X, x0) is
the kernel of the induced homomorphism j∗ : K0(X)→ K0({x0}) = Z.

As in Proposition 1.1.9, this is a functorial assignment. Of particular interest allowing
reduced K-theory to be related to ordinary K-theory is the following result.
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Proposition 1.1.11. For any pointed space (X, x0) with X compact Hausdorff, we have

K0(X) ∼= K̃0(X)⊕ Z.

This allows us to pass to the more general category of locally compact Hausdorff spaces
equipped with proper continuous maps.

Definition 1.1.12.

(i) A Hausdorff space X is locally compact if for every x ∈ X there is an open neigh-
bourhood U 3 x such that U has compact closure.

(ii) A continuous function f : X → Y is proper if f−1(C) is a compact subset of X for
every compact subset C ⊂ Y .

(iii) The one-point compactification of X, denoted X+, is the disjoint union X q {∞}
obtained by adding a point ∞ to X.

It can be verified that X+ truly is a compact Hausdorff space if X is a locally compact
Hausdorff space, so this allows us to associate a compact Hausdorff space to each locally
compact Hausdorff space and in this way we can extend our definition of K-theory to
these spaces.

Definition 1.1.13. ForX a locally compact Hausdorff space, we defineK0(X) = K̃0(X+)
taking ∞ as the basepoint of X+.

It can be easily verified that if X is a compact Hausdorff space then this agrees with the
original definition of K0(X), and also that this definition of K0 provides a contravariant
functor from the category of locally compact Hausdorff spaces with proper maps to the
category of commutative rings with unital ring homomorphisms. As discussed earlier,
there is also a notion of relative K-theory which we define here for completeness, and to
introduce the notion of a generalised cohomology theory.

Definition 1.1.14. A compact pair (X,A) is a compact Hausdorff space X together
with a closed subspace A ⊂ X. The relative K-theory ring of (X,A) is defined to be the

reduced K-theory of the quotient space X/A, i.e. K0(X,A) = K̃0(X/A) where we take
the basepoint of X/A to be the single point to which A is identified.

From this definition, it can be seen that the relative K-theory of the compact pair
(X, x0) is simply the reduced K-theory of (X, x0), and that the relative K-theory of (X, ∅)
is the standard K-theory K0(X). Now, all that remains in order to express K-theory as
a generalised cohomology theory is to define the higher order groups Kn(X), which can
be done in a number of equivalent ways. We give two equivalent definitions here which
are both useful in differing circumstances, firstly introducing some necessary terminology
from algebraic topology. In particular we define K−n for n ∈ N and later extend this to
n ∈ Z.
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Definition 1.1.15. Let (X, x0) and (Y, y0) be pointed spaces.

(i) The wedge sum of these spaces X ∨Y is the quotient of the disjoint union XqY by
the discrete subspace {x0, y0}, whose basepoint is the image of {x0, y0} under the
quotient map. The wedge sum can also be identified as (X×Y )\(X\{x0}×Y \{y0}).

(ii) The smash product of these spaces X ∧ Y is the quotient of the product X × Y by
the wedge sum X ∨Y , whose basepoint is the single point of X ∧Y to which X ∨Y
is identified.

(iii) The reduced suspension ΣX of X is defined to be S1 ∧X, where any point of S1 is
chosen as the basepoint. This can be iterated, i.e. we define ΣnX = Σ(Σn−1X) for
n ≥ 2, and we have ΣnX ∼= Sn ∧X.

Definition 1.1.16. Let X be a locally compact Hausdorff space and (Y,A) a com-
pact pair. For n ∈ N we define K−n(X) = K0(X × Rn), and using functoriality

this allows us to define K̃−n(X) as in Definition 1.1.10 and K−n(Y,A) as in Definition

1.1.14. Alternatively, we define K̃−n(X) = K0(ΣnX) and then K−n(X) = K̃−n(X+) and

K−n(Y,A) = K̃0(Σn(Y/A)).

Theorem 1.1.17. The definitions given in Definition 1.1.16 are equivalent.

We have finally developed a sequence of contravariant functors from the category
of locally compact Hausdorff spaces with proper maps (and also compact pairs with
a suitable notion of morphism) to the category of commutative rings with unital ring
homomorphisms. In order to summarise some of the key properties of K-theory by stating
that K-theory forms a multiplicative generalised cohomology theory, we must now define
the remaining functors Kn for n ≥ 1. We do this using Bott periodicity – a result initially
proved about the homotopy groups of the stable unitary group by Bott in 1957 [Bot59]
and which is commonly restated as a periodicity theorem for the K-theory functors that
we have defined. There exist a wide range of different proofs of this result; Bott’s original
proof made use of techniques in Morse theory, while many more recent proofs have used
techniques from analysis including Fourier series. For a fairly standard proof, see [Ati67],
[Par08] or [Hat17].

Theorem 1.1.18 (Bott Periodicity). For X a locally compact Hausdorff space, there is
a natural isomorphism K0(X) ∼= K−2(X).

We then define the remaining functors for n ≥ 1 to be

Kn(X) =

{
K0(X) if n is even;

K−1(X) if n is odd.

We are now able to state the result that K-theory forms a generalised cohomology
theory.
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Definition 1.1.19. A cohomology theory is a sequence {Hp}p∈Z of contravariant func-
tors from the category of compact pairs to the category of abelian groups such that the
Eilenberg–Steenrod axioms hold:

(i) Homotopy. If {ft}t∈[0,1] is a homotopy of morphisms of compact pairs, then the
induced maps Hp(f0) and Hp(f1) are equal for all p.

(ii) Long exact sequence. For any compact pair (X,A), the inclusion map j : A ↪−→ X
induces a long exact sequence of the form

··· → Hp(X,A)→ Hp(X)
j∗−→ Hp(A)

∂−→ Hp+1(X,A)→ Hp+1(X)
j∗−→ Hp+1(A)→ ···

for some map ∂ : Hp(A)→ Hp+1(X,A), for all p.

(iii) Excision. For any compact pair (X,A) with U an open subset of X such that the
closure of U is contained in the interior of A, the inclusion (X \U,A \U) ↪−→ (X,A)
induces an isomorphism Hp(X,A) ∼= Hp(X \ U,A \ U) for all p.

(iv) Dimension. If X consists of a single point then Hp(X) = Z if p = 0 and is trivial
otherwise.

A generalised cohomology theory satisfies all of the above axioms except (iv).

Theorem 1.1.20. K-theory forms a generalised cohomology theory, i.e. it satisfies the
first three axioms of Definition 1.1.19.

Remark 1.1.1. It is straightforward to prove that there is also a long exact sequence in
reduced K-theory, where the relative K-groups in the sequence remain the same and the
remaining groups are replaced by their reduced counterparts. This is because reduced
K-theory is isomorphic to regular K-theory in odd degree, and in the even case the map
Kn(X) → Kn(A) is a map K̃n(X)⊕ Z → K̃n(A)⊕ Z which is an isomorphism between
the Z-factors of the unreduced groups.

Note that the sequence of functors in Definition 1.1.19 needs only land in the category
of abelian groups, and so K-theory actually satisfies a stronger condition since it lands
in the category of commutative rings. This gives the cohomology theory a multiplicative
structure, but the term “multiplicative cohomology theory” requires a more general prod-
uct than what has been developed so far. It is possible to develop a more general tensor
product of vector bundles which induces a map K−m(X) ×K−n(Y ) → K−n−m(X × Y ),
and this is precisely the form of product which makes K-theory into a multiplicative
cohomology theory. We will not present the details here, but the interested reader may
discover more about the product in [Hat17] or [Ati67].

Letting X = Y in this product map described above, we may use the diagonal map
X → X × X to induce a map K−m(X) × K−n(X) → K−m−n(X), and in doing so we
equip the K-theory ring K∗(X) = K0(X)⊕K−1(X) with the structure of a graded ring.
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Definition 1.1.21. A ring R is graded by a group G if there exists a family of subgroups
{Rg}g∈G of R such that R =

⊕
g∈G

Rg and Rg ·Rh ⊂ Rgh for all g, h ∈ G.

Then it is evident that K∗(X) forms a Z2-graded ring, since Bott periodicity ensures
that the multiplication K−1(X) × K−1(X) → K−2(X) ∼= K0(X) lands in the correct
group.

So far we have provided a detailed presentation of the structure of K-theory, both
as a multiplicative cohomology theory and as a graded ring. We now change focus to
computation, presenting an important tool which will be critical in the computation of
K-theory groups.

Theorem 1.1.22 (Six-term exact sequence). For (X,A) a compact pair with inclusion
j : A ↪−→ X there are natural maps ∂0 : K0(A)→ K−1(X,A) and ∂1 : K−1(A)→ K0(X,A)
such that the cyclic sequence

K0(X,A) K0(X) K0(A)

K−1(A) K−1(X) K−1(X,A)

j∗

∂0∂1

j∗

is exact. There is an analogous sequence in reduced K-theory.

An important corollary to the six-term exact sequence is the Mayer–Vietoris sequence
in K-theory. There is an analogous long exact sequence for any generalised cohomol-
ogy theory, but Bott periodicity once again makes the sequence particularly useful for
computations of K-theory.

Corollary 1.1.23 (Mayer–Vietoris sequence). Let X = U1 ∪ U2 where U1 and U2 are
closed subsets of the locally compact space X. Then there is a cyclic exact sequence

K0(X) K0(U1)⊕K0(U2) K0(U1 ∩ U2)

K−1(U1 ∩ U2) K−1(U1)⊕K−1(U2) K−1(X).

We finish this section by presenting some computations using the tools that have been
developed thus far.

Example 1.1.5.

(i) Since Rm × {p} is homeomorphic to Rm, then by Definition 1.1.16 we have

K0(Rn) = K−n({p}) =

{
Z if n is even;

0 if n is odd;



10 Chapter 1. Preliminaries

and

K−1(Rn) = K−n−1({p}) =

{
0 if n is even;

Z if n is odd.

(ii) To compute the K-theory of Sn, we note that Sn is the one-point compactification

of Rn. So by Definitions 1.1.13 and 1.1.16 we have K̃−m(Sn) = K−m(Rn) and thus

K0(Sn) =

{
Z⊕ Z if n is even;

Z if n is odd;

and

K−1(Sn) =

{
0 if n is even;

Z if n is odd.

(iii) The first factor of Z in K0(Sn) for n even is generated by the trivial bundle, but the
second factor is more interesting. It can be shown e.g. as in [Hat17] that for S2 this
is generated by [H]− 1 where H denotes the canonical line bundle over CP 1 ∼= S2

introduced in Example 1.1.3.

(iv) The K-theory of real projective space may be computed using the six-term exact
sequence and analysing the boundary maps between the K0 and K1 groups, which is
quite involved [Par08]. The end result is that K0(RP n) ∼= Z⊕Zn and K1(RP n) = 0,
which reveals an interesting property of RP n – there exists a non-trivial vector
bundle over RP n which becomes trivial upon taking its sum with itself n times.

These examples shed light on methods of calculation used in algebraic topology in
general, and in particular methods which we will apply later in the more general setting
of higher twisted K-theory.

1.1.2 Fredholm operators

An alternative definition of topological K-theory arises through the study of a special class
of operators on Hilbert spaces known as Fredholm operators. We introduce Fredholm
operators and reformulate topological K-theory from this point of view, following the
original work of [Ati67]. In doing so, we explore two compatible H-space structures on
the space of Fredholm operators, providing operations which are analogous to direct sum
and tensor product of vector bundles.

Henceforth H will denote an infinite-dimensional separable complex Hilbert space,
B(H) will denote the bounded linear operators on H and K(H) or simply K will denote
the ideal of compact operators, i.e. the norm-closure of the set of finite-rank operators.
Fredholm operators are a class of bounded linear operators that arose through the study
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of linear equations of the form Tx = 0. Loosely, the size of the kernel of the operator T
is an indication of how far away T is from being injective, while the size of the cokernel
measures the extent to which T fails to be surjective. By combining these two values
into a single value known as the index of T , we have a rough description of the existence
and uniqueness of solutions to the equation Tx = 0. The Fredholm operators are those
for which this type of analysis is meaningful, i.e. the operators that have a well-defined
notion of index.

Definition 1.1.24. A Fredholm operator on H is a bounded linear operator with finite-
dimensional kernel and finite-dimensional cokernel. The index of a Fredholm operator is
indT = dim kerT −dim cokerT . The space of all Fredholm operators on H is denoted by
FredH or simply Fred.

There is an important alternative definition of Fredholm operators given by Atkinson’s
theorem.

Theorem 1.1.25 (Atkinson. Thm 14.1.1 [WO93]). An operator T ∈ B(H) is Fredholm
if and only if it is invertible modulo compact operators, i.e. there is an S ∈ B(H) such
that idH − ST and idH − TS are compact operators on H.

Letting Q(H) denote the Calkin algebra of H, i.e. the quotient space B(H)/K(H), we
obtain a short exact sequence

0→ K(H) ↪−→ B(H)
π−→ Q(H)→ 0

and thus see that the Fredholm operators can be viewed as the inverse image of the units
in the Calkin algebra under π.

We now provide a collection of important results regarding the index map.

Lemma 1.1.26 (14.1.6 to 14.1.9 [WO93]). Let S and T be Fredholm operators and Q a
compact operator.

(i) The composition ST is a Fredholm operator and ind(ST ) = ind(S) + ind(T ).

(ii) The adjoint operator T ∗ is a Fredholm operator and ind(T ∗) = − ind(T ).

(iii) The set of Fredholm operators on H is an open subset of B(H).

(iv) The index map is continuous and thus locally constant.

(v) The index is unaffected by compact peturbations, i.e. ind(T +Q) = ind(T ).

(vi) Letting Fredn denote the Fredholm operators of index n ∈ Z, the connected compo-
nents of Fred are precisely Fredn and hence π0(Fred) ∼= Z.
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In order to define a commutative ring which is isomorphic to topological K-theory
using the Fredholm operators, we aim to define two compatible binary operations on
Fred in order to obtain a ring-like structure on Fred. One of the natural operations to
consider would be composition of Fredholm operators, but composition is in general not
commutative and Fredholm operators are not all invertible. Using Lemma 1.1.26, however,
it appears that considering composition up to homotopy may yield the desired results,
because the indices of ST and TS are equal and thus these operators are homotopic
through Fredholm operators. This leads to the notion of an H-space structure on a
topological space.

Definition 1.1.27. An H-space is a topological space X with a fixed basepoint e ∈ X
and a continuous map µ : X ×X → X such that µ(x, e) = x = µ(e, x) for all x ∈ X.

We can see that Fred forms an H-space with identity element given by the identity
operator I and with binary operation given by composition of operators. In fact, Fred
has additional structure as alluded to above. Composition is associative, and while there
do not exist inverses a priori, there are inverses up to homotopy: for S ∈ Fred we see
that SS∗ and S∗S both have index 0 and thus are homotopic to the identity. A space
with these properties is sometimes referred to as an H-group, as for any space X the
set [X,Fred] will inherit a group structure through the obvious definition. In fact, by
introducing a second operation on Fred defined up to homotopy which satisfies certain
distributivity axioms, we will turn Fred into what is sometimes referred to as an H-ring,
for which [X,Fred] inherits a ring structure. Note that we are always using unbased
homotopy classes of maps unless specified otherwise.

The second operation on Fred is a little harder to describe, and so we will stick to the
simpler case of defining an operation on Fred0. As argued in Section 4.1 of [MS03], given
S, T ∈ Fred we may form the tensor product operator S⊗ I + I ⊗T , which is a Fredholm
operator on H⊗H with index dim ker(S) dim ker(T )− dim ker(S∗) dim ker(T ∗). Hence if
S, T ∈ Fred0, the tensor product will be a Fredholm operator of index 0. Then choosing
an isometry H⊗H ∼= H we obtain a product map on Fred0. It is straightforward to show
that composition and tensor product are compatible, giving the following result.

Proposition 1.1.28. The space Fred0 equipped with composition and tensor product as
described above is an H-ring, i.e. [X,Fred0] inherits a ring structure.

As one may expect, Fred also has an H-ring structure but the tensor product operation
is more difficult to describe. It requires using a Z2-graded Hilbert space, and is explained
in detail in [Jän65]. This is precisely the H-ring structure which allows us to describe
topological K-theory using Fredholm operators.

Theorem 1.1.29 ([AH59, Jän65]). For X a compact Hausdorff space, the ring K0(X)
is isomorphic to [X,Fred] with operations as described above. The reduced K-theory ring

K̃0(X) is isomorphic to the ring [X,Fred0].
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We may also define K-theory for locally compact spaces as in Definition 1.1.13, and de-
fine the relative and higher K-theory groups in the exact same way as in Definitions 1.1.14
and 1.1.16. From these definitions we are able to obtain an alternative characterisation
of the higher K-theory groups, which requires the notion of based loop space.

Definition 1.1.30. Let (X, x0) be a pointed space. The based loop space ΩX of X is
the space of based loops in X, i.e. the set of continuous maps f : S1 → X such that
f(1) = x0 equipped with the compact-open topology, and with binary operation given by
concatenation of loops.

Proposition 1.1.31. When X and Y are Hausdorff spaces, there is an isomorphism
[ΣX, Y ] ∼= [X,ΩY ]. When Y is an H-ring, ΩY inherits the H-ring structure and this
becomes an isomorphism of rings. In particular, for compact Hausdorff X there is an
isomorphism of rings K−n(X) ∼= [X,Ωn Fred].

Thus Bott periodicity from this perspective states that there is a natural isomorphism
[X,Ω2 Fred]→ [X,Fred]. With sufficient background on the operations turning Fred into
an H-ring allowing topological K-theory to be described using Fredholm operators, we
move on to our final characterisation of K-theory.

1.1.3 Classifying spaces

The final picture of topological K-theory that we will present is perhaps the most inspired
by homotopy theory, as it will allow us to define the K-theory spectrum. This will require
a basic understanding of classifying spaces and hence principal bundles, which will also
be important when considering twists of K-theory, and so we briefly introduce these here.

To begin, we recall the definitions of fibre bundles and principal bundles, and discuss
constructions allowing one to move between these two related notions. Fibre bundles
are a generalisation of vector bundles in which the restriction that the fibres must be
isomorphic to complex vector spaces is relaxed, and they are defined formally as follows.

Definition 1.1.32. Let F be a topological space. A fibre bundle with fibre F over a
topological space X is a topological space E and a continuous surjective map π : E → X
such that

• π−1(p) is isomorphic to F for all p ∈ X;

• there is an open cover {Uα}α∈A of X such that for every α ∈ A there exists a
homeomorphism Φα : π−1(Uα)→ Uα × F making the following diagram commute:

π−1(Uα) Uα × F

Uα,

Φα

π
πUα
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and Φα restricts to an isomorphism π−1({x}) ∼= F for each x ∈ Uα.

A fibre bundle E over X with fibre F and projection π is often denoted by F → E π−→ X,
and the elements of {(Uα,Φα)}α∈A are called local trivialisations of the fibre bundle.

It is clear that a vector bundle over X is a fibre bundle with fibre Ck, where we add
the requirement that the Φα restrict to vector space isomorphisms on the fibres. There
is an additional notion of the transition functions and structure group of a fibre bundle
which roughly describe how the local trivialisations patch together to form the bundle.

Proposition 1.1.33 (Adapted from Lemma 10.5 [Lee03]). Let F → E π−→ X be a fibre
bundle with local trivialisations {(Uα,Φα)}α∈A. Then there are continuous maps on the
overlaps gαβ : Uα ∩ Uβ → Homeo(F ) called transition functions such that the map

Φα ◦ Φ−1
β : (Uα ∩ Uβ)× F → (Uα ∩ Uβ)× F

is given by (x, f) 7→ (x, gαβ(x)(f)).

Definition 1.1.34. Let G be a topological group and suppose that G acts continuously
and effectively on the topological space F . Equivalently, suppose that G is isomorphic
to a subgroup of Homeo(F ). Then the fibre bundle F → E π−→ X has structure group
G if there exist local trivialisations {(Uα,Φα)}α∈A such that the transition functions gαβ
defined in Proposition 1.1.33 land in G, i.e. gαβ : Uα ∩ Uβ → G for all α, β ∈ A. If there
exists a subgroup H < G satisfying the same condition, then we say that the structure
group may be reduced to H.

For example, a vector bundle of rank k is a fibre bundle with structure group GL(k,C),
and under certain conditions this structure group may be reduced to SL(k,C), U(k) or
SU(k). We are now able to introduce principal bundles, which are a type of fibre bundle
with some additional constraints.

Definition 1.1.35. Let G → P
π−→ X be a fibre bundle with structure group G such

that G has a free right action on P , and let G act on X via the trivial action. Given
{(Uα,Φα)}α∈A local trivialisations, suppose that the map Φα : π−1(Uα) → Uα × G is
G-equivariant, i.e. Φα(p · g) = Φα(p) · g for all p ∈ π−1(Uα) and g ∈ G. Then this fibre
bundle is a principal G-bundle over X, commonly denoted by

G P

X.

π

As discussed, we wish to be able to pass between fibre bundles and principal bundles.
This will allow us to find an alternative characterisation of K-theory by using principal
G-bundles for some appropriate G to replace vector bundles. To construct a fibre bundle
with fibre F from a principal G-bundle with G acting on F , we proceed as follows.
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Proposition 1.1.36 (Proposition 2.1 [Wal04]). Let {Uα}α∈A be an open cover of a topo-
logical space X, and G a topological group acting effectively on a topological space F . Sup-
pose that there is a collection of maps gαβ : Uα ∩Uβ → G such that gαγ(p) = gβγ(p)gαβ(p)

for all p ∈ Uα ∩ Uβ ∩ Uγ and α, β, γ ∈ A. Then there exists a fibre bundle F → E π−→ X
with structure group G. Furthermore, if F = G and G is acting on itself by left translation
then this is a principal G-bundle.

We have seen that a fibre bundle over X with fibre F and structure group G provides
the collection of maps required in the proposition, and therefore we can construct a
principal G-bundle over X from this data.

Conversely, suppose that we started with πP : P → X a principal G-bundle, and F a
topological space on which G acts effectively on the left. Define an equivalence relation
on the product space P × F by (p, f) ∼ (pg, g−1f) for all p ∈ P , f ∈ F and g ∈ G.
We denote the quotient of P × F under this relation by P ×G F , and equip it with the
projection map π : P ×G F → X given by π([p, f ]) = πP (p).

Theorem 1.1.37. Given πP : P → X a principal G-bundle and F a topological space
on which G acts effectively on the left, then F → P ×G F

π−→ X as defined above is
indeed a fibre bundle with structure group G. Moreover, applying the construction given
in Proposition 1.1.36 to this fibre bundle returns the original principal G-bundle. The
converse is also true; using Proposition 1.1.36 to construct a principal G-bundle from a
fibre bundle over X with fibre F and structure group G, and then forming the associated
bundle as above, yields the original fibre bundle.

Thus we can conclude that for a fixed F , there is a bijective correspondence between
fibre bundles over X with fibre F and structure group G, and principal G-bundles over X,
where G acts effectively on F . In particular, there is a bijective correspondence between
vector bundles of rank k over X and principal GL(k,C)-bundles over X. Furthermore,
by noting that the principal GL(k,C)-bundle associated to a vector bundle is the frame
bundle and that all complex vector bundles admit a hermitian structure e.g. as in Propo-
sition 4.1.4 of [Huy05], we see that the structure group of the frame bundle can be reduced
to U(k) and hence the correspondence is actually with principal U(k)-bundles. Thus we
want to be able to classify all principal U(k)-bundles over a topological space.

Given this motivation, we now move to defining the classifying space of a topological
group G. Given a continuous map φ : X → Y between topological spaces and a principal
G-bundle P over Y , we can form the pullback bundle φ∗P over X in the same way as in
Definition 1.1.3, where G acts on (x, p) ∈ X × P via (x, p) · g = (x, p · g). We also have
a notion of isomorphism of principal G-bundles, where two G-bundles are isomorphic if
and only if there is a G-equivariant homeomorphism between them. We denote the set of
isomorphism classes of principal G-bundles over X by PGX.
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Definition 1.1.38. A universal principal G-bundle is a principal G-bundle

G EG

BG

with contractible total space EG such that for every paracompact Hausdorff space X, the
map [X,BG]→ PGX sending the class of f : X → BG to f ∗EG is an isomorphism. The
space BG is known as a classifying space for G.

Observe that in particular, every CW-complex is a paracompact Hausdorff space and
so this definition will hold for all of the spaces that we will be concerned with. This
definition motivates the terminology “classifying space”, since maps from X into BG up
to homotopy classify the principal G-bundles over X up to isomorphism. Observe that
the classifying space BG is only defined up to homotopy equivalence, and so a particular
choice of space will be referred to as a model for BG. Of course, we want to ensure that
such a classifying space exists for any topological group, and this is shown by Milnor in
his original paper.

Theorem 1.1.39 (Theorem 5.2 [Mil56]). Let G be a topological group. Then there exists
a classifying space for G.

So we are particularly interested in the space BU(k) which can be used to classify
all complex vector bundles of rank k over a space, and whether we can form some large
space enveloping BU(k) for all k ∈ N which will allow us to classify all complex vector
bundles over a space. Section I.7 of [Kar05] shows that there is a natural embedding
BU(k)→ BU(k + 1) for all k, and thus we may define the space BU to be the inductive
limit of the directed system BU(1) → · · · → BU(k) → · · · . For more detail on direct
limits, see [Wei94]. It will suffice for our purposes to view the direct limit of a directed
system of objects to be a large enveloping object containing all of the smaller objects
embedded inside it.

As expected, the space BU is related to topological K-theory and forms a classifying
space for the even-degree groups with the following slight modification. For more details
on this, see Section II.1 of [Kar05].

Theorem 1.1.40. For every compact Hausdorff space X there is a natural isomorphism
K0(X) ∼= [X,Z×BU ].

Thus it is said that Z × BU is a classifying space for K0(X). A natural question
that arises when viewing K-theory as a generalised cohomology theory is whether there
exists a sequence of topological spaces {Kn}n∈N such that K−n(X) = [X,Kn] for all
topological spaces X. Such spaces could be viewed as classifying spaces for K-theory, and
the sequence {Kn}n∈N is known as the spectrum of a cohomology theory.
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Using this theorem, we are able to obtain an alternative characterisation for the first-
order K-theory group and hence obtain a model for the K-theory spectrum. Let U
denote the inductive limit of the directed system U(1) → · · · → U(k) → · · · with maps
U(k) ↪−→ U(k + 1) given by A 7→ diag(A, 1).

Theorem 1.1.41. For every compact Hausdorff space X there is a natural isomorphism
K−1(X) ∼= [X,U ].

This result follows because ΩBG ∼= G, as shown e.g. in Proposition 4.66 of [Hat00].
This provides an affirmative answer to our previous question: the 2-periodic sequence
Z×BU,U, · · · forms the K-theory spectrum.

Finally, since these characterisations of K-theory are well-defined for more general
spaces than compact Hausdorff X, this allows our previous notion of K-theory to be
extended to what is known as representable K-theory for more general topological spaces.

Definition 1.1.42. Let X be any topological space. We define the representable K-theory
of X to be RK0(X) = [X,Z×BU ] and RK−1(X) = [X,U ].

Given these three approaches to defining topological K-theory, each of which will be
useful in different contexts, we are prepared to move on to a related variant of K-theory.

1.2 Operator algebraic K-theory

Operator algebraic K-theory is interesting in its own right as a variant of algebraic K-
theory which can be viewed as a noncommutative generalisation of topological K-theory,
but in particular we can use it to introduce higher twisted K-theory in an intuitive
geometrical fashion. Here we briefly introduce the notion of a C∗-algebra and discuss the
K-theory of these C∗-algebras from two differing but useful viewpoints. A more detailed
account of operator algebraic K-theory may be found in a standard reference such as
[WO93] or [Bla86], and in particular the setting that we will use in Subsection 1.2.3 can
be found specifically in Part III of [WO93].

1.2.1 C∗-algebras

Firstly, we recall the definition of an algebra.

Definition 1.2.1. An algebra over a field K is a vector space A over K with a multi-
plication operation A × A → A satisfying left and right distributivity and compatibility
with scalar multiplication, i.e. (ax) · (by) = (ab)(x · y) for all a, b ∈ K and x, y ∈ A.

Example 1.2.1. As a motivating example, we let X be a locally compact Hausdorff space
and denote by C0(X) the space of continuous complex-valued functions on X which vanish
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at infinity. Here, we say that a function vanishes at infinity if and only if for every ε > 0
there exists a compact set Kε ⊂ X such that |f(x)| < ε for all x ∈ X \ Kε. It is clear
that C0(X) forms a complex algebra, because functions vanishing at infinity can be added
together, multiplied together and multiplied by scalars to return a function vanishing at
infinity. We wish to define a specific class of complex algebra of which C0(X) is a member,
and so we collect some of its important properties here. Firstly, C0(X) can be equipped
with the supremum norm and it is complete with respect to this submultiplicative norm.
An algebra satisfying these properties is called a Banach algebra, similar to a Banach
space being a vector space equipped with a norm with respect to which it is compete.
Secondly, C0(X) comes with a natural antilinear involution map, which is the operation
of conjugation ∗ : C0(X) → C0(X). Finally, combining the involution with the norm
we see that ‖f ∗f‖ = ‖f‖2 for all f ∈ C0(X). This identity is suggestively termed the
C∗-identity.

Definition 1.2.2. A C∗-algebra is a complex Banach algebra A with an antilinear invo-
lution ∗ : A→ A satisfying the C∗-identity.

It is clear that C0(X) forms a C∗-algebra from our motivating example. Similarly,
the space of bounded linear operators on a Hilbert space is easily verified to be a C∗-
algebra. A C∗-algebra is called unital when it contains an identity element with respect
to multiplication. In the case that X is compact, it can be seen that the condition of
vanishing at infinity is trivially true for all functions – take K = X to be the compact set
outside of which the function vanishes. Thus C0(X) is equal to C(X) and is unital if and
only if X is compact. Unital C∗-algebras turn out to be easier to work with than non-
unital C∗-algebras in the same way that compact spaces are nicer than locally compact
spaces, and so we present a way of embedding a non-unital C∗-algebra in a unital one
analogous to the compactification of a locally compact space.

Definition 1.2.3. Let A be a non-unital C∗-algebra. The unitisation A+ of A is the set
A × C equipped with pointwise sum and involution, and with multiplication defined by
(a, λ) · (b, µ) = (ab+ λb+ µa, λµ).

It is routine to show that the operator norm ‖(a, λ)‖ = ‖a+λ‖B(A) turns A+ into a C∗-
algebra, where a+λ is viewed as an operator on the Banach space A by left multiplication.
This is also a functorial construction, where a morphism ϕ : A → B induces a unital
morphism ϕ+ : A+ → B+ sending (a, λ) to (ϕ(a), λ). We henceforth use the notation A+

to denote the unitisation as defined above if A is a non-unital algebra, or simply to refer
to the direct sum C∗-algebra A ⊕ C with pointwise operations and the maximum norm
when A has a unit.

The unitisation defined in Definition 1.2.3 is the smallest unitisation of A in that any
other unital C∗-algebra in which A may be embedded as an essential ideal must contain
A+. There is also a largest unitisation of A containing A as an essential ideal called the
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multiplier algebra M(A) which we will not define (see 2.2 of [WO93]), but which will be
important to us later. The quotient M(A)/A is known as the corona algebra of A.

We finish this brief introduction to C∗-algebras with a classical result of Gelfand and
Naimark, which shows that the examples that we have considered essentially account for
all C∗-algebras.

Theorem 1.2.4 (Gelfand–Naimark. Theorem II.2.2.4 and Corollary II.6.4.10 [Bla06]).
Every commutative C∗-algebra is isometrically ∗-isomorphic to C0(X) for some locally
compact Hausdorff space X. Moreover, X is homeomorphic to Y if and only if C0(X) is
∗-isomorphic to C0(Y ). More generally, every C∗-algebra is isometrically ∗-isomorphic to
a norm-closed subalgebra of the space of bounded operators on a separable Hilbert space.

This result explains why C∗-algebras may be viewed as a noncommutative general-
isation of topological spaces, as we have an equivalence of categories between locally
compact Hausdorff spaces and commutative C∗-algebras but more generally there exist
noncommutative C∗-algebras which do not correspond to topological spaces.

1.2.2 Projections

Based on the link between commutative C∗-algebras and locally compact Hausdorff spaces
provided by Gelfand and Naimark’s theorem, we aim to define a notion of K-theory for
C∗-algebras such that the topological K-theory of a space X is equal to the operator
algebraic K-theory of C0(X). One such approach to defining operator algebraic K-theory
is similar to the way in which topological K-theory is defined using vector bundles: a
monoid structure can be defined using projection matrices over a C∗-algebra, and the
Grothendieck group can be used to define the K0-group.

Definition 1.2.5. A projection in a C∗-algebra A is an element p ∈ A which satisfies
p2 = p∗ = p. An element v ∈ A is a partial isometry if v∗v is a projection. We say
that two projections p, q ∈ A are equivalent when there exists a partial isometry v ∈ A
such that p = v∗v and q = vv∗; unitarily equivalent when p = u∗qu for a unitary element
u ∈ A when A is unital or u ∈ A+ when A is non-unital; or homotopic when p and q are
connected by a continuous path of projections in A.

These are all sensible notions of equivalence of projections, but unfortunately they are
not all equivalent in general. We can, however, pass from the C∗-algebra A to the infinite
matrix algebra over A, in which case these notions do coincide. We let Mn(A) denote
the C∗-algebra of n × n matrices over A equipped with pointwise addition and matrix
multiplication along with the operator norm, and then let M∞(A) denote the inductive
limit of this directed system where we embed Mn(A) into Mn+1(A) via T 7→ diag(T, 0).
Note that M∞(A) forms only a pre C∗-algebra, i.e. it satisfies all of the conditions in
Definition 1.2.2 except norm-completeness, but the notions of equivalent projections in
Definition 1.2.5 carry over to this setting.
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Lemma 1.2.6 (Section 5.2 [WO93]). The three notions of equivalence of projections
introduced in Definition 1.2.5 are equivalent in M∞(A).

This provides us with a monoid structure with which we can introduce K-theory.

Proposition 1.2.7. The set of equivalence classes of projections in M∞(A), denoted
P (A), forms an abelian monoid when equipped with the operation sending the sum of
the classes of p and q to the class of the diagonal matrix diag(p, q). Given a morphism
ϕ : A→ B, there is an induced map ϕ∗ : P (A)→ P (B) defined by ϕ∗([aij]) = [ϕ(aij)].

This shows that we have introduced a covariant functor from the category of C∗-
algebras to the category of abelian monoids. We now complete this to the K-theory
group.

Definition 1.2.8. The K-theory of a unital C∗-algebra A, denoted K0(A), is defined to
be the Grothendieck group of the abelian monoid P (A).

Remark 1.2.1. The subscript notation K0 is used for operator algebraic K-theory since it
forms a covariant functor whereas topological K-theory formed a contravariant functor.

In order to define K-theory for C∗-algebras in general, we must use the unitisation
in the same way that compactification is used to define topological K-theory for locally
compact spaces. We also need the following basic example.

Example 1.2.2. One of the simplest C∗-algebras is the algebra of complex numbers. Any
element in P (C) can be represented by some finite-dimensional complex projection matrix,
and these projections are equivalent if and only if their ranges have the same dimension.
Thus P (C) is isomorphic to N as an abelian monoid, and so we may conclude that
K0(C) ∼= Z.

Definition 1.2.9. Let A be a C∗-algebra and π : A+ → C projection. The K-theory
K0(A) is defined to be the kernel of the induced map π∗ : K0(A+)→ K0(C) ∼= Z.

If A is unital then this definition agrees with the previous definition of K0(A), so
we have consistency. We must also define the higher operator algebraic K-theory groups.
There is a way to do this using invertible or unitary elements in the infinite matrix algebra
over A, but we will not need this construction. The interested reader may see Chapter 7
of [WO93]. It will suffice for our purposes to define the higher groups as follows.

Definition 1.2.10. The higher K-theory groups of any C∗-algebra A are defined via
Kn(A) = K0(SnA), where

SA = {f : S1 → A continuous : f(1) = 0}

denotes the suspension of A equipped with the supremum norm and SnA = Sn−1SA.
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Finally, these definitions unify topological K-theory with operator algebraic K-theory
as motivated at the beginning of the section. The following more general theorem is due
to Serre and Swan in the case n = 0 [Swa62].

Theorem 1.2.11. Let X be a locally compact Hausdorff space. There are isomorphisms
Kn(X) ∼= Kn(C0(X)) for all n.

We finish this section with some important results that we will require later, beginning
with the stability of K-theory.

Proposition 1.2.12 (Corollaries 6.2.11 and 7.1.9 [WO93]). For any C∗-algebra A, there
are isomorphisms Kn(A) ∼= Kn(A⊗ K) for all n where K denotes the compact operators
on an infinite-dimensional seperable Hilbert space.

We also have a six-term exact sequence in operator algebraic K-theory, which will be
useful for computing higher twisted K-theory groups.

Theorem 1.2.13 (Theorem 9.3.2 [WO93]). Let

0→ J
ι−→ A

π−→ A/J → 0

be a short exact sequence of C∗-algebras. Then there are group homomorphisms known as
boundary maps ∂0 : K0(A/J)→ K1(J) and ∂1 : K1(A/J)→ K0(J) making the following
sequence exact:

K0(J) K0(A) K0(A/J)

K1(A/J) K1(A) K1(J).

ι∗ π∗

∂0∂1

π∗ ι∗

1.2.3 Hilbert C∗-modules

There is a less conventional approach to defining C∗-algebraic K-theory, which is closer to
the definition of topological K-theory using Fredholm operators presented in Subsection
1.1.2. This will be equally useful for our purposes, as it will lead to an alternative
formulation of higher twisted K-theory. In order to take this approach, we must introduce
the notion of a Hilbert C∗-module. These provide a generalisation of the standard notion
of Hilbert space, where the complex-valued inner product on the Hilbert space is replaced
by one which takes values in some C∗-algebra. We have seen that Fredholm operators on
Hilbert spaces play a crucial role in a more analytical formulation of topological K-theory,
and so we introduce the analogous notion of Fredholm operators on Hilbert C∗-modules,
and these turn out to be relevant in a more topological formulation of higher twisted
K-theory. We begin by formalising the definition of Hilbert C∗-module.
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Definition 1.2.14. Let A be a C∗-algebra. A right A-module H is said to be a pre Hilbert
A-module if there exists a map 〈− |−〉 : H×H → A that is sesquilinear, positive definite
and respects the module action, i.e.

(i) 〈x |y1 + y2〉 = 〈x |y1〉 + 〈x |y2〉 for x, y1, y2 ∈ H;

(ii) 〈x |ya〉 = 〈x |y〉 a for x, y ∈ H and a ∈ A;

(iii) 〈x |zy〉 = z 〈x |y〉 for x, y ∈ H and z ∈ C;

(iv) 〈x |y〉 = 〈y |x〉∗ for x, y ∈ H;

(v) 〈x |x〉 ≥ 0 for x ∈ H and 〈x |x〉 = 0 ⇐⇒ x = 0.

Then ‖x‖ =
√
‖〈x |x〉‖A for x ∈ H defines a norm on H. If a pre Hilbert A-module is

complete with respect to this norm then it is said to be a Hilbert A-module.

There is one specific Hilbert C∗-module which will be of interest to us.

Example 1.2.3. One of the most important Hilbert spaces is `2, so we seek a generalisation
of this to the Hilbert C∗-module setting. For any C∗-algebra A we define the standard
Hilbert A-module to be

HA =

{
(ai) ∈

∞∏
i=1

A :
∑
i

a∗i ai converges in norm in A

}
.

The A-valued inner product is defined by

〈(ai) |(bj)〉 =
∞∑
i=1

a∗i bi

and hence the norm is defined by

‖(ai)‖ =

√√√√∥∥∥∥∥
∞∑
i=1

a∗i ai

∥∥∥∥∥
A

.

Then it is not difficult to see that conditions (i) to (v) in Definition 1.2.14 are satisfied and
that HA is complete with respect to this norm (see the section on HA in Examples 15.1.7
of [WO93] for details). Note also that HC ∼= `2 , and so this example does generalise `2.

In order to define a notion of Fredholm operator on a Hilbert C∗-module, we require
analogues of the bounded and compact operators. It turns out that linearity and bound-
edness are not the natural assumptions to place when dealing with Hilbert modules, and
we instead consider adjointability.
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Definition 1.2.15. Let H be a Hilbert A-module. A map T : H → H is said to be
adjointable if there exists a map T ∗ : H → H such that

〈x |Ty〉 = 〈T ∗x |y〉

for all x, y ∈ H. We denote the set of all adjointable maps on H by B(H).

Unlike when dealing with the bounded linear operators on a Hilbert space, adjointabil-
ity is not guaranteed in this setting and so this notion does form an interesting class of
operators. We also define a subclass of compact adjointable operators in a similar vein to
defining the compact operators on a Hilbert space to be the norm-closure of the finite-rank
operators.

Definition 1.2.16. For x, y ∈ H, let θx,y : H → H be defined by θx,y(z) = x 〈y |z〉 , and
let Θ = {θx,y : x, y ∈ H}. The set of compact adjointable operators on H is the closed
subspace of B(H) generated by the θx,y, i.e. K(H) = Span Θ.

As is true for Hilbert spaces, we are able to quotient B(H) by K(H) as a result of the
following lemma.

Lemma 1.2.17 (Proposition 15.2.4 and Corollary 15.2.10 [WO93]). Both the adjointable
and the compact adjointable operators form C∗-algebras, and K(H) is an essential ideal
in B(H).

In the case of the standard Hilbert A-module introduced in Example 1.2.3, it is shown
in Examples 15.2.11 of [WO93] that B(HA) ∼= M(A ⊗ K) and K(HA) ∼= A ⊗ K, where
K denotes the compact operators on some infinite-dimensional separable Hilbert space.
Additional background on the properties of these operators may be obtained from Chapter
15 of [WO93] but we are now in a position to define Fredholm operators.

Definition 1.2.18. An adjointable operator F on a Hilbert A-module H is said to be
a Fredholm operator if π(F ) is invertible in B(H)/K(H) where π is projection to the
quotient. In the case that HA is the standard Hilbert A-module, the set of all Fredholm
operators on HA is denoted FredA.

There is an equivalent Atkinson-style definition for these Fredholm operators in terms
of kernels and cokernels, but this will not be relevant for us. We are now able to refor-
mulate the definition of K-theory for unital C∗-algebras.

Theorem 1.2.19 (Theorem 17.3.11 [WO93]). Let A be a unital C∗-algebra. Then there
is an isomorphism K0(A) ∼= π0(FredA).

This theorem is the subject of Chapter 17 of [WO93], and it is proved by constructing
an index map which generalises the index [pt,Fred]→ K0(pt) introduced earlier to a map
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[pt,FredA] → K0(A). Recalling the result of Serre and Swan in Theorem 1.2.11, we see
that K0(pt) = K0(C(pt)) = K0(C). We also know that HC ∼= `2, meaning that FredC
can be identified with the ordinary Fredholm operators on a Hilbert space, and hence the
index map [pt,Fred]→ K0(pt) can be viewed as a map [pt,FredC]→ K0(C).

Finally, while [WO93] and the original reference [Min87] that he cites only present
this result for unital C∗-algebras, it is possible to generalise this definition to non-unital
C∗-algebras as in [Bla86].

Theorem 1.2.20 (Corollary 12.2.3 and 12.2.4 [Bla86]). For any C∗-algebra A there is an
isomorphism K0(A) ∼= π0(FredA).

Since the C∗-algebras that we will be dealing with are non-unital, we will need to rely
on this version of the theorem.

This concludes our introduction to topological and operator algebraic K-theory, with
which the reader should be well-equipped to understand the remainder of this thesis.



Chapter 2

Higher twisted K-theory

To every multiplicative generalised cohomology theory there is an associated homotopy-
theoretic notion of twist and a corresponding twisted cohomology theory. In this way,
higher twisted K-theory is the twisted cohomology theory of topological K-theory. This
definition, however, is far too abstract to work with for the purposes of computation
and potential applications to physics. For this reason, a limited set of twists for which
geometric representatives were known were studied extensively for a great deal of time.
Many great mathematicians acknowledged the existence of more general twists, but since
no geometric interpretation was known at the time, nobody was able to do any work in
the more general setting. This finally changed with several papers by Marius Dadarlat
and Ulrich Pennig [DP16, DP15a, DP15b], culminating in work by Pennig in defining
higher twisted K-theory in [Pen15]. In this chapter, we will introduce the abstract notion
of twist, and give a brief history of twisted K-theory. We will then provide background
on the Cuntz algebra O∞ which is central to the development of higher twisted K-theory,
formulate higher twisted K-theory in the same way as Pennig in [Pen15] and provide some
of his fundamental results. To conclude, we will provide an alternative, more topological
formulation of higher twisted K-theory à la Rosenberg [Ros89], and discuss the potential
for applications of this area to physics.

2.1 Introduction

We begin with a brief non-technical introduction to twists of cohomology theories. The
definitions presented here will not be motivated, as the motivation comes from deep
within homotopy theory, but the knowledgeable reader may see a standard reference such
as [MS06b, Dou05] for details.

As discussed at the end of Subsection 1.1.3, there is a notion of spectrum for a co-
homology theory, which is a sequence of topological spaces {En}n∈N satisfying particular
properties such that hn(X) = [X,En] for a cohomology theory h•. In the case of topolog-
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ical K-theory, this is the 2-periodic sequence Z × BU,U, · · · . To each spectrum there is
an associated unit spectrum consisting of the unital elements in each space, which we will
denote {GL1(En)}n∈N, and from this another cohomology theory denoted gl1(h)• may be
defined via gl1(h)n(X) = [X,GL1(En)]. The notation gl1(h) here reflects that this coho-
mology theory is in some sense constructed out of the unital elements of the cohomology
theory h•. Then the twists of h• over some space X are classified by the first group of
this cohomology theory, i.e. gl1(h)1(X). As GL1(E0) denotes the units in E0, we see that
the twists are classified by [X,BGL1(E0)]. To be slightly more technical, a twisting of
a cohomology theory over a space X is defined to be a bundle of spectra over X with
fibre given by the spectrum R of the cohomology theory. Then letting GL1(R) denote
the automorphism group of the spectrum R, these bundles of spectra are classified by
[X,BGL1(R)]. One may then define the groups of the twisted cohomology theory, but
we will not present this level of detail in generality.

While these notions are all very general, we are only interested in applying them to
topological K-theory. Recalling the vector bundle formulation of K-theory, we see that
the invertible elements of the ring K0(X) are represented by virtual line bundles. Unifying
this with the spectrum picture, these classes correspond to homotopy classes [X,Z2×BU ],
and so in the notation of the previous paragraph we have GL1(Z×BU) = Z2×BU . Thus
the twists of topological K-theory over X are classified by

gl1(KU)1(X) = [X,B(Z2 ×BU)].

Taking this slightly further, it has been shown that BU is homotopy equivalent to
K(Z, 2) × BSU [MST77] and hence B(Z2 × BU) ' K(Z2, 1) ×K(Z, 3) × BBSU . This
means that twists of K-theory are classified by homotopy classes of maps

X → K(Z2, 1)×K(Z, 3)×BBSU,

and therefore for a compact space X the twists of K-theory correspond to elements of
H1(X,Z2), H3(X,Z) and [X,BBSU ]. The third of these groups is not well-understood,
which led to the lack of understanding of this class of twists for K-theory. Furthermore,
while this may be used to define what a twist of K-theory is, it does not give any clear
picture of how to view a twist. In particular, this approach via stable homotopy theory
does not provide any geometric information about twists, rendering any results and com-
putations specific to twisted K-theory very difficult to prove and perform. In spite of
this, while this will not be a focus of this thesis, further investigation into the topology
of BBSU – a topic which is interesting in its own right – may prove useful in the study
of higher twisted K-theory.

Rather than extracting geometric information from the homotopy theory, however,
our approach will be to formulate an appropriate geometric object which could be shown
to classify the twists of K-theory. To be clear, the type of geometric object that we wish
to associate to a twist of K-theory over a space X is some variety of bundle over X. By
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finding an appropriate fibre for a bundle over X, we may make the classification of twists
and the definition of twisted K-theory much simpler.

At this point, we will give a brief overview of the history of twisted K-theory. Before
the stable homotopy approach was well-known, mathematicians had already considered
natural geometric objects with which topological K-theory could be modified or “twisted”.
What has classically been called twisted K-theory is a generalisation of topological K-
theory which gradually emerged over the course of the 1960s after Atiyah and Hirzebruch’s
initial work in topological K-theory. Interest in the area was sparked when Atiyah,
Bott and Shapiro investigated the relationship between topological K-theory and Clifford
algebras, providing an isomorphism between the K-theory ring of a point and a space
defined in terms of Clifford modules [ABS64]. This provided a new perspective from which
K-theory could be viewed, which was studied in depth in Karoubi’s doctoral thesis [Kar68]
using Clifford bundles associated to vector bundles. Collaboration between Karoubi and
Donovan in 1970 then extended this work, proving that algebra bundles could be used
in place of Clifford bundles [DK70]. This resulted in the original definition of what was
then called “K-theory with local coefficients” using graded Brauer groups, in which the
local coefficient systems over X were classified by H1(X,Z/2) and the torsion elements
of H3(X,Z), corresponding to finite-dimensional complex algebra bundles over X whose
fibres were isomorphic to complex matrix algebras. This was the first notion of twisted
K-theory which was defined, and it was done so geometrically using these algebra bundles
to represent twists.

The next major development in the field was by Rosenberg, who presented results in
1988 that this definition could be extended to any class in H3(X,Z) rather than specif-
ically considering torsion classes [Ros89], corresponding to using infinite-dimensional al-
gebra bundles over X. In particular, the twists of K-theory being considered were shown
to be represented by algebra bundles with fibres isomorphic to the algebra of compact
operators on an infinite-dimensional, separable complex Hilbert space. After Rosenberg’s
fundamental work, the next significant contributions came from the Adelaide school, be-
ginning with a paper by Bouwknegt, Carey, Mathai, Murray and Stevenson in which bun-
dle gerbe K-theory was developed, various computations were performed and a twisted
Chern character was defined in the even case [BCM+02]. This was followed by two papers
by Mathai and Stevenson, the first of which introduces the twisted Chern character in
the odd case [MS03], and the second of which studied the Connes–Chern character for
twisted K-theory and showed that it agrees with the twisted Chern character [MS06a].

Further developments were later made by Atiyah and Segal in formulating twisted K-
theory using Fredholm modules and exploring the differentials in an Atiyah–Hirzebruch
spectral sequence for twisted K-theory [AS04, AS06]. It was in the first of these papers
that the authors acknowledge the existence of more general twists of K-theory which had
not found a geometric realisation, and due to this there was no known way to incorporate
them into the existing theory. The authors also show that the geometric twists which are
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being considered, represented by elements of H3(X,Z), do form a subset of the full set
of twists in the homotopy-theoretic picture. We should also mention that while K-theory
can be twisted by elements of H1(X,Z/2) as in Donovan and Karoubi’s work, these twists
were studied comprehensively in [AH04] and are often neglected in more recent work.

While twisted K-theory with twists corresponding to 3-classes continued to flour-
ish, with links drawn to T-duality in string theory by Bouwknegt, Evslin and Mathai
[BEM04a, BEM04b] and an important result tying equivariant twisted K-theory to rep-
resentation theory in a series of papers by Freed, Hopkins and Teleman [FHT11a, FHT13,
FHT11b], it was not until a series of papers was published by Dadarlat and Pennig in
2015 and 2016 that a geometric view of the more general twists of K-theory emerged. We
will dedicate the next section to introducing the algebra which is central in Dadarlat and
Pennig’s work, which will culminate in Pennig’s formulation of higher twisted K-theory.

2.2 The Cuntz algebra O∞
One of the factors that led to the compact operators being useful in representing twists of
K-theory was the extensive Dixmier–Douady theory introduced in [DD63] and developed
by many authors. In 2005, Toms and Winter introduced a special class of C∗-algebras
described as strongly self-absorbing [TW07], and ten years later Dadarlat and Pennig
began developing a parallel Dixmier–Douady theory for these algebras [DP16, DP15a,
DP15b]. As mentioned, this work culminated in a paper by Pennig introducing the most
general class of K-theory twists from a bundle-theoretic point of view, something that
had eluded mathematicians for many years. Of particular importance in Pennig’s work is
the Cuntz algebra O∞, which is the main focus of our discussion.

2.2.1 Definitions

We will firstly introduce Toms and Winter’s class of strongly self-absorbing C∗-algebras,
for which the higher Dixmier–Douady theory was developed and with which higher twisted
K-theory can be defined. Apart from having this application to K-theory, this class of
algebras is interesting in its own right as it has proved useful in the quest of Elliott to
classify all simple nuclear C∗-algebras. Firstly, we remark that a C∗-algebra is referred to
as self-absorbing if it is isomorphic to its tensor product with itself. We will be concerned
only with nuclear C∗-algebras, i.e. those for which all possible tensor products are equiv-
alent, and so we need not be concerned with choosing a particular tensor product. Based
on this definition, an algebra should be strongly self-absorbing if it satisfies a stronger
condition than simply being isomorphic to its tensor product with itself. Here we present
a slightly modified but equivalent definition posed by Pennig and Dadarlat, which is more
applicable to topological problems. For the original definition, see [TW07].
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Definition 2.2.1. A seperable and unital C∗-algebra D is called strongly self-absorbing if
there exists a ∗-isomorphism ψ : D → D⊗D and a path of unitaries u : [0, 1)→ U(D⊗D)
such that, for all d ∈ D, lim

t→1
‖ψ(d)− ut(d⊗ 1)u∗t‖ = 0.

Rather than studying the abstract theory of strongly self-absorbing C∗-algebras, we
are more concerned with specific examples of these algebras. The most relevant example
for us is the Cuntz algebra O∞, first introduced by Cuntz in [Cun77].

Definition 2.2.2. The Cuntz algebra On with n generators for n = 1, 2, · · · is defined to
be the C∗-algebra generated by a set of isometries {Si}ni=1 acting on a separable Hilbert
space satisfying S∗i Sj = δijI for i, j = 1, · · · , n and

n∑
i=1

SiS
∗
i = I.

Similarly, the Cuntz algebra O∞ with infinitely many generators is defined in an analogous
way for an infinite sequence {Si}i∈N satisfying S∗i Sj = δijI for i, j ∈ N and

k∑
i=1

SiS
∗
i ≤ I

for all k ∈ N.

Note that it is proved in the original reference that this definition is independent of
the choice of Hilbert space and of isometries. For the sake of completeness, we will list
various other examples of strongly self-absorbing C∗-algebras without definitions. These
algebras are shown to satisfy the definition given above in Toms and Winter’s original
paper [TW07].

Example 2.2.1.

(1) The Cuntz algebras O2 and O∞ are strongly self-absorbing.

(2) The Jiang-Su algebra Z introduced by Jiang and Su in [JS99] is strongly-self ab-
sorbing.

(3) Uniformly hyperfinite (UHF) algebras (defined in III.5.1 of [Dav91]) of infinite type
are strongly-self absorbing.

(4) The tensor product of a UHF algebra of infinite type with O∞ is strongly-self ab-
sorbing. Note that this is the only way to form a new class of algebras out of the
previous examples, as O2 absorbs UHF algebras of infinite type, all of the examples
absorb Z and O2 ⊗O∞ ∼= O2.

Although all of these algebras can be used to formulate a notion of twisted K-theory
as we will see, it is the Cuntz algebra O∞ which can be used to realise the most general
notion of twist. This is thus the algebra whose properties we will explore in more detail.
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2.2.2 Properties

We will firstly give a survey of Dadarlat and Pennig’s main results about O∞ from [DP16],
regarding the homotopy type of its automorphism group and the automorphism group of
its stabilisation. We will then explore its automorphisms more explicitly, presenting an
action of the stable unitary group on O∞ by outer automorphisms.

A great deal of Pennig and Dadarlat’s work in [DP16] is about determining the homo-
topy type of Aut(O∞ ⊗K), and this turns out to be relevant in higher twisted K-theory.
It is sensible to firstly consider automorphisms of O∞ itself, but the authors show that
the automorphism group does not have an interesting homotopy type.

Theorem 2.2.3 (Theorem 2.3 [DP16]). Let D be a strongly self-absorbing C∗-algebra.
Then the space Aut(D) is contractible.

Upon stabilisation, the homotopy type of the automorphism group becomes much
more interesting.

Theorem 2.2.4 (Theorem 2.18 [DP16]). There are isomorphisms of groups

πi(Aut(O∞ ⊗K)) ∼=

{
K0(O∞)×+ if i = 0;

Ki(O∞) if i ≥ 1;

=


Z2 if i = 0;

Z if i > 0 even;

0 if i odd.

This theorem also gives greater insight into the structure of the automorphism group
of O∞ ⊗K through the following corollary.

Corollary 2.2.5 (Corollary 2.19 [DP16]). There is an exact sequence of topological groups

0→ Aut0(O∞ ⊗K)→ Aut(O∞ ⊗K)→ Z2 → 0

where Aut0(O∞ ⊗K) denotes the connected component of the identity.

Furthermore, it is shown in [BKP03] that there is an automorphism α of O∞⊗K which
has order two and is such that α∗ = −1 on K0(O∞), which implies that this sequence is
split. Thus we may conclude that

Aut(O∞ ⊗K) ∼= Z2 × Aut0(O∞ ⊗K).

To gain further insight into the automorphisms of O∞, in particular the outer au-
tomorphisms, we investigate an action of U(∞) on O∞. Note that this is one of the
significant differences between the Cuntz algebra and the algebra of compact operators
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on a Hilbert space which is used in the formulation of classical twisted K-theory – all
automorphisms of K are inner but this is not the case for O∞.

We follow the work of Enomoto, Fujii, Takehana and Watatani in describing an action
of U(∞) on On. We reproduce their work in detail in order to fill in some details of the
proof for O∞ and because their paper [EFTW79] is somewhat difficult to locate.

Let Mn(C) be the algebra of all n × n matrices over C. For any u = (uij) ∈ Mn(C),
we define a map αu : O∞ → O∞ to act on the generators S1, S2, · · · of O∞ by

αu(Sj) =


n∑
i=1

uijSi for j = 1, · · · , n;

Sj for j > n;

and then extend this map to O∞ such that it is a homomorphism. It is clear that
αu ◦ αu′ = αuu′ , but for general u this map does not give an automorphism of O∞. For
example, taking u to be the zero matrix we certainly do not obtain an automorphism,
and so we seek a class of matrices for which αu is an automorphism.

Lemma 2.2.6. For u = (uij) ∈ Mn(C), the map αu defines an automorphism of O∞ if
and only if u ∈ U(n).

Proof. Let u ∈ U(n). In order to show that αu is an automorphism of O∞, we must show
that the elements Ti = αu(Si) are generators of O∞, i.e. they are isometries which satisfy
the Cuntz relations. For i > n the Ti are clearly isometries, and in the case that 1 ≤ i ≤ n
we see that

T ∗i Ti =

(
n∑
k=1

ukiSk

)∗( n∑
l=1

uliSl

)

=
n∑

k,l=1

u∗kiuliδkl

=
n∑
k=1

u∗kiuki

= (u∗u)ii

= 1,

and hence Ti is an isometry. A similar calculation shows that the Ti are pairwise orthog-
onal. Now, in order to prove that the Ti satisfy the Cuntz relations, we need only show
that

n∑
i=1

TiT
∗
i =

n∑
i=1

SiS
∗
i
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and the result will follow since the Si satisfy the Cuntz relations. To see this, we observe
that

n∑
i=1

TiT
∗
i =

n∑
i=1

(
n∑
j=1

ujiSj

)(
n∑
k=1

ukiSk

)∗

=
n∑

i,j,k=1

ujiu
∗
kiSjS

∗
k

=
n∑

j,k=1

(
n∑
i=1

ujiu
∗
ki

)
SjS

∗
k

=
n∑

j,k=1

δjkSjS
∗
k

=
n∑
j=1

SjS
∗
j

as required. Thus {T1, T2, · · · } is a generating set for O∞, and so αu provides an auto-
morphism of O∞. To prove the converse, suppose that αu does define an automorphism
on O∞. Then

δij = αu(S
∗
i Sj)

= αu(Si)
∗αu(Sj)

=
n∑

k,l=1

u∗kiuljS
∗
kSl

=
n∑
k=1

u∗kiukj

= (u∗u)ij

and a similar computation shows that (uu∗)ij = δij, which implies that u ∈ U(n) as
required.

This provides an action of U(n) on O∞ for all n = 1, 2, · · · which we will see extends
to an action of U(∞) on O∞. Here we are taking U(∞) to be the algebraic direct limit

of U(n)
ι
↪−→ U(n + 1) with ι(A) = diag(A, 1). Taking u ∈ U(∞), there exists a finite

representative û ∈ U(n) for some n, and every representative of u will be of the form
diag(û, 1, · · · ). Therefore all representatives of u define the same action on O∞, so we
define the action of u on O∞ to be that of its finite representatives. This provides a map
U(∞)→ Aut(O∞) which satisfies some desirable properties as we will see. In particular,
the map α lands in the group Out(O∞) of outer automorphisms of O∞.
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Theorem 2.2.7. The map α : U(∞)→ Out(O∞) is continuous and injective.

Proof. We must show that the map α : U(∞) → Aut(O∞) is a continuous, injective
group homomorphism such that the only element of U(∞) whose image is an inner au-
tomorphism is the identity, i.e. (π ◦ α)(u) is not equal to the identity for any u ∈ U(∞)
except the identity where π : Aut(O∞) → Aut(O∞)/ Inn(O∞) denotes the projection
map. Firstly, taking u, u′ ∈ U(∞) there exist representatives û ∈ U(n), û′ ∈ U(n′) for
some n, n′ as discussed earlier. Then assuming n > n′, we can view û′ as an element of
U(n) by adding ones down the diagonal, obtaining another representative ũ′ ∈ U(n) for
u′. We then take the product of û and ũ′ in U(n), and define the class of this product
in U(∞) to be the product of u and u′. Based on this product, we see that α is a group
homomorphism. Secondly, we will show that α is injective. Suppose that αu = 1 for some
u ∈ U(∞) represented by û ∈ U(n). Then for 1 ≤ j ≤ n we have

Sj = αu(Sj) =
n∑
k=1

ûkjSk,

and

δij = S∗i Sj = S∗i αu(Sj) =
n∑
k=1

ûkjS
∗
i Sk = ûij,

meaning that û = 1 and thus u = 1. Next, we will show that α is continuous. Let

{u(k)}k∈N be a sequence in U(∞) converging to u ∈ U(∞), and let û(k) ∈ U(nk) and
û ∈ U(n) be finite representatives for u(k) and u respectively. In general, the sequence
{nk}k∈N may not have an upper bound. If it does have an upper bound m, we view each

û(k) and û as being an element of U(l) where l = max {m,n}, and then it is clear that

the sequences of complex numbers {(û(k))ij}k∈N converge to (û)ij. Then for 1 ≤ j ≤ l we
have

∥∥αu(k)(Sj)− αu(Sj)
∥∥ =

∥∥∥∥∥
l∑

i=1

(û(k)ij − ûij)Si

∥∥∥∥∥
≤

l∑
i=1

|û(k)ij − ûij|

which tends to 0 as k →∞. In the case j > l we have that αu(Sj) = Sj = αu(k)(Sj), and
so this limit is true for all j. If {nk}k∈N does not have an upper bound, however, then for
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any nk > n and 1 ≤ j ≤ n we have

∥∥αu(k)(Sj)− αu(Sj)
∥∥ =

∥∥∥∥∥
nk∑
i=1

û(k)ijSi −
n∑
i=1

ûijSi

∥∥∥∥∥
≤

nk∑
i=n+1

|û(k)ij|+
n∑
i=1

|û(k)ij − ûij|,

where the second term can be made arbitrarily small as above. For the first term, we
need to look more carefully at what it means for the sequence {u(k)}k∈N to converge to
u. This convergence means that we can make the sum

max(n,nk)∑
i,j=1

|û(k)ij − ûij|

arbitrarily small as k grows, where we embed û(k) into U(n) if n > nk or embed û into
U(nk) if nk > n. In this case, we have nk > n and so restricting this sum to the terms of
interest we see that

nk∑
i=n+1

|û(k)ij|

can be made arbitrarily small as k grows as required. Thus the original expression∥∥αu(k)(Sj)− αu(Sj)
∥∥ tends to 0 as k tends to ∞. The same argument applies if j > n,

but the terms in the sum will be slightly different and we will have u(k)ij → δij. Hence
the limit

∥∥αu(k)(Sj)− αu(Sj)
∥∥→ 0 as k →∞ is true in general.

Now, let X = SiSj for some i and j. Then

‖αu(k)(X)− αu(X)‖ ≤ ‖αu(k)(Si)αu(k)(Sj)− αu(k)(Si)αu(Sj)‖
+ ‖αu(k)(Si)αu(Sj)− αu(Si)αu(Sj)‖

≤ ‖αu(k)(Si)‖‖αu(k)(Sj)− αu(Sj)‖+ ‖αu(Sj)‖‖αu(k)(Si)− αu(Si)‖,

and since ‖αv‖ = 1 for all v ∈ U(∞) we may conclude that this tends to 0 as k → ∞.
The same argument can be used to show that the limit holds for any X in the ∗-algebra
generated by {S1, S2, · · · }. The Cuntz algebra O∞ is the norm-closure of this ∗-algebra, so
letting X ∈ O∞ we take a sequence {Xm}m∈N in the ∗-algebra generated by {S1, S2, · · · }
converging to X. Then

‖αu(k)(X)− αu(X)‖ ≤ ‖αu(k)(X)− αu(k)(Xm)‖
+ ‖αu(k)(Xm)− αu(Xm)‖+ ‖αu(Xm)− αu(X)‖

≤ ‖αu(k)‖‖X −Xm‖+ ‖αu(k)(Xm)− αu(Xm)‖+ ‖αu‖‖Xm −X‖,
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and since ‖αv‖ = 1 for all v ∈ U(∞) then all of these terms can be made arbitrarily small
as k,m tend to infinity. Thus we may conclude that ‖αu(k)(X)− αu(X)‖ → 0 as k →∞
for all X ∈ O∞. Then given a sequence {(u(k), Xk)}k∈N in U(∞) × O∞ converging to
(u,X), we see that

‖αu(k)(Xk)− αu(X)‖ ≤ ‖αu(k)(Xk)− αu(k)(X)‖+ ‖αu(k)(X)− αu(X)‖
≤ ‖αu(k)‖‖Xk −X‖+ ‖αu(k)(X)− αu(X)‖,

and both of these terms tend to 0 as k →∞. So α viewed as a map U(∞)×O∞ → O∞
is continuous, and hence the representation α is continuous. Finally, we must show that
αu is an outer automorphism for all u ∈ U(∞). Letting u ∈ U(n), there exist v, w ∈ U(n)
such that u = vwv−1 and w is a diagonal matrix with eigenvalues λ1, · · · , λn. Following
a similar argument with representatives, any matrix u ∈ U(∞) can be diagonalised to
u = vwv−1 where w is a diagonal matrix with only finitely many entries not equal to one.
Then the automorphism αu is outer if and only if αw is outer, since u and w differ by
conjugation by v, which is an inner automorphism. So it is sufficient to show that αu
is outer for a diagonal matrix u ∈ U(∞) with eigenvalues λ1, λ2, · · · , 1, 1, · · · and where
we may further assume without loss of generality that λ1 6= 1. Suppose that αu is inner,
so αu = adV for some unitary V ∈ O∞. Let H be a separable Hilbert space with
countable orthonormal basis {ek}. We realise Si in B(H ) by setting Siek = eh where

h = 2i−1(2k− 1), and then S1e1 = e1. We also know that V e1 =
∞∑
k=1

xkek for some xk ∈ C

not all equal to zero, and hence

αu(S1)(V e1) = (V S1V
∗)(V e1) = V S1e1 = V e1 =

∞∑
k=1

xkek.

We also have αu(S1)(V e1) =
∞∑
k=1

λ1xke2k−1, and since λ1 6= 1 we may conclude that xk = 0

for all k and thus V e1 = 0. This is a contradiction, so αu must be an outer automorphism
as required.

This action provides further insight into O∞ – there are non-trivial outer automor-
phisms of this algebra, and there must be a large number of them since a space as large
as U(∞) can act effectively via these automorphisms.

Given this understanding of the Cuntz algebra O∞, we are now in a position to present
the formulation of higher twisted K-theory by Pennig.

2.3 Formulation

As alluded to at the beginning of the chapter, we wish to classify the twists of K-theory
in a geometric fashion by using a bundle with an appropriate fibre. In the classical case,
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this was done using algebra bundles and so firstly we will recall the definition of algebra
bundle. Since we will only be concerned with C∗-algebras, we restrict our attention to
these algebras and this will give us an induced topology on the bundle via the norm.

Definition 2.3.1. An algebra bundle A → A π−→ X over a topological space X is a
fibre bundle such that the fibre A is a C∗-algebra (possibly infinite-dimensional) and the
trivialisation maps Φα restrict to algebra isomorphisms on each fibre.

Since the fibres of an algebra bundle carry a multiplicative structure, this means
that multiplication of sections of an algebra bundle is possible. In particular, since we are
working with C∗-algebras we see that the space of continuous sections of an algebra bundle
over a compact Hausdorff space X itself forms a C∗-algebra equipped with the induced
norm and involution from the fibres. Furthermore, if X is only a locally compact Hausdorff
space then there is a sensible notion of a continuous section of an algebra bundle A over X
vanishing at infinity, defined in much the same way as C0(X) and denoted C0(X,A). So
to each locally compact Hausdorff space X and each algebra bundle A→ A π−→ X we are
able to associate a C∗-algebra C0(X,A). It is by taking the operator algebraic K-theory
of this C∗-algebra that we wish to define higher twisted K-theory. Indeed, when A is
isomorphic to the algebra of compact operators, this is how classical twisted K-theory is
defined

We no longer wish to use the algebra of compact operators as in the classical case; we
wish to find an appropriate algebra to replace K as the fibre in order to classify all twists
of K-theory. As such, one might expect that using a fibre isomorphic to a strongly self-
absorbing C∗-algebra gives the desired construction. This is not quite the case; in fact,
Aut(D) is contractible for all strongly self-absorbing D as stated in Theorem 2.2.3 and
therefore BAut(D) is also contractible. This means that there are no non-trivial algebra
bundles with fibre D over a space X. Instead, we take the stabilisation of the strongly
self-absorbing C∗-algebra, the automorphism group of which has a far more interesting
homotopy type as mentioned in Theorem 2.2.4 for O∞ specifically. This culminates in
one of the main theorems of Pennig and Dadarlat’s paper.

Theorem 2.3.2 (Theorem 3.8 (a), (b) [DP16]). Let X be a compact metrisable space
and let D be a strongly self-absorbing C∗-algebra. The set BunX(D⊗K) of isomorphism
classes of algebra bundles over X with fibre D ⊗ K becomes an abelian group under the
operation of tensor product. Furthermore, BAut(D ⊗K) is the first space in a spectrum
defining a cohomology theory ED

•.

While this result is interesting from a homotopy-theoretic point of view, it does not yet
tell us that we can obtain the twists of K-theory using this construction. What we want
is for the cohomology theory ED

• to be gl1(KU)•, so that the twists of K-theory may
be identified with algebra bundles with fibre D ⊗ K. The cohomology theory obtained,
however, depends on the choice of strongly self-absorbing C∗-algebra. In fact, in the
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introduction of [DP15b] the authors claim that using Z yields a subset of twists of K-
theory where Z2 × BU is replaced by {1} × BU , and using a tensor product of a UHF
algebra of infinite type with O∞ yields twists for localisations of KU . The full set of
twists is the subject of the main theorem of this paper.

Theorem 2.3.3 (Adapted from Theorem 1.1 [DP15b]). The twists of K-theory over
X are classified by algebra bundles over X with fibre O∞ ⊗ K. To be more precise,
EO∞

• = gl1(KU)• and hence BunX(O∞ ⊗K) ∼= gl1(KU)1(X).

The significance of this theorem should not be overlooked. The proof requires heavy
machinery from stable homotopy theory, much of which is built up over the series of three
papers by the authors. It is only through this deep understanding of the abstract notion
of twist that the authors were able to determine an appropriate model for the twists of
K-theory using geometry and operator algebras.

Given this geometric notion of twist, we are now able to define the higher twisted
K-theory groups.

Definition 2.3.4. The higher twisted K-theory of the locally compact Hausdorff space
X with twist δ represented by the algebra bundle O∞ ⊗ K → Aδ

π−→ X is defined to be
Kn(X, δ) = Kn(C0(X,Aδ)).

Remark 2.3.1. This is actually not the definition originally given by Pennig – he follows the
homotopy-theoretic approach of using bundles of spectra and defines the higher twisted K-
theory groups to be colimits of certain homotopy groups. The equivalent characterisation
that we present above is given in his Theorem 2.7(c) directly after the definition.

Remark 2.3.2. We also note that it is possible to define various other versions of twisted K-
theory by replacing O∞ with other strongly self-absorbing C∗-algebras. This will modify
the set of twists under consideration. We have chosen to focus on O∞ as this corresponds
to the full set of twists of K-theory, but interesting results may be obtained by using dif-
ferent algebras. For example, Evans and Pennig use infinite UHF-algebras corresponding
to twists of localisations of K-theory in a recent paper [EP19].

For the sake of completeness, we also include the definitions of the relative higher
twistedK-theory groups, which requires some minor groundwork. LettingX be a compact
Hausdorff space with A ⊂ X a closed subspace, we define c(X,A) = (Xq (A× [0, 1)))/ ∼
where a ∈ A ⊂ X is identified with (a, 0) ∈ A × [0, 1). Then given a twist δ over X
represented by Aδ, this algebra bundle extends canonically to a bundle cAδ over c(X,A)
defined defined in the same way, i.e. as a disjoint union under an appropriate equivalence
relation.

Definition 2.3.5. In the setting above, the relative higher twisted K-theory group of the
pair (X,A) is defined to be Kn(X,A; δ) = Kn(C0(c(X,A), cAδ)).
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As expected, taking A = ∅ gives Kn(X,A; δ) = Kn(X, δ), and taking X to be a locally
compact Hausdorff space with X+ = X ∪ {∞} the one-point compactification described
in Definition 1.1.12 and A = {∞}, we may define the higher twisted K-theory of X to be
Kn(X,A, δ), agreeing with the previous definition. We will restrict our attention to the
ordinary higher twisted K-theory groups for the remainder of the thesis, only using the
relative groups to show that higher twisted K-theory does indeed form an extraordinary
cohomology theory.

As one might expect, there is also a notion of higher twisted K-homology which is
introduced by Pennig. While we will be focusing on the twisted cohomology version of
K-theory, the twisted homology version will be important in some computations as we
will see and so we also include this definition here.

Definition 2.3.6. The higher twisted K-homology of the locally compact Hausdorff space
X with twist δ represented by the algebra bundle O∞ ⊗ K → Aδ

π−→ X is defined to be
Kn(X, δ) = KKn(C0(X,Aδ),O∞).

Again, this is not the way that Pennig initially defines the higher twisted K-homology
– he introduces the topological definition via ∞-categories – but the version using KK-
theory is shown to be an equivalent definition in Corollary 3.5 using a Poincaré duality
homomorphism [Pen15].

2.3.1 Basic Properties

Pennig also proves several important results about higher twisted K-theory, including
functoriality and the existence of a six-term exact sequence as well as a module structure.
We are equipped to prove most of these facts with only the theory that we have developed
so far, and so we provide proofs of these basic properties using less homotopy-theoretic
methods. We will defer the existence of the module structure to a later section, as this
will require the development of a product on higher twisted K-theory.

While higher twisted K-theory is, of course, a contravariant functor, we must deter-
mine the appropriate category on which this functor acts. Since we have defined the higher
twisted K-groups for locally compact Hausdorff spaces X with a fixed twist δ represented
by an algebra bundle with fibre O∞⊗K over X, the objects in our category must consist
of locally compact Hausdorff spaces equipped with these algebra bundles. In topological
K-theory the natural class of maps to consider are proper maps, but we need a stronger
condition to ensure compatability between the algebra bundles representing the twists. In
particular, we specify a morphism (X,AδX ) → (Y,AδY ) to be a proper map f : X → Y
together with an algebra isomorphism θ : f ∗AδY → AδX , to ensure a relationship between
the twist on X and the twist on Y .

Proposition 2.3.7. Higher twisted K-theory forms a contravariant functor from the cat-
egory of locally compact Hausdorff spaces with twists to the category of abelian groups.
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Proof. We view the assignment (X,Aδ) 7→ K∗(X, δ) as the composition of the assign-
ments (X,Aδ) 7→ C0(X,Aδ) 7→ K∗(C0(X,Aδ)). Then proving functoriality boils down
to showing that the first of these assignments is a contravariant functor and the sec-
ond is a covariant functor. These are standard results, but we will briefly spell out
the details. The pullback operation for algebra bundles is defined in an analogous way
as it is for vector bundles in Definition 1.1.3, and satisfies the same properties as pre-
sented in Lemma 1.1.4. Therefore composing the map f ∗ : C0(Y,AδY ) → C0(X, f ∗AδY )
with the map C0(X, f ∗AδY ) → C0(X,AδX ) induced by θ we obtain the desired map
C0(Y,AδY )→ C0(X,AδX ). Then combining the first and second properties from Lemma
1.1.4 and using the fact that θ is an isomorphism shows that (X,Aδ) 7→ C0(X,Aδ) does
indeed form a contravariant functor. Similarly, we show in Proposition 1.2.7 that K0 is
a covariant functor and claim that it is straightforward to show that suspension of a C∗-
algebra is as well, thus C0(X,Aδ) 7→ K∗(C0(X,Aδ)) is a covariant functor as required.

We will also show that higher twisted K-theory forms an extraordinary cohomology
theory, i.e. it satisfies axioms (i), (ii) and (iii) stated in Definition 2.4.1, and in particular
that it is an additive cohomology theory, meaning that the higher twisted K-theory of a
finite disjoint union is the direct sum of the higher twisted K-theory groups of the pieces.

Proposition 2.3.8. Higher twisted K-theory forms an extraordinary cohomology theory,
i.e.

(i) if f0 : (X,A) → (Y,B) and f1 : (X,A) → (Y,B) are homotopic then the maps
induced on higher twisted K-theory are the same;

(ii) each pair (X,A) induces a long exact sequence in higher twisted K-theory via the
inclusions i : A→ X and j : (X, ∅)→ (X,A);

(iii) if (X,A) is a pair and U is an open subset of X whose closure is contained in
the interior of A then the inclusion map i : (X \ U,A \ U) → (X,A) induces an
isomorphism on higher twisted K-theory;

(iv) the higher twisted K-theory of a finite disjoint union of Xα is the direct sum of the
higher twisted K-theory groups of the Xα.

Note that the long exact sequence in (ii) will reduce to a six-term exact sequence by
Bott periodicity.

A key ingredient in the proof will be determining the map induced on higher twisted
K-theory by a morphism of pairs. The appropriate class of maps f : (X,A) → (Y,B)
to consider here are proper maps f : X → Y such that f(A) ⊂ B together with an
isomorphism θ : f ∗AY → AX . In terms of the abstract twists δX and δY corresponding to
these algebra bundles, we will write f ∗δY = δX to represent the isomorphism θ. Letting
f be such a map, we see that this induces cf : c(X,A) → c(Y,B) via cf(x) = f(x)
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if x ∈ X and cf(a, t) = f(a) if (a, t) ∈ A × [0, 1). This is clearly well-defined and
lands in c(Y,B) since f(A) ⊂ B. Then cf induces a pullback map between the spaces of
sections of these bundles, i.e. cf ∗ : C0(c(Y,B), cAY )→ C0(c(X,A), f ∗cAX), in the natural
way. Furthermore, it can be observed that θ induces an isomorphism f ∗cAY ∼= cAX , and
composing the map induced on the spaces of sections of these bundles by this isomorphism
with cf ∗ we obtain a map C0(c(Y,B), cAY )→ C0(c(X,A), cAX) as desired. Finally, this
induces a map on C∗-algebraic K-theory which is the desired map on higher twisted
K-theory, which we will denote by f ∗ : K∗(Y,B; δY ) → K∗(X,A; δX). With this map
defined, we are equipped to prove the proposition.

Proof.

1. Suppose that H : X × [0, 1] → Y is a homotopy between H(x, 0) = f0(x) and
H(x, 1) = f1(x). Then we can define cH : c(X,A)→ c(Y,B) in the same way that
cf is defined above, and it is clear that cH will be a homotopy between cf0 and cf1.
Then it is standard that homotopic maps induce the same map cf ∗0 = cf ∗1 between
spaces of sections, and thus the maps induced on higher twisted K-theory is the
same.

2. We will use the six-term exact sequence in C∗-algebraic K-theory to obtain the
six-term exact sequence in higher twisted K-theory. To do so, we will use the short
exact sequence of C∗-algebras

0→ SC(A,A|A)
f−→ C0(c(X,A), cA)

g−→ C(X,A)→ 0, (2.3.1)

where S denotes the suspension and thus the first non-trivial algebra can be viewed
as sections C0(A× [0, 1), cA|A×[0,1)) which are trivial over [0, 1). Then f can simply
be viewed as inclusion where the section is extended trivially to the rest of X,
while g takes the section over X and forgets the rest of the data. This is a short
exact sequence of C∗-algebras by the definition of the suspension, since a map
f ∈ SC(A,A|A) takes the value of the trivial section at 1 ∈ S1. Applying the
six-term exact sequence in K-theory yields the exact sequence

K1(A, δ) K0(X,A, δ) K0(X, δ)

K1(X, δ) K1(X,A, δ) K2(A, δ).

f∗ g∗

∂∂

g∗ f∗

This sequence is of the desired form, but we need to check that the maps in the
sequence are induced by the correct maps. Firstly, the inclusion j : (X, ∅)→ (X,A)
induces the map cj : X → c(X,A) as described above, and this induces the map
cj∗ = g on spaces of sections. Hence g∗ in the sequence really is the map induced
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on higher twisted K-theory by j. Then all that remains to check is that the map
K0(X, δ)→ K2(A, δ) ∼= K0(A, δ) agrees with the map induced by the inclusion map
i : A → X, where the isomorphism shown is given by Bott periodicity. In order to
prove this, we restrict the short exact sequence (2.3.1) to the following:

0→ SC(A,A|A)
f−→ C0(A× [0, 1), cA|A×[0,1))

g−→ C(A,A|A)→ 0. (2.3.2)

Naturality of the boundary map for C∗-algebraic K-theory then gives the commu-
tative diagram

K0(C(X,A)) K1(SC(A,A|A))

K0(C(A,A|A)) K1(SC(A,A|A)).
∼=

Here, the downwards map is that induced by inclusion and the horizontal maps
are those given by Bott periodicity. Thus the boundary map in the six-term exact
sequence does agree with the map induced by inclusion and so the six-term exact
sequence in higher twisted K-theory is of the correct form with the right maps.

3. The excision property follows from applying the six-term exact sequence in C∗-
algebraic K-theory to the short exact sequence

0→ C0(U × [0, 1), cA|U×[0,1))→ C(c(X,A), cA)→ C(c(X \U,A \U), cA|c(X\U,A\U))→ 0.

Note that the C∗-algebra C0(U × [0, 1), cA|U×[0,1)) has trivial K-theory, which is
implied by the short exact sequence (2.3.1) since the K-theory groups of the first
and last non-trivial algebras in this sequence are isomorphic. Thus the higher twisted
K-theory of the pair (X,A) is equal to that of (X \U,A \U) with the isomorphism
induced by inclusion as required.

4. If X = qXα, then an algebra bundle A over X will be a disjoint union of algebra
bundles over each Xα, i.e. A = qAα. Hence the space of sections of A will be
the direct sum of the spaces of sections of each Aα, and thus by the additivity of
C∗-algebraic K-theory the higher twisted K-theory of X will be the direct sum of
the higher twisted K-theories of Xα.

Hence we can see that higher twisted K-theory really does form an extraordinary
cohomology theory, as expected.

We are also in a position to prove the Mayer–Vietoris sequence, which is a feature of any
generalised cohomology theory and which will be of critical importance for computations.
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Proposition 2.3.9. Let X = U1 ∪ U2 for closed subsets Uk such that their interiors still
cover X. Let ik : Uk → X and jk : U1 ∩ U2 → Uk denote inclusion, and δ|Uk = i∗kδ and
δ|U2∩U2 = (i1 ◦ j1)∗δ denote restriction of the twist to the corresponding subspaces. Then
there is a six-term Mayer–Vietoris sequence as follows:

K0(X, δ) K0(U1, δ|U1)⊕K0(U2, δ|U2) K0(U1 ∩ U2, δ|U1∩U2)

K1(U1 ∩ U2, δ|U1∩U2) K1(U1, δ|U1)⊕K1(U2, δ|U2) K1(X, δ).

(i∗1,i
∗
2) j∗1−j∗2

∂0∂1

j∗1−j∗2 (i∗1,i
∗
2)

Proof. Observe that we have the pullback diagram of C∗-algebras

C(X,A) C(U1,A|U1))

C(U2,A|U2)) C(U1 ∩ U2,A|U1∩U2)).

Then by Theorem 21.2.3 of [Bla86], the existence of the Mayer–Vietoris sequence is es-
tablished.

To conclude our discussion of higher twisted K-theory, we will show that taking the
trivial twist over X yields the standard topological K-theory of X, and as such higher
twisted K-theory encodes all of the information of topological K-theory and a great deal
more.

Proposition 2.3.10. For any locally compact Hausdorff space X, taking the trivial twist
δ represented by the trivial algebra bundle X × (O∞ ⊗ K) yields topological K-theory;
Kn(X, δ) = Kn(X).

Proof. The higher twisted K-theory of X is defined to be the K-theory of the space of
continuous sections vanishing at infinity of the algebra bundle, but of course a continuous
section of the trivial bundle vanishing at infinity is simply a continuous map from X
into the fibre vanishing at infinity, i.e. Kn(X, δ) = Kn(C0(X,O∞ ⊗ K)). It is standard
that C0(X,A) ∼= C0(X) ⊗ A for any C∗-algebra A, for instance by Theorem II.9.4.4 of
[Bla06], and so this combined with the stability of K-theory given in Proposition 1.2.12
gives Kn(X, δ) = Kn(C0(X)⊗O∞). Here we must use a Künneth theorem – the Künneth
theorem presented in V.1.5.10 of [Bla06] states that if A and B are C∗-algebras such
that A satisfies a technical property which is satisfied by O∞ and either K∗(A) or K∗(B)
is torsion-free, then K∗(A ⊗ B) ∼= K∗(A) ⊗ K∗(B). By a result of Cuntz [Cun81], the
K-theory of O∞ is Z in even degree and trivial in odd degree, and hence we may conclude
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that

Kn(X, δ) = Kn(C0(X)⊗O∞)
∼= (Kn(C0(X))⊗K0(O∞))⊕ (Kn+1(C0(X))⊗K1(O∞))
∼= (Kn(X)⊗ Z)⊕ (Kn+1(X)⊗ 0)

= Kn(X)

as required.

We will also prove that higher twisted K-theory reduces to classical twisted K-theory
when the twists can be represented by algebra bundles with fibres isomorphic to K.

Proposition 2.3.11. Let K → A → X be an algebra bundle with fibre K over X repre-
senting a classical twist of K-theory. Then the classical notion of twisted K-theory agrees
with our notion of higher twisted K-theory.

Proof. Since the algebra bundle A is being used to represent a twist of K-theory, this
twist must also have a geometric representative in terms of bundles with fibre isomorphic
to O∞ ⊗ K. In order to obtain a suitable bundle, we may take the tensor product of
A with the trivial algebra bundle with fibre O∞ over X. The tensor product of algebra
bundles can be defined in much the same way as the tensor product of vector bundles in
Definition 1.1.3, but since we need to determine the relationship between sections of A
and of the tensor product bundle we will need a definition in terms of transition functions
which can be found in the section “Tensor Products” in 1.1 of [Hat17].

Suppose that {Uα}α∈A is a trivialising open cover for A over X with transition func-
tions gαβ : Uα∩Uβ → Aut(K). The trivial bundle X×O∞ will then have transition func-
tions all equal to the identity automorphism ofO∞ over the same open cover. So the tensor
product bundle will have transition functions (I ⊗ gαβ)(x) = I ⊗ gαβ(x) ∈ Aut(O∞ ⊗K)
for all x ∈ Uα ∩ Uβ. A section of the tensor product bundle can then be viewed as a
collection of maps {sα}α∈A with sα : Uα → O∞ ⊗K such that

sβ(x) = sα(x) · (I ⊗ gαβ)(x),

or viewing this as sα = s′α ⊗ s′′α for s′α : Uα → O∞ and s′′α : Uα → K we see that

s′β(x)⊗ s′′β(x) = (s′α(x))⊗ (s′′α(x) · sαβ(x)).

But this is simply the tensor product of a section of A with a constant section of the
trivial O∞ bundle over X, i.e. a constant element of O∞. Hence we conclude that the
higher twisted K-theory of X may be expressed as

Kn(X, δ) = Kn(C0(X,A⊗ (X ×O∞)))

= Kn(C0(X,A)⊗O∞)

= Kn(C0(X,A))

which is equal to the classical twisted K-theory of X as required.
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As expected, this result shows that higher twisted K-theory contains all of the infor-
mation of classical twisted K-theory, along with a great deal more.

2.4 Links to cohomology

In the classical case, twists of K-theory were not only visualised as algebra bundles but
often this viewpoint was complemented using cohomology classes. This naturally raises
the question as to whether there is any link between algebra bundles over a space X with
fibre O∞⊗K and the cohomology of X. As briefly discussed in Section 2.1, classical twists
were often viewed as elements of H3(X,Z), and it is precisely the Dixmier–Douady theory
which provided a link between these cohomology classes and algebra bundles with fibre K.
As such, the higher Dixmier–Douady theory posed by Pennig and Dadarlat in relation to
strongly self-absorbing C∗-algebras is the key to understanding the relationship between
higher twists and cohomology classes. The following results are discussed in generality
for all strongly self-absorbing C∗-algebras in Section 4 of [DP16], but we will specifically
consider the use of O∞ in order to work with all twists of K-theory.

What we desire is a way to interpret the twists of K-theory, i.e. the elements of the first
group of some generalised cohomology theory E1

O∞(X), in terms of the ordinary cohomol-
ogy of X. This is precisely what a spectral sequence allows. While the reader unfamiliar
with spectral sequences could simply read the results of this section, which do not rely
on a knowledge of spectral sequences, a suitable background in spectral sequences and
their use can be found in a standard reference in homology such as [CE99] or [BT82]. As
with any generalised cohomology theory, there is an Atiyah–Hirzebruch spectral sequence
converging to EO∞

•, and the coefficients of this sequence are determined by Dadarlat and
Pennig. They use this to argue that the E2 term of the spectral sequence is as follows.

0 1 2 3

0 H0(X,Z2) H1(X,Z2) H2(X,Z2) H3(X,Z2)

−1 0 0 0 0

−2 H0(X,Z) H1(X,Z) H2(X,Z) H3(X,Z)

−3 0 0 0 0

−4 H0(X,Z) H1(X,Z) H2(X,Z) H3(X,Z)
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At this stage there are complications. The differentials in this sequence are unknown,
and even if they were known there may be non-trivial extension problems in determining
E1
O∞(X). At this point, Pennig and Dadarlat restrict to the setting in whichX has torsion-

free cohomology, as in this case the differentials of the sequence are necessarily zero as
they are torsion operators, meaning that their image is torsion, as shown in Theorem
2.7 of [Arl92]. It is then clear that there will be no extension problems, as there are no
non-trivial extensions of free groups and the only torsion will be in the final summand,
H1(X,Z2). Thus we obtain the following, noting that to apply the spectral sequence we
must be working with a finite connected CW complex.

Theorem 2.4.1 (Corollary 4.7(ii) [DP16]). Let X be a finite connected CW complex such
that the cohomology ring of X is torsion-free. Then

E1
O∞(X) ∼= BunX(O∞ ⊗K) ∼= H1(X,Z2)⊕

⊕
k≥1

H2k+1(X,Z).

This shows that there is a relationship between the twists of K-theory and cohomology,
at least in the restrictive case when X is torsion-free. Even when the cohomology of X
has torsion, the twists will correspond to some subset of these odd-degree cohomology
groups depending on differentials and extension problems. This also confirms that, in
this case, the classical twists contained in H1(X,Z2) ⊕ H3(X,Z) are indeed twists of
K-theory, and provides insight into Pennig’s chosen name – “higher” twisted K-theory.
The twists introduced by Pennig are higher in the sense that they can be represented by
higher degree cohomology classes, as opposed to the classical degree 1 and 3 twists.

Note that henceforth, when we are in a setting in which Theorem 2.4.1 applies, we will
identify the twists of K-theory over X with the odd-degree integral cohomology classes
of X. Given a twist we may view this as a cohomology class, and given a cohomology
class this will represent a twist. This will be particularly important in the development
of spectral sequences and in computations.

Although not considered by Pennig and Dadarlat, there are some slightly more general
statements that can be made even if the cohomology of the base space has torsion. This
will be the case if the torsion does not have any effect on the previous argument, i.e.
if the relevant differentials are necessarily zero and there are no extension problems.
Since we are only interested in the degree 1 group of this cohomology theory, only the
groups whose row and column index sum to 1 are relevant, and so we only need to worry
about the differentials entering and leaving these groups. If, for instance, only the odd
cohomology groups of X are torsion-free, the differentials between these relevant groups
will all necessarily be zero, and we will be able to reach the same conclusion that twists
correspond to odd-degree cohomology classes. Even these slightly relaxed assumptions
allow for a wider class of spaces to be considered, including real projective space and some
variety of Lens spaces.
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This link between the twists of K-theory and cohomology provides a wide variety of
directions to explore. We may use the cohomology picture to develop explicit constructions
of twists which correspond to specific cohomology classes, to obtain information about
differentials in a spectral sequence for calculating higher twisted K-theory groups, and to
aid in computations. These are all important tasks, and as such will all be explored in
later chapters.

2.5 Topological characterisation

While Pennig’s original formulation of higher twisted K-theory proves to be useful in
computations, it is difficult to explicitly describe the elements of these groups using this
definition. We follow an argument of Rosenberg presented in [Ros89] about classical
twisted K-theory in order to adapt this to a more topological definition. This alternative
characterisation will allow greater insight into elements of the higher twisted K-groups,
and will also be more useful in motivating and defining a product structure on higher
twisted K-theory.

To do this, we will need to slightly shift our perspective from that of algebra bundles
to that of principal bundles. Recall from Theorem 1.1.37 that there is a correspondence
between certain fibre bundles and certain principal bundles. In this setting, we may use
this to obtain a correspondence between algebra bundles over X with fibre O∞ ⊗K and
principal Aut(O∞ ⊗K)-bundles over X as follows, because Aut(O∞ ⊗K) acts effectively
on O∞ ⊗K by automorphisms.

Aut(O∞ ⊗K) Eδ Eδ ×Aut(O∞⊗K) (O∞ ⊗K)

X X

Associated bundle

Transition functions

This is a bijective correspondence; moving from one perspective to the other and back
again yields an isomorphic bundle, and therefore we may view either of the objects above
as twists of K-theory over X. Viewing a twist δ as a principal Aut(O∞ ⊗ K)-bundle as
opposed to an algebra bundle, we define the K-theory of X twisted by δ to be the K-
theory of the continuous sections vanishing at infinity of the associated algebra bundle,
to agree with our previous definition.

We are now able to state the main result of this section.
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Theorem 2.5.1. Let X be a compact Hausdorff space and Eδ a principal Aut(O∞ ⊗K)-
bundle over X representing a twist δ. There are natural identifications

K0(X, δ) ∼= [Eδ,FredO∞⊗K]Aut(O∞⊗K)

and

K1(X, δ) ∼= [Eδ,Ω FredO∞⊗K]Aut(O∞⊗K)

where [ , ]Aut(O∞⊗K) denotes the unbased homotopy classes of Aut(O∞ ⊗ K)-equivariant
maps, i.e. π0(C( , )Aut(O∞⊗K)), and Ω FredO∞⊗K is the based loop space of FredO∞⊗K,
i.e. the space of continuous maps S1 → FredO∞⊗K with 1 ∈ S1 mapped to I ∈ FredO∞⊗K.

Note that Aut(O∞⊗K) acts on Eδ as the structure group of the principal bundle and
acts on FredO∞⊗K via conjugation in the same way that PU acts on Fred, meaning that

F · T = T−1
HFTH (2.5.1)

where T ∈ Aut(O∞ ⊗K), F ∈ FredO∞⊗K and we denote the map induced on HO∞⊗K by
applying T pointwise by TH. The action on Ω FredO∞⊗K is defined to be this action at
every point in the loop.

Before proceeding with the proof, we need a standard lemma about principal bundles
and associated bundles.

Lemma 2.5.2. Let E be a principal G-bundle over a topological space X with projection
map π : E → X, and suppose that G has a continuous and effective left action on a
topological space F . Then the space of sections of the associated fibre bundle E ×G F over
X can be identified with the space of G-equivariant maps E → F .

Proof. A section s : X → E ×G F will be of the form x 7→ [(e, f)], but a choice of
e ∈ π−1(x) will uniquely determine an f ∈ F . This means that we may write this section
as a continuous map h : E → F , and in particular the equivalence relation in the definition
of the associated bundle [(e, h(e))] = [(e · g, g−1 · h(e))] implies that g−1 · h(e) = h(e · g).
Hence h is G-equivariant. Conversely, given a G-equivariant map h : E → F , we define
s : X → E ×G F by s(x) = [(e, h(e))] for a choice of e ∈ π−1(x). Suppose e1, e2 ∈ π−1(x),
then there is an element g ∈ G such that e1 · g = e2. Hence

[(e1, h(e1))] = [(e1 · g, g−1 · h(e1))] = [(e2, h(e1 · g))] = [(e2, h(e2))],

and so s is well-defined. Furthermore, it is clear that s defines a section and that these
two constructions are inverses of each other, so the lemma is proved.

We are now equipped to prove Theorem 2.5.1.
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Proof. From Theorem 1.2.20 we have

K0(X, δ) = K0(C(X, Eδ ×Aut(O∞⊗K) (O∞ ⊗K)))

= π0(FredC(X,Eδ×Aut(O∞⊗K)(O∞⊗K))),

and applying Lemma 2.5.2 allows us to replace C(X, Eδ ×Aut(O∞⊗K) (O∞ ⊗ K)) with
C(Eδ,O∞ ⊗K)Aut(O∞⊗K). Then we see from the definition that

HC(Eδ,O∞⊗K)Aut(O∞⊗K) = C(Eδ,HO∞⊗K)Aut(O∞⊗K),

which allows us to conclude that

FredC(X,Eδ×Aut(O∞⊗K)(O∞⊗K)) = C(Eδ,FredO∞⊗K)Aut(O∞⊗K)

as in the proof of Proposition 2.1 of [Ros89]. Then

K0(X, δ) = π0(C(Eδ,FredO∞⊗K)Aut(O∞⊗K))

= [Eδ,FredO∞⊗K]Aut(O∞⊗K)

as required. In order to obtain the result for K1, we recall from Definition 1.2.10 that
K1(A) = K0(SA) for a C∗-algebra A where SA denotes the suspension. In this case, we
are interested in the C∗-algebra SC(X, Eδ×Aut(O∞⊗K) (O∞⊗K)), which can be viewed as

{f : S1 → C(X, Eδ ×Aut(O∞⊗K) (O∞ ⊗K)) continuous : f(1) = 0}.

We will suppress the continuity of the function and the fact that f(1) = 0 for brevity,
but the same conditions are required to hold in the following sets where 0 is taken to be
the additive identity in each case. In the same way as above, we can view the Fredholm
operators on the standard Hilbert C∗-module of this C∗-algebra as

{f : S1 → C(X, Eδ ×Aut(O∞⊗K) FredO∞⊗K)}
= {f : S1 → C(Eδ,FredO∞⊗K)Aut(O∞⊗K)}
= C(Eδ × S1,FredO∞⊗K)Aut(O∞⊗K)

= C(Eδ, C(S1,FredO∞⊗K))Aut(O∞⊗K)

= C(Eδ,Ω FredO∞⊗K)Aut(O∞⊗K).

Thus we may conclude that

K1(X, δ) = π0(C(Eδ,Ω FredO∞⊗K)Aut(O∞⊗K)) = [Eδ,Ω FredO∞⊗K]Aut(O∞⊗K)

as required.
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In the case that principal Aut(O∞ ⊗ K)-bundles over a space can be explicitly de-
scribed, this provides a way of expressing elements in the higher twisted K-theory groups
of that space. This will be useful when performing computations for spheres and also in
exploring the graded module structure on higher twisted K-theory.

One advantage in this formulation is that it can simplify proofs, for instance we can
develop the functoriality of higher twisted K-theory in a more straightforward and explicit
manner as follows.

Proof of Proposition 2.3.7. Given a morphism f : (X,AδX )→ (Y,AδY ), i.e. a proper map
f : X → Y together with an isomorphism θ : f ∗AY → AX , and letting EδX and EδY denote
the associated principal Aut(O∞ ⊗K)-bundles, we define the induced map

f̃ : [EδY ,Ωn FredO∞⊗K]Aut(O∞⊗K) → [EδX ,Ωn FredO∞⊗K]Aut(O∞⊗K)

to send a map h to the composite h ◦ f ∗ ◦ θ̂−1, where θ̂−1 : EδX → f ∗EδY is the isomor-
phism induced on the principal Aut(O∞ ⊗ K)-bundles by θ−1. While we do not give an

explicit form for θ̂−1 in terms of θ−1, the fact that the algebra bundles f ∗AY and AX
are isomorphic implies that the principal bundles f ∗EδY and EδX constructed using their
transition functions are isomorphic. Then by the contravariant functoriality of the pull-

back construction and the fact that θ̂−1 is an isomorphism it is clear that the identity
map induces the identity on higher twisted K-theory and if f : (X,AδX )→ (Y,AδY ) and

g : (Y,AδY )→ (Z,AδZ ) then (̃f ◦ g) = g̃ ◦ f̃ as required.

This formulation can also be extended to obtain expressions for the higher twisted
K-theory groups of higher degree, where we see that the method used in the proof can
be used to show that

Kn(X, δ) = [Eδ,Ωn FredO∞⊗K]Aut(O∞⊗K).

Although this may be a useful expression, the statement of the theorem covers the impor-
tant cases since Bott periodicity implies that everything will reduce to these two groups.
Furthermore, we can obtain a topological characterisation of the reduced higher twisted
K-theory groups where we replace the Fredholm operators with the connected component
of FredO∞⊗K containing the identity, denoted (FredO∞⊗K)0, i.e.

K̃n(X, δ) = [X,Ωn((FredO∞⊗K)0)]Aut(O∞⊗K).

This follows in the same way as in topological K-theory where K̃i(X) = [X,Ωi(Fred0)].
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2.6 Physical applications

Both topological and classical twisted K-theory are of great importance in mathematical
physics, particularly in string theory, and so it is expected that higher twisted K-theory
will prove to possess even greater applications.

D-branes are one of the fundamental objects in string theory, and there exists a vast
literature detailing the relationship between these objects and K-theory. The link was
first popularised by work of Witten, in which he shows that the charges of D-branes on
a spacetime can be naturally identified with elements of the K-theory of the spacetime
manifold [Wit00]. This also led to a greater understanding of tachyon condensation. It
was later shown by Bouwknegt and Mathai that in the presence of a B-field, which is
topologically classified by an element of H3(X,Z), D-brane charges take values in the
twisted K-theory of X [BM00]. For a more detailed expository view on the links between
twisted K-theory and D-branes, see [Moo04].

Another aspect of string theory in which twisted K-theory has found application is
T -duality, introduced by Bouwknegt, Evslin and Mathai in [BEM04a] and [BEM04b] from
a physical perspective. The authors show that the T -duality transformation induces an
isomorphism on twisted K-theory, which was an interesting and unexpected result as
the T -duality transformation often leads to significant differences between the topologies
of the circle bundles in question. A number of generalisations came out of this, most
notably for our purposes being a series of papers by the same authors on spherical T -
duality [BEM15a, BEM15b, BEM18] in which the relevant cohomology class is of degree
7. This led to the result that the spherical T -duality transform induces an isomorphism
on higher twisted K-theory. In the first of this series of papers, the authors provide some
insight into how higher twisted K-theory fits in with the D-brane picture. In the setting of
Type IIB string theory, the data in 10-dimensional supergravity includes a 10-manifold Y
which is commonly diffeomorphic to R×X for an appropriate 9-manifold X. They explain
that the K-theory of X twisted by a 7-class corresponds to the set of conserved charges
of a certain subset of branes. This implies that there is a richer relationship between
D-branes and higher twisted K-theory than what currently exists in the literature, and it
may be possible to gain greater insight into the behaviour of D-branes by studying higher
twisted K-theory.

Relevance to physics also appears in the study of strongly self-absorbing C∗-algebras,
as some common algebras in physics such as the canonical anticommutation relations
(CAR) algebra are strongly self-absorbing. This algebra is not only relevant in quantum
physics, but also in the study of Clifford algebras. By exploring the twisted K-theory
whose twists arise from the CAR algebra, a deeper understanding of this algebra and its
applications may be gained.

A final application of twisted K-theory of critical importance in mathematical physics
is the work of Freed, Hopkins and Teleman in proving that the Verlinde ring of positive
energy representations of loop groups is isomorphic to the equivariant twisted K-theory
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of a compact Lie group in the series of papers [FHT11a, FHT13, FHT11b]. The Verlinde
ring is an object which arises in conformal field theory, first introduced by Verlinde in
[Ver88], and on which there exists no simple expression for the product in general. In the
setting of Freed, Hopkins and Teleman, the equivariant twisted K-theory group can be
equipped with a product which essentially comes from multiplication in the Lie group,
and using this the product on the Verlinde ring can be simplified greatly; a task which
is of relevance in conformal field theory. In spite of this, the isomorphism between the
two rings is also very complicated, which presents difficulties transferring the product
over to the Verlinde ring. It is likely that there exists an analogous result in the higher
twisted setting, where it is as of yet unknown what can replace the Verlinde ring to be
isomorphic to higher twisted K-theory, but another object from physics may arise in this
case. Pennig and Evans [EP19] hint at possible approaches.
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Chapter 3

Explicit geometric construction of
twists

Whilst knowing that the twists of K-theory over a space X may be identified with algebra
bundles over X with fibres isomorphic to O∞⊗K is useful in its own right, this does not
provide us with an explicit construction of a bundle to represent each homotopy-theoretic
twist. In particular, since the definition of higher twisted K-theory involves the algebra of
sections of such an algebra bundle, it is easier to compute higher twisted K-theory groups
when there is an explicit bundle to work with. In the general case, even classifying the
O∞ ⊗K bundles over X is a difficult task. In the case that twists can be identified with
cohomology classes, however, by associating an explicit bundle to each cohomology class
this will allow for simpler methods of computation.

In this chapter we explicitly construct algebra bundles with fibres isomorphic toO∞⊗K
over topological spaces with torsion-free cohomology. While Pennig and Dadarlat proved
that these bundles are classified up to isomorphism by odd-degree cohomology classes
when the base space is torsion-free, they provide no explicit constructions and so we aim
to bridge this gap in the literature. In the case of twisted K-theory and Lie groups, these
geometric constructions are well-understood and can be obtained through loop groups
and transgression of cohomology classes represented by differential forms [MW16].

We begin by restricting our attention to a limited class of spaces – those over which
all principal bundles can be constructed via the clutching construction. We prove that by
specifying a gluing map we are able to construct algebra bundles with fibres isomorphic
to O∞ ⊗ K represented by any cohomology class over the odd-dimensional spheres, and
mention generalisations of these methods to other spaces. We then move to more general
topological spaces, and simplify the twisting class. We consider the simplest non-trivial
case, in which we take a decomposable class α ∪ β ∈ H5(X,Z) with α ∈ H2(X,Z) and
β ∈ H3(X,Z) and construct the desired bundle associated to this cohomology class,
loosely based upon the work done in [MM17].

53
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3.1 The clutching construction

There is a well-known construction which builds fibre bundles over topological spaces
viewed as the union of two closed subsets, ideally whose intersection has a simple form.
This construction is most commonly applied to the n-sphere Sn viewed as the union of its
upper and lower hemispheres Dn

+ and Dn
−, which intersect along the equatorial (n − 1)-

sphere. We will limit our discussion to spheres for the the most part, but note that
more general constructions apply which we will mention briefly. Loosely, the construction
takes a fibre bundle over each of the hemispheres and glues them together using a gluing
function, which tells the bundles how to interact on the intersection. Therefore the gluing
map should be a function defined on the intersection, and in order to sensibly tell the
bundles how to interact it should land in the structure group of the bundle. For example,
to construct a principal G-bundle it should be a map into G, or in the simple case of
constructing a vector bundle it should map into GL(n,C). The construction is particularly
useful for the spheres because the gluing map can be viewed as an element of a homotopy
group of the structure group, which provides a way of classifying these maps in cases that
the homotopy type of the structure group is understood. It is also useful because the two
closed subsets being considered are contractible, meaning that all fibre bundles over the
hemispheres are necessarily canonically trivialised. In particular, a principal Aut(O∞⊗K)-
bundle over Sn may be constructed by specifying a map f : Sn−1 → Aut(O∞⊗K) which
will glue trivial bundles over the upper and lower hemispheres. More precisely, we make
the following definition.

Definition 3.1.1. Let f : Sn−1 → Aut(O∞ ⊗ K) be a continuous map. The clutching
bundle Ef over Sn associated to f is defined to be the quotient of the disjoint union
(Dn

+×Aut(O∞⊗K))q (Dn
−×Aut(O∞⊗K)) under (x, T ) ∼ (x, f(x)◦T ) for all x ∈ Sn−1

and T ∈ Aut(O∞ ⊗K).

Note that technically this equivalence is between points (x+, T ) and (x−, f(x) ◦ T )
where x+ ∈ Dn

+ and x− ∈ Dn
− both represent the same point x ∈ Sn−1, but we will

suppress these subscripts. It is straightforward to show that Ef equipped with the natural
projection onto Sn is a principal Aut(O∞ ⊗K)-bundle over Sn. Note that we could have
equivalently constructed an algebra bundle with fibre isomorphic to O∞ ⊗K over Sn by
replacing T ∈ Aut(O∞⊗K) with v ∈ O∞⊗K, but the principal bundle construction will
be more convenient.

We also mention that an added benefit of using the clutching construction is that
there is a simple way to describe the sections of a clutching bundle, using sections of the
trivial bundles over the two hemispheres. In particular, a section of a clutching bundle
can be identified with sections of the trivial bundles which interact via the gluing map
as follows. Note that we abbreviate C(Dn

+,Aut(O∞ ⊗ K)) ⊕ C(Dn
−,Aut(O∞ ⊗ K)) as

C(Dn
+ qDn

−,Aut(O∞ ⊗K)) for brevity.
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Lemma 3.1.2. Let Ef be the clutching bundle over Sn with gluing function given by
f : Sn−1 → Aut(O∞ ⊗K). The space of sections of Ef is of the form

C(Sn, Ef ) = {(g, h) ∈ C(Dn
+ qDn

−,Aut(O∞ ⊗K)) : g(x) = f(x) · h(x) for all x ∈ Sn−1}.

Proof. Obviously a pair of maps of this form defines a section of the clutching bundle,
and conversely any section of the clucthing bundle will be built from sections of the trivial
bundles over the upper and lower hemispheres which interact via the gluing map over the
equator.

This is particularly useful because the higher twisted K-theory groups are defined
using the algebra of sections, and so having an explicit realisation of this algebra will
allow computations to be performed more easily.

Now, we have an explicit construction of a bundle from a gluing map, but we want
to be able to explicitly construct a bundle from a cohomology class of the sphere. To
move towards this goal, we show that any principal Aut(O∞ ⊗ K)-bundle over Sn can
be constructed in this way, and furthermore that the isomorphism class of the bundle
depends only on the homotopy class of the gluing map. This is a standard result in the
case of vector bundles, but we provide the proof for completeness. We follow the approach
in the proof of Theorem 2.7 in [Coh98].

Proposition 3.1.3. There is a bijective correspondence between the set of isomorphism
classes of principal Aut(O∞ ⊗K)-bundles over Sn and πn−1(Aut(O∞ ⊗K)).

Proof. Let E be a principal Aut(O∞ ⊗ K)-bundle over Sn. Fixing a trivialisation of E
over a chosen basepoint x0 ∈ Sn−1, i.e. an identification of the fibre with Aut(O∞ ⊗ K),
trivialisations of the bundle over Dn

+ and Dn
− can be defined which restrict to this chosen

trivialisation over x0 because the bundle is trivial over Dn
+ and Dn

−. This defines a map
f : Sn−1 → Aut(O∞ ⊗ K) which sends the basepoint x0 to the identity automorphism
of O∞ ⊗ K, and hence E can be viewed as the clutching bundle defined by this gluing
map f . This defines our correspondence from the set of isomorphism classes of principal
Aut(O∞ ⊗K)-bundles over Sn to πn−1(Aut(O∞ ⊗K)).

Firstly, we must verify that this is well-defined by showing that isomorphic bundles
correspond to homotopic clutching functions. Suppose that E1

∼= E2 via an isomorphism
ϕ : E1 → E2 which respects the trivialisation over the basepoint x0. Restricting this
isomorphism to the hemispheres defines maps ϕ± : Dn

± → Aut(O∞ ⊗ K) such that
ϕ±(x0) = I, and if f1 and f2 denote the clutching functions for E1 and E2 respectively then
ϕ+(x)f1(x) = f2(x)ϕ−(x) for all x ∈ Sn−1. Now, identifying 0 ∈ Dn

+ and 0 ∈ Dn
− with the

north and south poles of the sphere respectively, note that the map ϕ+(tx)f1(x)ϕ−(tx)−1

for t ∈ [0, 1] is a homotopy from f2(x) to ϕ+(0)f1(x)ϕ−(0)−1. Furthermore, since ϕ±
are defined on connected spaces, their images lie in the same connected component of
Aut(O∞⊗K), and since their images on the basepoint x0 are both the identity then there
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are paths α± in Sn from ϕ±(0) to I ∈ Aut(O∞ ⊗K). So the map α+(t)f1(x)α−(t)−1 is a
homotopy from ϕ+(0)f1(x)ϕ−(0)−1 to f1(x) and hence f1 is homotopic to f2 as required.

Secondly, we note that this correspondence is surjective since every element of the
homotopy group πn−1(Aut(O∞⊗K)) defines a principal Aut(O∞⊗K)-bundle over Sn as
in Definition 3.1.1.

Finally, we must show that homotopic gluing maps correspond to isomorphic principal
bundles. Suppose that E1, E2 are defined via homotopic maps f1, f2 : Sn−1 → Aut(O∞⊗K)
respectively, and let F : Sn−1 × [0, 1] → Aut(O∞ ⊗ K) be a homotopy. We may use the
same clutching construction to define a principal Aut(O∞ ⊗ K)-bundle over Sn × [0, 1]
which restricts to E1 over Sn × {0} to E2 over Sn × {1}. Finally, Theorem 2.1 in [Coh98]
implies that these bundles are isomorphic.

Note that the map defined by the bijective correspondence in Proposition 3.1.3 is an
explicit realisation of the isomorphism induced by viewing Sn as the suspension ΣSn−1:

[Sn, BAut(O∞ ⊗K)] = [ΣSn−1, BAut(O∞ ⊗K)]

= [Sn−1,ΩBAut(O∞ ⊗K)]
∼= [Sn−1,Aut(O∞ ⊗K)].

Now, since the cohomology groups of the spheres are torsion-free, we see via Theo-
rem 2.4.1 that the twists of K-theory over the spheres are classified by their odd-degree
cohomology groups, i.e. H2n+1(S2n+1,Z) ∼= Z for n ≥ 1. Finally, these correspondences

H2n+1(S2n+1,Z) ∼= [S2n+1, BAut(O∞ ⊗K)] ∼= π2n(Aut(O∞ ⊗K))

allow us to obtain explicit geometric representatives for twists over S2n+1 given in terms
of cohomology classes. Letting [δ0] ∈ H2n+1(S2n+1,Z) ∼= Z denote a generator and taking
any N ∈ Z, we see that the bundle representing the twist N [δ0] is constructed via a
degree N gluing map, i.e. N times the generator of π2n(Aut(O∞ ⊗K)) corresponding to
[δ0] under the above identification. Using this result, we are able to explicitly compute
the higher twisted K-theory of the odd-dimensional spheres from the definition rather
than using any higher-powered machinery such as spectral sequences, and crucially this
method allows us to determine the generator of the higher twisted K-groups as we will
see in Chapter 5.

We also note that the construction can only produce trivial principal Aut(O∞ ⊗ K)-
bundles over even-dimensional spheres, which is expected from Theorem 2.4.1. This is
because a bundle over S2n would come from a gluing map S2n−1 → Aut(O∞⊗K), but the
homotopy group π2n−1(Aut(O∞ ⊗ K)) is trivial as stated in Theorem 2.2.4 and so every
gluing map is homotopic to a constant. This means that any gluing map will construct
a bundle which is isomorphic to the trivial bundle, which agrees with the fact that the
odd-dimensional cohomology of S2n is trivial.
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Now, we have provided a construction to obtain principal Aut(O∞ ⊗ K)-bundles as
these are necessary in the topological formulation of higher twisted K-theory. In order to
compute higher twisted K-theory directly from the definition, however, we must also be
able to construct algebra bundles with fibre O∞ ⊗ K. Of course, we can construct these
in the same way by specifying a gluing map into the structure group Aut(O∞ ⊗K), but
it is non-trivial that carrying out the clutching construction commutes with taking the
associated algebra bundle. We make this precise in the following lemma.

Lemma 3.1.4. Let f : S2n → Aut(O∞ ⊗ K) be a gluing map, with Ef the principal
Aut(O∞ ⊗ K)-bundle constructed via the clutching construction. The associated algebra
bundle to Ef with fibre O∞ ⊗ K is isomorphic to the algebra bundle constructed directly
via the clutching construction with gluing map f .

Proof. For brevity, let Af be the algebra bundle with fibre O∞ ⊗ K constructed via the
clutching construction. We aim to show that Ef ×Aut(O∞⊗K) (O∞ ⊗ K) ∼= Af . To do
so, we let ϕ : Ef ×Aut(O∞⊗K) (O∞ ⊗ K) → Af be defined by ϕ([[T, x], o]) = [T (o), x].
If x ∈ S2n with x+ ∈ D2n+1

+ and x− ∈ D2n+1
− both representing x then we see that

[[T, x+], o] = [[f(x) ◦ T, x−], o] but

ϕ([[f(x) ◦ T, x−], o]) = [(f(x) ◦ T )(o), x−] = [T (o), x+] = ϕ([[T, x+], o]).

Furthermore, for any T ′ ∈ Aut(O∞ ⊗ K) we have [[T, x], o] = [[T ◦ T ′, x], T ′−1(o)], but
then ϕ([[T ◦T ′, x], T ′−1(o)]) = [T (o), x] and hence ϕ is well-defined. Continuity follows by
constructing a lift

ϕ̃ : Aut(O∞ ⊗K)×X × (O∞ ⊗K)→ Af

which maps (T, x, o) to (x, T (o)) such that ϕ̃ = ϕ ◦ q where q denotes the quotient map.
Since ϕ̃ is clearly continuous then properties of the quotient topology imply that ϕ is
continuous. Now, defining ψ : Af → Ef ×Aut(O∞⊗K) (O∞ ⊗K) by ψ([o, x]) = [[I, x], o] we
see that for any x ∈ S2n, [o, x+] = [f(x)(o), x−] but

ψ([f(x)(o), x−]) = [[I, x−], f(x)(o)] = [[f(x), x−], o] = [[I, x+], o],

and so ψ is well-defined. Again it is clear that ψ is continuous. Then we have

(ϕ ◦ ψ)([o, x]) = ϕ([[I, x], o]) = [o, x];

(ψ ◦ ϕ)([[T, x], o]) = ψ([T (o), x]) = [[I, x], T (o)] = [[T, x], o];

hence ψ = ϕ−1 and so ψ is a homeomorphism. Finally, restricting to the fibre over
x ∈ S2n+1 gives ψx : O∞⊗K → O∞⊗K to be the identity and thus ψ is an isomorphism
of algebra bundles.
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To finish this section, we briefly make some more general remarks regarding the clutch-
ing construction. As mentioned at the beginning of the section, this construction is more
general than what we have presented here for spheres. In fact, given data consisting of
any cover of a space X and a principal bundle over the disjoint union with certain isomor-
phism conditions imposed on points in the disjoint union which are identified to construct
X, a principal bundle over X can be constructed. For the sake of simplicity, we restrict
our attention to spaces which can be covered by two sets as was the case with the sphere.
For example, by viewing complex projective space CP n as the quotient of the disk D2n

by the equivalence relation identifying antipodal points on the boundary, CP n can be
covered by the image of a set containing a neighbourhood of the boundary of the disk
under the projection map and a set which does not contain the boundary. The latter of
these sets is contractible and the intersection is homeomorphic to S2n−1, but the former
is topologically more complicated, meaning that the principal bundles over this set would
need to be better understood in order to construct any general principal bundle over
CP n. This method could still be used to construct some principal Aut(O∞ ⊗K)-bundles
over CP n, even if it is not possible to construct all in this way. Even more simply, this
construction can be used to construct principal Aut(O∞ ⊗ K)-bundles over products of
spheres containing at least one odd-dimensional sphere where said sphere is split into two
hemispheres as above, as we will see in Chapter 5.

3.2 Decomposable twists

Another approach to constructing geometric representatives for twists of K-theory is to
consider general spaces X but to simplify the twisting cohomology class. One way in
which to do this is to consider decomposable classes, because there already exist bundle-
theoretic representatives for some low-dimensional cohomology classes.

To begin with, let X be a finite connected CW-complex with torsion-free cohomology
so that we are in the setting of Theorem 2.4.1. Suppose that δ ∈ H5(X,Z) decomposes
as δ = α ∪ β with α ∈ H2(X,Z) and β ∈ H3(X,Z). By the standard identification
Hn(X,Z) ∼= [X,K(Z, n)] where K(G, n) denotes an Eilenberg–Mac Lane space, i.e. a
space whose only non-trivial homotopy group is G in degree n, and the fact that there
exist simple geometric models for K(Z, n) in the case that n = 1, 2, 3, we identify δ with
H5 : X → K(Z, 5) such that H5 = H2 ∧H3 with H2 : X → BU(1) and H3 : X → BPU .
Then H2 determines a principal U(1)-bundle

U(1) PH2

X

πH2
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with Chern class α, and similarly H3 determines a principal PU -bundle

PU QH3

X

πH3

with Dixmier–Douady invariant β. We form the fibred product bundle over X, whose
total space is PH2 ×X QH3 = {(p, q) ∈ PH2 ×QH3 : πH2(p) = πH3(q)}, and this gives us a
principal U(1)× PU -bundle

U(1)× PU PH2 ×X QH3

X.

π

Such principal U(1) × PU -bundles over X are classified by homotopy classes of maps
from X into B(U(1) × PU) ' BU(1) × BPU ' K(Z, 2) × K(Z, 3), i.e. elements of
H2(X,Z) × H3(X,Z). This shows not only that α ∪ β is an invariant of the bundle
PH2 ×X QH3 , but also that any principal U(1)×PU -bundle arises in this way from a pair
of cohomology classes.

Now, to this principal bundle we wish to associate a principal Aut(O∞⊗K)-bundle over
X, to obtain a twist of K-theory. This is done by defining an injective group homomor-
phism from the structure group U(1)×PU into the automorphism group Aut(O∞⊗K), or
equivalently an effective action of the structure group U(1)×PU on the algebra O∞⊗K.
Since PU is isomorphic to the automorphism group of K by conjugation, we have the

obvious action PU
∼=−→ Aut(K), so we seek an effective action of U(1) on O∞.

As noted in Section 3 of [KK97], there is a one-parameter automorphism group of O∞
obtained by scaling the generators as follows. Letting λk for k = 1, 2, · · · be a sequence
of real constants, we obtain a map γ : R → Aut(O∞) defined by γt(Sk) = eiλktSk for
k = 1, 2, · · · where the Sk are the generators in the definition of the Cuntz algebra O∞.
Then taking λk = 2kπ we see that γ is periodic in t with a period of 1. In fact, this is a
special case of the action that we described in Theorem 2.2.7, and thus we can view it as
a map γ : U(1)→ Out(O∞), yielding the desired action.

Out of our maps U(1) → Aut(O∞) and PU → Aut(K), we obtain the product map
U(1)× PU → Aut(O∞)× Aut(K). Then by Corollary T.5.19 of [WO93] we see that the
tensor product of two automorphisms of C∗-algebras is an automorphism of the tensor
product algebra, and thus Aut(O∞) × Aut(K) ⊂ Aut(O∞ ⊗ K). Finally, since the map
U(1) → Aut(O∞) is given by scaling generators whereas PU = U(H)/U(1) acts by
conjugation on K, there is no non-trivial action of the U(1) factor on the K component or
of the PU factor on the O∞ component and hence the map U(1)× PU → Aut(O∞ ⊗K)
that we have constructed is injective.
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Thus we may form the associated bundle (PH2×XQH3)×U(1)×PU Aut(O∞⊗K), which
is a principal Aut(O∞ ⊗ K)-bundle over X. As the 5-class α ∪ β is an invariant of the
principal U(1) × PU -bundle, this is a prime candidate for the principal Aut(O∞ ⊗ K)-
bundle over X which corresponds to the class α ∪ β under the isomorphism of Dadarlat
and Pennig. Due to the inexplicit nature of the isomorphism, however, it is not immediate
that this will indeed be the correct bundle. In order to get around this issue, we apply
the techniques of Dadarlat and Pennig used to obtain the isomorphism between principal
Aut(O∞ ⊗K)-bundles and cohomology to the case of principal U(1)× PU -bundles.

Section 3 of [DP16] is dedicated to proving that Aut(O∞⊗K) is an infinite loop space,
allowing the authors to define the generalised cohomology theory EO∞

• which we discuss
in Section 2.3 and of which the first group classifies the twists of K-theory. In this case,
we get this for free for our space U(1)×PU as this is a model for K(Z, 1)×K(Z, 2), and
the Eilenberg–Mac Lane spaces are the infinite loop spaces defining ordinary cohomology.
Hence we are able to define a cohomology theory EU(1)×PU

n(X) = [X,Bn(U(1)×PU)]. In
particular, we have that the first group of this cohomology theory classifies the principal
U(1)×PU -bundles over X. We will use the spectral sequence technique to show that this
group is isomorphic to H2(X,Z)⊕H3(X,Z), and conclude that the isomorphism between
bundles and cohomology is what we expect it to be.

Using the homotopy groups of the Eilenberg–Mac Lane spaces U(1) and PU and the
fact that homotopy groups of products are products of homotopy groups, we see that

πi(U(1)× PU) ∼=

{
Z if i = 2 or 3;

0 otherwise.

Therefore E2-term of the Atiyah–Hirzebruch spectral sequence for the generalised coho-
mology theory EU(1)×PU

• is as follows.

0 1 2 3 · · ·

0 0 0 0 0 · · ·

−1 H0(X,Z) H1(X,Z) H2(X,Z) H3(X,Z) · · ·

−2 H0(X,Z) H1(X,Z) H2(X,Z) H3(X,Z) · · ·

−3 0 0 0 0 · · ·

Then since the differentials in the Atiyah–Hirzebruch spectral sequence are torsion
operators by Theorem 2.7 of [Arl92], and assuming that X has torsion-free cohomology,
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we obtain an isomorphism

EU(1)×PU
1(X) ∼= H2(X,Z)⊕H3(X,Z).

But we already have an isomorphism between H2(X,Z)⊕H3(X,Z) and the isomorphism
classes of principal U(1) × PU -bundles over X. Therefore we conclude that this map
assigns to a principal bundle its invariant 2-class and 3-class in the sense described earlier.
Furthermore, by taking the cup product of these classes we view this as a map

[X,B(U(1)× PU)]→ H5(X,Z)

induced by the isomorphism. Now, since this map was constructed via the same spectral
sequence argument as the isomorphism of Dadarlat and Pennig, we conclude that the
diagram

[X,B(U(1)× PU)] H5(X,Z)

[X,BAut(O∞ ⊗K)] H1(X,Z2)⊕
⊕
k≥1

H2k+1(X,Z)

commutes, where the left vertical map takes a principal U(1)×PU -bundle over X to the
associated Aut(O∞ ⊗ K)-bundle via our injective group homomorphism. This allows us
to conclude that the principal bundle (PH2 ×X QH3)×U(1)×PU Aut(O∞ ⊗K) constructed
earlier truly does correspond to the 5-class α∪ β under the isomorphism of Dadarlat and
Pennig.

We now extend this argument to the case in which δ is a general element of the cup
product of H2(X,Z) and H3(X,Z), i.e. δ is given by a sum of N decomposable classes
of the form considered above. We take α ∈ H2(X,ZN) and β ∈ H3(X,ZN) such that
δ = 〈α |β〉 where 〈· |·〉 is the pairing H2(X,ZN) × H3(X,ZN) → H5(X,Z) given by the
cup product and the standard inner product ZN ×ZN → Z. As above, we identify α with
a map H2 : X → BU(1)N and β with a map H3 : X → BPUN , and form the principal
torus bundle

U(1)N PH2

X

πH2

with Chern class α and the principal PUN -bundle

PUN QH3

X

πH3
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with Dixmier–Douady invariant β. Once again we take the fibred product to obtain the
principal bundle

U(1)N × PUN PH2 ×X QH3

X,

π

and using B(U(1)N ×PUN) ' BK(Z, 2)N ×BK(Z, 3)N we see that δ will be an invariant
of this bundle. This time, we require an injective map U(1)N ×PUN → Aut(O∞⊗K) to
adapt the previous argument and construct the associated bundle.

Again by Corollary T.5.19 of [WO93] and the fact that O∞ is nuclear, we see that
Aut(O∞)N ⊂ Aut(O⊗N∞ ) = Aut(O∞). We may then combine two copies of our action
γ, γ′ : U(1)→ Aut(O∞) described previously to form an injective map U(1)2 → Aut(O⊗2

∞ )
given by (γ⊗γ′)(t,t′)(Sk⊗Sk′) = e2πi(kt+k′t′)Sk⊗Sk′ . This argument can be extended to N
maps U(1)→ Aut(O∞) in the same way, and therefore the map U(1)N → Aut(O∞) that
we construct is injective. More simply, the map PUN → Aut(K) is injective because the
automorphisms do not involve scaling by constants. Thus we obtain our desired injective
group homomorphism U(1)N × PUN → Aut(O∞ ⊗K).

We then construct the associated bundle (PH2×XQH3)×U(1)N×PUN Aut(O∞⊗K) over
X, at which point we apply the same argument as previously. We have that U(1)N×PUN

is an infinite loop space, and using the same spectral sequence technique we obtain an
isomorphism [X,B(U(1)N × PUN)] ∼= H2(X,ZN)⊕H3(X,ZN) which we view as a map
[X,B(U(1)N × PUN)]→ H5(X,Z). Then the diagram[

X,B(U(1)N × PUN)
]

H5(X,Z)

[X,BAut(O∞ ⊗K)] H1(X,Z2)⊕
⊕
k≥1

H2k+1(X,Z)

commutes, and thus the principal Aut(O∞ ⊗ K)-bundle constructed in this section does
correspond to δ under the isomorphism.

We have proved the following.

Theorem 3.2.1. Let X be a finite connected CW-complex with torsion-free cohomology,
and take α ∈ H2(X,ZN) and β ∈ H3(X,ZN) with δ = 〈α |β〉 . Denote by Pα the total space
of the principal U(1)-bundle with Chern class α and by Qβ the total space of the principal
PU-bundle with Dixmier–Douady invariant β. Then (Pα×XQβ)×U(1)N×PUN Aut(O∞⊗K)
is a principal Aut(O∞⊗K)-bundle over X which corresponds to δ under the isomorphism
of Dadarlat and Pennig.

Based on this result, the natural question to ask is whether decomposable classes
in higher degrees may be represented in a similar way. For example, we could take
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α1∪α2∪β ∈ H2(X,Z)∪H2(X,Z)∪H3(X,Z) ⊂ H7(X,Z) and aim to construct a bundle
in much the same way. One could follow the same constructions as above in order to do
so, and would obtain an extension of the result.

Example 3.2.1. We will outline the most straightforward application of this result; to
the space S2 × S3. This space has torsion-free cohomology, and the cup product of
the generators of the second- and third-degree cohomology groups is the generator of
H5(S2×S3,Z). Thus we may apply the constructions detailed above to obtain geometric
representatives for all twists of degree 5 over this space.

Given δ ∈ H5(S2×S3,Z), this will be of the form Nα∪β for N ∈ Z and α, β generators
of the second- and third-degree integral cohomology groups respectively. Then we may
construct the principal U(1)-bundle over S2 × S3 with Chern class Nα, which is simply
the U(1)-bundle over S2 with Chern class Nα extended trivially over the S3 factor, and
similarly construct the principal PU -bundle over S2×S3 with Dixmier–Douady invariant
β which will be the corresponding PU -bundle over S3 extended trivially over S2. Taking
the fibred product of these bundles then yields the principal U(1)×PU -bundle over S2×S3

with invariant (Nα, β), and lastly taking the associated bundle via our injective group
homomorphism U(1)×PU → Aut(O∞⊗K) we obtain the principal Aut(O∞⊗K)-bundle
over S2 × S3 which is classified by δ.

Note that in this example we viewed the class Nα∪β as (Nα)∪β, but we equivalently
could have used α∪(Nβ) or split N into two factors if possible. This is a limitation of our
approach; while the bundles constructed in these slightly different ways are necessarily
isomorphic, it is not obvious from the construction that they will be isomorphic.

More generally than the limitation above, it is even difficult to tell whether a bundle
constructed in this way is trivial. For instance, taking a space such as S2 × S1 which has
non-trivial second and third degree integral cohomology, this construction can be used
to form a principal Aut(O∞ ⊗ K)-bundle over S1 × S2 represented by an element of the
fifth-degree cohomology, which is trivial. It is not obvious from the construction, however,
that such a bundle is necessarily trivial. More generally, taking any assortment of 2- and
3-classes whose cup product is zero, it is not obvious that the bundle constructed in this
way will be trivial.

We end this chapter with some discussion of directions for future research motivated
by these results. Whilst Theorem 3.2.1 provides geometric representatives for a specific
class of decomposable twists, the majority of twists cannot be decomposed into pieces as
simple as these. Thus it would be desirable to obtain a more general theorem which is
applicable to a wider class of decomposable twists, but it is difficult to obtain geometric
representatives for higher degree cohomology classes. If models for higher Eilenberg–
Mac Lane spaces could be obtained, and injective group homomorphisms from these into
Aut(O∞ ⊗ K) could be determined, then the methods used would directly generalise to
provide geometric representatives in higher degrees. Alternatively, if results in represent-
ing cohomology classes using maps into the stable unitary group could be obtained in
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some special cases, then the action by outer automorphisms explored in Subsection 2.2.2
could be used to extend the results presented here.

In general, the problem of associating geometric representatives to cohomology classes
is very difficult. A large amount of work has been done on this for classical twists using
the theory of loop groups and transgression of cohomology classes, but it is not apparent
how this work can be carried over to the higher twisted setting. Further research in this
area following these ideas may yield more general results.



Chapter 4

Product structure and spectral
sequences

Besides the basic results such as functoriality and the existence of a Mayer–Vietoris se-
quence, there are additional properties and tools expected to generalise to higher twisted
K-theory from the classical case. The first of these which we shall explore is the existence
of a product on higher twisted K-theory, and while this does not equip higher twisted
K-theory with the structure of a graded ring as such it does make it into a graded module
over topological K-theory. The second is the existence of spectral sequences for higher
twisted K-theory, which will be critical to our computations.

In order to work towards a graded module structure on higher twisted K-theory, we
firstly develop a general external product between the higher twisted K-theory groups of
spaces X and Y using Fredholm operators, which mirrors the construction in the setting
of topological K-theory. Restricting this to the case X = Y we obtain something which
resembles a graded ring structure, but where the product of K∗(X, δ1) and K∗(X, δ2)
lands in K∗(X, δ1 + δ2) for a suitable notion of addition of twists. Taking one of these
twists to be trivial, we obtain an explicit realisation of the graded module structure. We
also briefly discuss the graded module structure using operator algebraic K-theory.

The second half of this chapter is dedicated to the development of spectral sequences,
which are tools that will greatly improve our ability to perform computations in the
final chapter. We show the existence of an Atiyah–Hirzebruch spectral sequence and a
Segal spectral sequence in higher twisted K-theory, both of which are expected for any
generalised cohomology theory, but in particular we obtain some information regarding
the differentials in these sequences. While our results are limited in that we are only able
to provide an expression for one differential in the Atiyah–Hirzebruch spectral sequence,
this will still prove to be very useful when it comes to computations.

Note that we only outline some constructions and arguments in this chapter, partic-
ularly concerning the external product, and do not work out all details. The results on
the product are not used in the remainder of the thesis.

65
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4.1 External product and graded module structure

We firstly aim to develop an external product map allowing multiplication between higher
twisted K-theory groups of different spaces. Let X and Y be topological spaces, and let
EδX and EδY denote principal Aut(O∞ ⊗ K)-bundles over X and Y respectively corre-
sponding to twists δX and δY . Denote by pX and pY projection from the product space
X × Y to X and Y respectively. In order to define a product which lands in the higher
twisted K-theory of X × Y , we need a sensible notion of the sum of the twists δX over X
and δY over Y . Since the bundles are over different spaces, the first step towards this is
pulling them both back to X × Y under the respective projection maps. We then need a
suitable notion of the product of the bundles, which is provided in Section 3.2 of [DP16].

Pennig and Dadarlat develop a tensor product for principal Aut(O∞ ⊗ K)-bundles
with respect to which the higher Dixmier–Douady classes are additive. We outline their
construction here. Firstly, by the nuclearity of O∞ ⊗ K we fix once and for all an iso-
morphism ψ : O∞ ⊗ K → (O∞ ⊗ K) ⊗ (O∞ ⊗ K), and induce a group homomorphism
Adψ−1 : Aut(O∞ ⊗K)× Aut(O∞ ⊗K)→ Aut(O∞ ⊗K) via (α, β) 7→ ψ−1 ◦ (α ⊗ β) ◦ ψ.
Let P1 and P2 be principal Aut(O∞ ⊗ K)-bundles over X. By taking the fibred product
P1 ×X P2 we obtain a principal Aut(O∞ ⊗ K)× Aut(O∞ ⊗ K)-bundle over X, and then
we use ψ to define

P1⊗ψ P2 = (P1×X P2)×Adψ−1 Aut(O∞⊗K) = ((P1×X P2)×Aut(O∞⊗K))/ ∼ (4.1.1)

where (p1 · α, p2 · β, γ) ∼ (p1, p2,Adψ−1(α, β)γ) for all (p1, p2) ∈ P1 ×X P2 and for every
α, β, γ ∈ Aut(O∞ ⊗ K). Pennig and Dadarlat show that different choices of ψ yield
equivalent products in Lemma 3.4 of [DP16], so we denote the tensor product in (4.1.1)
simply by ⊗. They also prove that the higher Dixmier–Douady invariants are additive
with respect to the tensor product in Definition 4.6 [DP16].

Returning to the setting of interest, the twist p∗XδX + p∗Y δY over X × Y will be repre-
sented by the bundle p∗XEδX ⊗ p∗Y EδY . Thus we are seeking a map of the form

Km(X, δX)×Kn(Y, δY )→ Km+n(X × Y, p∗XδX + p∗Y δY ), (4.1.2)

and using our identification with Fredholm operators in Theorem 2.5.1 this is a map

[EδX ,Ωm FredO∞⊗K]Aut(O∞⊗K) × [EδY ,Ωn FredO∞⊗K]Aut(O∞⊗K) (4.1.3)

→[p∗XEδX ⊗ p∗Y EδY ,Ωm+n FredO∞⊗K]Aut(O∞⊗K).

The first ingredient that we will need is a tensor product operation on FredO∞⊗K, which
will be central to the development of the product (4.1.3). To simplify this discussion, we
will also need a notion of index for generalised Fredholm operators, which requires an
understanding of the homotopy groups of the space of these operators.
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Lemma 4.1.1. The space of Fredholm operators on the standard Hilbert (O∞⊗K)-module
HO∞⊗K has homotopy groups

πi(FredO∞⊗K) ∼=

{
Z if i is even;

0 if i is odd.

Proof. Using the reduced version of Theorem 2.5.1 we see, for δ a trivial twist represented
by the trivial bundle Sn × Aut(O∞ ⊗K), that

K̃i(Sn, δ) = [Sn × Aut(O∞ ⊗K),Ωi((FredO∞⊗K)0)]Aut(O∞⊗K)

= [Sn,Ωi((FredO∞⊗K)0)]

= [Sn+i, (FredO∞⊗K)0]

where we have identified the G-equivariant maps X ×G→ Y with maps X → Y . Now,
since (FredO∞⊗K)0 is simply connected, which follows from path connectedness and the

fact that each loop is unbased nullhomotopic by [S1, (FredO∞⊗K)0] = K̃0(S1) = 0, this
is equal to the based homotopy classes of maps Sn+i → (FredO∞⊗K)0, which is equal

to πn+i((FredO∞⊗K)0). The same argument shows that K̃i(Sn) = πn+i(Fred0). Now, by
Proposition 2.3.10 we see that the K-theory of Sn twisted by the trivial twist δ is equal
to the topological K-theory of Sn, and therefore πi((FredO∞⊗K)0) = πi((Fred)0). Thus

πi(FredO∞⊗K) = πi((FredO∞⊗K)0) = πi((Fred)0) = πi(Fred),

and as the homotopy groups of the standard Fredholm operators are well-known, this
completes the proof.

We will now develop a tensor product on (FredO∞⊗K)0, the Fredholm operators on
HO∞⊗K of index zero or equivalently the connected component of the identity of FredO∞⊗K.
For S, T ∈ (FredO∞⊗K)0, we define

S⊗̂T = S ⊗ I + I ⊗ T, (4.1.4)

which is a Fredholm operator of index zero on HO∞⊗K ⊗ HO∞⊗K. Here, we use our
isomorphism ψ : O∞⊗K → (O∞⊗K)⊗ (O∞⊗K) from earlier to induce an isomorphism
ψH : HO∞⊗K → HO∞⊗K ⊗ HO∞⊗K using the same notation as in (2.5.1). Thus we may
view S⊗̂T as an element of (FredO∞⊗K)0, so this yields a well-behaved tensor product
operation on (FredO∞⊗K)0.

Although this tensor product has a simple form, the general product on FredO∞⊗K is
more difficult to write explicitly. We desire the index to be multiplicative with respect
to tensor products, but if the definition (4.1.4) were used in general then S⊗̂T would
have index dim(ker(S)) dim(ker(T )) − dim(ker(S∗)) dim(ker(T ∗)), which is not equal to
ind(S) ind(T ) in general. Thus the tensor product must be adapted to work for the general
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case, which requires the use of a Z2-graded Hilbert module. We follow the work of Jänich
[Jän65] in making the following definition.

Note that given an operator T ∈ B(HO∞⊗K ⊗ HO∞⊗K), we can conjugate by ψH to
obtain an operator ψ−1

H TψH ∈ B(HO∞⊗K). We use this in the following.

Definition 4.1.2. Let S and T be Fredholm operators on the Z2-graded Hilbert module
HO∞⊗K. The product of S and T is

S⊗̂T =

(
ψ−1
H S ⊗ IψH −ψ−1

H I ⊗ T ∗ψH
ψ−1
H I ⊗ TψH ψ−1

H S∗ ⊗ IψH

)
. (4.1.5)

Letting HO∞⊗K = H0 ⊕H1 denote the Z2-grading, although for instance ψ−1
H S ⊗ IψH

is a map H0 ⊕ H1 → H0 ⊕ H1, it is identified with a map H0 → H0 via an inclusion
HO∞⊗K ⊗HO∞⊗K ⊂ H0. The details of this will not concern us.

First of all, we require this tensor product to indeed produce a Fredholm operator. In
order to move towards a product on higher twisted K-theory, we also desire this product
to have properties such as associativity and commutativity up to homotopy. We will
not provide the details of these, but the proofs in the case of the equivalent product on
ordinary Fredholm operators can be found in Lemma 2 of [Jän65].

Lemma 4.1.3. The product of Fredholm operators on HO∞⊗K satisfies the following prop-
erties.

(i) The product of Fredholm operators is a Fredholm operator;

(ii) The index of the product of Fredholm operators is the product of the indices;

(iii) For A,B,C ∈ FredO∞⊗K, the operators A⊗̂(B⊗̂C) and (A⊗̂B)⊗̂C are homotopic
through Fredholm operators;

(iv) For A,B,C ∈ FredO∞⊗K, the operators A⊗̂(B ◦C) and (A⊗̂B) ◦ (A⊗̂C) are homo-
topic through Fredholm operators;

(v) There exists an E ∈ FredO∞⊗K such that E⊗̂A and A⊗̂E are homotopic to A for
all A ∈ FredO∞⊗K.

This allows us to define the product (4.1.3) in the case that m = n = 0. Letting
F ∈ [EδX ,FredO∞⊗K]Aut(O∞⊗K), we pull F back to a map p∗XF : p∗XEδX → FredO∞⊗K. We
do the same for G ∈ [EδY ,FredO∞⊗K]Aut(O∞⊗K), and then define the product of F and G
to be the map

F ⊗̂G : (q1, q2, γ) 7→ (p∗XF (p∗Xq1)⊗̂p∗YG(p∗Y q2)) · γ, (4.1.6)

for [(q1, q2, γ)] ∈ (p∗XEδX ×X×Y p∗Y EδY )×Adψ−1 Aut(O∞⊗K), and where p∗X : p∗XEδX → EδX
is the map induced by pullback of bundles. We observe that this product is clearly
Aut(O∞ ⊗ K)-equivariant as desired. Now, we must ensure that this product is well-
defined on the tensor product bundle.
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Lemma 4.1.4. The product F ⊗̂G defined in (4.1.6) is well-defined.

Proof. Let (q1, q2) ∈ p∗XEδX ×X×Y p∗Y EδY and α, β, γ ∈ Aut(O∞ ⊗K). Then

(F ⊗̂G)(q1 · α, q2 · β, γ) = (p∗XF (p∗Xq1 · α)⊗̂p∗YG(p∗Y q2 · β)) · γ
= ((p∗XF (p∗Xq1) · α)⊗̂(p∗YG(p∗Y q2) · β)) · γ

using the Aut(O∞⊗K)-equivariance of F and G. Now, using the definition of the conju-
gation action of Aut(O∞ ⊗K) on FredO∞⊗K we see that

(F ⊗̂G)(q1 · α, q2 · β, γ)

= ((α−1
Hp
∗
XF (p∗Xq1)αH)⊗̂(β−1

Hp
∗
YG(p∗Y q2)βH)) · γ

=

(
ψ−1
H α−1

Hp
∗
XF (p∗Xq1)αH ⊗ IψH −ψ−1

H I ⊗ (β−1
Hp
∗
YG(p∗Y q2)βH)∗ψH

ψ−1
H I ⊗ β−1

Hp
∗
YG(p∗Y q2)βHψH ψ−1

H (α−1
Hp
∗
XF (p∗Xq1)αH)∗ ⊗ IψH

)
· γ

=

(
ψ−1
H ◦ (α−1

H ⊗ β−1
H)

(
p∗XF (p∗Xq1)⊗ I −I ⊗ (p∗YG(p∗Y q2))∗

I ⊗ p∗YG(p∗Y q2) (p∗XF (p∗Xq1))∗ ⊗ I

)
(αH ⊗ βH) ◦ ψH

)
· γ

=
(
ψ−1
H ◦ (α−1

H ⊗ β−1
H) ◦ ψH(p∗XF (p∗Xq1)⊗̂p∗YG(p∗Y q2))ψ−1

H ◦ (αH⊗̂βH) ◦ ψH
)
· γ

= (p∗XF (p∗Xq1)⊗̂p∗YG(p∗Y q2)) · Adψ−1(α, β)γ

= (F ⊗̂G)(q1, q2,Adψ−1(α, β)γ).

So the product is well-defined as required.

To extend this product to the groups of higher degree, we sacrifice the level of ex-
plicitness that we have used so far. In order to define a product between higher twisted
K-theory groups of degree m and n, we need a product

� : Ωm FredO∞⊗K×Ωn FredO∞⊗K → Ωm+n FredO∞⊗K (4.1.7)

which restricts to the tensor product ⊗̂ when m = n = 0. This product, however, is
not simply defined to be the pointwise version of ⊗̂ as this would not yield an element
of the (m + n)th iterated loop space of FredO∞⊗K as is required. While we do not have
an explicit form for the map �, its existence is established by that of the analogous map
on the ordinary Fredholm operators, which comes from the ring structure on topological
K-theory.

Lemma 4.1.5. There is a product � as in (4.1.7) which is associative, commutative and
unital up to homotopy, and which is equal to the product (4.1.5) when m = n = 0.

Then using this map, we are able to define our general external product (4.1.3) to be

F �G : (q1, q2, γ) 7→ (p∗XF (p∗Xq1) � p∗YG(p∗Y q2)) · γ. (4.1.8)

This product is then Aut(O∞ ⊗ K)-equivariant, and the properties of the product
stated in Lemma 4.1.5 carry over to the external product on higher twisted K-theory.
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Proposition 4.1.6. The external product on higher twisted K-theory (4.1.2) is associa-
tive, commutative and unital.

The product also reduces to the ordinary external product in topological K-theory as
discussed in, for instance, Section 2.4 of [Ati67].

Proposition 4.1.7. When trivial twists are taken over X and Y , the external product
(4.1.2) reduces to the ordinary external product in topological K-theory.

Proof. When δX and δY are trivial, the bundles EδX and EδY are both trivial principal
Aut(O∞ ⊗K)-bundles. This means that

Kn(X, δX) = [X × Aut(O∞ ⊗K),Ωn FredO∞⊗K]Aut(O∞⊗K) = [X,Ωn FredO∞⊗K], (4.1.9)

where F : X → Ωn FredO∞⊗K is obtained from F̃ : X×Aut(O∞⊗K)→ Ωn FredO∞⊗K via

F (x) = F̃ (x, I). Now, p∗XEδX and p∗Y EδY are both trivial principal Aut(O∞ ⊗K)-bundles
over X × Y , and the fibred product of these is the trivial Aut(O∞ ⊗K)×Aut(O∞ ⊗K)-
bundle over X × Y . Taking the associated bundle via Adψ−1 then yields the trivial
Aut(O∞ ⊗K)-bundle over X × Y . Thus, making the identifications (4.1.9), the product
(4.1.8) is simply

(x, y, γ) 7→ (F (x) �G(y)) · γ.

Furthermore, identifying [X×Y ×Aut(O∞⊗K),Ωm+n FredO∞⊗K]Aut(O∞⊗K) with the group
[X×Y,Ωm+n FredO∞⊗K] removes the Aut(O∞⊗K) component from the map, and hence it
reduces to (x, y) 7→ F (x) �G(y). Finally, identifying [X,Ωn FredO∞⊗K] with [X,Ωn Fred]
this is the same as the external product on topological K-theory by the formulation of
the product as required.

We now restrict to a less general setting to move towards a module structure on higher
twisted K-theory. Letting X = Y the product (4.1.8) becomes a map

Km(X, δ1)×Kn(X, δ2)→ Km+n(X ×X, p∗1δ1 + p∗2δ2),

and pulling this back along the diagonal map ∆ : X → X ×X yields the more familiar
ring-like product

Km(X, δ1)×Kn(X, δ2)→ Km+n(X, δ1 + δ2), (4.1.10)

where ∆∗(p∗1δ1 +p∗2δ2) = (p1 ◦∆)∗δ1 +(p2 ◦∆)∗δ2 = δ1 +δ2 using the functoriality of higher
twisted K-theory. Note that this is not a graded ring structure on K∗(X, δ), rather it
equips higher twisted K-theory with a ring-like structure where multiplication of classes
corresponds to addition of twists. While topological K-theory does possess a graded ring
structure, our results here are similar to the classical twisted case in which there is no
graded ring structure as such but a product map of the same form as (4.1.10).
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We are able to simplify the expression (4.1.8) for the product (4.1.10) by noting that
∆∗p∗1F = F and ∆∗p∗2G = G as was shown above for the twists δ1 and δ2. So the formula
(4.1.8) in this case simply reduces to

F �G : (q1, q2, γ) 7→ (F (q1) �G(q2)) · γ. (4.1.11)

Using Proposition 4.1.6 we see that the graded ring properties from the setting of
topological K-theory carry over to higher twisted K-theory, with the caveat mentioned
earlier that this does not equip K∗(X, δ) with a ring structure for a fixed δ, rather the
twist must be allowed to change as per the product formula (4.1.10).

In the classical setting, there is a subset of twists known as multiplicative twists for
which this product truly does provide the twisted K-theory group K∗(X, δ) with a ring
structure for a fixed δ. In fact, it is using this class of twists that the results linking
the equivariant twisted K-theory of certain Lie groups with representation theory are
obtained in [FHT11a, FHT13, FHT11b], and so this provides the opportunity for future
work in describing a class of multiplicative twists for higher twisted K-theory and finding
links with the theorem of Freed, Hopkins and Teleman.

We are able to further restrict the product (4.1.10) to equip higher twisted K-theory
with the structure of a graded module over topological K-theory. In particular, letting
one of the twists be trivial we obtain

Km(X)×Kn(X, δ)→ Km+n(X, δ).

This map will be a further simplification of the product (4.1.11), where we identify Km(X)
with [X × Aut(O∞ ⊗ K),Ωm FredO∞⊗K]Aut(O∞⊗K) = [X,Ωm FredO∞⊗K] and observe that
the tensor product of Eδ and the trivial bundle X × Aut(O∞ ⊗K) will be isomorphic to
Eδ because the classes of the bundles are additive with respect to tensor product. This
allows us to express the module structure as

F �G : q 7→ F (π(q)) �G(q) (4.1.12)

for q ∈ Eδ, where F ∈ [X,Ωm FredO∞⊗K] and π : Eδ → X is the bundle projection. The
module axioms then follow from Proposition 4.1.6.

Proposition 4.1.8. Higher twisted K-theory forms a graded module over topological K-
theory.

We will also explore this graded module structure from a different perspective. We
briefly discuss an explicit form for a product on higher twisted K-theory in the case
that m = n = 0 via operator algebraic K-theory. Recall from Definition 1.2.8 that
the K-theory of a unital C∗-algebra A in degree 0 is the Grothendieck group of the
monoid of projections in the infinite matrix algebra M∞(A). Recall further that this
extends to a definition of K-theory for general C∗-algebras A as the kernel of the map
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induced by projection from the unitisation A+ to C. Therefore an element in K0(A)
can be represented by a pair (p, q) such that p and q are projections in Mn(A+) and
p− q ∈Mn(A) for some n, and this element will be denoted [p]− [q] ∈ K0(A).

We use this formulation to define a product on higher twisted K-theory. For X a
locally compact Hausdorff space and δX a twist represented by a principal Aut(O∞⊗K)-
bundle EδX , we see that an element of K0(X, δ) = K0(C0(X, EδX )) is represented by a
pair (p, q) with p, q ∈ Mn(C0(X, EδX )+) such that p − q ∈ Mn(C0(X, EδX )) for some n.
Letting Y , δY and EδY be defined in the same way, we express a product of the same form
as (4.1.2) in the case m = n = 0 as follows. While we believe this to be the same as the
product developed using Fredholm operators, we have not worked out the details.

([p1]− [p2], [q1]− [q2]) 7→ [π∗Xp1 ⊗ π∗Y q1 + π∗Xp2 ⊗ π∗Y q2]− [π∗Xp1 ⊗ π∗Y q2 + π∗Xp2 ⊗ π∗Y q1].

The properties of the pi and qj will carry over to ensure that the element on the right-
hand side is in the correct K-theory group. In particular, since pi ∈ Mn(C0(X, EδX )+)
and qj ∈Mn′(C0(Y, EδY )+), we have π∗Xpi⊗π∗Y qj ∈Mnn′(C0(X×Y, π∗XEδX ⊗π∗Y EδY )), and
since p1 − p2 ∈Mn(C0(X, EδX )) and q1 − q2 ∈Mn′(C0(Y, EδY )) we have

(π∗Xp1 ⊗ π∗Y q1 + π∗Xp2 ⊗ π∗Y q2)− (π∗Xp1 ⊗ π∗Y q2 + π∗Xp2 ⊗ π∗Y q1)

= π∗Xp1 ⊗ (π∗Y (q1 − q2))− π∗Xp2 ⊗ (π∗Y (q1 − q2))

= π∗X(p1 − p2)⊗ π∗Y (q1 − q2) ∈Mn′′(C0(X × Y, π∗XEδX ⊗ π∗Y EδY ))

for n′′ = max(n, n′) where equivalent projection matrices of the appropriate size may
have been used. Note that as in the Fredholm case, we are able to obtain a very explicit
form for the product map in degree 0. When moving to higher degrees, however, the
descriptions of elements in the operator algebraic K-theory groups are not so simple, and
so we will not extend this product to higher degrees.

We are able to restrict this product to view it as a map (4.1.10) as was done in the
Fredholm case. Once again, the combination of the diagonal map and the projection maps
will cancel out, providing a simpler expression for the product map as follows.

([p1]− [p2], [q1]− [q2]) 7→ [p1 ⊗ q1 + p2 ⊗ q2]− [p1 ⊗ q2 + p2 ⊗ q1]. (4.1.13)

Once again we will not extend this form of the product to higher degrees, but this provides
a simple expression for the product in degree zero where the associativity and commuta-
tivity of the product are made clearer.

We will use this more explicit product to explore the graded module structure of
higher twisted K-theory over topological K-theory. This formula allows us to give a more
enlightening proof of Proposition 4.1.8, even if only in the case m = n = 0.
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Proof of Proposition 4.1.8 for m = n = 0. Let [p1] − [p2], [q1] − [q2] represent classes in
K0(X) and [r1]− [r2], [s1]− [s2] represent classes in K0(X, δ).

(i) Left distributivity:

([p1]− [p2], ([r1]− [r2]) + ([s1]− [s2])) = ([p1]− [p2], [r1 + s1]− [r2 + s2])

7→ [p1 ⊗ r1 + p1 ⊗ s1 + p2 ⊗ r2 + p2 ⊗ s2]

− [p1 ⊗ r2 + p1 ⊗ s2 + p2 ⊗ r1 + p2 ⊗ s1]

= [p1 ⊗ r1 + p2 ⊗ r2]− [p1 ⊗ r2 + p2 ⊗ r1]

+ [p1 ⊗ s1 + p2 ⊗ s2]− [p1 ⊗ s2 + p2 ⊗ s1].

(ii) Right distributivity:

(([p1]− [p2]) + ([q1]− [q2]), [r1]− [r2]) = ([p1 + q1]− [p2 + q2], [r1]− [r2])

7→ [p1 ⊗ r1 + q1 ⊗ r1 + p2 ⊗ r2 + q2 ⊗ r2]

− [p1 ⊗ r2 + q1 ⊗ r2 + p2 ⊗ r1 + q2 ⊗ r1]

= [p1 ⊗ r1 + p2 ⊗ r2]− [p1 ⊗ r2 + p2 ⊗ r1]

+ [q1 ⊗ r1 + q2 ⊗ r2]− [q1 ⊗ r2 + q2 ⊗ r1].

(iii) Compatibility with scalar multiplication:

(([p1]− [p2]) · ([q1]− [q2]), [r1]− [r2])

= ([p1 ⊗ q1 + p2 ⊗ q2]− [p1 ⊗ q2 + p2 ⊗ q1], [r1]− [r2])

7→ [(p1 ⊗ q1 + p2 ⊗ q2)⊗ r1 + (p1 ⊗ q2 + p2 ⊗ q1)⊗ r2]

− [p1 ⊗ q1 + p2 ⊗ q2)⊗ r2 + (p1 ⊗ q2 + p2 ⊗ q1)⊗ r1]

= [p1 ⊗ (q1 ⊗ r1 + q2 ⊗ r2) + p2 ⊗ (q1 ⊗ r2 + q2 ⊗ r1)]

− [p1 ⊗ (q1 ⊗ r2 + q2 ⊗ r1) + p2 ⊗ (q1 ⊗ r1 + q2 ⊗ r2)].

(iv) The pair (1, 0) in K0(X) acts as the identity element:

([1]− [0], [r1]− [r2]) 7→ [1⊗ r1 + 0⊗ r2]− [1⊗ r2 + 0⊗ r1] = [r1]− [r2].

While these products and the existence of a graded module structure on higher twisted
K-theory are not directly relevant to performing computations, by exploring them we are
able to gain further insight into the structure of higher twisted K-theory.
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4.2 Spectral sequences

Spectral sequences are useful computational tools available when dealing with cohomology
theories and their twisted counterparts, and so it is expected that spectral sequences
exist in the setting of higher twisted K-theory. Indeed, the arguments to obtain the
existence of both the Atiyah–Hirzebruch and the Segal spectral sequences are standard
in the literature, but we will work through the details of this for the Atiyah–Hirzebruch
spectral sequence for the sake of completeness. Note that the particularly interesting
results in this section are regarding the differentials in these sequences, and these results
are unique to higher twisted K-theory. In spite of this, due to the difficulty in determining
the differentials in these spectral sequences, are results are still weak and can be built
upon allowing for further computations to be performed.

4.2.1 Atiyah–Hirzebruch spectral sequence

There is an Atiyah–Hirzebruch spectral sequence in topological K-theory, as well as an
analogous twisted Atiyah–Hirzebruch spectral sequence in twisted K-theory constructed
both by Rosenberg [Ros89] and by Atiyah and Segal [AS06]. Both sequences have the same
E2-term, but the difference lies in the differentials. We will show that there is yet another
analogous spectral sequence in the higher twisted setting which shares the same E2-term,
but again the difference is in the differentials. While the differentials are very difficult to
determine, we are able to obtain limited information by relating the differentials to the
twisting cohomology class.

We will provide a very brief introduction to spectral sequences, but the reader who
has not worked with them before may wish to consult a standard reference in homology to
become more familiar with their use, for instance [CE99] or [BT82]. Spectral sequences
are computational tools which are used to compute extraordinary cohomology groups
from ordinary cohomology. For instance, the Atiyah–Hirzebruch spectral sequence in
topological K-theory uses the ordinary cohomology of a space to compute its topological
K-theory groups, and the variation for twisted K-theory uses ordinary cohomology to
compute twisted K-theory.

To give a brief introduction to how they work, a spectral sequence for cohomology is a
doubly infinite sequence {Ep,q

n }p,q∈Z for each integer n ≥ 1, where the differentials in the
sequence tell you how to move from the En-term to the En+1-term. Often there will be
an explicit formula for a certain term of the spectral sequence, for instance in the Atiyah–
Hirzebruch spectral sequence there is an explicit expression for Ep,q

2 for all p, q ∈ Z, and
the differentials provide the remaining information for how to obtain the following terms
in the sequence. The question that remains is how this sequence is used to compute
extraordinary cohomology groups. We will only be considering spectral sequences that
are fairly well-behaved, which firstly means that our sequences will be locally eventually
constant, i.e. there will be a value N such that Ep,q

n = Ep,q
N for every p, q ∈ Z for all n ≥ N ,
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and thus we may define the limit of the sequence Ep,q
∞ to be this value. In this situation,

we say that the spectral sequence collapses at the EN -term. We will also only be using
sequences that converge strongly, which is a technical definition but which means that we
may compute the extraordinary cohomology groups from the E∞-term as follows.

We say that the spectral sequence {Ep,q
n } converges strongly to the graded group

{H i}i∈Z if there is a filtration (Hj)i of H i for all i ∈ Z, i.e. a nested sequence of groups
(Hj+1)i ⊂ (Hj)i ⊂ · · · ⊂ H i, which is uniquely determined by short exact sequences of
the form

0→ (Hj+1)i → (Hj)i → Ej,i−j
∞ → 0. (4.2.1)

For our locally eventually constant spectral sequences, there will be some J ∈ Z such that
(Hj)i = H i for all i ∈ Z for all j ≤ J and so determining this filtration via the short
exact sequence will fully determine the graded group H i. This shows where the extension
problems in using spectral sequences for computations become apparent, as in general
these short exact sequences are very difficult to use to determine H i.

Note that analogous statements are true for spectral sequences in homology, where
the sequence is of the form {En

p,q} and the differentials go in the opposite direction.

In order to construct such a twisted Atiyah–Hirzebruch spectral sequence which is
applicable to higher twisted K-theory, we follow the approach described in [CE99]. This
requires a filtration of the twisted K-theory group, which is simple in the case of ordinary
topological K-theory as the relative K-theory groups of the skeletal filtration of X may
be used, but requires slight modification for our purposes.

LetX be a finite CW complex with p-skeletonXp. We aim to filterKn(X, δ) = Kn(Aδ)
by defining

Kn
p (X, δ) = ker[Kn(Aδ)

r∗−→ Kn(Aδ|Xp−1)]

where r∗ is the map induced on K-theory by restriction of sections r : Aδ → Aδ|Xp−1 .
We claim that this truly is a filtration of Kn(X, δ). In order to prove this, we need the
following standard theorem.

Theorem 4.2.1 (Chapter XV Section 7 [CE99]). Assume that for each pair of integers
(p, q) such that ∞ ≤ p ≤ q ≤ ∞ a module H(p, q) is given over a fixed ring. Suppose
that for two pairs (p, q) and (p′, q′) such that p ≤ p′ and q ≤ q′ there is a homomorphism
H(p′, q′) → H(p, q) defined, and furthermore given a triple (p, q, r) such that −∞ ≤ p ≤
q ≤ r ≤ ∞ there is a connecting homomorphism δ : H(p, q) → H(q, r) defined. Suppose
further that the following axioms are satisfied:

(SP.1) The map H(p, q)→ H(p, q) is the identity;



76 Chapter 4. Product structure and spectral sequences

(SP.2) If (p, q) ≤ (p′, q′) ≤ (p′′, q′′) then the diagram

H(p′′, q′′) H(p, q)

H(p′, q′)

commutes;

(SP.3) If (p, q, r) ≤ (p′, q′, r′) then the diagram

H(p′, q′) H(q′, r′)

H(p, q) H(q, r)

δ′

δ

commutes;

(SP.4) For each triple (p, q, r) with −∞ ≤ p ≤ q ≤ r ≤ ∞ the sequence

· · · → H(q, r)→ H(p, r)→ H(p, q)
δ−→ H(q, r)→ · · ·

is exact;

(SP.5) For a fixed q the direct system of modules

H(q, q)→ H(q − 1, q)→ · · · → H(p, q)→ · · ·

has H(−∞, q) as direct limit.

Then F pH = ker[H(−∞,∞)→ H(−∞, p)] is a filtration of H.

In order to apply this theorem, we define H(p, q) = K∗(Aδ|Xq−1\Xp−1) where we specify
−∞ ≤ p ≤ q ≤ ∞, and note that Xr = ∅ for r < 0 and Xr = X for r greater than or
equal to the dimension of X. This means that

Kn
p (X, δ) = ker[H(−∞,∞)→ H(−∞, p)],

so proving that these H(p, q) satisfy the axioms posed in the theorem would prove that
we do have a filtration of the higher twisted K-theory group.

Since these spaces H(p, q) are defined to be operator algebraic K-theory groups of
subalgebras of Aδ, they are thus submodules of K∗(X, δ). We must now develop the
maps assumed in the theorem.
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Given two pairs (p, q) and (p′, q′) such that (p, q) ≤ (p′, q′), meaning p ≤ p′ and q ≤ q′,
we define a map H(p′, q′)→ H(p, q) as follows. Since operator algebraic K-theory forms
a covariant functor, we may define a map Aδ|Xq′−1\Xp′−1 → Aδ|Xq−1\Xp−1 and then take
the corresponding map in K-theory. Given an element of Aδ|Xq′−1\Xp′−1 , i.e. a continuous

section s : Xq′−1 \Xp′−1 → Eδ|Xq′−1\Xp′−1 vanishing at infinity, we define a section of the

corresponding bundle over Xq−1 \Xp−1 to be

s′(x) =

{
s(x) if x ∈ (Xq′−1 \Xp′−1) ∩ (Xq−1 \Xp−1);

0 if x /∈ (Xq′−1 \Xp′−1) ∩ (Xq−1 \Xp−1);

where 0 denotes the zero element in the fibre over x. We claim that s′ is, in fact, a
continuous map since the assumption that s vanishes at infinity implies that the norm
of s can be made arbitrarily small in a neighbourhood of the excised set Xp′−1. Thus s
can be extended continuously by defining it to be zero on Xp′−1 \ Xp−1. Note also that
s′ vanishes at infinity because s vanishes at infinity: for any ε > 0 there is a compact
subspace Q ⊂ Xq′−1 \ Xp′−1 such that ‖s(x)‖ < ε for all x ∈ (Xq′−1 \ Xp′−1) \ Q; take
Q′ = Q ∩Xq−1 to be the compact set outside of which ‖s′(x)‖ < ε. Hence this yields the
desired map H(p′, q′)→ H(p, q).

Next, given a triple (p, q, r) with −∞ ≤ p ≤ q ≤ r ≤ ∞, we require a connecting
map δ : H(p, q) → H(q, r). This map can be obtained by considering the six-term exact
sequence in operator algebraic K-theory, by defining a short exact sequence

0→ Aδ|Xr−1\Xq−1 → Aδ|Xr−1\Xp−1 → Aδ|Xq−1\Xp−1 → 0.

The nontrivial maps in this sequence are obtained in the same way as described above,
associated to the pairs (p, r) ≤ (q, r) and (p, q) ≤ (p, r) respectively. This sequence is
then exact by the definition of the maps described above.

We must now show that this sequence of modules and maps satisfies the axioms posed
in Theorem 4.2.1.

Lemma 4.2.2. The modules and maps defined above satisfy the axioms (SP.1) to (SP.5).

Proof.

(SP.1-2) These are clear from the definition of the map described above.

(SP.3) This follows from the naturality of the connecting map in the six-term exact sequence
in K-theory.

(SP.4) This follows from the definition of δ being the connecting map in the six-term exact
sequence in K-theory.
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(SP.5) It is straightforward to prove that H(−∞, q) = K∗(Aδ|Xq−1) is the direct limit using
the univeral property of direct limits and the continuity of K-theory for C∗-algebras
through direct limits in Propositions 6.2.9 and 7.1.7 of [WO93].

Then Theorem 4.2.1 implies that Kn
p (X, δ) is a filtration of Kn(X, δ) and by defining

Zp
r = im[H(p, p+ r)→ H(p, p+ 1)];

Bp
r = im[H(p− r + 1, p)→ H(p, p+ 1)];

Ep
r = Zp

r /B
p
r ;

we obtain a spectral sequence strongly converging to K∗(X, δ) by Chapter XV Proposition
4.1 of [CE99] combined with comments from Chapter XV Section 7. We give a formal
statement of the existence of the spectral sequence in Theorem 4.2.3, but first we obtain
a simple expression for the E2-term. We see that Ep,q

1 = Kp+q(Aδ|Xp\Xp−1), but Xp \Xp−1

consists of the p-cells from which X is constructed, and since the interior of any p-cell is
homeomorphic to Rp, this implies that Aδ is trivial over these p-cells. Therefore we see
that Ep,q

1 = Kp+q(Xp \Xp−1) = Kp+q(Xp, Xp−1), and so

Ep,q
1 =

∑
i

Kp+q(σpi , σ̇
p
i )

where the σip are the p-cells of X with boundary σ̇pi . Then we have σpi /σ̇
p
i = Sp, and thus

Kp+q(σpi , σ̇
p
i )
∼= K̃p+q(Sp) ∼= K̃q(S0) ∼= Kq(x0)

where x0 is the space consisting of a single point. Therefore

Ep,q
1 =

∑
i

Kq(x0) = Cp(X,Kq(x0))

by definition. Finally, since Ep,q
2 is by definition the cohomology of the Ep,q

1 with the usual
coboundary maps, we see that Ep,q

2 = Hp(X,Kq(x0)).
We have proved the following.

Theorem 4.2.3. Let X be a CW complex with δ a twist over X. There exists an Atiyah–
Hirzebruch spectral sequence converging strongly to K∗(X, δ) with Ep,q

2 = Hp(X,Kq(x0)).

This result as it is, however, is not very useful in calculating higher twisted K-theory
groups. What we need is a description of the differentials in the spectral sequence in order
to perform explicit computations. In the untwisted case originally treated in [AH59],
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it was found that the first nontrivial differential was given by the Steenrod operation
Sq3 : Hp(X,Z) → Hp+3(X,Z). This was then extended to the standard twisted setting
in [Ros89] and [AS04], where it was discovered that the first nontrivial differential was
given by the Steenrod operation twisted by the class δ ∈ H3(X,Z), i.e. the differential
is expressed by Sq3 − (−) ∪ [δ] : Hp(X,Z) → Hp+3(X,Z). We obtain an analogous
result in this setting, where we are now forced to restrict to the case that the twist δ can
be represented by a cohomology class. We also lose some information in passing to the
higher twisted setting, as the higher differentials of even the Atiyah–Hirzebruch spectral
sequence in topological K-theory are not well-understood.

Theorem 4.2.4. In the setting of the Atiyah–Hirzebruch spectral sequence, if a twist δ
can be represented by a class δ ∈ H2n+1(X,Z) then the d2n+1 differential is the differential
d′2n+1 in the spectral sequence for ordinary topological K-theory twisted by δ, i.e. the map
d2n+1 : Hp(X,Z)→ Hp+2n+1(X,Z) is given by d2n+1(x) = d′2n+1(x)− x ∪ δ.

Proof. We follow the argument given in [AS04]. By definition, the d2n+1 differential must
be a universal cohomology operation raising degree by 2n + 1, defined for spaces with a
given class δ ∈ H2n+1(X,Z). Standard arguments in homotopy theory show that these
operations are classified by

Hp+2n+1(K(Z, p)×K(Z, 2n+ 1),Z),

where the K(Z, p) factor represents cohomology operations raising degree by 2n+ 1 and
the K(Z, 2n+ 1) factor comes from X being equipped with a class δ ∈ H2n+1(X,Z). This
cohomology group is isomorphic to

Hp+2n+1(K(Z, p),Z)⊕Hp+2n+1(K(Z, 2n+ 1),Z)⊕ Z

where the third summand is generated by the product of the generators of Hp(K(Z, p),Z)
and H2n+1(K(Z, 2n + 1),Z). The only factor which will actually result in an operation
Hp(X,Z) → Hp+2n+1(X,Z) is the first, and so we conclude that the differential is given
by d2n+1(x) = d′2n+1(x) + kx ∪ δ where k ∈ Z, since the operation must agree with the
standard spectral sequence in the case that δ = 0. We determine the integer k by explicitly
computing the spectral sequence for X = S2n+1 as follows, applying the same methods as
in [AS04].

The filtration for this case is particularly simple, with X0 = X1 = · · · = X2n con-
sisting of a single point and X2n+1 = S2n+1. Then the spectral sequence reduces to the
long exact sequence for the pair (X,X0), and the d2n+1 differential is the boundary map
K0(X0, δ|X0)→ K1(X,X0; δ). Equivalently, using the excision property of higher twisted
K-theory applied to the compact pair (S2n+1, D2n+1

+ ) and excising the interior of D2n+1
+

we see that K1(X,X0; δ) ∼= K1(D2n+1
− , S2n; δ|D2n+1

−
) and so d2n+1 can be viewed as the
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boundary map K0(D2n+1
+ , δ|D2n+1

+
) → K1(D2n+1

− , S2n; δ|D2n+1
−

). This map is the passage

from top-left to bottom-right in the commutative diagram

K0(D2n+1
+ , δ|D2n+1

+
) K1(S2n+1, D2n+1

+ ; δ)

K0(S2n, δ|S2n) K1(D2n+1
− , S2n; δ|D2n+1

−
).

By studying the six-term exact sequence in higher twisted K-theory associated to the
pair (D2n+1

− , S2n), it is clear that the lower horizontal map takes the generator (1, 0) of
K0(S2n), corresponding to the trivial line bundle over S2n, to 0 and the generator (0, 1),
corresponding to the n-fold reduced external product of (H − 1) with H the tautological
line bundle over S2, to the generator of K1(D2n+1

− , S2n; δ|D2n+1
−

). All that remains is to

determine the left-hand vertical map. This is done in the proof of Proposition 5.1.1, in par-
ticular this is the top horizontal map in (5.1.3) because in order to identify K0(S2n, δ|S2n)
with Z⊕Z we are using the trivialisation of δ over D2n+1

− as opposed to D2n+1
+ . The map

is shown to be n 7→ (n,−Nn) where the twist δ ∈ H2n+1(S2n+1, δ) is given by N ∈ Z
times a generator. Hence the composition sends 1 ∈ Z to −N ∈ Z. Since we see that
d2n+1(1) = −N then we may conclude that k = −1 as required.

Whilst this is not quite as explicit as the differential in the classical twisted case, it is
still useful as it is known that all differentials in the Atiyah–Hirzebruch spectral sequence
for ordinary topological K-theory are torsion operators [Arl92]. Since this result is only
applicable when the twist can be represented by cohomology, then it will frequently be
the case that the space has torsion-free cohomology and so these torsion differentials will
have no effect.

Atiyah and Segal are also able to show in [AS04] that the higher differentials of the
spectral sequence are given rationally by higher Massey products by generalising the
Chern character to the twisted setting. This work can likely be generalised to the higher
twisted setting, but since it only gives the differentials rationally it is not highly applicable
to computations.

We give an idea of how the convergence of this spectral sequence and the short exact
sequence (4.2.1) can be used to compute higher twisted K-theory. The E∞-term of the
Atiyah–Hirzebruch spectral sequence for higher twisted K-theory consists of two alter-
nating rows, one of which is Ep,0

∞ for 0 ≤ p ≤ N for some upper bound N and the other
of which is a row of zeroes. Suppose that N = 2n is even for the purpose of illustration.
Then applying the 2-periodicity in the rows of the spectral sequence and the short exact
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sequence (4.2.1), we see that the filtration of K0(X, δ) is determined by

K0
2n(X, δ) ∼= E2n,0

∞ ;

0→ K0
2n(X, δ)→ K0

2n−2(X, δ)→ E2n−2,0
∞ → 0;

0→ K0
2n−2(X, δ)→ K0

2n−4(X, δ)→ E2n−2,0
∞ → 0;

...

0→ K0
2(X, δ)→ K0

0(X, δ)→ E0,0
∞ → 0;

K0(X, δ) ∼= K0
0(X, δ);

and similarly K1(X, δ) is determined by

K1
2n−1(X, δ) ∼= E2n−1,0

∞ ;

0→ K1
2n−1(X, δ)→ K1

2n−3(X, δ)→ E2n−3,0
∞ → 0;

...

0→ K1
3(X, δ)→ K1

1(X, δ)→ E1,0
∞ → 0;

K1(X, δ) ∼= K1
1(X, δ).

This makes it very clear how to compute the higher twisted K-theory groups from the
E∞-term of the spectral sequence, and also illustrates the number of extension problems
that must be solved to do so. We will make use of this method in our computations in
Chapter 5.

4.2.2 Segal spectral sequence

A more powerful version of the Atiyah–Hirzebruch spectral sequence is the Segal spectral
sequence, which we will use for computing higher twisted K-theory in more complicated
settings. One may work through the details of the construction as we have done for the
Atiyah–Hirzebruch spectral sequence via a skeletal filtration which induces a filtration of
the higher twisted K-theory group, but we will not go through the details again. At this
point, we also bring higher twisted K-homology back into the picture, because it is in
the Segal spectral sequence for higher twisted K-homology that the strongest information
about the differentials can be easily obtained.

Theorem 4.2.5. Let F
ι−→ E

π−→ B be a fibre bundle of CW complexes, and suppose that a
twist δ over E can be represented by a class δ ∈ H2n+1(E,Z). Then there is a homological
Segal spectral sequence

Hp(B,Kq(F, ι
∗δ))⇒ K∗(E, δ)

and a corresponding cohomological Segal spectral sequence

Hp(B,Kq(F, ι∗δ))⇒ K∗(E, δ).
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These spectral sequences are strongly convergent if the ordinary (co)homology of B is
bounded.

Proof. The proof follows from standard methods as did the proof of Theorem 4.2.3, for
instance Rosenberg’s proof of Theorem 3 in [Ros89] can be adapted which employs Segal’s
original proof in Proposition 5.2 of [Seg68].

Remark 4.2.1. The ordinary (co)homology of B will be bounded if B is weakly equivalent
to a finite dimensional CW complex and this will cover all of the cases that we consider,
so we obtain strong convergence from this spectral sequence.

Note that we refer to this as a Segal spectral sequence because the method of proof
employs Segal’s original techniques from [Seg68].

As mentioned above, there is more that can be said about the differentials in the
homology spectral sequence and we present these details here explicitly. Note that the
following theorem uses a Hurewicz map in higher twisted K-homology which we have not
developed. We will not need to use this map explicitly at any time, and so we do not
present the details of its construction. The map can be constructed in the same way as
in classical twisted K-homology, which follows from the formulation of the Hurewicz map
in ordinary K-homology for instance in Theorem II.14.1 of [Ada74].

Theorem 4.2.6. In the setting of the homology Segal spectral sequence of Theorem 4.2.5,
suppose that

• ι∗ : H2n+1(E,Z) → H2n+1(F,Z) is an isomorphism, so that the twisting class δ on
E can be identified with the restricted twisting class ι∗δ on F ,

• the differentials d2, · · · , dr−1 leave E2
r,0 = Hr(B,K0(F, ι∗δ)) unchanged, or equiva-

lently E2
r,0 = E3

r,0 = · · · = Er
r,0, and

• there is a class x ∈ E2
r,0 which comes from a class α ∈ πr(B) under the Hurewicz

map πr(B)→ Hr(B,K0(F, ι∗δ)).

Then dr(x) ∈ Er
0,r−1 is the image of α under the composition of the boundary map

∂ : πr(B) → πr−1(F ) in the long exact sequence of the fibration and the Hurewicz map
πr−1(F )→ Kr−1(F, ι∗δ).

Proof. In order to prove this, we note that since the class x was not changed by the
differentials d2, · · · , dr−1 and since the twisting class comes from the fibre, we can take,
without loss of generality, B to be Sr and then E = (Rr×F )∪F , where Rr×F is π−1 of
the open r-cell in B. In this special case, as noted by Rosenberg in the proof of Theorem
6 [Ros89] the spectral sequence comes from the long exact sequence

· · · → Kr(F, ι
∗δ)

ι∗−→ Kr(E, δ)→ Kr(E,F, δ) ∼= K0(F, ι∗δ)
∂−→ Kr−1(F, ι∗δ)→ · · ·
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where we identify K0(F, ι∗δ) with Hr(B,K0(F, ι∗δ)). Hence the differential dr is simply
the boundary map in this sequence, and the result follows from the naturality of the
Hurewicz homomorphism which implies the commutativity of the diagram

πr(B) πr−1(F )

Hr(B,K0(F, ι∗δ)) Kr−1(F, ι∗δ).

∂

Hurewicz Hurewicz

∂

Although we are only interested in computing higher twisted K-theory groups, there
are some settings in which it is equivalent to compute the higher twisted K-homology,
hence why this theorem will prove useful.

Proposition 4.2.7. Assume that the algebra of sections vanishing at infinity of any alge-
bra bundle with fibres isomorphic to O∞⊗K over a locally compact space X is contained in
the bootstrap category of C∗-algebras defined in Definition 22.3.4 of [Bla86]. If the higher
twisted K-theory of X is a direct sum of finite torsion groups, then the higher twisted
K-theory and higher twisted K-homology of X are isomorphic with a degree shift.

Proof. The higher twisted K-theory and K-homology groups can be related by the uni-
versal coefficient theorem in KK-theory as in Theorem 23.1.1 of [Bla86], which states
that

0→ Ext1
Z(K∗(A), K∗(B))→ KK∗(A,B)→ HomZ(K∗(A), K∗(B))→ 0

is a short exact sequence whose first map has degree 0 and second map has degree 1
with respect to the grading, if A and B are seperable and A is in the bootstrap category
of C∗-algebras defined in Definition 22.3.4 of [Bla86]. In order to obtain higher twisted
K-homology as the KK-group in this sequence, we let A be the space of sections of the
algebra bundle representing the twist and let B = O∞. Then assuming that A is in the
bootstrap category, the short exact sequence becomes

0→ Ext1
Z(Kn+1(X, δ), K0(O∞))⊕ Ext1

Z(Kn(X, δ), K1(O∞)→ Kn(X, δ)

→ HomZ(Kn(X, δ), K0(O∞)⊕ HomZ(Kn+1(X, δ), K1(O∞)→ 0

for each n. Using the K-theory of O∞, this reduces to

0→ Ext1
Z(Kn+1(X, δ),Z)→ Kn(X, δ)→ HomZ(Kn(X, δ),Z)→ 0.

Now, if Kn(X, δ) ∼=
⊕

k Zmk,n for some finite sequence {mk,n} and n = 0, 1 as per our
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assumption, then the Hom group will be trivial and the Ext group will become

Ext1
Z

(⊕
k

Zmk,n ,Z

)
=
⊕
k

Ext1
Z(Zmk,n ,Z)

=
⊕
k

Zmk,n

= Kn(X, δ),

since the Ext functor is additive in the first variable and Ext1
Z(Zm, G) ∼= G/mG by

properties in Section 3.1 of [Hat00]. Therefore the short exact sequence provides an
isomorphism Kn+1(X, δ) ∼= Kn(X, δ) as required.

Remark 4.2.2. We highlight the assumption made in the statement of this Proposition;
that the algebra of sections vanishing at infinity of any algebra bundle with fibres isomor-
phic to O∞ ⊗ K over a locally compact space X is contained in the bootstrap category
of C∗-algebras defined in Definition 22.3.4 of [Bla86] and thus does satisfy the universal
coefficient theorem. However, this assumption is valid when O∞⊗K is replaced by K, and
it is true for both C0(X) for any locally compact Hausdorff space as well as for O∞ ⊗K.
In fact, it is conjectured that every seperable nuclear C∗-algebra satisfies the universal
coefficient theorem in KK-theory. We note that this Proposition is only used to prove
one result; Theorem 5.1.8 in the following chapter.

As we will see in Chapter 5, these results will allow for the higher twisted K-theory
of Lie groups to be computed in some cases, which is a difficult task even in the classical
twisted setting.



Chapter 5

Computations in Higher Twisted
K-theory

The final chapter of this thesis is dedicated to computation. This will allow for the
techniques developed in previous chapters to come together, such as the Mayer–Vietoris
sequence, the spectral sequence, the Hilbert module picture and the clutching construc-
tion. As higher twisted K-theory forms a generalisation of both topological and classical
twisted K-theory, we will see that computations for these variants of K-theory will fall
out as a result of our computations. To determine which spaces we can work with, we
recall that we are able to work with twists most effectively when they can be identified
with cohomology, and thus we limit ourselves to working with these spaces. This is the
case when the space has torsion-free cohomology by Pennig and Dadarlat’s work, and so
in the first section we restrict our attention such spaces including spheres, products of
spheres and certain Lie groups. We subsequently extend this view in the second section
to spaces whose cohomology may have torsion but we show that it does not affect the
representation of twists as cohomology classes, such as real projective space, Lens spaces
and certain SU(2)-bundles.

As explained in Section 2.6, computations in higher twisted K-theory may be of phys-
ical interest in the realms of string theory and M-theory. While we will not give explicit
physical descriptions of our computations here, further research into the relationship be-
tween higher twisted K-theory and physics may help to provide insight into both fields
and allow these results to lead to a greater understanding of M-theory.

5.1 Torsion-free spaces

In the torsion-free setting we are able to apply Theorem 2.4.1 relating twists of K-theory
to cohomology, and so we begin by working with this class of spaces.

85
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5.1.1 Spheres

Spheres are some of the simplest topological spaces, particularly for our purposes as only
the zeroth and the top degree cohomology groups are non-trivial and we have an explicit
description of the bundles of interest over the spheres via the clutching construction.
Because of this, we will begin by computing the higher twisted K-theory of the odd-
dimensional spheres, and this should reduce to known results in the case that trivial twists
are used or in the case of classical twists over S3. We also use a Mayer–Vietoris sequence
and the Hilbert module picture to provide a geometric expression for the generator of the
K-theory group. Note that we restrict our attention to odd-dimensional spheres because
there are no non-trivial twists over even-dimensional spheres by Theorem 2.4.1.

As explained in Section 3.1, the correspondence between principal Aut(O∞ ⊗ K)-
bundles over S2n+1 representing twists and H2n+1(S2n+1,Z) is given by the clutching
construction. Since both π2n(Aut(O∞ ⊗ K)) and H2n+1(S2n+1,Z) are isomorphic to the
integers, taking a class [δ] = N [δ0] ∈ H2n+1(S2n+1,Z) with [δ0] a generator and N ∈ Z
corresponds to the principal Aut(O∞⊗K)-bundle Eδ over S2n+1 constructed via the gluing
map [f ] = N [f0] ∈ π2n(Aut(O∞ ⊗ K)) with [f0] the corresponding generator under the
isomorphism.

Note that throughout the remainder of the chapter, we refer to “the generator” of
various cohomology groups isomorphic to Z. The choice of generator is unimportant here,
because if a twist is N times one generator then it will be −N times the other. The
integer N only appears in our results in the form ZN , and since the groups ZN and Z−N
are isomorphic, the result will be true regardless of the choice of generator.

Proposition 5.1.1. Let δ ∈ H2n+1(S2n+1,Z) be a twist of K-theory for S2n+1 which is
N times the generator. The higher twisted K-theory of S2n+1 is then

K0(S2n+1, δ) = 0 and K1(S2n+1, δ) = ZN

if N 6= 0, or

K0(S2n+1) = Z and K1(S2n+1) = Z

when N = 0.

Proof. Given a twist δ as above, we construct a short exact sequence of C∗-algebras
including the algebra of sections of the associated algebra bundle, allowing the higher
twisted K-theory groups to be computed via a six-term exact sequence. Lemma 3.1.4
shows that the algebra bundle Aδ associated to the principal bundle Eδ is also formed
using the clutching construction. Then as shown in Lemma 3.1.2, the space of continuous
sections of this algebra is of the form

Aδ = {(h+, h−) ∈ C(D2n+1
+ qD2n+1

− ,O∞ ⊗K) : h+(x) = f(x)(h−(x))∀x ∈ S2n}.
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Then we may define the short exact sequence

0→ Aδ
ι−→ C(D2n+1

+ ,O∞ ⊗K)⊕ C(D2n+1
− ,O∞ ⊗K)

π−→ C(S2n,O∞ ⊗K)→ 0,

where ι denotes inclusion and π(h+, h−)(x) = h+(x)− f(x)(h−(x)) to make the sequence
exact. We denote the algebra in the middle of this sequence by C(D2n+1

+ qD2n+1
− ,O∞⊗K)

for brevity, and then applying the six-term exact sequence gives

K0(Aδ) K0(C(D
2n+1
+ qD2n+1

− ,O∞ ⊗K)) K0(C(S
2n,O∞ ⊗K))

K1(C(S
2n,O∞ ⊗K)) K1(C(D

2n+1
+ qD2n+1

− ,O∞ ⊗K)) K1(Aδ).

ι∗ π∗

∂∂

π∗ ι∗

We are able to simplify several terms in this sequence using trivialisations of the algebra
bundle. Firstly, since the hemispheres D2n+1

+ and D2n+1
− are contractible, the algebra

bundle Aδ will be trivialisable over these hemispheres. To be more specific, using a
trivialsiation t+ over the upper hemisphere we are able to identify Kn(C(D2n+1

+ ,O∞⊗K))
with Z for n = 0 and 0 for n = 1, and similarly trivialising via t− over the lower hemisphere
identifies K0(C(D2n+1

− ,O∞ ⊗K)) with Z for n = 0 and 0 for n = 1.
We may also simplify the terms involving the equatorial sphere S2n, since the restric-

tion of Aδ to S2n will be necessarily trivialisable due to S2n having trivial odd-degree
cohomology. At this point we must make a choice of trivialisation, since we have both
t+ and t− which can trivialise Aδ over S2n. We choose t+, and in doing so we identify
K0(S2n,O∞ ⊗K) with Z⊕ Z for n = 0 and 0 for n = 1.

This reduces the six-term exact sequence to

0→ K0(S2n+1, δ)→ Z⊕ Z π∗−→ Z⊕ Z→ K1(S2n+1, δ)→ 0.

The only map to determine here is π∗, and to do so we must study the differing
trivialisations of Aδ over S2n since π∗ is a priori a map between higher twisted K-theory
groups. Using the Mayer–Vietoris sequence in Proposition 2.3.9, the map π∗ is given by
the difference j∗+ − j∗−, where j± : S2n → D2n+1

± is inclusion and j∗± denotes the induced
map on higher twisted K-theory described in Subsection 2.2.2. Since we have trivialised
the bundle over S2n using t+, we will need to take the differing trivialisations into account
when determining the map j∗−. The trivialisations of Aδ over S2n fit into the commuting
diagram

K0(S2n, δ|S2n) K0(S2n)

K0(S2n)

(t+)∗

∼=

(t−)∗∼ = (5.1.1)

where the map (t+)∗ ◦ (t−)∗
−1 must be determined to change coordinates from D2n+1

− to
D2n+1

+ . In order to do this, we write the trivialisations explicitly.
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Firstly, observe that the restriction of Aδ to D2n+1
+ is the quotient of

(D2n+1
+ × (O∞ ⊗K))q (S2n × (O∞ ⊗K))

under the usual equivalence relation on the equatorial sphere. Then t+ will be the map
sending the class of (x, o) to the class of (x, f(x)−1(o)). Note that this is well-defined,
because an element on S2n× (O∞⊗K) can be represented either as (x+, o) or (x−, f(x)o)
with x+ and x− representing the point x ∈ S2n in the respective hemispheres, and these
representatives will be mapped to (x+, f(x)−1o) and (x−, o) respectively, both of which
represent the same equivalence class in Aδ|D2n+1

+
.

It can similarly be shown that t− sends the class of (x, o) to the class of (x, f(x)(o))
and this is well-defined. So taking the equivalence relation on S2n into account, these
trivialisations differ by the transition function

t+ ◦ (t−)−1 : S2n × (O∞ ⊗K)→ S2n × (O∞ ⊗K)

given by (x, v) 7→ (x, f(x)−1(v)).
These trivialisations also induce maps (t±)∗ : C(D2n+1

± ,Aδ|D2n+1
±

)→ C(S2n,Aδ|S2n) on

the section algebras in the obvious way, and composition gives

(t+ ◦ (t−)−1)∗ : C(S2n,O∞ ⊗K)→ C(S2n,O∞ ⊗K)

sending g : S2n → O∞⊗K to the map S2n 3 x 7→ f(x)−1(g(x)). These maps then in turn
induce maps between operator algebraic K-theory groups as in the commutative diagram
(5.1.1).

We will now determine the maps j±
∗ induced on higher twisted K-theory. Firstly for

j+ we have the commutative diagram

K∗(D2n+1
+ , δ) K∗(S2n, δ)

K∗(D2n+1
+ ) K∗(S2n)

j+∗

(t+)∗ (t+)∗ (5.1.2)

where the lower map K∗(D2n+1
+ ) → K∗(S2n) is the map induced by j+ on ordinary K-

theory. Thus we see that j∗+ is the same as the map induced by j+ on ordinary K-theory,
which is j∗+(m) = (m, 0). This is as expected, because both bundles are trivialised via t+.
On D2n+1

− , however, we must change coordinates via the transition function t+ ◦ (t−)−1 so
that we are trivialising the bundle over S2n via t+ rather than t−. This gives the diagram

K∗(D2n+1
− , δ) K∗(S2n, δ)

K∗(D2n+1
− ) K∗(S2n)

j−∗

(t−)∗ (t+)∗ (5.1.3)
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and thus j∗− can be viewed as the map induced by j− on ordinary K-theory followed by
(t+ ◦ (t−)−1)∗. Since (t+ ◦ (t−)−1)∗ is multiplication by f−1, we seek the map induced by
the composition

C(D2n+1
− ,Aδ|D2n+1

−
)

res−→ C(S2n,Aδ|S2n)
×f−1

−−−→ C(S2n,Aδ|S2n).

In the classical case when N = 0 this is the map n 7→ (n, 0), but if N 6= 0 then the second
component of this map is non-trivial, resulting in n 7→ (n,−Nn) with the factor of −N
corresponding to the multiplication by f−1.

Thus π∗(m,n) = (m, 0)− (n,−Nn) = (m−n,Nn), which has trivial kernel and whose
cokernel is (Z⊕Z)/(Z⊕NZ) ∼= ZN when N 6= 0. So we are able to conclude via the exact
sequence that K0(S2n+1, δ) = 0 while K1(S2n+1, δ) ∼= ZN . Note that if N = 0 we instead
have π∗(m,n) = (m − n, 0) with kernel and cokernel Z corresponding to the standard
topological K-theory of S2n+1.

While this computation shows that the higher twistedK-theory of the odd-dimensional
spheres agrees with the classical notion of twisted K-theory for S3, it is desirable to have
an explicit geometric representative for the generator of this group. In order to obtain
this, we shift our viewpoint to the equivalent definition of higher twisted K-theory in
terms of generalised Fredholm operators presented in Theorem 2.5.1. Firstly, we need a
lemma allowing us to view the higher twisted K-theory of the odd-dimensional spheres
in a slightly different way.

Lemma 5.1.2. The higher twisted K-theory group K1(S2n+1, δ) can be expressed as

π0({(h+, h−) ∈ C(D2n+1
+ qD2n+1

− ,Ω FredO∞⊗K) : h+(x) = f(x) · h−(x)∀x ∈ S2n}).

Proof. Recall that K1(S2n+1, δ) = π0(C(Eδ,Ω FredO∞⊗K)Aut(O∞⊗K)). Since Eδ is con-
structed via the clutching construction, a map in C(Eδ,Ω FredO∞⊗K)Aut(O∞⊗K) can be
viewed as a pair of maps h± : D2n+1

± → Ω FredO∞⊗K satisfying h+(x) = f(x) ·h−(x) for all
x ∈ S2n. Conversely, given any such pair of maps h±, these maps may be glued together
to form the equivariant map h : Eδ → Ω FredO∞⊗K via

h([x, v])(t)(o) =

{
h+(x)(t)(v · o) if x ∈ D2n+1

+ ;

h−(x)(t)(v · o) if x ∈ D2n+1
− ;

where x ∈ S2n+1, v ∈ O∞ ⊗ K, t ∈ S1 and o ∈ HO∞⊗K. Firstly, note that h is well-
defined. If [(x, v)] is chosen with x ∈ S2n, then the two possible representatives of this
point are (x, v) ∈ D2n+1

+ × Aut(O∞ ⊗ K) and (x, f(x)v) ∈ D2n+1
− × Aut(O∞ ⊗ K). But

h−(x)(t)(f(x)v · o) = (f(x) · h−(x))(t)(v · o) by the definition of the action, and thus
this is equal to h+(x)(t)(v · o) by the compatibility of the maps on the equatorial sphere.
Furthermore, the map h is Aut(O∞⊗K)-equivariant again by the definition of the action
as required.
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Using this viewpoint, we are able to construct a representative for the generator of the
higher twistedK-theory group. In our description of the generator, we use an isomorphism
between the hemisphere D2n+1

+ with its boundary identified to a point and the sphere
S2n+1 to view a map on S2n+1 as a map on D2n+1

+ which is constant on the boundary. We
illustrate this for clarity in Figure 5.1.1 in the case of S2 which can be visualised.

∼= ∼=

Figure 5.1.1: Illustration of the isomorphism between the hemisphere D2
+ with its bound-

ary identified to a point and the 3-sphere S2. Adapted from [Bha11].

Proposition 5.1.3. The generator of K1(S2n+1, δ) can be represented by the pair of maps
h± where h+ is obtained by taking the generator k ∈ π2n+1(Ω FredO∞⊗K) and viewing
this as a map D2n+1

+ → Ω FredO∞⊗K which is constant on the equatorial sphere via the
isomorphism displayed in Figure 5.1.1, and h− is defined to be a loop which remains
constant at the identity operator.

Proof. In order to obtain a generator, we use a different short exact sequence of C∗-
algebras to obtain a six-term exact sequence in K-theory. Here we take the sequence

0→ C0(R2n+1,O∞ ⊗K)
ι−→ Aδ

π−→ C(x0,O∞ ⊗K)→ 0

for x0 ∈ S2n+1 defined so that S2n+1 \ {x0} ∼= R2n+1, with the obvious maps for x0 /∈ S2n.
Note that we may take sections of the trivial bundle over R2n+1 since there are no non-
trivial principal Aut(O∞⊗K)-bundles over R2n+1, and similarly for {x0}. This gives rise
to the six-term exact sequence

0 = K0(R2n+1) K0(S2n+1, δ) K0({x0}) = Z

0 = K1({x0}) K1(S2n+1, δ) K1(R2n+1) = Z,

ι∗ π∗

∂∂

π∗ ι∗

where twisted K-theory groups equipped with the trivial twisting have been identified
with their untwisted counterparts, and this reduces to

0→ Z ∂−→ Z ι∗−→ K1(S2n+1, δ)→ 0.
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By Proposition 5.1.1 we know that K1(S2n+1, δ) = ZN and so ι∗ is a surjective map from Z
to ZN . This means that it must be given by reduction modulo N and hence the generator
of K1(S2n+1, δ) is the image of the generator of K1(R2n+1) ∼= Z under ι∗. The map ι∗ can
be interpreted by making the following identifications:

K1(R2n+1) = K̃1(S2n+1)
∼= K1(S2n+1)
∼= [S2n+1,Ω FredO∞⊗K]

= π2n+1(Ω FredO∞⊗K),

where we use the fact that the ordinary topological K-theory of S2n+1 is the same as the
higher twisted K-theory of S2n+1 with trivial twist.

In order to realise the reduction modulo N map from π2n+1(Ω FredO∞⊗K), we let
[k : S2n+1 → Ω FredO∞⊗K] ∈ π2n+1(Ω FredO∞⊗K) be the generator and by identifying
S2n+1 with D2n+1

+ / ∼ as illustrated in Figure 5.1.1, we view k as a map h+ on D2n+1
+

which is constant at the identity on the equatorial sphere. Then defining a map h− on
D2n+1
− to be a loop which is constant at the identity gives a pair [h±] ∈ K1(S2n+1, δ) via

Lemma 5.1.2. Applying this process with M times the generator of π2n+1(Ω FredO∞⊗K)
yields an element of K1(S2n+1, δ) which is M mod N times the generator. Thus the
generator of K1(S2n+1, δ) is obtained by applying this process to the generator k itself as
required.

Note that the choice of generator of π2n+1(Ω FredO∞⊗K) is once again unimportant
here, and will yield two different generators 1 and N − 1 of ZN .

This formulation of the generator agrees with that of Mickelsson in the classical twisted
setting [Mic02], and the existence of such an explicit generator in terms of the generator
of π2n+1(Ω FredO∞⊗K) may have a physical interpretation which could be used to further
investigate relevant areas of physics.

It should be noted that obtaining explicit expressions for the generators of higher
twisted K-theory groups is difficult in general, as in this case we relied on applying the
Mayer–Vietoris sequence as well as a useful identification of a topological K-theory group
with a homotopy group. This will not be possible in other cases, and so further work
can be done in finding more general methods to express the generators of higher twisted
K-theory groups.

To complete our computations for odd-dimensional spheres, we provide an alternative,
more straightforward proof of Proposition 5.1.1 using the twisted Atiyah–Hirzebruch spec-
tral sequence.

Proof of Proposition 5.1.1. We use the spectral sequence in Theorem 4.2.3. Since the
spheres have integral cohomology Hp(S2n+1,Z) ∼= Z if and only if p = 0 or 2n+ 1 and is
trivial otherwise, we see that Ep,q

2
∼= Ep,q

r for 2 ≤ r ≤ 2n. The only non-zero differential
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2n Z 0 · · · 0 Z

2n− 1 0 0 · · · 0 0

2n− 2 Z 0 · · · 0 Z

...
...

...
. . .

...
...

2 Z 0 · · · 0 Z

1 0 0 · · · 0 0

0 Z 0 · · · 0 Z

0 1 · · · 2n 2n+ 1

d2n+1

(a) E2-term

2n 0 0 · · · 0 ZN

2n− 1 0 0 · · · 0 0

2n− 2 0 0 · · · 0 ZN

...
...

...
. . .

...
...

2 0 0 · · · 0 ZN

1 0 0 · · · 0 0

0 0 0 · · · 0 ZN

0 1 · · · 2n 2n+ 1

(b) E∞-term

Figure 5.1.2: Atiyah–Hirzebruch spectral sequence for S2n+1.

is then d2n+1 : H0(S2n+1,Z) → H2n+1(S2n+1,Z), as displayed on the left side of Figure
5.1.2. By Theorem 4.2.4, this differential is given by d2n+1(x) = d′2n+1(x) − x ∪ δ where
d′2n+1 is some torsion operator, i.e. the image of d′2n+1 is torsion. Thus the differential is
simply cup product with δ, meaning that the E2n+1

∼= · · · ∼= E∞ term is as shown on
the right of Figure 5.1.2. Then by the convergence of the spectral sequence, we may once
again conclude that K0(S2n+1, δ) = 0 while K1(S2n+1, δ) ∼= ZN .

While this computation is much more manageable, it cannot be used to obtain any
information about the generators of the higher twisted K-theory groups. Due to the
simplicity of this method, however, it will prove useful in computing the higher twisted
K-theory of more complicated spaces.

5.1.2 Products of spheres

We may generalise the results of the previous section by considering products of spheres.
In theory, it is possible to consider any product of spheres consisting of at least one odd-
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dimensional sphere, since the product will have torsion-free cohomology and non-trivial
cohomology in at least one odd degree. In practice, however, without developing more
general techniques we are limited to a smaller class of products.

One such product that we can compute via the same methods as used to prove Propo-
sition 5.1.1 is S2m × S2n+1 for m,n ≥ 1. This space has two non-trivial odd-degree
cohomology groups: one in degree 2n + 1 and one in degree 2m + 2n + 1, both of which
are isomorphic to Z. The clutching construction is only applicable to those twists coming
from (2n+ 1)-classes, since a (2m+ 2n+ 1)-class would correspond to a gluing map from
S2m+2n to the automorphism group of O∞ ⊗K and this will give a bundle over S2m+2n+1

as opposed to S2m × S2n+1. In spite of this, we can use a modified version of our clutch-
ing construction to deal with the twists of degree 2n + 1 and then use a Mayer–Vietoris
sequence to compute the higher twisted K-theory groups.

Proposition 5.1.4. Let δ ∈ H2n+1(S2m×S2n+1,Z) be a twist of K-theory for S2m×S2n+1

which is N times the generator. The higher twisted K-theory of S2m × S2n+1 is then

K0(S2m × S2n+1, δ) = 0 and K1(S2m × S2n+1, δ) = ZN ⊕ ZN

if N 6= 0, or

K0(S2m × S2n+1) = Z⊕ Z and K1(S2m × S2n+1) = Z⊕ Z

when N = 0.

Proof. In order to construct a bundle representing to a class in H2n+1(S2m×S2n+1,Z) ∼= Z,
we modify our previous approach by taking trivial bundles over S2m×D2n+1

± and modifying

the gluing map [f ] ∈ π2n(Aut(O∞⊗K)) ∼= H2n+1(S2n+1) to f̃ : S2m×S2n → Aut(O∞⊗K)

which is constant over the S2m factor, i.e. f̃(x, y) = f(y). Then we obtain a principal
Aut(O∞ ⊗ K)-bundle over S2m × S2n+1 which pulls back to a trivial bundle over S2m

(since there are no non-trivial bundles over this space) and to the clutching bundle as
constructed previously over S2n+1. Lemma 3.1.2 implies that the algebra of sections of
the associated algebra bundle with fibre O∞ ⊗K will be of the form

Aδ = C(S2m × S2n+1, E
f̃
)

= {(h+, h−) ∈ C((S2m ×D2n+1
+ )q (S2m ×D2n+1

− ))O∞ ⊗K) : h+(x, y) = f(y)(h−(x, y))},

and so we form the short exact sequence of C∗-algebras

0→ Aδ
ι−→ C((S2m ×D2n+1

+ )q (S2m ×D2n+1
− ),O∞ ⊗K)

π−→ C(S2m × S2n,O∞ ⊗K)→ 0

with the obvious maps. Then the corresponding six-term exact sequence in K-theory is

K0(Aδ) K0(C((S
2m ×D2n+1

+ )q (S2m ×D2n+1
− ))) K0(C(S

2m × S2n))

K1(C(S
2m × S2n)) K1(C((S

2m ×D2n+1
+ )q (S2m ×D2n+1

− ))) K1(Aδ),

ι∗ π∗

∂∂

π∗ ι∗
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where we have once again used trivialisations of the algebra bundle to identify higher
twisted K-theory groups with topological K-theory groups. This sequence reduces to

0→ K0(S2m × S2n+1, δ)→ Z4 π∗−→ Z4 → K1(S2m × S2n+1, δ)→ 0,

where the map π∗ can be analysed in the same way as in the proof of Proposition 5.1.1.
Studying trivialisations of the bundle over S2m ×D2n+1

± yields similar expressions for the
transition functions as found in the proof of Proposition 5.1.1, and studying the same
type of commutative diagrams as (5.1.2) and (5.1.3) gives insight into the induced maps
on higher twisted K-theory. We find that the map on higher twisted K-theory induced by
inclusion j+ : S2m ×D2n+1

+ → S2m × S2n+1 is the same as the map induced in topological
K-theory, which is

Z2 ∼= K0(S2m ×D2n+1
+ )→ K0(S2m × S2n) ∼= Z4

defined by (m,n) 7→ (m, 0, n, 0). The map induced by j− is again the ordinary map in
K-theory followed by the map induced by multiplication by f−1, which in this case will
be (o, p) 7→ (o,−oN, p,−pN) as previously, where the two factors of N appear since there
are two even-dimensional spheres involved here. Therefore the map π∗ of interest can be
expressed as π∗(m,n, o, p) = (m − o, oN, n − p, pN) which has trivial kernel and whose
cokernel is ZN ⊕ ZN when N 6= 0 as required. When N = 0, the map π∗ has both kernel
and cokernel isomorphic to Z⊕ Z as required.

Here we have two different generators of order N for the K1-group, and so it would
be of interest to explicitly write down these generators. The Mayer–Vietoris technique
used for S2n+1, however, does not generalise to this case and so this would require the
development of further machinery.

We may also partially verify our computation using the Atiyah–Hirzebruch spectral
sequence.

Example 5.1.1. We will present the computation for the case S2 × S5 for simplicity, but
the other cases follow via the same argument. The E2-term of this spectral sequence is
displayed on the left of Figure 5.1.3, where the only non-zero differential is d5 which acts
as cup product with the twisting class, i.e. multiplication by N . The resulting E∞-term
is then displayed on the right of Figure 5.1.3.

From the spectral sequence is is easy to conclude that K0(S2m × S2n+1, δ) = 0, but
the K1 group cannot be determined without solving the extension problem

0→ ZN → K1(S2m × S2n+1, δ)→ ZN → 0.

We see that the true answer is one of N non-equivalent solutions to this extension problem,
and so once again it is due to the simplicity of this example that the complete solution
can be found via the Mayer–Vietoris sequence.
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4 Z 0 Z 0 0 Z 0 Z

3 0 0 0 0 0 0 0 0

2 Z 0 Z 0 0 Z 0 Z

1 0 0 0 0 0 0 0 0

0 Z 0 Z 0 0 Z 0 Z

0 1 2 3 4 5 6 7

d5 d5

(a) E2-term

4 0 0 0 0 0 ZN 0 ZN

3 0 0 0 0 0 0 0 0

2 0 0 0 0 0 ZN 0 ZN

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 ZN 0 ZN

0 1 2 3 4 5 6 7

(b) E∞-term

Figure 5.1.3: Atiyah–Hirzebruch spectral sequence for S2 × S5.

There is yet another way that we may verify this computation, which is by applying
a Künneth theorem in C∗-algebraic K-theory.

Example 5.1.2. We use the Künneth theorem given in Theorem 23.1.3 of [Bla86], which
states that

0→ K∗(A)⊗K∗(B)→ K∗(A⊗B)→ TorZ1 (K∗(A), K∗(B))→ 0

is a short exact sequence if A belongs in the bootstrap category of C∗-algebras defined in
Definition 22.3.4 of [Bla86]. In our case, we let A denote the continuous complex valued
functions on S2m – which belongs in the bootstrap category – so that K∗(A) = K∗(S2m),
and we take B to be the algebra of sections Aδ as in the proof of Proposition 5.1.4 so that
K∗(B) = K∗(S2n+1, δ). Since K∗(A) is torsion-free, this means that the Tor term will be
trivial and thus we obtain an isomorphism K∗(A) ⊗K∗(B) ∼= K∗(A ⊗ B). Furthermore,
since the algebra bundle Ef̃ over S2m×S2n+1 is trivial over the factor of S2m, we see that
the sections of the bundle can be split into

C(S2m × S2n+1, Ef̃ ) = C(S2m,O∞ ⊗K)⊗ C(S2n+1, Ef̃ |S2n+1) ∼= C(S2m)⊗ C(S2n+1, Ef ).

Therefore A ⊗ B is isomorphic to the space of sections of Ef̃ , and so we conclude that

K∗(A⊗B) = K∗(S2m×S2n+1, δ). Hence the isomorphism given by the Künneth theorem
verifies that

K0(S2m × S2n+1, δ) ∼= ((Z⊕ Z)⊗ 0)⊕ (0⊗ ZN) = 0

and
K1(S2m × S2n+1, δ) ∼= ((Z⊕ Z)⊗ ZN)⊕ (0⊗ 0) = ZN ⊕ ZN
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as required.

Although the higher twisted K-theory groups corresponding to elements of the degree
2m + 2n + 1 integral cohomology of S2m × S2n+1 cannot be determined using the same
clutching construction and six-term exact sequence, this computation can be performed
via the spectral sequence.

Proposition 5.1.5. Let δ ∈ H2m+2n+1(S2m × S2n+1,Z) be a higher twist of K-theory for
S2m×S2n+1 which is N times the generator. The higher twisted K-theory of S2m×S2n+1

is then

K0(S2m × S2n+1, δ) = Z and K1(S2m × S2n+1, δ) = Z⊕ ZN

if N 6= 0, or

K0(S2m × S2n+1) = Z⊕ Z and K1(S2m × S2n+1) = Z⊕ Z

when N = 0.

Proof. The E2-term will be the same as that given in Figure 5.1.3, but the difference is
that the differential only acts from H0 to H2m+2n+1. The E∞-term will then retain the
copies of Z in the 2m and 2n+1 columns, while the 2m+2n+1 column will again contain
ZN when N 6= 0. The result then follows for N 6= 0 without extension problems. When
N = 0, there will be no non-trivial differentials in which case the E∞-term will be the
same as the E2-term and the result follows.

Remark 5.1.1. We cannot verify this computation using the Künneth theorem as we
could for Proposition 5.1.4, because we cannot express the space of sections of the bundle
representing δ ∈ H2m+2n+1(S2m × S2n+1,Z) as a tensor product. Suppose we were to
decompose δ into the cup product of δ2m ∈ H2m(S2m,Z) and δ2n+1 ∈ H2n+1(S2n+1,Z)
via a Künneth theorem in cohomology, and then we let A be the space of sections of
the bundle over S2m represented by δ2m and B be the space of sections of the bundle
over S2n+1 represented by δ2n+1. Then A and B would be exactly as in Example 5.1.2,
since there are no non-trivial algebra bundles over S2m with fibres isomorphic to O∞⊗K,
and so the tensor product algebra A⊗ B would be the same as it was in Example 5.1.2.
Therefore we cannot use the same approach to verify this computation.

Of course there are many other possible products of spheres that can be investigated,
and the spectral sequence can be used in a straightforward way to draw conclusions about
the higher twisted K-theory groups. In spite of this, most cases involve some non-trivial
extension problems to be solved and so it is difficult to obtain results for products of
spheres in full generality using current techniques.
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5.1.3 Lie groups

A great deal of work has been done by many mathematicians and physicists in computing
the twisted K-theory of Lie groups in the classical setting, including Hopkins, Braun
[Bra04], Douglas [Dou06] and Rosenberg [Ros17]. In the case of SU(n), the twisted
K-groups were explicitly computed and as a consequence it was shown that the higher
differentials in the twisted Atiyah–Hirzebruch spectral sequence are non-zero in general,
suggesting that this technique will not yield general results for the higher twistedK-groups
of SU(n). Nevertheless, it is possible to compute these groups via the Atiyah–Hirzebruch
spectral sequence in a special case.

We compute the higher twisted K-theory of SU(n) up to extension problems for δ a
2n−1 twist. Although this does not fully describe the higher twisted K-theory groups, it
gives important information regarding torsion and the maximum order of elements in the
groups. To illustrate the general technique, we will explicitly compute the higher twisted
K-theory of SU(3) for a 5-twist, and later use this in the general computation. Note that
since we have proved in Proposition 2.3.10 that higher twisted K-theory with the trivial
twist agrees with topological K-theory and we have seen several examples of this already
in this hapter, we will henceforth only consider non-trivial twists.

Lemma 5.1.6. Let δ ∈ H5(SU(3),Z) be a twist of K-theory for SU(3) which is N 6= 0
times the generator. The 5-twisted K-theory of SU(3) is then

K0(SU(3), δ) = ZN and K1(SU(3), δ) = ZN .

Proof. The E2-page of the twisted Atiyah–Hirzebruch spectral sequence in this case is as
follows.

2 Z 0 0 Z 0 Z 0 0 Z

1 0 0 0 0 0 0 0 0 0

0 Z 0 0 Z 0 Z 0 0 Z

0 1 2 3 4 5 6 7 8

The d3 differential is given by the Steenrod operation Sq3 which necessarily annihilates
H0(SU(3),Z) by Theorem 4L.12 of [Hat00], but also annihilates H5(SU(3),Z) since the
image of Sq3 is a 2-torsion element by definition. Hence the only non-trivial differential
in this spectral sequence is d5(x) = d′5(x) − x ∪ δ. The torsion operator d′5 will have no
effect on the cohomology, and cup product with −δ will be multiplication by −N on both
H0(SU(3),Z) and H3(SU(3),Z). Hence the E∞-term is as shown below.
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2 0 0 0 0 0 ZN 0 0 ZN

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 ZN 0 0 ZN

0 1 2 3 4 5 6 7 8

Thus we may conclude that K0(SU(3), δ) ∼= ZN and K1(SU(3), δ) ∼= ZN as required.

Note that this computation works specifically for 5-twists δ, as unlike when taking a
3-twist there are no non-trivial higher differentials to consider. Furthermore, there is no
extension problem to solve and so for the case of SU(3) this is a complete computation.

This computation directly generalises to the case of 2n− 1 twists on SU(n), although
here we only obtain the result up to extension problems and so we can only comment on
torsion in the group.

Lemma 5.1.7. Let δ ∈ H2n−1(SU(n),Z) be a twist of K-theory for SU(n) which is N 6= 0
times the generator. The (2n−1)-twisted K-theory of SU(n) is then a finite abelian group
with all elements having order a divisor of a power of N .

Proof. We use the same Atiyah–Hirzebruch spectral sequence approach as in the proof of
Lemma 5.1.6. The differentials dj for j < 2n− 1 are trivial, as they are given by torsion
operations. The differential d2n−1 is cup product with −δ, which is multiplication by −N
for each of the 2n−2 maps Z(

∧
ci)→ Z(

∧
ci)∧c2n−1 where the c2i−1 ∈ H2i−1(SU(n),Z) for

i = 2, · · · , n denote the primitive generators, and the higher differentials are zero. At this
stage, there are 2n−3 extension problems to solve for n > 3, but no extension problems for
n = 3 which is how the previous result was obtained. In spite of this, since every group
in the E∞-term of the spectral sequence is ZN , we can conclude that the higher twisted
K-theory groups will be torsion with all elements having order a divisor of a power of N ,
even if the extension problems cannot be solved to determine the explicit torsion.

To be more explicit about the extension problems involved, we consider the case of a
7-twist on SU(4) as an example.

Example 5.1.3. Following the proof of Lemma 5.1.7, we have to solve a single extension
problem both for the odd degree and even degree groups of the form

0→ ZN → Ki(SU(4), δ)→ ZN → 0.

Although this extension problem has Ext1
Z(ZN ,ZN) ∼= ZN inequivalent solutions, we can

conclude that Ki(SU(4), δ) is a torsion group whose elements have order a divisor of N2.
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While an explicit computation of the higher twistedK-theory of SU(n) is quite difficult
in general, we can generalise some results of Rosenberg to the higher twisted setting in
order to obtain more non-trivial structural information about these groups. It is at this
point that we must turn to the more powerful Segal spectral sequence given in Theorem
4.2.5 so that Theorem 4.2.6 may be employed.

Theorem 5.1.8. For any non-zero δ ∈ H5(SU(n+ 1),Z) given by N times the generator
with N relatively prime to n! (n > 1), the graded group K∗(SU(n + 1), δ) is isomorphic
to ZN tensored with an exterior algebra on n− 1 odd generators.

Proof. We proceed by induction on n. First, note that the case n = 2 has already been
proved in Lemma 5.1.6, as we have shown that K0(SU(3), δ) ∼= ZN ∼= K1(SU(3), δ) so
that K∗(SU(3), δ) is of the form ZN tensored with Zc for some odd generator c. Then by
Proposition 4.2.7, the same is true for the higher twisted K-homology groups. So assume
n > 2 and that the result holds for smaller values of n. Take the Segal spectral sequence
in higher twisted K-homology associated to the classical fibration

SU(n)
ι
↪−→ SU(n+ 1)→ S2n+1,

which gives
E2
p,q = Hp(S

2n+1, Kq(SU(n), ι∗δ))⇒ K∗(SU(n+ 1), δ).

Note that since the map ι∗ induced on ordinary cohomology by inclusion is an isomorphism
in degree 5, we may identify ι∗δ ∈ H5(SU(n),Z) with δ ∈ H5(SU(n + 1),Z). Since N is
relatively prime to (n− 1)!, by the inductive assumption we have

Kq(SU(n), δ) ∼= ZN ⊗ ∧(x1, · · · , xn−2)

for some odd generators xi. We aim to show that this spectral sequence collapses. The only
potentially non-zero differential is d2n+1, which is related to the homotopical non-triviality
of the fibration as explained in Theorem 4.2.6. To determine the explicit differential, we
need to understand the Hurewicz maps mentioned in the theorem and the long exact
sequence in homotopy for the fibration SU(n)

ι−→ SU(n + 1) → S2n+1. This long exact
sequence contains

π2n+1(SU(n+ 1))→ π2n+1(S2n+1)
∂−→ π2n(SU(n))→ π2n(SU(n+ 1)),

and so we see that the boundary map ∂ : Z → Zn! has kernel of index n!. Now, the
Hurewicz map of interest is

π2n(SU(n))→ K2n(SU(n), δ) ∼= K0(SU(n), δ).

Although this map is difficult to describe explicitly, since this is a map Zn! → ZN then
if gcd(N, n!) = 1 this map must be trivial and hence the differential is trivial. Thus if
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gcd(N, n!) = 1 then the spectral sequence collapses and K∗(SU(n + 1), δ) is isomorphic
to ZN tensored with an exterior algebra on n − 1 odd generators since the E∞-term of
the spectral sequence will consist of ZN ⊗ ∧(x1, · · · , xn−2) in the zeroth and (2n + 1)th
columns which will become K0(SU(n+ 1), δ) and K1(SU(n+ 1), δ) respectively.

In order to conclude that the same is true for higher twisted K-theory, we see that
the E2-term of the Segal spectral sequence in higher twisted K-theory consists only of
finite torsion groups, and even though we do not have information about the differentials
in this sequence we may conclude that the E∞-term will also consist only of finite torsion
groups and thus the limit of the sequence is a direct sum of torsion groups. Therefore we
are in the setting of Proposition 4.2.7, and we may use this to obtain the result for higher
twisted K-theory from the computation for higher twisted K-homology.

Remark 5.1.2. We reiterate our concerns raised in Remark 4.2.2, that the proof of Propo-
sition 4.2.7 relies on an assumption which is based on a conjecture in C∗-algebra theory.
Therefore this theorem should be viewed in light of this assumption.

We also have a structural theorem which is applicable in a more general setting, but
which provides slightly less information about the higher twisted K-theory groups.

Theorem 5.1.9. If δk ∈ Hk(SU(n),Z) is given by N times any primitive generator of
H∗(SU(n),Z) (all of which have odd degree) then K∗(SU(n), δk) is a finite abelian group
and all elements have order a divisor of a power of N .

Proof. Again we proceed by induction on n, and observe that this has already been proved
for the base case in Lemma 5.1.7. Hence we need only show that under this assumption
it is true for δ2n−1 ∈ H2n−1(SU(n + 1),Z). To do this, we once again use the classical
fibration over S2n+1 and apply the Segal spectral sequence, this time simply in higher
twisted K-theory, and obtain

Ep,q
2 = Hp(S2n+1, Kq(SU(n), δ2n−1))⇒ K∗(SU(n+ 1), δ2n−1).

But Kq(SU(n), δ2n−1) is torsion with all elements of order a divisor of a power of N by
the inductive assumption, and so the same is true for E2 and thus E∞. Finally, even if
there are non-trivial extension problems to solve in order to obtain K∗(SU(n+ 1), δ2n−1),
the result is still true as argued in the proof of Lemma 5.1.7.

In special cases, this result yields particularly useful information about these groups.
We can observe that if N = 1 then K∗(X, δ) vanishes identically, and if N = pr is a prime
power then K∗(X, δ) is a p-primary torsion group.

Whilst these results are not completely general, they do provide some insight into
the complicated behaviour of the higher twisted K-theory of SU(n). Furthermore, if the
Hurewicz map could be better understood then this may allow for better descriptions
of the higher twisted K-groups of SU(n) in general. Rosenberg is able to draw more
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general conclusions in the classical twisted case by using a universal coefficient theorem of
Khorami [Kho11]. This universal coefficient theorem relies on techniques that we have not
developed, but given a greater understanding of the cohomology groups of Aut(O∞ ⊗K)
this could allow for the theorem, and thus the results in this section, to be generalised.

To conclude this section, we take a brief look at another of the classical groups whose
higher twisted K-theory we can gain insight into using analogous methods to those above
– the symplectic groups Sp(n). We are using the compact symplectic group, defined to
be the intersection of the unitary group U(2n) and the 2n× 2n symplectic matrices{

M ∈M2n×2n(C) : MT

(
0 In
−In 0

)
M =

(
0 In
−In 0

)}
.

Since the cohomology of Sp(n) is given by H∗(Sp(n),Z) ∼= ∧[x3, x7, · · · , x4n−1] where the
xi ∈ H i(Sp(n),Z), the computation of K∗(Sp(n), δ) for δ ∈ H4n−1(Sp(n),Z) proceeds in
the same manner as that for the (2n− 1)-twisted K-theory of SU(n).

Example 5.1.4. For instance, taking a 7-twist on Sp(2) we obtain the following E2-page
of the twisted Atiyah–Hirzebruch spectral sequence.

2 Z 0 0 Z 0 0 0 Z 0 0 Z

1 0 0 0 0 0 0 0 0 0 0 0

0 Z 0 0 Z 0 0 0 Z 0 0 Z

0 1 2 3 4 5 6 7 8 9 10

As argued earlier, the only non-zero differential will be d7 which will be cup product
with the negation of the twisting class, or equivalently multiplication by −N as a map
Z→ Z. Thus the only non-zero terms of the E∞-page will be E2i,7

∞ and E2i,10
∞ which will be

ZN . Hence the higher twisted K-groups are given by K0(Sp(2), δ) ∼= ZN ∼= K1(Sp(2), δ).

From this, we see that the computation for the (4n − 1)-twisted K-theory of Sp(n)
follows the same methods as the (2n−1)-twisted K-theory of SU(n), and the same result
is obtained (possibly with a different solution to the extension problem). So once again
we obtain that Ki(Sp(n), δ) is a torsion group whose elements have order a divisor of a
power of N .

As was the case for SU(n), we may use this to obtain information about the general
higher twisted K-groups of Sp(n). We follow the exact same argument using the classical
fibration Sp(n) −→ Sp(n+ 1)→ S4n+3 to replace SU(n) −→ SU(n+ 1)→ S2n+1, and this
proves the following.
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Proposition 5.1.10. If δk ∈ Hk(Sp(n),Z) is given by N times any primitive generator
of H∗(Sp(n),Z) then K∗(Sp(n), δk) is a finite abelian group and all elements have order
a divisor of a power of N .

This approach can also be applied to other compact, simply connected, simple Lie
groups such as G2, and similar approaches exist for some non-simply connected groups
such as the projective special unitary groups as used in [MR16].

5.2 Torsion spaces

As discussed at the end of Section 2.4, it is possible to identify the twists of K-theory
with cohomology classes even when the cohomology is not torsion-free in some cases. We
perform computations with a range of spaces for which this is the case.

5.2.1 Real projective space

We begin with real projective space, and in particular odd-dimensional real projective
space RP 2n+1. This has integral cohomology groups

Hp(RP 2n+1,Z) =


Z if p = 0, 2n+ 1;

Z2 if 0 < p < 2n+ 1 is even;

0 else;

(5.2.1)

and by the universal coefficient theorem it can be shown that the Z2-cohomology is

Hp(RP 2n+1,Z2) =

{
Z2 if 0 ≤ p ≤ 2n+ 1;

0 else.

Recall from Section 2.4 that the full set of twists of K-theory over a space X is given
by the first group in a generalised cohomology theory E1

O∞(X), which is computed via a
spectral sequence. In order to determine whether we may identify the twists of K-theory
over RP 2n+1 with all odd-degree cohomology classes, we use this spectral sequence to
compute E1

O∞(RP 2n+1). The E2-term of this spectral sequence is as follows.
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0 1 2 3 4 · · · 2n 2n+ 1

0 Z2 Z2 Z2 Z2 Z2 · · · Z2 Z2

−1 0 0 0 0 0 · · · 0 0

−2 Z 0 Z2 0 Z2 · · · Z2 Z

−3 0 0 0 0 0 · · · 0 0

...
...

...
...

...
...

. . .
...

...

−2n+ 1 0 0 0 0 0 · · · 0 0

−2n Z 0 Z2 0 Z2 · · · Z2 Z

The only possibly non-trivial higher differentials in this spectral sequence will be maps
Hodd(RP 2n+1,Z2) → Heven(RP 2n+1,Z) or Heven(RP 2n+1,Z) → H2n+1(RP 2n+1,Z), the
latter necessarily being zero since the target is torsion-free. Furthermore, since the twists
are determined specifically by the first group in this generalised cohomology theory, the
only groups of interest in this spectral sequence are those circled and thus the only differ-
entials that may have an effect are those from H1(RP 2n+1,Z2). It is known, however, that
the classical twists of K-theory are those coming from H1(X,Z2) and H3(X,Z), and as
such these groups always form a subgroup of E1

O∞(X). This means that the differentials
leaving H1(RP 2n+1,Z2) are all trivial, and thus E1

O∞(RP 2n+1) ∼= Z2⊕Z. As the H1 twists
are studied in the classical case, the higher twists of interest are those coming from the
H2n+1(RP 2n+1,Z) ∼= Z factor. The same argument may be applied to even-dimensional
real projective space RP 2n, but this has no non-trivial odd-dimensional cohomology
groups and so the only twists of K-theory are those coming from H1(RP 2n,Z2) ∼= Z2.

We will now compute the higher twisted K-theory of RP 2n+1 for a (2n + 1)-twist δ.
We provide two different proofs of this proposition using the Mayer–Vietoris sequence,
the latter of which can be generalised to Lens spaces.

Proposition 5.2.1. Let δ ∈ H2n+1(RP 2n+1,Z) be a twist of K-theory for RP 2n+1 which
is N 6= 0 times the generator. The higher twisted K-theory of RP 2n+1 is then

K0(RP 2n+1, δ) = Z2n and K1(RP 2n+1, δ) = ZN .
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Proof 1. Letting Aδ be the algebra bundle with fibre O∞⊗K over RP 2n+1 corresponding
to the twist δ, we consider the short exact sequence of C∗-algebras

0→ C0(R2n+1,O∞ ⊗K)
ι−→ C(RP 2n+1,Aδ)

π−→ C(RP 2n,O∞ ⊗K)→ 0,

where the maps ι and π come from viewing R2n+1 as the quotient of RP 2n+1 by RP 2n.
The corresponding six-term exact sequence is

K0(R2n+1) K0(RP 2n+1, δ) K0(RP 2n)

K1(RP 2n) K1(RP 2n+1, δ) K1(R2n+1),

ι∗ π∗

∂∂

π∗ ι∗

where higher twisted K-theory groups have been identified with topological K-theory
groups via trivialisations, and this simplifies to

0→ K0(RP 2n+1, δ)
π∗−→ Z2n ⊕ Z ∂−→ Z ι∗−→ K1(RP 2n+1, δ)→ 0.

In this case, the connecting map is given by ∂(m,n) = nN as in 8.3 of [BCM+02] which
has kernel Z2n and cokernel ZN when N 6= 0 as required.

Although we have not discussed equivariant higher twisted K-theory, the definitions
and properties of the classical case generalise immediately and we use this in the following
proof.

Proof 2. Viewing RP 2n+1 as the quotient S2n+1/Z2, we take the short exact sequence

0→ C0(R× S2n,O∞ ⊗K)
ι−→ C(S2n+1,Aδ)

π−→ C({x0, x1},O∞ ⊗K)→ 0

where S2n+1\{x0, x1} ∼= R×S2n. The associated six-term exact sequence in Z2-equivariant
K-theory is

K0
Z2

(R× S2n) K0
Z2

(S2n+1, δ) K0
Z2

({x0, x1})

K1
Z2

({x0, x1}) K1
Z2

(S2n+1, δ) K1
Z2

(R× S2n),

ι∗ π∗

∂∂

π∗ ι∗

where trivialisations have been used to identify higher twisted K-theory groups with
topological K-theory groups. Here, since Z2 acts freely on {x0, x1} we observe that
K∗Z2

({x0, x1}) = K∗({x0}). Furthermore, since Z2 acts freely on S2n+1 we also have
K∗Z2

(S2n+1, δ) ∼= K∗(RP 2n+1, δ). Now, in order to determine the equivariant K-theory of
R×S2n, the untwisted version of this six-term exact sequence may be applied analogously
to [BCM+02] to determine that K0

Z2
(R× S2n) = Z2n while K1

Z2
(R× S2n) = Z. Note also
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that the class δ on S2n+1 is identified with a class on RP 2n+1 under the isomorphism
induced by the projection map. Thus this sequence reduces to

0→ Z2n
ι∗−→ K0(RP 2n+1, δ)

π∗−→ Z ∂−→ Z ι∗−→ K1(RP 2n+1, δ)→ 0,

where the connecting map ∂ : Z→ Z is once again multiplication by N as in [BCM+02].
This allows us to again conclude that K0(RP 2n+1, δ) ∼= Z2n and K1(RP 2n+1, δ) ∼= ZN as
required.

Note that this computation agrees with the classical case of the 3-twisted K-theory of
RP 3.

Although the Atiyah–Hirzebruch spectral sequence proved useful in simple computa-
tions for spheres and products of spheres, it is not so helpful in this case due to the torsion
in the cohomology of RP 2n+1 as we will illustrate below.

Example 5.2.1. We attempt to apply the twisted Atiyah–Hirzebruch spectral sequence to
compute the higher twisted K-theory of RP 2n+1, and the E2-term is as follows.

2 Z 0 Z2 0 Z2 · · · Z2 Z

1 0 0 0 0 0 · · · 0 0

0 Z 0 Z2 0 Z2 · · · Z2 Z

0 1 2 3 4 · · · 2n 2n+ 1

Here, the only differentials between non-trivial groups are maps Z2 → Z which are neces-
sarily zero, and d2n+1 : H0(RP 2n+1,Z)→ H2n+1(RP 2n+1,Z) which is simply given by cup
product with −δ since these groups are torsion-free. Thus the E∞-term of the spectral
sequence is as follows.

2 0 0 Z2 0 Z2 · · · Z2 ZN

1 0 0 0 0 0 · · · 0 0

0 0 0 Z2 0 Z2 · · · Z2 ZN

0 1 2 3 4 · · · 2n 2n+ 1
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From this, we may conclude that K1(RP 2n+1, δ) ∼= ZN , but in order to determine the
degree zero group K0(RP 2n+1, δ) we must solve n−1 extension problems. Assuming that
all extension problems are trivial, we conclude that K0(RP 2n+1, δ) ∼= Zn2 . This agrees
with the result for RP 3 that K0(RP 3) ∼= Z2, but as we have proved in Proposition 5.2.1
this is not the correct expression for the degree zero group. Obtaining the true solution
by solving the extension problems here would be much more difficult than the method
using the Mayer–Vietoris sequence.

5.2.2 Lens spaces

The equivariant computation in Proof 2 of Proposition 5.2.1 generalises nicely to Lens
spaces. While Lens spaces of the form S3/Zp for p prime are particularly common, there
exists a notion of higher Lens space L(n, p) = S2n+1/Zp where Zp identified with the pth

roots of unity in C acts on S2n+1 ⊂ C2n by scaling. In this notation, the Lens space S3/Zp
is L(1, p) and real projective space RP 2n+1 can be viewed as L(n, 2). Since these higher
Lens spaces are quotients of S2n+1, they have non-trivial higher odd-degree cohomology
groups and thus it is natural to consider their higher twisted K-theory.

As we did for RP 2n+1, we must determine the group E1
O∞(L(n, p)) to see whether

the twists of K-theory for L(n, p) may be identified with all odd-degree cohomology
classes. To do so, we observe that the cohomology groups of L(n, p) are the same as
those of RP 2n+1 in (5.2.1), but with Z2 replaced with Zp. Without needing to determine
H∗(L(n, p),Z2) we are then able to follow the exact same argument as for RP 2n+1 to
conclude that E1

O∞(L(n, p)) ∼= H1(L(n, p),Z2)⊕H2n+1(L(n, p),Z). Thus we can view the
twists of K-theory over L(n, p) as integral (2n+ 1)-classes.

Proposition 5.2.2. Let δ ∈ H2n+1(L(n, p),Z) be a twist of K-theory for L(n, p) which
is N 6= 0 times the generator. The higher twisted K-theory of L(n, p) is then

K0(L(n, p), δ) = Zpn and K1(L(n, p), δ) = ZN .

Proof. Letting A ⊂ L(n, p) consist of a Zp-orbit and Aδ denote the algebra bundle with
fibre O∞ ⊗K over L(n, p) corresponding to the twist δ, we take the short exact sequence

0→ C0(S2n+1 \ A,O∞ ⊗K)
ι−→ C(S2n+1, Eδ)

π−→ C(A,O∞ ⊗K)→ 0.

The associated six-term exact sequence in Zp-equivariant higher twisted K-theory is

K0
Zp(S

2n+1 \ A) K0
Zp(S

2n+1, δ) K0
Zp(A)

K1
Zp(A) K1

Zp(S
2n+1, δ) K1

Zp(S
2n+1 \ A),

ι∗ π∗

∂∂

π∗ ι∗
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where higher twisted K-theory groups have been identified with topological K-theory
groups via trivialisations. Now, since Zp acts freely on the compact set A we have
K∗Zp(A) = K∗({x0}), and similarly K∗Zp(S

2n+1, δ) = K∗(L(n, p), δ), where once again

δ ∈ H2n+1(S2n+1,Z) is identified with δ ∈ H2n+1(L(n, p),Z) via the isomorphism induced
by the projection map. It remains to determine K∗Zp(S

2n+1\A). To do so, we require some
basic properties of equivariant K-theory which carry over from the standard case. Firstly,
by identifying K∗(S2n+1, A) with K∗(S2n+1 \ A), we have the short exact sequences

0→ Km
Zp(S

2n+1 \ A)→ Km
Zp(S

2n+1)→ Km
Zp(A)→ 0

for m = 0, 1. Since the Zp-equivariant K-theory of A is known, this implies that

Kn
Zp(S

2n+1 \ A) ∼= K̃n
Zp(S

2n+1), which is simply isomorphic to K̃n(L(n, p)). By a com-

putation analogous to that for RP 2n+1 using Corollary 2.7.6 of [Ati67], we also observe
that K0(L(n, p)) ∼= Zpn ⊕ Z while K1(L(n, p)) ∼= Z. Thus the sequence reduces to

0→ Zpn
ι∗−→ K0(L(n, p), δ)

π∗−→ Z ∂−→ Z ι∗−→ K1(L(n, p), δ)→ 0,

where the connecting map ∂ : Z→ Z is multiplication by N as in 8.3 of [BCM+02]. Hence
K0(L(n, p), δ) ∼= Zpn and K1(L(n, p), δ) ∼= ZN as required.

This provides a generalisation of the result for RP 2n+1 in Proposition 5.2.1 as well as
for the 3-dimensional Lens spaces in Section 8.4 of [BCM+02].

5.2.3 SU(2)-bundles

It is of great interest in both string theory and mathematical gauge theory to investigate
SU(2)-bundles over manifolds M . The link with string theory appears because these
bundles arise in spherical T-duality; a generalisation of T-duality investigated in a series
of papers by Bouwknegt, Evslin and Mathai [BEM15a, BEM15b, BEM18] and briefly
discussed in Section 2.6. As shown by the authors, this form of duality provides a map
between certain conserved charges in type IIB supergravity and string compactifications.
They also find links between spherical T-duality and higher twisted K-theory. Specifically
in the case that M is a compact oriented 4-manifold, the authors compute the 7-twisted
K-theory of a principal SU(2)-bundle over M in terms of its second Chern class up to
an extension problem. The ordinary 3-twisted K-theory can be computed using standard
techniques, which leaves the 5-twisted K-theory to be computed. We will further assume
that M has torsion-free cohomology, which is true if the additional assumption that M is
simply connected is made but this is not necessary.

Note that we are not requiring the SU(2)-bundle P over M to be a principal bundle.
The computation will be valid for both principal SU(2)-bundles as used in [BEM15a]
as well as oriented non-principal SU(2)-bundles used in [BEM15b], the former of which
correspond to unit sphere bundles of quaternionic line bundles while the latter of which
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correspond to unit sphere bundles of rank 4 oriented real Riemannian vector bundles.
The reason that we need not distinguish between these types of bundles is that there is
a Gysin sequence in each case allowing the cohomology of P to be computed. Given an
SU(2)-bundle of either of these forms π : P →M , there is a Gysin sequence of the form

· · · → Hk(M,Z)
π∗−→ Hk(P,Z)

π∗−→ Hk−3(M,Z)
∪e(P )−−−→ Hk+1(M,Z)→ · · ·

where e(P ) denotes the Euler class of E which may be identified with the second Chern
class of the associated vector bundle in the principal bundle case. In this sequence,
the pushforward π∗ is defined by using Poincaré duality to change from cohomology to
homology, using the pushforward in homology and once again employing Poincaré duality
to switch back, which explains the degree shift. We can use this to compute the integral
cohomology of P in terms of that of M . In what follows, we will assume that all exact
sequences split in order to compute the higher twisted K-theory up to extension problems.
Although this will not be true in all cases, it still yields meaningful results as in [BEM15a,
BEM15b].

Firstly, we assume that e(P ) = 0 in which case the obstruction to π : P →M having
a section vanishes and therefore the Gysin sequence splits at π∗. This yields

Hk(P,Z) ∼= Hk(M,Z)⊕Hk−3(M,Z).

Thus we obtain

Hk(P,Z) ∼=



Z if k = 0, 7;

Hk(M,Z) if k = 1, 2;

H3(M,Z)⊕ Z if k = 3;

H1(M,Z)⊕ Z if k = 4;

Hk−3(M,Z) if k = 5, 6.

If e(P ) = j ∈ Z with j 6= 0 on the other hand, then the cup product with e(P ) from
H0(M,Z) to H4(M,Z) will be multiplication by j. We obtain the same integral cohomol-
ogy of P as above in all degrees except 3 and 4, and to compute these we use the Gysin
sequence as follows:

0→ H3(M,Z) π∗−→ H3(P,Z) π∗−→ H0(M,Z) ∪e(P )−−−−→ H4(M,Z) π∗−→ H4(P,Z) π∗−→ H1(M,Z)→ 0.

Since the cup product here has trivial kernel, we conclude that H3(P,Z) ∼= H3(M,Z).
Similarly, the cokernel is Zj and hence H4(P,Z) ∼= H1(M,Z) ⊕ Zj assuming that the
sequence is split at π∗ : H4(P,Z)→ H1(M,Z).

In the case that e(P ) = 0, we see that P has torsion-free cohomology and thus the
5-twists given by H5(P,Z) ∼= H2(M,Z) can be considered. If e(P ) = j 6= 0, however,
then there is torsion in the cohomology of P and so it must be determined whether all
of the elements of H5(P,Z) correspond to twists. The E2-term of the Atiyah–Hirzebruch
spectral sequence used by Pennig and Dadarlat to compute E1

O∞(P ) is as follows.
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0 1 2 3 4 5 6 7

0 Z2 H1(P,Z2) H2(P,Z2) H3(P,Z2) H4(P,Z2) H5(P,Z2) H6(P,Z2) Z2

−1 0 0 0 0 0 0 0 0

−2 Z H1(M,Z) H2(M,Z) H3(M,Z) H1(M,Z)⊕ Zj H2(M,Z) H3(M,Z) Z

−3 0 0 0 0 0 0 0 0

−4 Z H1(M,Z) H2(M,Z) H3(M,Z) H1(M,Z)⊕ Zj H2(M,Z) H3(M,Z) Z

Although there is torsion in H4(P,Z) which will affect the computation of E∗O∞(P ),
this will not have an effect on E1

O∞(P ) much like was the case for RP 2n+1. Since the
differentials are torsion operators then d3 : H2(M,Z) → H2(M,Z) will be zero, and as
H1(P,Z2) makes up a subset of the twists then the differential d3 : H1(P,Z2)→ H4(P,Z)
will also necessarily be zero. Thus we may conclude that the twists of K-theory are given
by odd-degree cohomology in this case, and so it is sensible to use 5-twists and 7-twists
for P .

In order to compute the twisted K-theory groups themselves, the twisted Atiyah–
Hirzebruch spectral sequence may be used. The E2-term for e(P ) = 0 is shown below.

2 Z H1(M,Z) H2(M,Z) H3(M,Z)⊕ Z H1(M,Z)⊕ Z H2(M,Z) H3(M,Z) Z

1 0 0 0 0 0 0 0 0

0 Z H1(M,Z) H2(M,Z) H3(M,Z)⊕ Z H1(M,Z)⊕ Z H2(M,Z) H3(M,Z) Z

0 1 2 3 4 5 6 7

Similarly, the E2-term of the analogous spectral sequence for e(P ) = j 6= 0 is below.

2 Z H1(M,Z) H2(M,Z) H3(M,Z) H1(M,Z)⊕ Zj H2(M,Z) H3(M,Z) Z

1 0 0 0 0 0 0 0 0

0 Z H1(M,Z) H2(M,Z) H3(M,Z) H1(M,Z)⊕ Zj H2(M,Z) H3(M,Z) Z

0 1 2 3 4 5 6 7
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In both cases, we may argue that the differential Sq3 is zero as follows. Firstly, Sq3

of course annihilates Hk(P,Z) for 0 ≤ k ≤ 2 by Theorem 4L.12 of [Hat00] as well as
5 ≤ k ≤ 7 since the image of the map is a trivial cohomology group, which leaves only
k = 3 and k = 4 to be considered. But the image of Sq3 is a Z2 torsion element by
definition, and there is no torsion in H6(P,Z) or H7(P,Z) and hence this differential
must be zero. Similarly, the torsion part of d5 will annihilate all cohomology classes,
leaving only the cup product with the twisting class δ ∈ H5(P,Z) to be considered.

To determine how the cup product with the twisting class affects the cohomology, the
isomorphisms between the cohomology of M and P need to be viewed more explicitly.
Observe that π∗ : Hk(P,Z)→ Hk−3(M,Z) is an isomorphism for k = 5, 6, 7 and similarly
π∗ : Hk(P,Z)→ Hk(M,Z) is an isomorphism for k = 0, 1, 2. Fixing a twist δ ∈ H5(P,Z),
this is equivalent to (π∗)

−1(η) for some η ∈ H2(M,Z). Then taking αk ∈ Hk(M,Z) for
k = 0, 1, 2 such that π∗(αk) ∈ Hk(P,Z), we see that π∗(δ∪π∗(αk)) ∈ Hk(M,Z) will be the
image of the cup product in the cohomology of M . But by a property of pushforwards,
this is equal to π∗(δ) ∪ αk = η ∪ αk. Hence the cup product with δ on the cohomology of
P is equivalent to cup product with η on the cohomology of M . Since this cup product
is injective on H0(P,Z), all higher differentials will be zero and thus the E∞-term of the
spectral sequences are as shown in Figure 5.2.1 for e(P ) = 0 and 5.2.2 for e(P ) = j 6= 0.
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2 0 ker∪η|H1(M,Z) ker∪η|H2(M,Z) H3(M,Z)⊕ Z H1(M,Z)⊕ Z H2(M,Z)/ηZ coker∪η|H1(M,Z) coker∪η|H2(M,Z)

1 0 0 0 0 0 0 0 0

0 0 ker∪η|H1(M,Z) ker∪η|H2(M,Z) H3(M,Z)⊕ Z H1(M,Z)⊕ Z H2(M,Z)/ηZ coker∪η|H1(M,Z) coker∪η|H2(M,Z)

0 1 2 3 4 5 6 7

Figure 5.2.1: E∞-term of the AHSS for e(P ) = 0.

2 0 ker∪η|H1(M,Z) ker∪η|H2(M,Z) H3(M,Z) H1(M,Z)⊕ Zj H2(M,Z)/ηZ coker∪η|H1(M,Z) coker∪η|H2(M,Z)

1 0 0 0 0 0 0 0 0

0 0 ker∪η|H1(M,Z) ker∪η|H2(M,Z) H3(M,Z) H1(M,Z)⊕ Zj H2(M,Z)/ηZ coker∪η|H1(M,Z) coker∪η|H2(M,Z)

0 1 2 3 4 5 6 7

Figure 5.2.2: E∞-term of the AHSS for e(P ) 6= 0.
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Finally we may conclude that, up to extension problems, the 5-twisted K-theory of P
when e(P ) = 0 is

K0(P, δ) = ker∪η|H2(M,Z) ⊕H1(M)⊕ Z⊕ coker∪η|H1(M,Z);

K1(P, δ) = ker∪η|H1(M,Z) ⊕H3(M)⊕ Z⊕H2(M,Z)/ηZ⊕ coker∪η|H2(M,Z);

and when e(P ) = j 6= 0 is

K0(P, δ) = ker∪η|H2(M,Z) ⊕H1(M)⊕ Zj ⊕ coker∪η|H1(M,Z);

K1(P, δ) = ker∪η|H1(M,Z) ⊕H3(M)⊕H2(M,Z)/ηZ⊕ coker∪η|H2(M,Z).

To be more explicit about the extension problems involved, we illustrate how these
higher twisted K-theory groups may differ if the extension problems are non-trivial.

Considering the case of e(P ) = j 6= 0 above, determining the higher twisted K-theory
group of P would require solving the following:

0→ Zj → A→ coker∪η|H1(M,Z) → 0;

0→ ker∪η|H2(M,Z) → K0(P, δ)→ A→ 0.

So the direct sums shown in the equations above should really be viewed as these
extension problems.

Of course these higher twisted K-theory groups are heavily dependent on the ring
structure of the cohomology of M , but given a specific 4-manifold M with torsion-free
cohomology, i.e. a simply connected 4-manifold satisfying the previous assumptions, this
determines the 5-twisted K-theory of P up to extension problems.

Example 5.2.2. We apply the formulas given above to the manifold M = S2 × S2. This
space has trivial cohomology in degrees 1 and 3, and H2(M,Z) ∼= Z⊕ Z. To specify the
ring structure on cohomology, the cup product of the generators of the two factors of Z
in H2(S2 × S2,Z) is the generator of H4(S2 × S2,Z).

Consider a twist δ ∈ H2(M,Z) given by δ = (Lα0, Nβ0) with α0, β0 the generators
and L,N 6= 0. Then the cup product map H2(M,Z) → H4(M,Z) is (a, b) 7→ Lb + Na,
which letting k denote the greatest common divisor of L and N has kernel {(Li/k,Ni/k) :
i ∈ Z} ∼= Z and has cokernel Zk. From this, we see that when e(P ) = 0 we have

K0(P, δ) = Z⊕ Z;

K1(P, δ) = Z⊕ ZL ⊕ ZN ⊕ Z;

and when e(P ) = j 6= 0 the groups are

K0(P, δ) = Z⊕ Zj;
K1(P, δ) = ZL ⊕ ZN ⊕ Z.
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Example 5.2.3. To give one further example, we let M = CP 2 with H2(M,Z) ∼= Z and
such that the generator of H4(M,Z) is the square of the generator of H2(M,Z). Letting
δ = Nδ0 with δ0 the generator of H2(M,Z), we see that the twisted K-theory when
e(P ) = 0 is

K0(P, δ) = Z;

K1(P, δ) = Z⊕ ZN ⊕ ZN ;

and when e(P ) = j 6= 0 is

K0(P, δ) = Zj;
K1(P, δ) = ZN ⊕ ZN .

Since there is no specified 5-class in the setting of spherical T-duality, the physical
interpretation of these 5-twisted K-theory groups is not as clear as in the case of 7-
twists. Nevertheless, the work of Bouwknegt, Evslin and Mathai provides a link between
spherical T-duality and supergravity theories in Type IIB string theory, and so further
research into this area may shed light on the physical meaning of the computations that
we have performed. Tying these computations together with the physics may then provide
further insight into certain aspects of string theory.

In this chapter we have brought together all of the critical results and techniques
developed throughout the thesis, and in doing so we have achieved our aim of providing
a comprehensive introduction to higher twisted K-theory. Many of the results presented
in this chapter can be used as the starting point for further investigation, particularly in
exploring techniques to compute the higher twisted K-theory of more general products of
spheres, in obtaining more general results for the higher twisted K-theory of Lie groups
and in exploring the link between higher twisted K-theory and string theory. More
broadly, the results in this thesis provide a firm base upon which the rich area of higher
twisted K-theory can continue to be explored.
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