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Abstract

This thesis examines the eigenvalues of the connection Laplacian acting on
differential forms with values in a Hermitian vector bundle with connection
over a closed Riemannian manifold. Specifically, building upon previous
work by Whitney, Dodziuk, Patodi and Zahariev, a combinatorial analogue
of the connection Laplacian is defined via triangulations of the manifold
whereby differential forms are associated to cochains. Using the min-max
principle as a key ingredient, this reduces the infinite dimensional analytic
eigenvalue problem to a finite dimensional combinatorial one. In theory, this
allows the eigenvalues to be calculated with numerical methods and sufficient
computational power.

In this thesis, I prove that the eigenvalues of the analytic Laplacian
are bounded below by the eigenvalues of the combinatorial Laplacian for
differential forms and cochains of arbitrary degree with values in a trivial
complex line bundle provided an assumption is met. This is achieved via an
explicit calculation of the growth rate of the Whitney map under standard
subdivisions.
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CHAPTER

1749 1827 PIERRE-SIMON LAPLACE (French)

Introduction

Given a closed Riemannian manifold and differential forms with values in a given vector bundle
over the manifold, various Laplacian operators can be defined on these forms. A basic quantity
of interest of these Laplacians are their eigenvalues.

In this thesis, I aim to approximate the eigenvalues of the Laplacian in an analytic setting by
reformulating the analytic eigenvalue problem to an associated eigenvalue problem in a combina-
tional setting. In essence, every object in the analytic setting is associated with a corresponding
object in the combinatorial setting. The manifold is associated with a triangulation or simplicial
complex, differential forms with cochains, the exterior derivative with the coboundary operator,
and the analytic Laplacian is associated with a combinatorial Laplacian. This transportation
from the infinite dimensional analytic setting to the finite dimensional combinatorial setting
reduces the complexity of calculating eigenvalues but in the process introduces technicalities
that must be managed as the combinatorial setting only approximates the analytic one. Making
this approximation precise is the main challenge of this method and the subject of this thesis.
The min-max principle is used in this method to provide a way to express the eigenvalues of the
Laplacian in terms of inner products and hence norms of differential forms or cochains and the
Laplacian acting on these differential forms or cochains.

1.1 History

In 1931, de Rham provided the foundation of combinatorial approximations to analytic dif-
ferential geometric objects by defining the de Rham map as part of his isomorphism theorem
of cohomologies [7]. This map takes analytic objects and maps them to combinational ones.
However, the missing ingredient, a map from combinational objects to analytic ones, was not
formalised until 1957 when Whitney [28, Chapter VII.11 (16)] presented the Whitney map. These
two maps provide the foundation of approximating analytic problems with combinatorial ones
by mapping between the two settings ‘almost’ interchangeably.

The de Rhammap composed with the Whitney map is the identity map [28, Chapter VII.11 (5)],
whilst the Whitney map composed with the de Rham map is not the identity map. Therefore, the
two settings are only ‘almost’ interchangeable. Promisingly though, the Whitney map composed
with the de Rham map approximates the identity map to arbitrary precision for a sufficiently
refined triangulation of the manifold [9, Corollary 3.27].

This approximation of the identity map is precisely what allows the combinatorial setting
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to be used to calculate values of interest in the analytic setting, whilst at the same time being
the main obstacle for such calculations. The difficulty lies in keeping track of the size of the
error terms in the approximation. In principle, using the combinatorial setting to obtain analytic
results should be readily achievable, in practice however, it requires careful analysis and, in some
cases, has proven to be unpredictable and difficult.

For instance, little is known about the convergence of the adjoint of the coboundary operator
to the adjoint of the exterior derivative. In 1991, Smits proved the two operators converge
but only for degree one on a surface with a specific subdivision scheme [24, 5 Theorem]. Two
decades later, in 2014, Arnold, Falk, Guzman and Tsogtgerel showed that this convergence for
degree one can be generalised to manifolds of arbitrary dimension, but also provided counter
examples when convergence failed in the setting of other subdivision schemes and separately,
in the case of higher degree differential forms and cochains [3, Page 5489]. This leaves open
the question of what, if anything, can be stated about the relationship of the adjoint of the
coboundary operator to the adjoint of the exterior derivative for higher degrees. Considering
these adjoint operators appear frequently in this area including in the definition of the Laplacian,
many suspected approximation problems including ones tackled by Wilson in 2005 remain open.
In his 2005 paper, Wilson [29] examined a combinatorial Hodge star operator and found that
in some compositions with the coboundary operator, the combinatorial operators approximate
their respective analytic operators, whilst results for other compositions are still unknown and
‘seemingly harder to come by’ [29, Page 19]. Wilson also speculated based on example calculations
on a circle, whether the square of the combinatorial Hodge star approximates the identity operator
up to a sign as is the case for the analytic Hodge star operator. In 2015, Tanabe proved this
result in the affirmative [26, Theorem 3.1].

Returning to the problem considered in this thesis, the first use of solving associated combi-
natorial problems to analytic eigenvalue problems is found in the 1973 thesis by Dodziuk [9]. It
was Dodziuk who provided the exact error term in the composition of the Whitney map with
the de Rham map compared to the identity map [9, Corollary 3.27].

Additionally, Dodziuk established the convergence of eigenvalues of the Laplacian acting on
functions [9, Theorem 5.7] as well as a technical result. This technical result, roughly speaking,
says that given a Hodge decomposition in both the analytic and combinatorial settings, then
for a given differential form and the Hodge decomposition of that form, the corresponding
components of the decomposition in the combinatorial setting converge to their respective
analytic components [9, Theorem 4.9].

The following year, 1974, Patodi proved a subtle generalisation of Dodziuk’s technical result.
Again roughly speaking, Patodi showed that given a Hodge decomposition in both the analytic
and combinatorial settings, then for a given cochain (instead of a differential form) and its Hodge
decomposition, the corresponding components of the decomposition converge [17, Theorem 2].
He then used his and Dodziuk’s Hodge decomposition results to generalise Dodziuk’s convergence
of eigenvalues for functions to differential forms of arbitrary degree [17, Theorem 3].

The next advancement in this area was published in 1975 when Dodziuk and Patodi jointly
combined their previous work to prove that the eigenvalues of the Laplace operator acting on
differential forms with values in a flat real vector bundle converge [10, Theorem 3.7]. In their
proof of the convergence of eigenvalues, they proved the generalisation of their earlier technical
Hodge decomposition results for differential forms and cochains with values in a flat real vector
bundle.

Following these three papers, there is a lull in research in this area† until 2007 when Zahariev,

†Possibly due to Patodi’s early death in 1976.
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supervised by Dodziuk, published the results of his thesis‡. Zahariev proved the convergence of
eigenvalues of the Laplace operator acting on degree zero differential forms and cochains with
values in a complex vector bundle with arbitrary connection [30, Theorem 5.4].

Whilst Dodziuk and Patodi have been the main contributors for the results so far in this
area, it is important to note that the aforementioned series of results from the 1970s may not
have eventuated without one person. Isadore Singer provided Dodziuk with support during the
development of his thesis [9, Page 104], he brought the Dodziuk thesis to Patodi’s attention [17,
Page 43] and most importantly, brought Dodziuk and Patodi together for their substantive joint
paper [10, Page 3].

Patodi’s connection to Singer may well explain Patodi’s motivation for working in this area.
Patodi wanted to prove the Ray-Singer conjecture [19], posed in 1971. The conjecture states
that the Reidemeister-Franz torsion, a function based on a triangulation of the manifold, can be
expressed in terms of analytic quantities. Ray and Singer proposed the so called analytic torsion,
which is defined in terms of the eigenvalues of the Laplace operator, for this analytic quantity.
Dodziuk and Patodi in their joint paper [10] attempted to prove this conjecture but ultimately
they were not successful and published their work on combinatorial approaches to the analytic
eigenvalue problem instead. They believed their technical results for the Hodge decomposition
would be the key to unlocking the conjecture. The conjecture was proved a few years after the
Dodziuk and Patodi paper in 1977 by Cheeger [6] who did not use the work of Dodziuk and
Patodi. However the following year, 1978, Müller [14], independently to Cheeger, used the work
of Dodziuk and Patodi to prove the conjecture.

Analysing the four papers discussed that deal with the various versions of the eigenvalue
problem, it is noteworthy that they can be split into two categories. Proofs that use the technical
Hodge decomposition results as the basis for the convergence of eigenvalues as is the case in
Patodi [17] and later Dodziuk and Patodi [10], and proofs that do not use the technical Hodge
decomposition results as is the case in Dodziuk [9] and Zahariev [30]. Further, the proofs that
use a Hodge decomposition prove convergence for arbitrary degree, whilst the ones that do not
use a Hodge decomposition only prove convergence for degree zero.

The results of these four papers are formally stated in Chapter 3 following the definition of
the notation used in Chapter 2.

1.2 Aim

The aim of this thesis is to investigate to what extent it is possible to generalise the work of
Zahariev [30] on the convergence of eigenvalues of the combinatorial Laplace operator acting on
degree zero cochains with values in an arbitrary complex vector bundle to the eigenvalues of the
corresponding analytic Laplace operator to the setting of higher degrees.

Therefore, the procedure employed is the same as that used by Zahariev [30] in his work for
degree zero. Specifically, a three step approach is used that initially, (1), considers the case of
the Laplace operator acting on differential forms and cochains with values in a trivial complex
line bundle. This is generalised to the case of, (2), differential forms and cochains with values
in a trivial complex vector bundle. This leads to the final generalisation, (3), is for differential
forms and cochains with values in an arbitrary complex vector bundle. This last step makes use
of an embedding of the arbitrary vector bundle into a suitable higher rank trivial vector bundle,
thus allowing the previous generalisation, (2), to be applied.

‡Zahariev later published a paper [31] covering the results of his thesis.
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This thesis examines the possibility of generalising the first step of Zahariev’s proof to higher
degrees. That is, the convergence of eigenvalues for Laplace operators acting on higher degree
differential forms and cochains with values in a trivial complex line bundle. This thesis shows
that it is possible to partially generalise Zahariev’s proof as long as an assumption is met. The
main result of this thesis along with a discussion of the assumption is found in Chapter 4.

The two key obstacles for generalising Zahariev’s proof to higher degrees are as follows:

1. the image of the Whitney map for zero degree cochains lies in the subset of L2 forms whose
derivatives are L2 functions whilst for higher degrees this is not the case; and

2. the Laplace operator contains additional terms for positive degrees compared to the case
of degree zero where the adjoint of the exterior derivative is identically equal to zero.

The key technical result of this thesis is developed to overcome the first obstacle encountered.
This result is an explicit computation of the growth rate of the Whitney map under the standard
subdivision scheme, covered in Chapters 5 and 6.

Chapter 7 provides technical estimates which are used to prove the lower bound in Chapter 8.
The difficulties encountered in proving the upper bound are detailed in Chapter 9.

The notation required to study and hence generalise the second and third steps of Zahariev’s
proof to higher degree is defined in Chapter 10. This allows for a discussion about future work
that can be performed using this thesis as a basis in Chapter 11.

1.3 Original Contribution

The key result of this thesis is Theorem 4.4.1. For a detailed explanation of this result and my
original contributions, see Chapter 4.

1.4 Inclusion

The author believes in the active inclusion of everybody in the mathematics community regardless
of any personal attribute. As the author was unable to follow up with every referenced author
about their preferred pronoun, the author uses the gender natural pronoun they/them/their.

1.5 Acknowledgements

The author thanks Svetoslav Zahariev for his detailed and thoughtful correspondence as well as
help with the development of this thesis.
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1912 1954 ALAN MATHISON TURING (English)

Problem Setup

This chapter explains the basic construction of the objects considered throughout this thesis. In
doing so, it covers the notation that will be used throughout as well as relevant basic results
from the literature.

This thesis uses two kinds of definitions. Ones entitled ‘Definition’ are definitions that apply
for the entire thesis whilst ones entitled ‘Chapter Definition’ are definitions that only apply to
the chapter they appear in. The reason for this is that the number of symbols used in this thesis
exceeds the Latin and Greek alphabets and hence some letters correspond to different objects
depending on which chapter they are used in.

A summary of the notation used in this thesis can be found in the Symbols Appendix
(Appendix C), or on a digital version by using the blue hyperlinked symbols. Terms written in
red can be looked up via the Index (Appendix D).

2.1 Analytic Setting

Let (M, g) be a connected smooth closed oriented Riemannian manifold of dimension N . Denote
by Ωq (M,C) the vector space of q-th degree smooth complex valued differential forms on M .

Let dq : Ωq (M,C)→ Ωq+1 (M,C) denote the exterior derivative. Where the degree is clear
from context, d is used. Let ∧ : Ωq1 (M,C)× Ωq2 (M,C)→ Ωq1+q2 (M,C) denote the exterior
product.

Definition 2.1.1. Define the inner product 〈·, ·〉0 on Ωq (M,C) by

(2.1.1)〈ω1, ω2〉0 =

ˆ
M
ω1 ∧ ?ω2 ,

where ? : Ωq (M,C)→ ΩN−q (M,C) is the Hodge star operator and ω1 is complex conjugation.

With respect to the inner product of Definition 2.1.1, let (dq)∗ : Ωq+1 (M,C) → Ωq (M,C)
be the (formal) adjoint of the exterior derivative dq.

Theorem 2.1.2 (Nakahara [15, Theorem 7.4]). For all ω ∈ Ωq (M,C) it holds that

(2.1.2)??ω = (−1)q(N−q) ω .
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Lemma 2.1.3 (Nakahara [15, Equation (7.179)]). For all ω1, ω2 ∈ Ωq (M,C) it holds that

(2.1.3)ω1 ∧ ?ω2 = ω2 ∧ ?ω1 .

Consider a coordinate chart
(
U, x1, x2, . . . , xN

)
, a point p ∈ U and a differential form

ω ∈ Ωq (M,C). Let Υ1,Υ2, . . . ,ΥN be a local orthonormal frame of T ∗M |U with respect to the
metric g. Then locally

(2.1.4)ω|U =
∑

1≤ν1<ν2<···<νq≤N
fν1,ν2,...,νq Υν1 ∧ Υν2 ∧ · · · ∧ Υνq ,

for some collection of smooth functions fν1,ν2,...,νq : U → C.

Definition 2.1.4. Define the pointwise norm |·|p of a differential form ω ∈ Ωq (M,C) at a point
p to be

(2.1.5)|ω|p =

 ∑
1≤ν1<ν2<···<νq≤N

∣∣∣fν1,ν2,...,νq (p)
∣∣∣2
 1

2

,

where |·| is the absolute value of complex numbers.

It should be noted that the above definition is independent of the chosen local orthonormal
frame.

From the Riemannian metric g, let ∇g be the Levi-Civita connection on TM . This connection
canonically induces a connection on T ∗M and hence also induces a canonical connection on
ΛqT ∗M . Let all of these connections be denoted by ∇g : ΛqT ∗M → Λ1T ∗M ⊗ ΛqT ∗M and
hence let

(2.1.6)(∇g)j : ΛqT ∗M →

 j⊗
k=1

(
Λ1T ∗M

) ⊗ ΛqT ∗M .

Similarly, let |·|g be the pointwise norm constructed on
(⊗j

k=1

(
Λ1T ∗M

))
⊗ ΛqT ∗M from the

Riemannian metric g. It is clear by definition that when j = 0 then |·|g = |·|p. Using these
constructions, define the following norm.

Definition 2.1.5. Define ‖·‖r to be the Sobolev norm on Ωq (M,C) with natural number†

parameter r ∈ N to be

(2.1.7)‖ω‖r =

 r∑
j=0

ˆ
M

(∣∣∣(∇g)j ω∣∣∣
g

)2

dVolg

 1
2

,

where dVolg = ?1 is the volume form associated to the Riemannian metric g.

By a short computation, for Ωq (M,C), the norm associated to 〈·, ·〉0 is ‖·‖0.

Definition 2.1.6. Define the Sobolev space Hqr (M,C) to be the completion of Ωq (M,C) with
respect to the norm ‖·‖r.

Hence Hq0 (M,C) is the L2 completion of Ωq (M,C) with respect to the inner product 〈·, ·〉0.
That is, the space of square integrable differential q-forms on M .

†The set of natural numbers includes the number zero.
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Theorem 2.1.7 (Pythagorean Theorem [8, Theorem 1.9]). For all j = 1, 2, . . ., and for all
ω1, ω2, . . . , ωj ∈ Ωq (M,C), if ω1, ω2, . . . , ωj are mutually orthogonal with respect to 〈·, ·〉0, then
it holds that

(2.1.8)


∥∥∥∥∥∥

j∑
k=1

ωj

∥∥∥∥∥∥
0


2

=

j∑
k=1

(∥∥ωj∥∥0)2 .
Lemma 2.1.8. For all ω ∈ Ωq (M,C) and for all integers 0 ≤ r ≤ s it holds that

(2.1.9)‖ω‖r ≤‖ω‖s .

Proof. This result follows immediately from Definition 2.1.5 as the integrand of the right hand
side contains more nonnegative terms than the integrand of the left hand side.

Fix a real one-form A ∈ Ω1 (M,R) .

Definition 2.1.9. Define the twisted exterior derivative dqA : Ωq (M,C) → Ωq+1 (M,C) to be

(2.1.10)dqA = dq + iA ∧ ,

where i is the imaginary unit.

With respect to the inner product 〈·, ·〉0, let the (formal) adjoint of the twisted exterior
derivative be (dA)∗.

Theorem 2.1.10 (Nakahara [15, Theorem 7.5]). The adjoint of dqA is

(2.1.11)(dqA)∗ = (−1)qN+1 ?dA? .

Definition 2.1.11. Define the twisted Laplacian to be the map ∆q
A : Ωq (M,C) → Ωq (M,C)

where
(2.1.12)∆q

A = (dqA)∗ dqA + dq−1A (dq−1A )∗ .

Where clear from context, the twisted Laplace operator (twisted Laplacian) is also denoted
by ∆A.

Theorem 2.1.12 (Shubin [23, Theorem 8.3]). The Laplacian operator ∆q
A has purely discrete

spectrum and all eigenvalues are real, bounded from below and there are infinitely many of them.

The eigenvalues of ∆q
A are denoted by

(2.1.13)λq1 ≤ λ
q
2 ≤ · · · ≤ λ

q
j ≤ · · · ,

where eigenvalues are repeated according to their multiplicity. Where clear from context, the
notation λj is used.

Theorem 2.1.13 (Min-Max Principle [21, Theorem XIII.2]). Let u be a bounded from below self-
adjoint linear operator with purely discrete spectrum acting on a Hilbert space H with eigenvalues
λ1 ≤ λ2 ≤ · · ·, repeated according to their multiplicities. Then the j-th eigenvalue is given by

(2.1.14)λj = sup
fk∈H

k=1,2,...,j−1

inf
f∈(H\{0})∩Q(u)

〈f,fk〉=0

k=1,2,...,j−1

〈uf, f〉
〈f, f〉

,

where Q (u) is the domain of the quadratic form‡ associated to u as defined in Section VIII.6 of
Reed and Simon’s book [20]. It should be noted that the fk-s may be linearly dependent.

‡The quadratic form associated to u is 〈u·, ·〉 : H ×H → C.
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2.2 Combinatorial Setting

2.2.1 Triangulation of a Manifold

Let K be a smooth oriented triangulation of M , a smooth compact manifold as per Section 2.1.
Loosely speaking, a triangulation is a union of sets Kq for q = 0, 1, . . . , N , where each Kq is
a set of q-dimensional simplices σ. Intuitively for K to be a triangulation, all simplices of all
dimensions must fit together appropriately to approximate the manifold in some sense. More
formally:

Definition 2.2.1. K is a smooth triangulation of M if K is an N -dimensional simplicial
complex in Rm for some m ∈ N such that there exists a homeomorphism F : K → M with the
property that for all simplices σ ∈ K, there exists a coordinate chart (Uσ, ϕ) which contains F (σ)
and ϕ ◦ F restricted to σ is an affine map.

Here an affine map is a map such that for all q = 0, 1, . . . , N , a q-simplex is mapped to a
q-simplex.

Theorem 2.2.2 (Whitehead [27, Theorem 7]). For all smooth manifolds there exists a smooth
triangulation.

Lemma 2.2.3. For all compact M and for all triangulations K of M , it holds that K is finite,
that is, K only contains a finite number of simplices.

What it means for K to be oriented requires more notation to be set up before it can be
defined in Section 2.2.5.

Given a q-simplex σ, it is completely characterised by its ordered q + 1 vertices, hence the
following notation is used to denote the simplex σ =

[
p0, p1, . . . , pq

]
. Again, more definitions are

required to specify how this ordering is defined and chosen. See Section 2.2.5 for more details.

2.2.2 Cochains

Let Cq (K,C) be the vector space of complex valued q-th degree cochains on K. Cochains can
be thought of in a number of ways which will be interchanged as required. A q-cochain c can be
defined as a function c : Kq → C that assigns to each q-simplex a complex number. Alternatively,
it can be defined as a formal sum of q-simplices

(2.2.1)c =
∑
σ∈Kq

cσσ ,

for some complex coefficients cσ. In fact, the translation between the two approaches is given by
c (σ) = cσ for all σ ∈ Kq.

Definition 2.2.4. For all q = 0, 1, . . . , N , define the corresponding unity cochain, 1Kq , to be
the cochain where all coefficients are 1,

(2.2.2)1Kq =
∑
σ∈Kq

σ .

Definition 2.2.5. Define the inner product 〈·, ·〉C on Cq (K,C) by

(2.2.3)〈c1, c2〉C =
∑
σ∈Kq

c1 (σ)c2 (σ) .
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This gives an associated norm, ‖·‖C,2, on cochains.

Definition 2.2.6. Define the supremum norm, ‖·‖C,∞ on cochains to be

(2.2.4)‖c‖C,∞ = max
σ∈Kq

∣∣c (σ)
∣∣ .

2.2.3 Barycentric Coordinates

The following definition of simplicial complex barycentric coordinates as used in this thesis
is based on one given by Whitney [28, Appendix II.2]§. Let p1, p2, . . . , p|K0| be the ver-

tices of K and therefore every q-simplex σ has the form σ =
[
pν0 , pν1 , . . . , pνq

]
for some{

ν0, ν1, . . . , νq
}
⊆
{

1, 2, . . . ,
∣∣∣K0

∣∣∣}. Then all points p ∈ K can be uniquely written in the
form [28, Appendix II.2]

(2.2.5)p =

|K0|∑
j=1

µj (p) pj ,

where µj : K → [0, 1] for all j, with the property that
∑|K0|

j=1 µj (p) = 1 and that the following
property holds.

Property 2.2.7. For all q = 0, 1, . . . , N , if p ∈
[
pν0 , pν1 , . . . , pνq

]
then the barycentric coordinate

µj (p) = 0 for j ∈
{

1, 2, . . . ,
∣∣∣K0

∣∣∣} \ {ν0, ν1, . . . , νq}.
Definition 2.2.8. The collection of functions µj for all j = 1, 2, . . . ,

∣∣∣K0
∣∣∣ are the barycentric

coordinates of a point p in the simplicial complex K and for a particular value of j, the function
µj is the barycentric coordinate associated to the point pj or the vertex vj.

Alternative definitions of simplicial complex barycentric coordinates include ones by authors
such as Adams [1, Section 2], Albeverio and Zegarlinski [2, Section 1.1] and Müller [14, Section 2].
Some authors such as Arnold, Falk and Winther [4, Section 2.1] refer to simplicial complex
barycentric coordinates as piecewise linear finite element basis functions.

Figure 2.1 provides a pictorial illustration of barycentric coordinates for a two dimensional
surface.

2.2.4 The Whitney Map

Consider a q-simplex σ =
[
p0, p1, . . . , pq

]
and let µj be the barycentric coordinate function

corresponding to the vertex at pj for j = 0, 1, . . . , q. As here the vertices of σ require an ordering,
which is equivalent to an orientation for σ and this is yet to be defined, temporarily order the
vertices

(2.2.6)p0 < p1 < · · · < pq ,

and then set a final ordering that will be used from then on when orientation is defined using
the Whitney map. Through the use of this temporary ordering to define the final ordering, there
is no circular argument in the definition of the Whitney map and orientation.

§Whitney defines both the simplex and simplicial complex barycentric coordinates in various places in his
book [28]. Caution should be used to ascertain which version of barycentric coordinates are used.
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(a) Two dimensional surface.

(b) Triangulation of surface.

(c) Barycentric coordinate for the red vertex.

(d) Barycentric coordinate for the blue vertex.

Figure 2.1: Pictorial representation of the simplicial complex barycentric coordinate for a
triangulation of a two dimensional surface at selected points or vertices. The height axis
represents the value of the barycentric coordinate.
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Definition 2.2.9. The Whitney map [28, Chapter VII.11 (16)] W q
n : Cq (Kn,C)→ Hq0 (M,C)

is defined to be

(2.2.7)W q
nσ = q!

q∑
j=0

(−1)j µj dµ0 ∧ dµ1 ∧ · · · ∧ dµj−1 ∧ dµj+1 ∧ · · · ∧ dµq ,

for q > 0. When q = 0, define
(2.2.8)W 0

nσ = µ0 .

This definition extends linearly to any cochain by viewing the cochain as a formal sum.

It is clear from this definition that the Whitney map is invariant under even permutations on
the ordering given to the vertices of σ and an odd permutation reverses the sign of the Whitney
map.

Context permitting, the Whitney map may be denoted by Wn and W . In the definition the
Whitney map, n denotes the n-th subdivision of K as defined in Section 2.2.7.

2.2.5 Orientation

This thesis defines the orientation of a simplex as follows. First, the case of an N -dimensional
simplex is defined followed by the case of a q-dimensional simplex where q < N .

Consider a simplex σ ∈ KN where σ =
[
pν0 , pν1 , . . . , pνN

]
with associated barycentric

coordinates
{
µν0 , µν1 , . . . , µνN

}
and let m =

∣∣∣K0
∣∣∣. Then by the definition of the Whitney map

Wσ = N !
N∑
j=0

(−1)j µνj dµν0 ∧ dµν1 ∧ · · · ∧ dµνj−1 ∧ dµνj+1 ∧ · · · ∧ dµνN

= N !µν0 dµν1 ∧ dµν2 ∧ · · · ∧ dµνN

+N !
N∑
j=1

(−1)j µνj dµν0 ∧ dµν1 ∧ · · · ∧ dµνj−1 ∧ dµνj+1 ∧ · · · ∧ dµνN

= N !µν0 dµν1 ∧ dµν2 ∧ · · · ∧ dµνN (2.2.9)

+N !
N∑
j=1

(−1)j µνj d

1−
m∑
k=1
k 6=ν0

µk

 ∧ dµν1 ∧ · · · ∧ dµνj−1 ∧ dµνj+1 ∧ · · · ∧ dµνN ,

where the last equality comes from the fact that the barycentric coordinates sum to one.
Consider a barycentric coordinate on its region of support. On this region, it is a non-constant

piecewise linear function and hence it is clear that the support of the barycentric coordinate and
its derivative are identical. Therefore if p ∈ int (σ), where int (·) is the interior of a subset, then
by Property 2.2.7 for all j ∈ {1, 2, . . . ,m} \ {ν0, ν1, . . . , νN} it holds that

(2.2.10)µj (p) = 0 .

Hence

(2.2.11)
N∑
j =0

µνj = 1 ,
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and (2.2.9) restricted to int (σ) becomes

Wσ|int(σ) = N !µν0 dµν1 ∧ dµν2 ∧ · · · ∧ dµνN
∣∣
int(σ)

−N !
N∑
j=1

(−1)j µνj dµνj ∧ dµν1 ∧ · · · ∧ dµνj−1 ∧ dµνj+1 ∧ · · · ∧ dµνN
∣∣
int(σ)

(2.2.12)= N ! dµν1 ∧ dµν2 ∧ · · · ∧ dµνN
∣∣
int(σ)

(by (2.2.11)) .

Therefore it is clear that Wσ|int(σ) is simply a multiple of the volume form dVolg
∣∣
int(σ)

.

Definition 2.2.10. Define an ordering, up to even permutations, on the set of vertices of
σ =

[
pν0 , pν1 , . . . , pνN

]
such that Wσ|int(σ) is a positive multiple of the volume form dVolg

∣∣
int(σ)

.

The case of q < N is treated in the same way as the top dimensional case. Specifically, let(
Uσ, x

1, x2, . . . , xN
)
be a local coordinate neighbourhood of σ in M . View int (σ) as a closed

submanifold of an open subset of M . Then there exists local coordinates
(
int (σ), y1, y2, . . . , yq

)
for σ that are compatible with the chosen orientation on int (σ), viewed as a manifold, such that
xj = yj for all j = 1, 2, . . . , q and xj = 0 for all j = q + 1, q + 2, . . . , N . Let ιint(σ) : σ → M
denote this inclusion map. Then the barycentric coordinates and Whitney forms pulled back to
int (σ) via ιint(σ), gives an analogous equation of (2.2.12) for dimension q where the right hand
side is a nowhere zero q-form.

Definition 2.2.11. For all q = 0, 1, . . . , N − 1, define an ordering, up to even permutations,
on the set of vertices of σ =

[
p0, p1, . . . , pq

]
such that ι∗int(σ)

(
Wσ|int(σ)

)
is a positive multiple of

dy1 ∧ dy2 ∧ · · · ∧ dyq.
It should be noted that this final ordering of vertices of σ may be different to the temporary

ordering of
(2.2.13)p0 < p1 < · · · < pq ,

that was placed on σ (in Section 2.2.4) in order to apply the Whitney map and hence define the
final ordering. In the final ordering it may well be the case that pj > pk when j < k.

2.2.6 Ordering for a Subdivision

In Section 2.2.5 each simplex is given an ordering, up to even permutations, on its vertices
and hence an orientation. This orientation and ordering is used for all constructions used in
this thesis except for one, when using the standard subdivision which is about to be defined in
Section 2.2.7.

To apply the standard subdivision, an ordering must be placed on the set of vertices of the
whole simplicial complex, not just individual simplices as was the case in Section 2.2.5. This is
because otherwise the standard subdivision may not produce a simplicial complex.

There is no canonical ordering on the simplicial complex that can be induced from the
ordering of the individual simplices. In fact it is not clear if there even is a consistent way
of obtaining an ordering on the simplicial complex from the ordering of vertices on individual
simplices. Hence it is assumed that the initial simplicial complex has a fixed given ordering just
for the purpose of applying the standard subdivision, independent and separate to all of the
orderings of Section 2.2.5.

For subsequent subdivisions, the following definition (using notation about to be defined
in Section 2.2.7) provides an ordering of the vertices of the simplicial complex that is again
independent and separate to all of the orderings of Section 2.2.5.
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Definition 2.2.12. The ordering given to the vertex set of the standard subdivision††, SK, of
a triangulation K, where each vertex is of the form‡‡ pj,k, is the lexicographical ordering of the
pair (j, k).

2.2.7 Standard Subdivision

In order to improve the approximation of the manifold, the triangulation is iteratively refined or
subdivided. There are numerous subdivision schemes to choose from including the well-known
barycentric subdivision [13, Page 119] from Algebraic Topology. However, as will be explained
subsequently (see Assumption 2.2.30 and Lemmas 2.2.31 and 2.2.32), the barycentric subdivision
does not have properties required for this thesis. As the standard subdivision does have these
properties, it is used instead.

Let K0 be a given initial triangulation. This thesis uses the standard subdivision of a
simplicial complex as defined by Whitney [28, Appendix II.4]. The standard subdivision of a
simplicial complex K is denoted by SK and is constructed as follows. This description is based
on the one given by Dodziuk [9, Section 2].

2.2.7.1 Standard Subdivision of a Simplex

Definition 2.2.13. Given a q-simplex σ =
[
p0, p1, . . . , pq

]
(with ordering as per Section 2.2.6),

for integers 0 ≤ j ≤ k ≤ q, define
(2.2.14)pj,k =

1

2
pj +

1

2
pk ,

which means pj,j = pj.

Let
{
pj,k
∣∣0 ≤ j ≤ k ≤ q} be the set of vertices of the standard subdivision, Sσ, with the

following partial ordering
(2.2.15)pj,k ≤ pr,s ⇐⇒ j ≥ r and k ≤ s .

The m-dimensional simplices of Sσ for m = 0, 1, . . . , q are strictly increasing sequences of vertices
of Sσ with respect to the partial ordering comprising of m+ 1 elements.

The partial ordering can be visualised in a Hasse diagram as seen in Figure 2.2 (or Appendix A
for a diagram with more terms). The simplices of the standard subdivision are then the upward
travelling paths of all possible lengths, which includes paths that skip nodes in the Hasse diagram.

It is important to note that the ordering of vertices of the initial simplex σ can have a
significant effect on the resultant standard subdivision as an example in Figure 2.3 shows for a
triangle. The standard subdivision of a tetrahedron is shown in Figure 2.4.

2.2.7.2 Standard Subdivision of a Simplicial Complex

The following lemma is an original contribution that gives the triangulation some properties that
will be used later in the thesis.

Lemma 2.2.14. If K̂ is a smooth triangulation of M contained in Rk̂ for some k̂ ∈ N, then it

can be modified into a smooth triangulation K of M contained in Rk where k = k̂ +

∣∣∣∣K̂0
∣∣∣∣ − 1

such that
{
p2, p3, . . . p|K0|

}
is a linearly independent set when each vertex is viewed as a vector.

††See Section 2.2.7.1 for the details of the notation used.
‡‡See Definition 2.2.13.
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0, q

0, q − 1

0, q − 2

1, q

2, q1, q − 1

1, q − 2

1, q − 3

2, q − 1

3, q − 1

0, q − 3

0, q − 4

3, q

4, q2, q − 2

2, q − 3

2, q − 4

3, q − 2

4, q − 2

1, q − 4

1, q − 5

4, q − 1

5, q − 1

0, q − 5

0, q − 6

5, q

6, q3, q − 3

0, 0 q, q1, 1 q − 1, q − 1

Figure 2.2: Hasse diagram for the partial ordering of vertices of Sσ. For example, the red
encircled points are the vertices of a q-dimensional simplex, whilst the three points encircled
in blue are the vertices of a triangle and are an example of an upward travelling path with a
skipped node.

In Lemma 2.2.14, K is said to have the ‘linear independence’ property.

Proof. Consider the set of vertices K̂
0

=

{
p̂1, p̂2, . . . , p̂

∣∣∣K̂0
∣∣∣
}

inside the affine space Rk̂. For each

j = 1, 2, . . . ,

∣∣∣∣K̂0
∣∣∣∣, let

(2.2.16)p̂j =

(
x̂1j , x̂

2
j , . . . , x̂

k̂
j

)
.

Define a new triangulation K of M contained in Rk where k = k̂ +

∣∣∣∣K̂0
∣∣∣∣− 1 as follows. For

each j = 2, 3, . . . ,

∣∣∣∣K̂0
∣∣∣∣, define

pj =
(
x1j , x

2
j , . . . , x

k
j

)
(2.2.17)=

(
x̂1j , x̂

2
j , . . . , x̂

k̂
j , 0, . . . , 0︸ ︷︷ ︸

j−2

, 1, 0, . . . , 0︸ ︷︷ ︸∣∣∣K̂0
∣∣∣−j

)
,

and define
p1 =

(
x11, x

2
1, . . . , x

k
1

)
(2.2.18)=

(
x̂11, x̂

2
1, . . . , x̂

k̂
1, 0, . . . , 0

)
.
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0

1

2

1, 2

0, 1

0, 2

(a) Point 0, 2 on shortest edge.

1

0

2

0, 2

0, 1

1, 2

(b) Point 0, 2 on middle length
edge.

0

2

1

1, 2

0, 2

0, 1

(c) Point 0, 2 on longest edge.

Figure 2.3: Different standard subdivisions of a triangle due to the choice of ordering on its
vertices.

Define F̂ : K̂ → K as follows. Let σ̂ ∈ K̂
q
where σ̂ =

[
p̂α0

, p̂α1
, . . . , p̂αq

]
. Then define σ ∈ Kq

such that F̂ (σ̂) = σ where for all j = 0, 1, . . . , q, F̂
(
p̂αj

)
= pαj and σ is the convex hull of{

pα0
, pα1

, . . . , pαq

}
.

By the property that the composition of affine homeomorphisms is affine homeomorphic, it
follows that K is a smooth triangulation of M with the required ‘linear independence’ property.

To subdivide a simplicial complex K, an ordering on the set of vertices is required as defined
in Section 2.2.6. This naturally gives an ordering of the vertices of any simplex σ ∈ K. Subdivide
each simplex separately and by construction, the subdivided simplices will still fit together to
form a simplicial complex, K̂. This simplicial complex K̂ is then modified via Lemma 2.2.14 to
possess the ‘linear independence’ property and this is the standard subdivision SK of K.

2.2.7.3 Iterative Standard Subdivision

This thesis considers a given initial triangulation K0 which is iteratively subdivided using the
standard subdivision.

Definition 2.2.15. For n = 1, 2, . . ., define Kn to be the n-th subdivision of K0 where

(2.2.19)Kn = SnK0 ,

and Sn is S applied n times.

Lemma 2.2.16 (Dodziuk [9, Page 86]). For all q = 0, 1, . . . , N and for all q-simplices σ, there
are 2q many q-simplices in Sσ.

Corollary 2.2.17. For all q = 0, 1, . . . , N and for all n = 0, 1, . . ., it holds that

(2.2.20)|Kq
n| = 2nq

∣∣Kq
0

∣∣ .
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Figure 2.4: Standard subdivision of a tetrahedron.

Lemma 2.2.18 (Dodziuk [9, Lemma 3.4]). There exists a finite set U of coordinate charts
of M such that for all n = 0, 1, . . ., and for all τ ∈ KN

n , there exists a coordinate chart(
U,ϕ = (x1, x2, . . . , xN )

)
∈ U and there exists a σ ∈ KN

0 for which it holds that τ ⊆ cl (σ) ⊆ U
where cl (·) is the closure of a subset.

Definition 2.2.19. Define and fix U to be the set of finite coordinate charts as defined in
Lemma 2.2.18.

2.2.8 Triangulation Parameters

Definition 2.2.20. For all q = 1, 2, . . . , N and for all j = 0, 1, . . . , q, define ∂qj : Kq → Kq−1 to
be the face maps of a simplex (using the orientation as per Section 2.2.5) as follows

(2.2.21)∂qj

([
p0, p1, . . . , pq

])
=
[
p0, p1, . . . , pj−1, pj+1 . . . , pq

]
.

Hence for all q = 2, 3 . . . , N and for all integers 0 ≤ j < k ≤ q, the face maps satisfy

(2.2.22)∂q−1j ◦ ∂qk = ∂q−1k−1 ◦ ∂
q
j .

Where clear from context, ∂j will be used.
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Definition 2.2.21. Define the simplicial coboundary operator δq : Cq (K,C)→ Cq+1 (K,C) to
be

(2.2.23)
(
δq (c)

)
(σ) =

q∑
j=0

(−1)j c
(
∂q+1
j σ

)
,

where c ∈ Cq (K,C) and σ ∈ Kq+1.

Where clear from context δ is used.
Consider σ ∈ KN and a corresponding coordinate chart (Uσ, ϕ) that contains σ. Let gσ be

the pullback of the Euclidean metric to Uσ via ϕ.

Definition 2.2.22. Define dgσ (·, ·) to be the local distance on Uσ induced by the metric gσ.

Definition 2.2.23. Define the mesh of the n-th subdivision, hn, to be

(2.2.24)hn = sup
e∈K1

n

dgσ (∂0e, ∂1e) .

Intuitively the mesh is a measure of the fineness of the triangulation.

Lemma 2.2.24 (Dodziuk [9, Lemma 3.6]). It holds that the mesh of the triangulation, hn,
satisfies

(2.2.25)lim
n→∞

hn = 0 .

Of interest for this thesis is the reduction in mesh size for each subdivision. Let β̂n ≤ 1 be
the reduction in mesh size from hn−1 to hn, that is

(2.2.26)hn = β̂nhn−1 ,

and let βn ≤ 1 be the reduction in mesh size from h0 to hn, specifically

(2.2.27)hn = βnh0 .

The following properties of the mesh reduction parameter are of interest as they provide
information on the behaviour of the error terms in the later derived estimates.

Lemma 2.2.25. For the sequence of β̂n as defined in (2.2.26), for all n = 1, 2, . . ., a lower bound
is given by

(2.2.28)β̂n ≥
1

2
.

Proof. By construction of the standard subdivision, each edge is cut in half.

Corollary 2.2.26. For the sequence of βn as defined in (2.2.27), for all n = 1, 2, . . ., a lower
bound is given by

(2.2.29)βn ≥
(

1

2

)n
.

Proof. The result is immediate by the iterative construction of βn from β̂n.

Lemma 2.2.27. For the sequence of βn as defined in (2.2.27), it holds that

(2.2.30)lim
n→∞

βn = 0 .
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Proof. The result is immediate from Lemma 2.2.24 as h0 6= 0.

Definition 2.2.28. The volume, vol (·), of an N -simplex is defined to be

(2.2.31)vol (σ) =

ˆ
σ
dVolg .

Definition 2.2.29. The fullness, θn, of Kn is defined to be

(2.2.32)θn (Kn) = inf
σ∈KN

n

vol (σ)

(hn)N
.

Assumption 2.2.30. There exists a positive constant κ such that for all n = 0, 1, . . ., it holds
that

(2.2.33)θn (Kn) ≥ κ .

In other words, the initial triangulation and subdivision scheme used has a bounded from
below fullness. This assumption is assumed from now on.

Lemma 2.2.31 (Whitney [28, Appendix II.4 Lemma 4b]). The standard subdivision satisfies
Assumption 2.2.30.

Lemma 2.2.32 (Whitney [28, Appendix II.4]). The barycentric subdivision does not satisfy
Assumption 2.2.30.

Proposition 2.2.33 (Dodziuk & Patodi [10, Proposition 2.2b]). If Assumption 2.2.30 holds,
then for all σ ∈ KN

n it holds that
(2.2.34)vol (σ) ≤ (hn)N .

In light of Lemma 2.2.32 and the importance of Proposition 2.2.33 in the method of this
thesis, it is clear that the more well-known barycentric subdivision scheme is not a suitable choice
for this thesis and hence the standard subdivision is used.

2.2.9 Combinatorial Norms

Using an analogous construction as was used for Definition 2.1.5 whereby g is replaced with gσ,
define the following seminorm.

Definition 2.2.34. Given σ ∈ KN , define the local seminorm ‖·‖σr on differential forms with
parameter r ∈ N dependent on a given triangulation K to be

(2.2.35)‖ω‖σr =

 r∑
j=0

ˆ
σ

(∣∣∣(∇gσ)j ω
∣∣∣
gσ

)2

dVolg

 1
2

.

Definition 2.2.35. Define the global norm ‖·‖Kr on differential forms with parameter r ∈ N
dependent on a given triangulation K to be

(2.2.36)‖ω‖Kr =

 ∑
σ∈KN

(
‖ω‖σr

)2 1
2

.
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2.2.10 The de Rham Map

Definition 2.2.36. The de Rham map, Rqn : Ωq (M,C)→ Cq (Kn,C), is defined by de Rham [7]
as

(2.2.37)
(
Rqn (ω)

)
(σ) =

ˆ
σ
ω ,

where ω ∈ Ωq (M,C), σ ∈ Kq and q > 0. When q = 0, the de Rham map is defined as the
evaluation of the differential form at the vertices.

Where clear from context, Rn and R will be used. An important property of the de Rham
map is as follows.

Lemma 2.2.37 (Wilson [29, Page 19]). It holds that

(2.2.38)Rd = δR .

2.2.11 Simplicial Cup Product

The following definition is by Adams [1, Section 2] and Wilson [29, Definition 5.1].

Definition 2.2.38. Define the cup product ∪ : Cq1 (K,C) × Cq2 (K,C) → Cq1+q2 (K,C) on
two cochains to be

(2.2.39)c1 ∪ c2 = R (Wc1 ∧Wc2) .

An alternative but equivalent definition [30, Chapter 3] is given by authors such as Birmingham
and Rakowski [5, Section 2] and Dupont [11, Equation (2.17)].

2.2.12 Combinatorial Laplace Operator

Definition 2.2.39. Define the Whitney inner product 〈·, ·〉W on Cq (K,C) by

(2.2.40)〈c1, c2〉W = 〈Wc1,Wc2〉0 .

This inner product is nondegenerate as W is injective by Corollary 2.3.4. The associated
norm is denoted by ‖·‖W .

Recall that A is a fix real one-form.

Definition 2.2.40. Define a ∈ C1 (K,C) such that

(2.2.41)a = RA .

Definition 2.2.41. Define the twisted combinatorial exterior derivative, δqa, to be the map
δqa : Cq (K,C)→ Cq+1 (K,C) given by

(2.2.42)δqa = δq + ia ∪ .

Where context permits, the superscript is omitted.
With respect to the inner product 〈·, ·〉W , let the adjoint of the twisted combinatorial exterior

derivative be (δa)
∗.

Definition 2.2.42. Define the twisted combinatorial Laplacian s
q
a : Cq (K,C)→ Cq (K,C) to

be
(2.2.43)sq

a = (δqa)
∗ δqa + δq−1a (δq−1a )∗ .
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Where clear from context, the twisted combinatorial Laplace operator is also denoted by sa.
The eigenvalues of s

q
a are denoted by

(2.2.44)γq1 ≤ γ
q
2 ≤ · · · ≤ γ

q
j ≤ · · · ≤ γ

q

dim(Cq(K,C))
,

where eigenvalues are repeated according to their multiplicity.
It should be noted that generally speaking, the combinatorial operators considered in this

thesis are acting on the cochains of the n-th triangulation. Therefore the operators and eigenvalues
have a dependence on n. This dependence is not explicit in the notation but clear from context.

2.3 Properties of the de Rham and Whitney Maps

Proposition 2.3.1 (Dodziuk [9, Equation (1.5)]). For all c ∈ Cq (K,C), Wc is a smooth
differential form when restricted to the interior of any σ ∈ KN , which extends to a smooth
differential form on cl (σ), denoted by Wc|cl(σ). Furthermore, if σ, σ′ ∈ KN have τ ∈ Kq as a
common face§§, then

(2.3.1)ι∗
(
Wc|cl(σ)

)
=
(
ι′
)∗ (

Wc|cl(σ′)
)
,

where ι : cl (τ)→ cl (σ) and ι′ : cl
(
τ ′
)
→ cl

(
σ′
)
are the respective inclusion maps.

It should be noted that Proposition 2.3.1 does not imply Wc|cl(σ) and Wc|cl(σ′) are equal
on τ , which is not the case.

In light of Proposition 2.3.1, it makes sense to compose the de Rham map with the Whitney
map, as well as compose the exterior derivative on the complement of the (N − 1)-dimensional
skeleton of K with the Whitney map.

Proposition 2.3.2 (Dodziuk & Patodi [10, Proposition 1.10(a)]). It holds that

(2.3.2)RW = Id ,

where Id is the identity operator on cochains.

Corollary 2.3.3. The de Rham map is surjective.

Corollary 2.3.4. The Whitney map is injective.

In light of Corollary 2.3.3, fix a linear right inverse of the de Rham map, notated as follows.

Notation 2.3.5. Let
(
Rqn
)−1

: Cq (Kn,C)→ Ωq (M,C) be a linear right inverse of the de Rham
map.

Where clear from context, (Rn)−1 will be used.
It should be noted that the difference between W and R−1 is the fact that R−1 maps to

smooth differential forms whilst this is not the case for W .

Definition 2.3.6. Define the map P qn : Ωq+1 (M,C)→ Ωq (M,C) such that

(2.3.3)P qnω = (Rqn)−1(δqa)
∗Rq+1

n ω − (Rqn)−1Rqn(dqA)∗ω .

Where clear from context, Pn will be used.
§§For clarity, a face of a q-simplex σ is any j-dimensional simplex that is contained in σ for all j = 0, 1, . . . , q.
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Proposition 2.3.7 (Dodziuk [9, Equation (1.4)]). It holds that

(2.3.4)Wδ = dW ,

where d is applied on the complement of the (N − 1)-dimensional skeleton of K.

Lemma 2.3.8 (Zahariev [30, Equation (6.4)]). There exist positive constants κ1 and κ2 inde-
pendent of n such that for all c ∈ Cq (Kn,C) it holds that

(2.3.5)κ1 (hn)N−2q
(
‖c‖C,2

)2
≤
(
‖Wnc‖0

)2
=
(
‖c‖W

)2
≤ κ2 (hn)N−2q

(
‖c‖C,2

)2
.

Proposition 2.3.2 is in contrast to Dodziuk’s work which showed that WR can only approxi-
mate the identity map to arbitrary degree for a sufficiently fine triangulation. This approximation
result lies at the heart of using combinatorial problems to approximate analytic ones.

Theorem 2.3.9 (Dodziuk [9, Theorem 3.7]). There exists a positive constant κ independent of
n such that for all ω ∈ Ωq (M,C) it holds that

(2.3.6)|WnRnω − ω|p ≤ κhn max
j=1,2,...,N

∣∣∣∣ ∂ω∂xj
∣∣∣∣
p

,

where x1, x2, . . . , xN are any local coordinates defined in a neighbourhood of p from the finite set
U of coordinate charts as defined in Definition 2.2.19 and

∣∣∣ ∂ω∂xj ∣∣∣p is defined via Definition 2.1.4.

The proof is based on considering a σ inside of Rm for some m ∈ N such that the side
lengths of the simplex depend on h. An application of the mean value theorem and some explicit
calculations then yield the desired bound.

Dodziuk builds on the pointwise estimate by integrating over the manifold to obtain a global
estimate. Zahariev later provides a more explicit bound by applying a Sobolev embedding
theorem of the following form.

Theorem 2.3.10 (Zahariev [30, Theorem 2.4]). There exists a positive constant κ such that for
all integers r > N

2 + 1, for all σ ∈ KN , for all q = 0, 1, . . . , N and for all c ∈ Cq (K,C), it holds
that

(2.3.7)sup
p ∈σ
|Wc|p ≤ κ‖Wc‖σr ,

and

(2.3.8)max
j =1,2,...,N

sup
p ∈σ

∣∣∣∣∂Wc

∂xj

∣∣∣∣
p

≤ κ‖Wc‖σr ,

where x1, x2, . . . , xN are any local coordinates defined in a neighbourhood of σ from U .

This results in the following fundamental estimate of WR, presented in the form used by
Zahariev and this thesis [30, Equation (2.2)].

Corollary 2.3.11 (Dodziuk [9, Corollary 3.27]). There exists a positive constant κ independent
of n such that for all integers r > N

2 + 1 and for all ω ∈ Ωq (M,C) it holds that

(2.3.9)‖WnRnω − ω‖0 ≤ κhn‖ω‖r .
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Definition 2.3.12. For all r = 0, 1, . . ., define the positive constant κA,r ≥ 0 depending on A by

(2.3.10)κA,r = max

{
1, sup
p∈M
|A|p , max

j=1,2,...,N
sup
p∈M

∣∣∣∣ ∂A∂xj
∣∣∣∣
p

, ‖iA ∧‖op

}
,

where x1, x2, . . . , xN are any local coordinates defined in a neighbourhood of p from U and ‖·‖op is
the operator norm with respect to the ‖·‖0 norm on the domain and the ‖·‖r norm on the range†††.

Lemma 2.3.13. For all integers 0 ≤ j ≤ k it holds that

(2.3.11)κA,j ≤ κA,k .

Proof. This result follows immediately by Lemma 2.1.8.

Definition 2.3.14. Define the positive constant κA ≥ 0 depending on A by

(2.3.12)κA = κA,j ,

where j is equal to N
2 + 2, rounded up if N is odd.

Proposition 2.3.15 (Zahariev [30, Proposition 4.3a]). There exists a positive constant κ inde-
pendent of n and A such that for all ω ∈ Ωq (M,C), for all σ ∈ KN

n and for all p ∈ σ, it holds
that

(2.3.13)|WnδaRnω − dAWnRnω|p ≤ κκA,0hn

(
sup
p′∈σ
|ω|p′ + max

j=1,2,...,N
sup
p′∈σ

∣∣∣∣ ∂ω∂xj
∣∣∣∣
p′

)
,

where x1, x2, . . . , xN are any local coordinates defined in a neighbourhood of σ from U .

Proposition 2.3.16 (Zahariev [30, Proposition 4.3b]). There exists a positive constant κ in-
dependent of n and A such that for all integers r > N

2 + 1 and for all ω ∈ Ωq (M,C) it holds
that

(2.3.14)‖WnδaRnω − dAω‖0 ≤ κκA,0hn
(
‖ω‖r + ‖dω‖r

)
.

2.4 Additional Definitions

Definition 2.4.1. Define the map Σn : Cq (Kn,C)→ Ωq+1 (M,C) to be

(2.4.1)Σn (c) = Wn (ia ∪ c)− iA ∧Wnc .

Context permitting, this map is denoted by Σ.

Definition 2.4.2. Define the map Θn : Ωq (M,C)→ Hq0 (M,C) to be

(2.4.2)Θn (ω) = WnRnω − ω .

Context permitting, this map is denoted by Θ.

†††This constant is finite as by Hölder’s Inequality ‖iA ∧‖op is bounded by the supremum norm of A.
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Definition 2.4.3. For all r = 0, 1, . . . and for all k = 1, 2, 3, define the following functions
ϑ̃kn : Cq (Kn,C) \ {0} → R dependent on n as follows

(2.4.3)ϑ̃1n (c) =
‖dAWnc‖0
‖Wnc‖0

,

(2.4.4)ϑ̃2n (c) =

∥∥(dA)∗Wnc
∥∥
0

∥∥∥(Rn)−1c
∥∥∥
r

+

(∥∥∥(Rn)−1c
∥∥∥
r

∥∥∥Pn(Rn)−1c
∥∥∥
r

) 1
2


(
‖Wnc‖0

)2 ,

and

(2.4.5)ϑ̃3n (c) =


∥∥∥(Rn)−1c

∥∥∥
r

+

(∥∥∥(Rn)−1c
∥∥∥
r

∥∥∥Pn(Rn)−1c
∥∥∥
r

) 1
2

‖Wnc‖0


2

,

where dA and (dA)∗ are applied to the smooth regions of Wnc.

It should be noted that the dependence on r for ϑ̃kn is not notated. The value of r used is
clear from context.

Definition 2.4.4. For all k = 1, 2, 3 and for all m = 1, 2, . . . ,dim
(
Cq (Kn,C)

)
, define the

following constant dependent on n

(2.4.6)ϑ̂kn = sup
cj∈Cq(Kn,C)
j=1,2,...,m−1

inf
c∈Cq(Kn,C)\{0}
〈c,cj〉W=0

j=1,2,...,m−1

ϑ̃kn (c) .

Lemma 2.4.5. The constants ϑ̂1n, ϑ̂2n and ϑ̂3n are well defined and positive.

Proof. These constants are all trivially positive and bounded above as

(2.4.7)sup
cj∈Cq(Kn,C)
j=1,2,...,m−1

inf
c∈Cq(Kn,C)\{0}
〈c,cj〉W=0

j=1,2,...,m−1

≤ sup
c∈Cq(Kn,C)\{0}

,

and hence the expressions for each ϑ̃kn is bounded above by the respective operator norm or
a sum/product of operator norms. As the operators are linear operators acting on a finite
dimensional space (Cq (Kn,C)) the operators are trivially bounded.

Definition 2.4.6. For all m = 1, 2, . . . ,dim
(
Cq (Kn,C)

)
, define the following constant depen-

dent on n
(2.4.8)ϑ1,2n = max

{
ϑ̂1n, ϑ̂

2
n

}
,

and
(2.4.9)ϑ3n = min

{
1, ϑ̂3n

}
.

It should be noted that the dependence on m for ϑ̂n and ϑn is not notated. The value of m
used is clear from context.
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CHAPTER

1862 1943 DAVID HILBERT (German)

Motivation

This chapter provides an overview of the previously established results regarding the eigenvalues
of Laplace operators and their combinatorial approximations. Specifically, the sequence of
generalisations that has been obtained is presented. In doing so, the aim of this thesis to extend
these results to the next generalisation is motivated.

3.1 Differential Form Laplacian

The combinatorial approximation to the analytic eigenvalue problem was first used in 1973 by
Dodziuk in his thesis [9]. Here the real non-twisted setting (A = 0) was considered and hence
the Laplacians considered by Dodziuk were ∆A = d∗d+ dd∗ and sa = δ∗δ + δδ∗ acting on real
differential forms and cochains of degree zero.

Dodziuk showed that the eigenvalues of the Laplace operator acting on functions in the
combinatorial setting converge to the eigenvalues of the Laplace operator in the analytic setting.

Theorem 3.1.1 (Dodziuk [9, Theorem 5.7]). Let (M, g) be a connected smooth closed oriented
Riemannian manifold of dimension N and let K0 a smooth initial triangulation of M . Then
for sufficiently many subdivisions of the initial triangulation, n, there exists a positive constant
κ independent of n such that for all j = 1, 2, . . . ,dim

(
C0 (Kn,R)

)
, the eigenvalues λ0j of the

operator ∆0
A = (d0)∗d0 : Ω0 (M,R) → Ω0 (M,R) , and the eigenvalues γ0j of the operator

s0
a = (δ0)∗δ0 : C0 (Kn,R)→ C0 (Kn,R), satisfy the following inequalities

(3.1.1)γ0j − κhn ≤ λ0j ≤ γ0j .

This work was generalised from degree zero to arbitrary degree by Patodi [17] in 1974.

Theorem 3.1.2 (Patodi [17, Theorem 3]). Let (M, g) be a connected smooth closed oriented
Riemannian manifold of dimension N and let K0 a smooth initial triangulation of M . Then
for sufficiently many subdivisions of the initial triangulation, n, there exists a positive con-
stant κ independent of n and a positive integer r such that for all q = 0, 1, . . . , N and for all
j = 1, 2, . . . ,dim

(
Cq (Kn,R)

)
, the eigenvalues λqj of the operator

(3.1.2)∆A = d∗d+ dd∗ : Ωq (M,R)→ Ωq (M,R) ,

and the eigenvalues γqj of the operator

(3.1.3)sa = δ∗δ + δδ∗ : Cq (Kn,R)→ Cq (Kn,R) ,
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satisfy the following inequalities

(3.1.4)γqj

(
1− κhn

(
λqj

)r)
≤ λqj ≤

γqj

1− κγqj
(
hnlog (hn)

)2 .
3.2 Flat Vector Bundle Laplacian

In 1975, Dodziuk and Patodi joined their research efforts and published a joint paper [10] that
established the convergence of eigenvalues for the Laplacian acting on differential forms with
values in a real flat vector bundle.

Their motivation for this problem was their desire to prove the Ray-Singer conjecture [19],
posed in 1971.

The following summary of the notation suffices to understand the convergence results about
to be presented. For the full technical details of Dodziuk and Patodi’s problem setup, see
Chapter 10.

Let O be a representation of the fundamental group π1 (M) by orthogonal ε × ε matrices
and let E (O) be the associated real flat vector bundle over M . This is constructed as follows.

Let M̃ be the universal cover of M , then the fundamental group π1 (M) has a natural action
on M̃ and via the representation O, it also has a natural action on Cε. This action then defines
an equivalence relation ∼ on M̃ × Cε where for all p̃ ∈ M̃ , for all v ∈ Cε and for all g ∈ π1 (M)

(3.2.1)(p̃g, v) ∼ (p̃, gv) .

It then follows that
(3.2.2)E (O) =

(
M̃ × Cε

)
�∼ ,

is a real flat vector bundle of M . See Guichard [12, Section 4.3] for more details.
The connection, ∇, on the vector bundle is d and the Laplacians considered are ∆ = d∗d+dd∗

and s = δ∗δ + δδ∗, where d and δ have been trivially extended to E (O).
Dodziuk and Patodi proved the convergence of eigenvalues for arbitrary degree.

Theorem 3.2.1 (Dodziuk & Patodi [10, Theorem 3.7]). Let (M, g) be a connected smooth closed
oriented Riemannian manifold of dimension N , let K0 be a smooth initial triangulation of M
and let E (O) be a flat real vector bundle over M . Then for sufficiently many subdivisions of
the initial triangulation, n, there exists a positive constant κ independent of n and a positive
integer r such that for all q = 0, 1, . . . , N and for all j = 1, 2, . . . ,dim

(
Cq
(
Kn, E (O)

))
, the

eigenvalues λqj of the operator ∆ : Ωq
(
M,E (O)

)
→ Ωq

(
M,E (O)

)
, and the eigenvalues γqj of

the operator s : Cq
(
Kn, E (O)

)
→ Cq

(
Kn, E (O)

)
, satisfy the following inequalities

(3.2.3)
γqj

1 + κhn

(
1 + λqj

)r ≤ λqj ≤ γqj
(

1− κhn
∣∣log (hn)

∣∣ (1 +
√
γqj

))
.

3.3 Trivial Line Bundle Laplacian

In 2007, Zahariev in his thesis [30] established the convergence of eigenvalues for the Laplacian
acting on differential forms with values in a trivial complex line bundle with arbitrary connection
for degree zero.
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Zahariev considered the setting where, given a real one-form A, ∆q
A = (dqA)∗ dqA+dq−1A (dq−1A )∗

and s
q
a = (δqa)

∗ δqa + δq−1a (δq−1a )∗.
In this setting, Zahariev proves the convergence of eigenvalues for degree zero.

Theorem 3.3.1 (Zahariev [30, Theorem 4.6]). Let (M, g) be a connected smooth closed ori-
ented Riemannian manifold of dimension N and let K0 a smooth initial triangulation of M .
Then for sufficiently many subdivisions of the initial triangulation, n, there exists a positive
constant κ independent of n and A such that for all j = 1, 2, . . . ,dim

(
C0 (Kn,C)

)
, the eigen-

values λ0j of the operator ∆0
A : Ω0 (M,C) → Ω0 (M,C) , and the eigenvalues γ0j of the operator

s0
a : C0 (Kn,C)→ C0 (Kn,C), satisfy the following inequalities

(3.3.1)γ0j − κ
(
κA,0

)2
hn ≤ λ0j ≤


√
γ0j + κκA,0hn

1− κκA,0hn


2

.

Zahariev reasoned that this result can be extended to a trivial vector bundle of arbitrary
rank through an appropriate generalisation of his construction and proof.

3.4 Arbitrary Vector Bundle Laplacian

Zahariev, also in his thesis [30], then used his convergence of eigenvalues in the trivial line bundle
case to show convergence in the setting of an arbitrary vector bundle.

The following summary of the notation suffices to understand the convergence results about
to be presented. For the full technical details of Zahariev’s problem setup, see Chapter 10.

Zahariev defined a new combinatorial Laplacian, s, in order for him to generalise his
convergence result for trivial line bundles to arbitrary vector bundles.

It must be noted however, that Zahariev’s combinatorial Laplacian does not reduce to the
combinatorial Laplacian used by Dodziuk and Patodi in the case of a flat vector bundle. The
details of this discrepancy are discussed in Section 10.2.4.

On the analytic side, Zahariev considered ∆q = (∇q)∗∇q +∇q−1(∇q−1)∗ , where ∇ is the
connection of the vector bundle.

Zahariev proved the convergence of eigenvalues for arbitrary connection for degree zero.

Theorem 3.4.1 (Zahariev [30, Theorem 5.4]). Let (M, g) be a connected smooth closed oriented
Riemannian manifold of dimension N , let K0 be a smooth initial triangulation of M and let E
be a Hermitian complex vector bundle over M with a connection. Then for sufficiently many
subdivisions of the initial triangulation, n, there exists a positive constant κ independent of n
such that for all j = 1, 2, . . . ,dim

(
C0 (Kn, E)

)
, the eigenvalues λ0j of the operator

(3.4.1)∆0 : Ω0 (M,E) → Ω0 (M,E) ,

and the eigenvalues γ0j of the operator

(3.4.2)s0 : C0 (Kn, E)→ C0 (Kn, E) ,

satisfy the following inequalities

(3.4.3)γ0j − κhn ≤ λ0j ≤


√
γ0j + κhn

1− κhn


2

.
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Key Aim and Result

4.1 Aim of Thesis

Given the sequence of results presented in Chapter 3, the natural next generalisation is to extend
Zahariev’s results for arbitrary non-flat vector bundles from degree zero to arbitrary degree. To
what extent this is possible is the problem studied by this thesis.

The aim of this thesis is to see how far Zahariev’s method of proving convergence on the
trivial line bundle for degree zero can be generalised to the setting of any degree.

Specifically the aim is to prove an analogue of Theorem 3.3.1 for arbitrary degree.

4.2 Original Contribution

A key obstacle to generalising Theorem 3.3.1 to arbitrary degree was identified by Zahariev in
his thesis [30]. Specifically, it is that Zahariev’s Proposition 4.3c only holds for degree zero.
Zahariev noted that ‘there is no obvious analogue of the estimate [Proposition 4.3c] for cochains
c of positive degree as in this case [Wc] does not lie in [Hq1 (M,C)] anymore’ [30, Remark 4.4].

This obstacle is overcome in this thesis by replacing the Sobolev norm ‖·‖r with a norm
dependent on the triangulation, ‖·‖Kr , whereby the norm of Wc is well defined for all degrees.

Additionally, the growth rate of the Whitney map under subdivisions is calculated in thesis.
This allows resulting error terms that are dependent on Kn to be pulled back to be expressed in
terms of the initial triangulation and hence become a constant independent of n.

These two original ideas make it possible to derive a new bound, Proposition 7.1.4, for
Zahariev’s Proposition 4.3c that holds for all degrees. With this new bound, the proofs of
Zahariev’s thesis for the lower bound of the trivial line bundle case are able to be adapted to the
setting of all degrees.

4.3 Difficulties Encountered

The obstacle identified by Zahariev in his thesis [30] is not the only obstacle to generalising
his result to higher degrees. As Zahariev considered the setting of degree zero, his Laplacian
has the form ∆0

A = (d0A)∗ d0A compared to the general form ∆q
A = (dqA)∗ dqA + dq−1A (dq−1A )∗. The

additional dq−1A (dq−1A )∗ term means that all of the key technical estimates used in Zahariev’s
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method (Proposition 7.1.4 and Corollary 8.1.15) need to be replicated in an analogous way for
the adjoint operators (dA)∗ and (δa)

∗ (Proposition 7.4.10 and Corollary 8.2.7 respectively).
Deriving the required technical estimates in the adjoint setting is considerably more difficult

compared to the nonadjoint setting. The missing link or estimate is Assumption 7.3.4, restated
here for ease of reading.

Assumption 7.3.4. There exists a positive constant κ independent of n such that for all integers
r > N

2 + 2 and for all ω ∈ Ωq (M,C) it holds that

(4.3.1)
∥∥d? (WnRnω − ω)

∥∥
0
≤ κhn‖ω‖r .

Whilst this obstacle was not able to be overcome, there are published results that provide a
means to sidestepping this obstacle. For more details of this obstacle and possible solutions, see
Section 4.5.

4.4 Main Result

The key result of this thesis is the following theorem. It provides a link between the combinatorial
and analytic eigenvalue problem in the setting of a Laplacian operator acting on differential
forms of any degree with values in a trivial complex line bundle.

Theorem 4.4.1. Let (M, g) be a connected smooth closed oriented Riemannian manifold of
dimension N . Then there exists a smooth initial triangulation K0 of M contained in Rm for

some m ∈ N such that the first vertex p1 of K0 is the origin and
{
p2, p3, . . . p|K0|

}
is a linearly

independent set when each vertex is viewed as a vector.
For such an initial triangulation, there exists a positive constant κ independent of n, the

number of subdivisions of the triangulation, and A such that for all q = 0, 1, . . . , N and for all
j = 1, 2, . . . ,dim

(
Cq (Kn,C)

)
, if Assumption 7.3.4 holds then for sufficiently many subdivisions

of the initial triangulation, n, the eigenvalues λqj of the operator

(4.4.1)∆A : Ωq (M,C) → Ωq (M,C) ,

and the eigenvalues γqj of the operator

(4.4.2)sa : Cq (Kn,C)→ Cq (Kn,C) ,

satisfy the following inequality

(4.4.3)γqj − κ (κA)2 βn − 2
nq
2 (βn)

q
2 κκA − 2nq (βn)q κ ≤ λqj ,

where κA is a constant dependent on A as defined in Definition 2.3.14 and βn is the mesh
parameter of (2.2.27).

The details of the proof of Theorem 4.4.1 are the subject of the rest of this thesis. The
existence of the required initial triangulation is proved by Lemmas 2.2.14 and 5.1.1. For the
proof of the eigenvalue bound, see Section 8.3.
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4.5 Discussion of Assumption 7.3.4

Initial investigations of whether Assumption 7.3.4 holds or not suggest that this problem has not
been previously researched. The main obstacle being that d is not a bounded operator in the
respective norms.

This assumption appears to not be the only way of generalising Proposition 7.1.4 and Corol-
lary 8.1.15 to the adjoint setting. Smits established that the adjoint of the coboundary operator
does approximate the adjoint of the exterior derivative as required but only for degree one on a
surface (N = 2) and with the regular standard subdivision [24, Theorem 5], as opposed to the
standard subdivision used in this thesis.

Arnold, Falk, Guzman and Tsogtgerel subsequently showed that this approximation between
the analytic and combinatorial side for degree one can be generalised to manifolds of arbitrary
dimension, but also provided counter examples when convergence failed in the setting of other
subdivision schemes such as the standard subdivision and separately, in the case of higher degree
differential forms and cochains [3, Page 5489].

The work by Wilson [29] and later Tanabe [26] on a combinatorial analogue of the Hodge star
operator could be an additional path to overcoming Assumption 7.3.4. Wilson and separately
Tanabe showed that the combinatorial Hodge star operator approximates the analytic Hodge
star operator in a number of ways. Considering the definition of the adjoint of the exterior
derivative involves the Hodge star, it is conceivable that using the combinatorial Hodge star for
defining the adjoint of the coboundary operator allows for the required estimates, generalisations
of Proposition 7.1.4 and Corollary 8.1.15 to the adjoint setting to be derived.

Therefore there is evidence to suggest that the missing link, the generalising of Proposi-
tion 7.1.4 and Corollary 8.1.15 to the adjoint setting, of this thesis can be overcome with further
research efforts but that the settings in which this is possible may well be quite restrictive.

4.6 Discussion of Convergence

Given Corollary 2.2.26, at best βn = 2−n and hence the error term

(4.6.1)κ (κA)2 βn + 2
nq
2 (βn)

q
2 κκA + 2nq (βn)q κ ,

in Theorem 4.4.1 approaches the constant κκA + κ in this optimal case, and in all other cases
the error term grows in size as n→∞.

4.7 Dependence on Choices

4.7.1 Ordering of Vertices

In the construction of the standard subdivision, the vertices set is given an ordering. As was
discussed in Section 2.2.7.1, a different choice of ordering can result in quite a different standard
subdivision. Additionally Definition 2.2.12 or other choices of how to order the vertices of the
subdivision will likewise have a significant effect on the sequence of subdivisions performed.

All of these choices result in potential changes to the mesh size hn and its related parameters
βn and β̂n. Clearly these changes to βn will have a direct impact on the bound of Theorem 4.4.1.
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4.7.2 Linear Right Inverse of the de Rham Map

In Notation 2.3.5, there is a choice about which linear right inverse of the de Rham map is
used. This choice then affects Definition 2.3.6. However this choice does not affect the bound in
any significant way as by Proposition 8.2.6, a different choice would simply result in a different
constant κ.

4.7.3 Basis for Eigenspace

In Chapter Definition 8.1.11, there is a choice of basis vectors for the Eigenspace of the ana-
lytic Laplacian. However, this choice does not affect Theorem 4.4.1 in any significant way as
Propositions 8.1.14 and 8.2.6 show the only effect is a change in the constant κ of Theorem 4.4.1.
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Barycentric Coordinate Relationship

This chapter proves that the barycentric coordinates of a triangulation are a linear combination
of the barycentric coordinates of its standard subdivision. In essence this result is a direct
consequence of simple linear algebra techniques.

5.1 Simplicial Complex Construction

This section constructs a simplicial complex with certain properties which will be critical for
later steps.

Lemma 5.1.1. For all M , there exists a smooth triangulation K of M contained in Rk for some
k ∈ N such that the first vertex p1 of K is the origin.

Proof. Let M be given. Then by Theorem 2.2.2 there exists a smooth triangulation K̂ of M
contained in Rk̂ for some k̂ ∈ N. Define a new smooth triangulation K of M contained in Rk
where k = k̂ via the affine homeomorphism F : K̂ → K where

(5.1.1)F̂ (p̂) = p̂− p̂1 ,

where p̂1 is the first vertex of K̂. By the property that the composition of affine homeomorphisms
is affine homeomorphic, it follows that K is a smooth triangulation of M and the first vertex, p1,
of K is the origin.

Lemma 5.1.2. Let K̂ be a smooth triangulation of M contained in Rk̂ for some k̂ ∈ N and let

K be the modified smooth triangulation of M contained in Rk where k = k̂ +

∣∣∣∣K̂0
∣∣∣∣ − 1 as per

Lemma 2.2.14. If K̂ has barycentric coordinates µ̂, then

(5.1.2)µ̂ ◦ pr ,

are barycentric coordinates for K, where pr : Rk → Rk̂ is the projection onto the first k̂ compo-
nents.

Proof. This result follows immediately from the definition of barycentric coordinates in Defini-
tion 2.2.8.
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5.2 Barycentric Coordinates

This section shows that the barycentric coordinates of a simplicial complex can be represented
in a matrix equation.

Consider the set of verticesK0
n =

{
p1, p2, . . . , p|K0

n|

}
. By Definition 2.2.15, Kn sits inside Rm

for some m ≥
∣∣∣K0

n

∣∣∣, and by hypotheses of Theorem 4.4.1, p1 is the origin, and
{
p2, p3, . . . , p|K0

n|

}
is a linearly independent set when each point is viewed as a vector. For each j = 1, 2, . . . ,

∣∣∣K0
n

∣∣∣,
let

(5.2.1)pj =
(
x1j , x

2
j , . . . , x

m
j

)
,

and consider any point p ∈ Kn where

(5.2.2)p =
(
y1, y2, . . . , ym

)
.

Let µ1, µ2, . . . , µ|K0
n| be the barycentric coordinates corresponding to the vertices p1, p2, . . . , p|K0

n|
respectively. Hence for k = 1, 2, . . . ,m, by the definition of barycentric coordinates, every
component of p can be written in the form

(5.2.3)yk = µ1x
k
1 + µ2x

k
2 + · · ·+ µ|K0

n|x
k
|K0

n| ,

where µ1 + µ2 + · · ·+ µ|K0
n| = 1 and for all j = 1, 2, . . . ,

∣∣∣K0
n

∣∣∣, it holds that µj ∈ [0, 1]. As p1 is
the origin, it follows that (5.2.3) becomes

(5.2.4)yk = µ2x
k
2 + µ3x

k
3 + · · ·+ µ|K0

n|x
k
|K0

n| .

This is a system of equations where each equation is given by a choice of k = 1, 2, . . . ,m. In
matrix notation, this system of equations is

(5.2.5)



x12 x13 . . . x1|K0
n|

x22 x23 . . . x2|K0
n|

...
...

. . .
...

xm2 xm3 . . . xm|K0
n|





µ2

µ3

...

µ|K0
n|


=



y1

y2

...

ym


.

Define the m×
(∣∣∣K0

n

∣∣∣− 1
)
matrix Dµ̂ as well as the vectors µ̂ and y to be the corresponding

matrix and vectors in (5.2.5). That is

(5.2.6)Dµ̂ =



x12 x13 . . . x1|K0
n|

x22 x23 . . . x2|K0
n|

...
...

. . .
...

xm2 xm3 . . . xm|K0
n|


,
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(5.2.7)µ̂ =
[
µ2 µ3 . . . µ|K0

n|
] T
,

and
(5.2.8)y =

[
y1 y2 . . . ym

] T
.

Hence
(5.2.9)Dµ̂µ̂ = y .

Lemma 5.2.1. The matrix Dµ̂ is injective as a linear map.

Proof. This result follows immediately by the hypotheses of the initial triangulation in Theo-
rem 4.4.1.

5.3 Barycentric Coordinates of Standard Subdivision

This section constructs the same matrix equation for the barycentric coordinates of a simplicial
complex as Section 5.2 did but this time for the standard subdivision of the simplicial com-
plex. Through algebraic manipulation of these matrix equations, the relationship between the
barycentric coordinates of a simplicial complex and its subdivision is established.

Consider the standard subdivision, Kn+1, of Kn where the vertex set comprises of points of
the form

pr,s =
1

2
(pr + ps)

(5.3.1)=
(
x1r,s, x

2
r,s, . . . , x

m
r,s

)
,

and hence for k = 1, 2, . . . ,m

(5.3.2)xkr,s =
1

2
xkr +

1

2
xks .

Definition 5.3.1. For all r = 1, 2, . . . ,
∣∣∣K0

n

∣∣∣ and s = 1, 2, . . . ,
∣∣∣K0

n

∣∣∣ where r ≤ s, define the
indicator function Ir,sn to be

(5.3.3)Ir,sn =


1 if ∃e ∈ K1

n

[
(∂0e = pr and ∂1e = ps) or (∂0e = ps and ∂1e = pr)

]
1 if r = s

0 otherwise
.

In essence, the indicator function indicates if the point pr,s is included in the standard
subdivision or not. The first case of the indicator function indicates if pr,s is the midpoint
between two vertices and hence is included in the standard subdivision. Further, it is trivially
the case that an existing vertex is included in the standard subdivision and hence the second
case.

For ease of reading the subsequent equations, define the following parameter.

Definition 5.3.2. Define κ to be the following parameter of the triangulation

(5.3.4)κ =

∣∣∣K0
n

∣∣∣+ 1

2

 ,

where

(
·
·

)
is the binomial coefficient.
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Chapter Definition 5.3.3. Define ν to be the pair of indexing variables such that for all
j = 0, 1, . . . ,

∣∣∣K0
n

∣∣∣ and for all k = 1, 2, . . . ,
∣∣∣K0

n

∣∣∣− j it is defined to be

(5.3.5)νj|K0
n|+k = (j + 1, j + k) .

For example, ν1 = (1, 1) , ν2 = (1, 2) , ν|K0
n| =

(
1,
∣∣∣K0

n

∣∣∣) and ν|K0
n|+1 = (2, 2).

Notationally, for j = 1, 2, . . . ,κ, as νj is a pair of numbers, say (r, s), let ν1j = r be the first
number and ν2j = s be the second number.

For each pr,s ∈ K0
n+1, let ξr,s be the barycentric coordinates of Kn+1 corresponding to pr,s.

In a similar process as was the case for Kn, let p ∈ Kn+1 and by definition of barycentric
coordinates, every component yk of p can be written in the form

(5.3.6)yk =

|K0
n|∑

s=1

s∑
r=1

Ir,sn ξr,sx
k
r,s ,

for k = 1, 2, . . . ,m, where it can be shown that

(5.3.7)
|K0

n|∑
s =1

s∑
r =1

Ir,sn ξr,s = 1 ,

and for all ξr,s, it holds that ξr,s ∈ [0, 1]. It should be noted that this is a slight abuse of notation
as strictly speaking there may be some combinations of r and s for which ξr,s is not defined as
pr,s /∈ K0

n+1. However this is not an actual issue as the indicator function was introduced to
alleviate this problem. Specifically by definition, Ir,sn = 0 whenever ξr,s is not defined.

As p1,1 = p1 is the origin, it follows that (5.3.6) becomes

(5.3.8)yk =

|K0
n|∑

s=2

s∑
r=1

Ir,sn ξr,sx
k
r,s .

This is a system of equations where each equation is given by a choice of k = 1, 2, . . . ,m. In
matrix notation, this system of equations is

(5.3.9)



Iν2n x1ν2 Iν3n x1ν3 . . . Iνκn x1νκ

Iν2n x2ν2 Iν3n x2ν3 . . . Iνκn x2νκ

...
...

. . .
...

Iν2n xmν2 Iν3n xmν3 . . . Iνκn xmνκ





ξν2

ξν3

...

ξνκ


=



y1

y2

...

ym


.

Define the m× (κ − 1) matrix D
ξ̂
as well as the vector ξ̂ to be the corresponding matrix and

vector in (5.3.9). That is

(5.3.10)D
ξ̂

=



Iν2n x1ν2 Iν3n x1ν3 . . . Iνκn x1νκ

Iν2n x2ν2 Iν3n x2ν3 . . . Iνκn x2νκ

...
...

. . .
...

Iν2n xmν2 Iν3n xmν3 . . . Iνκn xmνκ


,
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and

(5.3.11)ξ̂ =
[
ξν2 ξν3 . . . ξνκ

] T
.

Hence

(5.3.12)D
ξ̂
ξ̂ = y .

5.4 Relationship of Barycentric Coordinates

Consider the j-th component of the vector D
ξ̂
ξ̂ after substituting (5.3.2) into D

ξ̂
, which is

(
D
ξ̂
ξ̂
)
j

=
1

2

|K0
n|∑

s=2

s∑
r=1

Ir,sn xjrξr,s +

|K0
n|∑

s=2

s∑
r=1

Ir,sn xjsξr,s



=
1

2

|K0
n|∑

r=2

I1,rn xj1ξ1,r +

|K0
n|∑

s=2

|K0
n|∑

r=s

Is,rn xjsξs,r +

|K0
n|∑

s=2

s∑
r=1

Ir,sn xjsξr,s

 (rearranging sums)

(5.4.1)=
1

2

|K0
n|∑

s=2

xjs

|K0
n|∑

r=s

Is,rn ξs,r +

s∑
r=1

Ir,sn ξr,s

 (as p1 is the origin) .

Hence

(5.4.2)D
ξ̂
ξ̂ =

1

2
Dµ̂



|K0
n|∑

r=2

I2,rn ξ2,r +

2∑
r=1

Ir,2n ξr,2

|K0
n|∑

r=3

I3,rn ξ3,r +

3∑
r=1

Ir,3n ξr,3

...

|K0
n|∑

r=|K0
n|−1

I|K
0
n|−1,r

n ξ|K0
n|−1,r +

|K0
n|−1∑
r=1

Ir,|K
0
n|−1

n ξr,|K0
n|−1

I|K
0
n|,|K0

n|
n ξ|K0

n|,|K0
n| +
|K0

n|∑
r=1

Ir,|K
0
n|

n ξr,|K0
n|



.

Combining (5.2.9) and (5.3.12) gives

Dµ̂µ̂ = D
ξ̂
ξ̂
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(5.4.3)= Dµ̂



1

2

|K0
n|∑

r=2

I2,rn ξ2,r +
1

2

2∑
r=1

Ir,2n ξr,2

1

2

|K0
n|∑

r=3

I3,rn ξ3,r +
1

2

3∑
r=1

Ir,3n ξr,3

...

1

2

|K0
n|∑

r=|K0
n|−1

I|K
0
n|−1,r

n ξ|K0
n|−1,r +

1

2

|K0
n|−1∑
r=1

Ir,|K
0
n|−1

n ξr,|K0
n|−1

1

2
I|K

0
n|,|K0

n|
n ξ|K0

n|,|K0
n| +

1

2

|K0
n|∑

r=1

Ir,|K
0
n|

n ξr,|K0
n|


(by (5.4.2)) .

As Dµ̂ is injective by Lemma 5.2.1, it follows that

(µ̂)j =
1

2

 |K0
n|∑

r=j+1

Ij+1,r
n ξj+1,r +

j+1∑
r=1

Ir,j+1
n ξr,j+1


(5.4.4)=

1

2

2ξj+1,j+1 +

|K0
n|∑

r=j+2

Ij+1,r
n ξj+1,r +

j∑
r=1

Ir,j+1
n ξr,j+1

 (by (5.3.3)) .

Therefore it is clear that each entry of µ̂ is simply a linear combination of the entries of ξ̂. Define
Ξ̂ to be the matrix with integer entries (Ξ̂j,k ∈ Z) of this linear combination such that (5.4.4) is
equivalent to

(5.4.5)µ̂ =
1

2
Ξ̂ξ̂ ,

where ξ̂ is given by (5.3.11). As the matrix Ξ̂ requires significant physical space to print, an
explicit expression can be found in Appendix B. However a particular entry is given by

(5.4.6)Ξ̂j,k =


2 if j + 1 = ν1k+1 = ν2k+1

Iνkn if
[
j + 1 = ν1k+1 or j + 1 = ν2k+1

]
and ν1k+1 6= ν2k+1

0 otherwise

.

Hence it is clear that all the entries of Ξ are either a 0 or 1 except for the single entry of a 2 in
each row corresponding to the coefficient of a term of the form ξr,r.

From (5.4.5) it is known that for j = 2, 3, . . . ,
∣∣∣K0

n

∣∣∣
(5.4.7)µj =

1

2

κ∑
k=2

Ξ̂j−1,k−1ξνk .
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Applying the property that the sum of barycentric coordinates is one gives

µ1 = 1−
|K0

n|∑
j=2

µj

= 1− 1

2

|K0
n|∑

j=2

κ∑
k=2

Ξ̂j−1,k−1ξνk (by (5.4.7))

=

κ∑
k=1

Iνkn ξνk −
1

2

|K0
n|∑

j=2

κ∑
k=2

Ξ̂j−1,k−1ξνk (by (5.3.7))

(5.4.8)=
1

2

2ξν1 +

κ∑
k=2

2Iνkn −
|K0

n|∑
j=2

Ξ̂j−1,k−1

 ξνk

 (by (5.3.3)) .

Using (5.4.5) and (5.4.8) gives the following block matrix equation

µ1

µ2

...

µ|K0
n|


=

1

2


2

2Iν2n −
|K0

n|∑
j=2

Ξ̂j−1,1 2Iν3n −
|K0

n|∑
j=2

Ξ̂j−1,2 . . . 2Iνκn −
|K0

n|∑
j=2

Ξ̂j−1,κ−1


0 Ξ̂





ξν1

ξν2

...

ξνκ


,

(5.4.9)

which is (5.4.5) but includes all barycentric coordinates. Define enlarged µ̂, ξ̂ and Ξ̂ such
that (5.4.9) is

(5.4.10)µ =
1

2
Ξξ ,

where
(5.4.11)µ =

[
µ1 µ2 . . . µ|K0

n|
] T
,

(5.4.12)Ξ =


2

2Iν2n −
|K0

n|∑
j=2

Ξ̂j−1,1 2Iν3n −
|K0

n|∑
j=2

Ξ̂j−1,2 . . . 2Iνκn −
|K0

n|∑
j=2

Ξ̂j−1,κ−1


0 Ξ̂

 ,

and
(5.4.13)ξ =

[
ξν1 ξν2 . . . ξνκ

] T
.

Using (5.4.12) and an explicit expression for Ξ̂ allows Ξ to be computed. As the matrix Ξ
requires significant physical space to print, an explicit expression can be found in Appendix B.
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However a particular entry is given by

(5.4.14)Ξj,k =


2 if j = ν1k = ν2k
Iνkn if

[
j = ν1k or j = ν2k

]
and ν1k 6= ν2k

0 otherwise
.

Of note is the fact that every entry in Ξ̂ is either a 0 or 1 except for the single entry of a 2 in
each row corresponding to the coefficient of a term of the form ξr,r.

This working proves the following proposition.

Proposition 5.4.1. The barycentric coordinates µ of a simplicial complex Kn are a linear
combination of the barycentric coordinates ξ of its standard subdivision Kn+1. Specifically

(5.4.15)µ =
1

2
Ξξ ,

where the matrix Ξ is given by (5.4.14).



CHAPTER

1887 1961 ERWIN SCHRÖDINGER (Austrian)

Growth Rate of the Whitney Map

In this chapter, the growth rate of the Whitney map is calculated using the relationship of the
barycentric coordinates between subdivisions. After some technical results are established, the
relationship of the Whitney form of a single simplex and its standard subdivision is examined.
This relationship of Whitney forms is subsequently generalised to an arbitrary cochain.

The main result of this chapter is Proposition 6.3.4 which, given a ρ ∈ KN
n , provides a

bound for ‖Wnc‖ρ1 in terms of ‖c‖C,2 and a growth rate dependent on n. This bound is used in
subsequent chapters to determine commutativity properties of the Whitney map. Ultimately
this leads to a lower bound on the eigenvalues.

The notation and Chapter Definitions used in Chapter 5 will continue to be used in this
chapter.

6.1 Preliminaries

This section establishes some notation and a helper lemma that will be required in subsequent
sections.

Chapter Definition 6.1.1. Let K0
n =

{
p̂1, p̂2, . . . , p̂|K0

n|

}
. Then for a given simplex σ ∈ Kq

n

where σ =
[
p0, p1, . . . , pq

]
, define the indexing variable χσ : {0, 1, . . . , q} →

{
1, 2, . . . ,

∣∣∣K0
n

∣∣∣} such
that for all j = 0, 1, . . . , q it holds that

(6.1.1)pj = p̂χσ(j) .

To aid with notational conciseness, χσj will be used to notate χσ (j). Where clear from context
χj is used.

Lemma 6.1.2. For all q = 0, 1, . . . , N , consider a collection of distinct vertices
{
p0, p1, . . . , pq

}
of the simplicial complex K and corresponding barycentric coordinates

{
µ0, µ1, . . . , µq

}
. If

(6.1.2)
q⋂

j =0

{
p ∈ K

∣∣µj (p) 6= 0
}
6= ∅ ,

then
[
p0, p1, . . . , pq

]
is a q-dimensional simplex in the simplicial complex K.
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Proof. Let q be given and suppose that
⋂q
j=0

{
p ∈ K

∣∣µj (p) 6= 0
}
6= ∅. Hence there exists a point

p ∈ K such that
(6.1.3)µj (p) > 0 ,

for all j = 0, 1, . . . , q.
As p ∈ K, it is clear that there exists an N -simplex σ ∈ KN such that p ∈ σ. Let

σ =
[
pα0 , pα1 , . . . , pαN

]
and hence p ∈

[
pα0 , pα1 , . . . , pαN

]
. Then Property 2.2.7 gives

(6.1.4)µk (p) = 0 ,

for k ∈
{

1, 2, . . . ,
∣∣∣K0

∣∣∣} \ {α0, α1, . . . , αN}. Hence combining (6.1.3) and (6.1.4) implies that

(6.1.5)
{
p0, p1, . . . , pq

}
⊆
{
pα0 , pα1 , . . . , pαN

}
.

However, by definition of the simplex σ, a q + 1 subset of vertices of σ is a q-dimensional face of
σ and hence the q + 1 vertices define a q-dimensional simplex

[
p0, p1, . . . , pq

]
as required.

6.2 Relationship for a Simplex

For a given σ ∈ Kq
n, this section develops an expression for Wnσ in terms of Wn+1τ where

τ ∈ Kq
n+1.

Proposition 5.4.1 says that µ = 1
2Ξξ. Hence, given a simplex σ =

[
p0, p1, . . . , pq

]
∈ Kq

n, for
j = 0, 1, . . . , q it holds that

(6.2.1)µj =
1

2

κ∑
k=1

Ξχj ,kξνk ,

and hence

(6.2.2)dµj =
1

2

κ∑
k=1

Ξχj ,k dξνk .

Therefore by definition

Wnσ = q!

q∑
j=0

(−1)j µj dµ0 ∧ dµ1 ∧ · · · ∧ dµj−1 ∧ dµj+1 ∧ · · · ∧ dµq

= q!

(
1

2

)q+1 q∑
j=0

(−1)j
κ∑
s=1

Ξχj ,sξνs

κ∑
k1,k2,...,kq=1j−1∏

r=0

Ξχr,kr+1

 q∏
r=j+1

Ξχr,kr

 dξνk1 ∧ dξνk2 ∧ · · · ∧ dξνkq

(by (6.2.1) and (6.2.2)) (6.2.3) .

Definition 6.2.1. For all q = 1, 2, . . . , N , for all simplices σ ∈ Kq
n and for all distinct

s, k1, k2, . . . , kq = 1, 2, . . . ,κ, define Ξ
(
s, k1, k2, . . . , kq

)
to be the (q + 1) × (q + 1) matrix con-

structed from Ξ as follows. Staring with the matrix Ξ, remove all of the rows with index{
1, 2, . . . ,

∣∣∣K0
n

∣∣∣} \ {χσ0 , χσ1 , . . . , χσq}. Denote the resultant (q + 1) × κ matrix by Ξ̃ and denote

the s-th column of Ξ̃ by Ξ̃s. Then define Ξ
(
s, k1, k2, . . . , kq

)
to be the following block matrix

(6.2.4)Ξ
(
s, k1, k2, . . . , kq

)
=
[
Ξ̃s Ξ̃k1 Ξ̃k2 · · · Ξ̃kq

]
.
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Definition 6.2.2. For all q = 1, 2, . . . , N , for all σ ∈ Kq
n, for all j = 0, 1, . . . , q and for all

distinct k1, k2, . . . , kq = 1, 2, . . . ,κ, define Ξ′
(
χσj ; k1, k2, . . . , kq

)
to be the following q× q matrix

minor of Ξ
(
1, k1, k2, . . . , kq

)
. Starting with Ξ

(
1, k1, k2, . . . , kq

)
, remove the row with index χσj

and remove the first column. The resultant q × q matrix is by definition Ξ′
(
χσj ; k1, k2, . . . , kq

)
.

With this notation, (6.2.3) becomes

Wnσ = q!

(
1

2

)q+1 q∑
j=0

(−1)j
κ∑
s=1

Ξχj ,sξνs
∑

1≤k1<k2<···<kq≤κ

det

(
Ξ′
(
χj ; k

1, k2, . . . , kq
))

dξνk1 ∧ dξνk2 ∧ · · · ∧ dξνkq

= q!

(
1

2

)q+1 ∑
1≤k1<k2<···<kq≤κ

κ∑
s=1

s 6=k1,k2,...,kq

det

(
Ξ
(
s, k1, k2, . . . , kq

))
ξνs dξνk1 ∧ dξνk2 ∧ · · · ∧ dξνkq

(where s 6= k1, k2, . . . , kq as otherwise the determinant is zero)

= q!

(
1

2

)q+1 ∑
1≤k0<k1<···<kq≤κ

q∑
j=0

det

(
Ξ
(
kj , k0, k1, . . . , kj−1, kj+1, . . . , kq

))
ξν

kj
dξνk0 ∧ dξνk1 ∧ · · · ∧ dξνkj−1 ∧ dξνkj+1 ∧ · · · ∧ dξνkq

(by rearrangement of sums)

=

(
1

2

)q+1 ∑
1≤k0<k1<···<kq≤κ

det

(
Ξ
(
k0, k1, . . . , kq

))

q!

q∑
j=0

(−1)j ξν
kj
dξνk0 ∧ dξνk1 ∧ · · · ∧ dξνkj−1 ∧ dξνkj+1 ∧ · · · ∧ dξνkq . (6.2.5)

Chapter Definition 6.2.3. For all σ ∈ Kq
n and for all τ ∈ Kq

n+1, define the constant ητ ,σ
as follows. Let σ =

[
p0, p1, . . . , pq

]
, let τ =

[
p′0, p

′
1, . . . , p

′
q

]
, and consider the set of points{

p̂ν1 , p̂ν2 , . . . , p̂νκ
}
⊇ K0

n+1. Pick k0, k1, . . . , kq ∈ {1, 2, . . . ,κ} such that for all r = 0, 1, . . . , q,
it holds that p′r = p̂νkr , then define

(6.2.6)ητ ,σ = det

(
Ξ
(
k0, k1, . . . , kq

))
,

where det (·) is the determinant of a matrix.

Consider a barycentric coordinate on its region of support. On this region, it is a non-constant
piecewise linear function and hence it is clear that the support of the barycentric coordinate and
its derivative are identical. Therefore, for given values of j and k0, k1, . . . , kq, examining (6.2.5),
it is clear to see that if the barycentric coordinates that make up the differential form

(6.2.7)ξν
kj
dξνk0 ∧ dξνk1 ∧ · · · ∧ dξνkj−1 ∧ dξνkj+1 ∧ · · · ∧ dξνkq ,

do not have any support in common, then the differential form in (6.2.7) is zero.
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If the barycentric coordinates do have a region of common support, then by Lemma 6.1.2
the corresponding collection of vertices form a simplex. Specifically,

[
pνk0 , pνk1 , . . . , pνkq

]
is a

simplex in Kq
n+1 with an orientation compatible with the orientation of Kq

n+1 by construction.

Let τ =
[
pνk0 , pνk1 , . . . , pνkq

]
be that simplex. As a result of the compatible orientation, for this

simplex τ , the expression

(6.2.8)q!

q∑
j =0

(−1)j ξν
kj
dξνk0 ∧ dξνk1 ∧ · · · ∧ dξνkj−1 ∧ dξνkj+1 ∧ · · · ∧ dξνkq ,

in (6.2.5) is equal to the Whitney map applied to this simplex, Wτ .
As

∑
1≤k0<k1<···<kq≤κ

iterates over all possible combinations of q+ 1 many distinct ordered ver-

tices of Kn+1, every q-dimensional simplex in Kn+1 corresponds to some term in
∑

1≤k0<k1<···<kq≤κ

.

Additionally by the earlier explanation, all the terms in
∑

1≤k0<k1<···<kq≤κ

which do not correspond

to a q-dimensional simplex in Kn+1 are zero. It is also clear that there are no repeated simplices
in the sum. Hence the sum

∑
1≤k0<k1<···<kq≤κ

reduces to the sum
∑

τ∈Kq
n+1

.

Using Chapter Definition 6.2.3 (which was constructed specifically so that this next simplifi-
cation holds), it follows that (6.2.5) can be simplified and hence proves the following proposition.

Proposition 6.2.4. For all σ ∈ Kq
n it holds that

(6.2.9)Wnσ =

(
1

2

)q+1 ∑
τ∈Kq

n+1

ητ ,σWn+1τ .

Lemma 6.2.5. For all σ ∈ Kq
n and for all τ ∈ Kq

n+1, it holds that ητ ,σ ∈ Z and additionally the
set

(6.2.10)
{
ητ ,σ

∣∣∣σ ∈ Kq
n, τ ∈ K

q
n+1

}
,

is finite and not equal to {0}.

Proof. From Chapter Definition 6.2.3 and by using the fact that the entries of Ξ̂ are either 0, 1
or 2 from (5.4.14), it is clear that ητ ,σ ∈ Z.

Further, by Lemma 2.2.3, Kn and Kn+1 are finite simplicial complexes and hence the set

(6.2.11)
{
ητ ,σ

∣∣∣σ ∈ Kq
n, τ ∈ K

q
n+1

}
,

is finite. Further, it is not equal to {0} as by Corollary 2.3.4 and Proposition 6.2.4 there must
be at least one nonzero ητ ,σ.

The next result, Proposition 6.2.10 requires considering different cases for the dimension of a
simplex. First consider the case when q = N .

Lemma 6.2.6. For all n = 0, 1, . . ., and for all τ ∈ KN
n+1, there exists a σ ∈ KN

n such that

(6.2.12)ητ ,σ 6= 0 .



6.2 Relationship for a Simplex 49

Proof. Let n and τ ∈ KN
n+1 be given. Pick the unique σ ∈ KN

n such that τ ⊆ σ. Then by
Proposition 6.2.4

Wnσ|int(τ) =

(
1

2

)N+1 ∑
ρ∈KN

n+1

ηρ,σ Wn+1ρ|int(τ)

(6.2.13)=

(
1

2

)N+1

ητ ,σ Wn+1τ |int(τ) (by Property 2.2.7) .

Hence by Definition 2.2.10 as both the left and right and hand side are positive multiples of the
volume form, ητ ,σ 6= 0 as required.

Then consider the case when q < N , which requires some initial technical results to be
established.

Lemma 6.2.7. For all n = 0, 1, . . ., let µ be the barycentric coordinates of Kn and let ξ be the
barycentric coordinates of Kn+1, then for all integers 0 ≤ j ≤ k ≤

∣∣∣K0
n

∣∣∣ it holds that

(6.2.14)supp
(
ξj,k

)
⊆ supp

(
µj

)
∩ supp

(
µk

)
,

where supp (·) is the support of a function.

Proof. Let 0 ≤ j ≤ k ≤
∣∣∣K0

n

∣∣∣ be given integers and let p ∈ supp
(
ξj,k

)
. Then consider the

following cases.

Case 1 Consider the case where p ∈ K0
n+1.

Case 1a Consider the case where j = k. Then p = pj,j = pj and hence by Property 2.2.7
it follows that

(6.2.15)µj (p) = 1 .

Case 1b Consider the case where j 6= k. Then there exists a unique edge ej,k ∈ K1
n such

that p ∈ ej,k, and pj and pk are the end points of ej,k. Hence by Property 2.2.7 it follows that

(6.2.16)µj (p) + µk (p) = 1 ,

and µj (p) 6= 1 as otherwise j = k. Therefore

(6.2.17)µj (p) 6= 0 ,

and
(6.2.18)µk (p) 6= 0 .
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Case 2 Consider the case where p /∈ K0
n+1. Then there exists a unique q and a unique σ ∈ Kq

n

such that p ∈ int (σ). Let σ =
[
pν0 , pν1 , . . . , pνq

]
, then by Property 2.2.7 it follows that

(6.2.19)
q∑

r =0

µνr (p) = 1 ,

and
(6.2.20)µνr (p) > 0 ,

for all r = 0, 1, . . . , q.
Similarly there exists a unique τ ∈ Kq

n+1 such that p ∈ int (τ). In fact it must be the case that
τ ∈ Sσ. Let τ =

[
pα0 , pα1 , . . . , pαq

]
, where each αr is a pair of numbers. Then by Property 2.2.7

it follows that

(6.2.21)
q∑

r =0

ξαr (p) = 1 ,

and
(6.2.22)ξαr (p) > 0 ,

for all r = 0, 1, . . . , q.
As p ∈ supp

(
ξj,k

)
, it follows from (6.2.22) that there exists a unique s such that (j, k) = αs.

Hence as τ ∈ Sσ it must be the case that j ∈
{
ν0, ν1, . . . , νq

}
and k ∈

{
ν0, ν1, . . . , νq

}
. Therefore

from (6.2.20) it follows that
(6.2.23)µj (p) 6= 0 ,

and
(6.2.24)µk (p) 6= 0 .

Hence in all cases it is clear that

(6.2.25)p ∈ supp
(
µj

)
∩ supp

(
µk

)
,

as required.

Lemma 6.2.8. For all n = 0, 1, . . ., for all q = 0, 1, . . . , N − 1 and for all τ ∈ Kq
n+1, there exists

a σ ∈ Kq
n such that

(6.2.26)supp
(
ι∗int(τ) (Wn+1τ)

)
⊆ supp

(
ι∗int(τ) (Wnσ)

)
.

Proof. Let n and τ ∈ Kq
n+1 be given. By the definition of the standard subdivision, let

τ =
[
pr0,s0 , pr1,s1 , . . . , prq ,sq

]
where rj ∈ {0, 1, . . . , N}, sj ∈ {0, 1, . . . , N} and rj < sj (except

possibly for the case r0 = s0) for all j = 0, 1, . . . , q. For this proof alone, it is assumed that the
points in

[
pr0,s0 , pr1,s1 , . . . , prq ,sq

]
are listed in ascending order according to the partial ordering

given by (2.2.15). In fact, the points are strictly increasing as otherwise τ is not a simplex.
By definition of the standard subdivision, τ is an upward travelling path with q + 1 points in

the Hasse diagram of the partial ordering. Hence let j = 1, 2, . . . , q and consider the following
three cases.

Case 1 Consider the case where rj−1 = rj , then it has to hold that sj−1 < sj .
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Case 2 Consider the case where sj−1 = sj , then it has to hold that rj−1 > rj .

Case 3 Consider the case where rj−1 6= rj and sj−1 6= sj , then it has to hold that rj−1 > rj
and sj−1 < sj .

Hence that it is clear that given a pair of numbers
(
rj , sj

)
, there always exists a number

mj ∈
{
rj−1, sj−1

}
such that mj 6= rj or mj 6= sj (including possibly both).

From this construct a set of points as follows. For all j = 1, 2, . . . , q, include the number mj

as per above in the set. By construction it is clear that this set contains q distinct points and
either rq or sq (including possibly both) is not contained in this set. Add either rq or sq to the
set such that it now contains q + 1 distinct points. As these points all come from the standard
subdivision of a simplex and hence this set of points defines a q-simplex which will be denoted
σ ∈ Kq

n.
By construction it holds that for all j = 0, 1, . . . , q, either prj or psj (including possibly both)

is a vertex of σ. Hence by Lemma 6.2.7, the support of every barycentric coordinate of τ is
contained in the support of a corresponding barycentric coordinate of σ. Considering that the
Whitney map is purely defined in terms of the barycentric coordinates, it follows that

(6.2.27)supp
(
ι∗int(τ) (Wn+1τ)

)
⊆ supp

(
ι∗int(τ) (Wnσ)

)
,

as required.

Lemma 6.2.9. For all n = 0, 1, . . ., for all q = 0, 1, . . . , N − 1 and for all τ ∈ Kq
n+1, there exists

a σ ∈ Kq
n such that

(6.2.28)ητ ,σ 6= 0 .

Proof. Let n and τ ∈ Kq
n+1 be given. Then by Lemma 6.2.8 pick a simplex σ ∈ Kq

n such that

supp
(
ι∗int(τ) (Wn+1τ)

)
⊆ supp

(
ι∗int(τ) (Wnσ)

)
. Applying Proposition 6.2.4 to σ gives

ι∗int(τ) (Wnσ) =

(
1

2

)q+1 ∑
ρ∈Kq

n+1

ηρ,σι
∗
int(τ) (Wn+1ρ)

(6.2.29)=

(
1

2

)q+1

ητ ,σι
∗
int(τ) (Wn+1τ) ,

where the last equality comes from the fact that Property 2.2.7 implies that the differential form
in the sum is zero for all simplices ρ that do not share a face with τ and the pullback annihilates
all of the remaining ρ 6= τ as there is at least one barycentric coordinate that is different between
ρ and τ .

As supp
(
ι∗int(τ) (Wn+1τ)

)
⊆ supp

(
ι∗int(τ) (Wnσ)

)
, it follows that both the left and right and

hand side are nonzero for any point p ∈ supp
(
ι∗int(τ) (Wn+1τ)

)
(which is nonempty by Defini-

tion 2.2.11) and hence ητ ,σ 6= 0 as required.

Proposition 6.2.10. For all n = 0, 1, . . ., for all q = 0, 1, . . . , N and for all τ ∈ Kq
n+1, there

exists a σ ∈ Kq
n such that

(6.2.30)ητ ,σ 6= 0 .

Proof. This result follows immediately from Lemmas 6.2.6 and 6.2.9.
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6.3 Relationship for a Cochain and Growth Rate

This section generalises the work of Section 6.2 to an arbitrary cochain as well as establishes the
growth rate of the Whitney map under standard subdivisions.

Consider c ∈ Cq (Kn+1,C) and hence

(6.3.1)Wn+1c =
∑

τ∈Kq
n+1

cτWn+1τ .

In order to apply Proposition 6.2.4, the coefficients cτ need to be decomposed into the form

(6.3.2)cτ =
∑
σ∈Kq

n

ζτ ,σητ ,σ ,

for a collection of constants ζτ ,σ. This is done as follows. For each τ ∈ Kq
n+1, select a single

σ ∈ Kq
n such that ητ ,σ 6= 0 which is always possible by Proposition 6.2.10. Hence set ζτ ,σ such

that
(6.3.3)cτ = ζτ ,σητ ,σ ,

and set
(6.3.4)ζτ ,σ′ = 0 ,

for all σ′ ∈ Kq
n \ {σ}.

Lemma 6.3.1. For all c ∈ Cq (Kn+1,C), the constants ζτ ,σ constructed in (6.3.3) and (6.3.4)
satisfy

(6.3.5)max
σ ∈Kq

n, τ∈Kq
n+1

{∣∣∣ζτ ,σ∣∣∣} ≤ ‖c‖C,∞ .
Proof. Let c ∈ Cq (Kn+1,C), let σ ∈ Kq

n and let τ ∈ Kq
n+1.

Case 1 The value of ζτ ,σ is set to 0. It is then trivially the case that

(6.3.6)
∣∣∣ζτ ,σ∣∣∣ ≤ ‖c‖C,∞ .

Case 2 The value of ζτ ,σ is set to a nonzero value. Specifically, by (6.3.3) it is set to be

(6.3.7)ζτ ,σ =
cτ
ητ ,σ

,

which is well defined as ητ ,σ 6= 0. Hence∣∣∣ζτ ,σ∣∣∣ =

∣∣∣∣∣ cτητ ,σ
∣∣∣∣∣

≤ |cτ | (by Lemma 6.2.5)
(6.3.8)≤ ‖c‖C,∞ .

Lemma 6.3.2. For all ρ ∈ KN
n+1 and for all c ∈ Cq (Kn+1,C), it holds that

(6.3.9)
(
‖Wn+1c‖ρ1

)2
≤ 22q+2

(
‖c‖C,∞

)2(∥∥∥Wn1Kq
n

∥∥∥ρ
1

)2

,

where 1Kq is the unity cochain given by Definition 2.2.4.
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Proof. Let ρ ∈ KN
n+1 and let c ∈ Cq (Kn+1,C). Then by (6.3.3) and (6.3.4) gives

Wn+1c =
∑

τ∈Kq
n+1

cτWn+1τ

(6.3.10)=
∑
σ∈Kq

n

∑
τ∈Kq

n+1

ζτ ,σητ ,σWn+1τ .

Hence

(
‖Wn+1c‖ρ1

)2
=


∥∥∥∥∥∥∥
∑
σ∈Kq

n

∑
τ∈Kq

n+1

ζτ ,σητ ,σWn+1τ

∥∥∥∥∥∥∥
ρ

1


2

≤ max
σ∈Kq

n, τ∈Kq
n+1

{∣∣∣ζτ ,σ∣∣∣2}

∥∥∥∥∥∥
∑
σ′∈Kq

n

2q+1Wnσ
′

∥∥∥∥∥∥
ρ

1


2

(by Proposition 6.2.4)

= 22q+2 max
σ∈Kq

n, τ∈Kq
n+1

{∣∣∣ζτ ,σ∣∣∣2}(∥∥∥Wn1Kq
n

∥∥∥ρ
1

)2

(6.3.11)≤ 22q+2
(
‖c‖C,∞

)2(∥∥∥Wn1Kq
n

∥∥∥ρ
1

)2

(by Lemma 6.3.1) .

Corollary 6.3.3. For all ρ ∈ KN
n and for all q = 0, 1, . . . , N , it holds that

(6.3.12)
(∥∥∥Wn1Kq

n

∥∥∥ρ
1

)2

≤ 22nq+2n

(∥∥∥W 01Kq
0

∥∥∥ρ
1

)2

.

Proof. As a result of Lemma 5.1.2, the modification of the triangulation at each subdivision step
does not change the barycentric coordinates and hence does not alter the Whitney form. Hence
the result is easily shown by induction on n applied to Lemma 6.3.2 and using the fact that
trivially

∥∥∥1Kq
n

∥∥∥
C,∞

= 1.

Proposition 6.3.4. For all ρ ∈ KN
n and for all c ∈ Cq (Kn,C), it holds that

(6.3.13)
(
‖Wnc‖ρ1

)2
≤ 22nq+2n

(
‖c‖C,2

)2(∥∥∥W 01Kq
0

∥∥∥ρ
1

)2

.

Proof. Let ρ ∈ KN
n and let c ∈ Cq (Kn,C). Then by Lemma 6.3.2 and Corollary 6.3.3(
‖Wnc‖ρ1

)2
≤ 22nq+2n

(
‖c‖C,∞

)2(∥∥∥W 01Kq
0

∥∥∥ρ
1

)2

(6.3.14)≤ 22nq+2n
(
‖c‖C,2

)2(∥∥∥W 01Kq
0

∥∥∥ρ
1

)2

.
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Commutativity Estimates

This chapter examines the interplay of the Whitney map with the twisted exterior deriva-
tive and its combinatorial counterpart. In particular estimates for the following commuta-
tors are derived, ‖Wnδac− dAWnc‖0 and

∥∥Wn(δa)
∗c− (dA)∗Wnc

∥∥
0
, as well as an estimate of∥∥Wn(δa)

∗Rnω − (dA)∗ω
∥∥
0
.

7.1 Estimate for Twisted Derivatives

An estimate on the commutativity of the exterior derivative and the Whitney map is developed
in this section. Such an estimate is required if Zahariev’s method is to be generalised to higher
degrees.

In the following results, given a c ∈ Cq (Kn,C) and σ ∈ KN
n , the norm‖Wnc‖σ1 is well defined

even though in general ‖Wnc‖1 is not defined.

Lemma 7.1.1. There exists a positive constant κ independent of n and A such that for all
c ∈ Cq (Kn,C), for all σ ∈ KN

n and for all p ∈ σ, it holds that

(7.1.1)|Wnδac− dAWnc|p ≤ κκA,0hn ‖Wnc‖σ1 ,

where κA,0 is a positive constant dependent on A given by Definition 2.3.12.

Proof. This proof is based on Zahariev’s proof of Proposition 4.3c [30]. Let c ∈ Cq (Kn,C), let
σ ∈ KN

n , let p ∈ σ, let ω = Wnc, let r > N
2 + 1 be an integer, let κ1 be the constant κ as per

Proposition 2.3.15 and let κ2 be the constant κ as per Theorem 2.3.10. Then by Proposition 2.3.2

|Wnδac− dAWnc|p = |WnδaRnω − dAWnRnω|p

≤ κ1κA,0hn

(
sup
p′∈σ
|ω|p′ + max

j=1,2,...,N
sup
p′∈σ

∣∣∣∣ ∂ω∂xj
∣∣∣∣
p′

)
(by Proposition 2.3.15)

= κ1κA,0hn

(
sup
p∈σ
|Wnc|p + max

j=1,2,...,N
sup
p∈σ

∣∣∣∣∂Wnc

∂xj

∣∣∣∣
p

)
≤ κ1κA,0hn

(
κ2‖Wnc‖σr + κ2‖Wnc‖σr

)
(by Theorem 2.3.10)

= 2κ1κ2κA,0hn‖Wnc‖σr
(7.1.2)= 2κ1κ2κA,0hn‖Wnc‖σ1 ,



56 7 Commutativity Estimates

where the last step follows from the fact thatWnc is linear on each σ. Then a simple substitution
of κ = 2κ1κ2 yields the desired result.

Lemma 7.1.2. There exists a positive constant κ independent of n and A such that for all
c ∈ Cq (Kn,C) it holds that

(7.1.3)
(
‖Wnδac− dAWnc‖0

)2 ≤ κ2 (κA,0)2 (hn)N+2
(
‖Wnc‖Kn

1

)2
.

Proof. This proof is based on Zahariev’s proof of Proposition 4.3c [30]. Let c ∈ Cq (Kn,C) and
let κ be the constant κ as per Lemma 7.1.1. Then

(
‖Wnδac− dAWnc‖0

)2
=
∑
σ∈KN

n

ˆ
σ

(
|Wnδac− dAWnc|p

)2
dVolg

≤
∑
σ∈KN

n

ˆ
σ

(
κκA,0hn‖Wnc‖σ1

)2
dVolg (by Lemma 7.1.1)

= κ2
(
κA,0

)2
(hn)2

∑
σ∈KN

n

vol (σ)
(
‖Wnc‖σ1

)2
(7.1.4)≤κ2

(
κA,0

)2
(hn)N+2

(
‖Wnc‖Kn

1

)2
(by Proposition 2.2.33) .

Lemma 7.1.3. For all r = 0, 1, . . ., for all ω ∈Wn

(
Cq (Kn,C)

)
, for all n = 0, 1, . . . and for all

j = 1, 2, . . ., it holds that
(7.1.5)‖ω‖Kn

r =‖ω‖Kn+j
r .

Proof. Let r be given, let ω ∈Wn

(
Cq (Kn,C)

)
and let n and j be given. Then by definition

(
‖ω‖Kn

r

)2
=
∑
σ∈KN

n

r∑
j=0

ˆ
σ

(∣∣∣(∇gσ)j ω
∣∣∣
gσ

)2

dVolg

=
∑
σ∈KN

n

∑
ρ∈KN

n+j

ρ⊆σ

r∑
j=0

ˆ
ρ

(∣∣∣(∇gσ)j ω
∣∣∣
gσ

)2

dVolg

=
∑

ρ∈KN
n+j

r∑
j=0

ˆ
ρ

(∣∣∣(∇gσ)j ω
∣∣∣
gσ

)2

dVolg

(7.1.6)=
(
‖ω‖Kn+j

r

)2
.

Proposition 7.1.4. There exists a positive constant κ independent of n and A such that for all
c ∈ Cq (Kn,C), it holds that

(7.1.7)‖Wnδac− dAWnc‖0 ≤ 2nq+n (βn)q+1 κκA,0‖Wnc‖0 ,

where βn is the mesh reduction parameter of (2.2.27).
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Proof. Let c ∈ Cq (Kn,C), let κ1 be the constant κ as per Lemma 7.1.2 and let 1
κ2

be the
constant κ1 as per Lemma 2.3.8. Then Lemma 7.1.2 gives

(
‖Wnδac− dAWnc‖0

)2 ≤ (κ1)
2 (κA,0)2 (hn)N+2

(
‖Wnc‖Kn

1

)2
= (κ1)

2 (κA,0)2 (hn)N+2
∑
ρ∈KN

n

(
‖Wnc‖ρ1

)2
≤ 22nq+2n (κ1)

2 (κA,0)2 (hn)N+2
(
‖c‖C,2

)2 ∑
ρ∈KN

n

(∥∥∥W 01Kq
0

∥∥∥ρ
1

)2

(by Proposition 6.3.4)

= 22nq+2n (κ1)
2 (κA,0)2 (hn)N+2

(
‖c‖C,2

)2(∥∥∥W 01Kq
0

∥∥∥Kn

1

)2

= 22nq+2n (βn)N+2 (κ1)
2 (κA,0)2 (‖c‖C,2)2 (h0)

N+2

(∥∥∥W 01Kq
0

∥∥∥K0

1

)2

(by Lemma 7.1.3)

≤ 22nq+2n (βn)N+2 (κ1)
2 (κ2)

2 (κA,0)2 (hn)2q−N
(
‖Wnc‖0

)2
(h0)

N+2

(∥∥∥W 01Kq
0

∥∥∥K0

1

)2

(by Lemma 2.3.8)

(7.1.8)= 22nq+2n (βn)2q+2 κ2
(
κA,0

)2 (‖Wnc‖0
)2
,

where κ = κ1κ2 (h0)
q+1
∥∥∥W 01Kq

0

∥∥∥K0

1
is a constant based on the initial triangulation.

Corollary 7.1.5. There exists a positive constant κ independent of n and A such that for all
c ∈ Cq (Kn,C), it holds that

(7.1.9)
∥∥Σn (c)

∥∥
0
≤ 2nq+n (βn)q+1 κκA,0‖Wnc‖0 ,

where Σn is a map on cochains given by Definition 2.4.1.

Proof. Let c ∈ Cq (Kn,C) and let κ be the constant κ as per Proposition 7.1.4. Then by
Proposition 2.3.7∥∥Σn (c)

∥∥
0

=
∥∥Wnδc+Wn (ia ∪ c)− dWnc− iA ∧Wnc

∥∥
0

=‖Wnδac− dAWnc‖0
(7.1.10)≤ 2nq+n (βn)q+1 κκA,0‖Wnc‖0 (by Proposition 7.1.4) .

Corollary 7.1.6. There exists a positive constant κ independent of n and A such that for all
c ∈ Cq (Kn,C), it holds that

(7.1.11)

(
‖Wnδac‖0
‖Wnc‖0

)2

≥

(
‖dAWnc‖0
‖Wnc‖0

)2

− 2nq+n+1 (βn)q+1 ϑ̃1n (c)κκA,0

+ 22nq+2n (βn)2q+2 (κ)2
(
κA,0

)2
.
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Proof. Let c ∈ Cq (Kn,C) and let κ be the constant κ as per Proposition 7.1.4. Then by applying
the triangle inequality to Proposition 7.1.4 gives(

‖Wnδac‖0
‖Wnc‖0

)2

≥

(
‖dAWnc‖0 − 2nq+n (βn)q+1 κκA,0‖Wnc‖0

‖Wnc‖0

)2

=

(
‖dAWnc‖0
‖Wnc‖0

)2

−
2nq+n+1 (βn)q+1 κκA,0‖dAWnc‖0

‖Wnc‖0
+ 22nq+2n (βn)2q+2 (κ)2

(
κA,0

)2
(7.1.12)=

(
‖dAWnc‖0
‖Wnc‖0

)2

− 2nq+n+1 (βn)q+1 ϑ̃1n (c)κκA,0

+ 22nq+2n (βn)2q+2 (κ)2
(
κA,0

)2
.

7.2 Expression for the Combinatorial Adjoint

This section develops an expression for the adjoint of the combinatorial twisted derivative.

Lemma 7.2.1. For all c1 ∈ Cq+1 (K,C) and for all c2 ∈ Cq (K,C), it holds that

(7.2.1)
ˆ
M

(d?Wc1) ∧Wc2 = (−1)N−q
ˆ
M

(?Wc1) ∧ dWc2 .

Proof. Let c1 ∈ Cq+1 (K,C) and let c2 ∈ Cq (K,C). Then
ˆ
M

(d?Wc1) ∧Wc2 + (−1)N−q−1
ˆ
M

(?Wc1) ∧ dWc2 =

ˆ
M
d
(
(?Wc1) ∧Wc2

)
=

ˆ
∂M

(?Wc1) ∧Wc2

(by Stokes’ Theorem)
(7.2.2)= 0 .

Lemma 7.2.2. For all c1 ∈ Cq+1 (K,C) and for all c2 ∈ Cq (K,C), it holds that

(7.2.3)
ˆ
M
Wc1 ∧ ?Wδc2 = (−1)qN+1

ˆ
M

(?d?Wc1) ∧ ?Wc2 .

Proof. Let c1 ∈ Cq+1 (K,C) and let c2 ∈ Cq (K,C) then by Proposition 2.3.7
ˆ
M
Wc1 ∧ ?Wδc2 =

ˆ
M
Wc1 ∧ ?dWc2

= (−1)(q+1)(N−q−1)
ˆ
M

(?Wc1) ∧ dWc2 (by Lemma 2.1.3)

= (−1)qN+1
ˆ
M

(d?Wc1) ∧Wc2 (by Lemma 7.2.1)

(7.2.4)= (−1)qN+1
ˆ
M

(?d?Wc1) ∧ ?Wc2

(by Lemma 2.1.3 and Theorem 2.1.2) .
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Lemma 7.2.3. For all c1 ∈ Cq+1 (K,C) and for all c2 ∈ Cq (K,C), it holds that

(7.2.5)
ˆ
M
Wc1 ∧ ?W (ia ∪ c2) = (−1)qN

ˆ
M

(
? (iA ∧ ?Wc1)

)
∧ ?Wc2 +

ˆ
M
Wc1 ∧ ?Σ (c2) .

Proof. Let c1 ∈ Cq+1 (K,C) and let c2 ∈ Cq (K,C) then by Definition 2.4.1
ˆ
M
Wc1 ∧ ?W (ia ∪ c2) =

ˆ
M
Wc1 ∧ ? (iA ∧Wc2) +

ˆ
M
Wc1 ∧ ?Σ (c2)

= (−1)(q+1)(N−q−1)
ˆ
M

(?Wc1) ∧ (iA ∧Wc2) +

ˆ
M
Wc1 ∧ ?Σ (c2)

(by Lemma 2.1.3)

= (−1)qN
ˆ
M

(iA ∧ ?Wc1) ∧Wc2 +

ˆ
M
Wc1 ∧ ?Σ (c2)

= (−1)q
ˆ
M

(iA ∧ ?Wc1) ∧ ? (?Wc2) +

ˆ
M
Wc1 ∧ ?Σ (c2)

(by Theorem 2.1.2)

= (−1)q
ˆ
M

(?Wc2) ∧ ? (iA ∧ ?Wc1) +

ˆ
M
Wc1 ∧ ?Σ (c2)

(by Lemma 2.1.3)

(7.2.6)= (−1)qN
ˆ
M

(
? (iA∧ ?Wc1)

)
∧ ?Wc2+

ˆ
M
Wc1 ∧ ?Σ (c2) .

Lemma 7.2.4. For all c1 ∈ Cq+1 (K,C) and for all c2 ∈ Cq (K,C), it holds that

(7.2.7)〈c1, δac2〉W =
〈
(dA)∗Wc1,Wc2

〉
0

+

ˆ
M
Wc1 ∧ ?Σ (c2) .

Proof. Let c1 ∈ Cq+1 (K,C) and let c2 ∈ Cq (K,C) then

〈c1, δac2〉W =

ˆ
M
Wc1 ∧ ?Wδac2

=

ˆ
M
Wc1 ∧ ?Wδc2 +

ˆ
M
Wc1 ∧ ?W (ia ∪ c2)

= (−1)qN+1
ˆ
M

(?d?Wc1) ∧ ?Wc2 + (−1)qN
ˆ
M

(
? (iA ∧ ?Wc1)

)
∧ ?Wc2

+

ˆ
M
Wc1 ∧ ?Σ (c2) (by Lemmas 7.2.2 and 7.2.3)

= (−1)qN+1 〈? (d+ iA ∧) ?Wc1,Wc2
〉
0

+

ˆ
M
Wc1 ∧ ?Σ (c2)

(7.2.8)=
〈
(dA)∗Wc1,Wc2

〉
0

+

ˆ
M
Wc1 ∧ ?Σ (c2) (by Theorem 2.1.10) .

Lemma 7.2.5. For all ω1 ∈ Ωq+1 (M,C) and for all ω2 ∈ Ωq (M,C), it holds that

(7.2.9)
〈
(dA)∗WRω1,WRω2

〉
0

=
〈
R(dA)∗ω1, Rω2

〉
W
−
〈

Θ
(
(dA)∗ω1

)
,WRω2

〉
0

+
〈
(dA)∗Θ (ω1) ,WRω2

〉
0
,

where Θ is a map on differential forms given by Definition 2.4.2.
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Proof. Let ω1 ∈ Ωq+1 (M,C) and let ω2 ∈ Ωq (M,C) then〈
(dA)∗WRω1,WRω2

〉
0

=
〈
(dA)∗ω1,WRω2

〉
0

+
〈
(dA)∗Θ (ω1) ,WRω2

〉
0

(7.2.10)=
〈
R(dA)∗ω1, Rω2

〉
W
−
〈

Θ
(
(dA)∗ω1

)
,WRω2

〉
0

+
〈
(dA)∗Θ (ω1) ,WRω2

〉
0
.

Lemma 7.2.6. For all ω1 ∈ Ωq+1 (M,C) and for all ω2 ∈ Ωq (M,C), it holds that

(7.2.11)

〈
(δa)

∗Rω1, Rω2

〉
W

=
〈
R(dA)∗ω1, Rω2

〉
W
−
〈

Θ
(
(dA)∗ω1

)
,WRω2

〉
0

+
〈
(dA)∗Θ (ω1) ,WRω2

〉
0

+

ˆ
M
WRω1 ∧ ?Σ (Rω2) .

Proof. Let ω1 ∈ Ωq+1 (M,C) and let ω2 ∈ Ωq (M,C) then by Lemma 7.2.4

〈Rω1, δaRω2〉W =
〈
(dA)∗WRω1,WRω2

〉
0

+

ˆ
M
WRω1 ∧ ?Σ (Rω2)

(7.2.12)

=
〈
R(dA)∗ω1, Rω2

〉
W
−
〈

Θ
(
(dA)∗ω1

)
,WRω2

〉
0

+
〈
(dA)∗Θ (ω1) ,WRω2

〉
0

+

ˆ
M
WRω1 ∧ ?Σ (Rω2)

(by Lemma 7.2.5) .

7.3 Bounds for the Combinatorial Adjoint

In this section, bounds for the error terms in the expression of the combinatorial adjoint are
developed.

Lemma 7.3.1. There exists a positive constant κ independent of n and A such that for all
integers r > N

2 + 1, for all ω1 ∈ Ωq+1 (M,C) and for all ω2 ∈ Ωq (M,C), if βnh0 ≤ 1 then

(7.3.1)
∣∣∣∣ˆ
M
WnRnω1 ∧ ?Σn (Rnω2)

∣∣∣∣ ≤ 2nq+n (βn)q+1 κκA,0‖ω1‖r‖WnRnω2‖0 .

Proof. Let r > N
2 + 1 be an integer, let ω1 ∈ Ωq+1 (M,C), let ω2 ∈ Ωq (M,C), let κ1 be the

constant κ as per Corollary 7.1.5 and let κ2 be the constant κ as per Corollary 2.3.11. Then∣∣∣∣ˆ
M
WnRnω1 ∧ ?Σn (Rnω2)

∣∣∣∣ =
∣∣∣〈WnRnω1,Σn (Rnω2)

〉
0

∣∣∣
≤
∣∣∣〈ω1,Σn (Rnω2)

〉
0

∣∣∣+
∣∣∣〈Θn (ω1) ,Σn (Rnω2)

〉
0

∣∣∣
≤ ‖ω1‖0

∥∥Σn (Rnω2)
∥∥
0

+
∥∥Θn (ω1)

∥∥
0

∥∥Σn (Rnω2)
∥∥
0

≤ 2nq+n (βn)q+1 κ1κA,0‖ω1‖0‖WnRnω2‖0
+ 2nq+n (βn)q+1 κ1κ2κA,0‖ω1‖r‖WnRnω2‖0

(by Corollary 2.3.11 and Corollary 7.1.5)
≤ 2nq+n (βn)q+1 κ1κA,0‖ω1‖r‖WnRnω2‖0

+ 2nq+n (βn)q+1 κ1κ2κA,0‖ω1‖r‖WnRnω1‖0
(by Lemma 2.1.8)

(7.3.2)≤ 2nq+n (βn)q+1 κκA,0‖ω1‖r‖WnRnω2‖0 ,

where κ = 2max {κ1, κ1κ2}.
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Lemma 7.3.2. For all ω ∈ Ωq (M,C) it holds that the adjoint of the Hodge star operator is
given by

(7.3.3)?∗ω = (−1)q(N−q) ?ω .

Proof. Let ω1 ∈ Ωq (M,C), ω2 ∈ ΩN−q (M,C) and u = (−1)q(N−q) ? and hence

〈uω1, ω2〉0 − 〈ω1, ?ω2〉0 = (−1)q(N−q)
ˆ
M
?ω1 ∧ ?ω2 −

ˆ
M
ω1 ∧ ??ω2

= (−1)q(N−q)
ˆ
M
?ω1 ∧ ?ω2 −

ˆ
M
?ω2 ∧ ?ω1 (by Lemma 2.1.3)

(7.3.4)= 0 .

Lemma 7.3.3. It holds that
(7.3.5)‖?‖op = 1 .

Proof. (
‖?‖op

)2
=
∥∥?∗?∥∥

op

= ‖??‖op (by Lemma 7.3.2)

= ‖Id‖op (by Theorem 2.1.2)

(7.3.6)= 1 .

The following assumption is a critical ingredient in proving Theorem 4.4.1 as previously
discussed in Section 4.5.

Assumption 7.3.4. There exists a positive constant κ independent of n such that for all integers
r > N

2 + 2 and for all ω ∈ Ωq (M,C) it holds that

(7.3.7)
∥∥d? (WnRnω − ω)

∥∥
0
≤ κhn‖ω‖r .

The following lemma may be of use in proving Assumption 7.3.4.

Lemma 7.3.5. There exists a positive constant κ independent of n such that for all integers
r > N

2 + 1 and for all ω ∈ Ωq (M,C) it holds that

(7.3.8)‖?WnRnω −WnRn?ω‖0 ≤ κhn
(
‖ω‖r + ‖?ω‖r

)
.

Proof. Let r > N
2 + 1 be an integer, let ω ∈ Ωq (M,C), let r > N

2 + 1 be an integer and let κ be
the constant κ as per Corollary 2.3.11. Then by Lemma 7.3.3

‖?WnRnω −WnRn?ω‖0 ≤ ‖WnRnω − ω‖0 + ‖WnRn?ω − ?ω‖0
(7.3.9)≤ κhn

(
‖ω‖r + ‖?ω‖r

)
(by Corollary 2.3.11) .

Lemma 7.3.6. There exists a positive constant κ independent of n and A such that for all
integers r > N

2 + 2 and for all ω ∈ Ωq (M,C), if Assumption 7.3.4 holds then

(7.3.10)
∥∥(dA)∗Θn (ω)

∥∥
0
≤ κκA,0hn‖ω‖r .
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Proof. Let r > N
2 + 2 be an integer, let ω ∈ Ωq (M,C), let κ1 be the constant κ as per

Corollary 2.3.11 and let κ2 be the constant κ as per Assumption 7.3.4. Then by Theorem 2.1.10
and Lemma 7.3.3∥∥(dA)∗Θn (ω)

∥∥
0
≤
∥∥(d+ iA ∧) ?Θn (ω)

∥∥
0

≤
∥∥d?Θn (ω)

∥∥
0

+ κA,0
∥∥Θn (ω)

∥∥
0

≤
∥∥d? (WnRnω − ω)

∥∥
0

+ κ1κA,0hn‖ω‖r (by Corollary 2.3.11)
(7.3.11)≤ κκA,0hn‖ω‖r (by Assumption 7.3.4) ,

where κ = 2max {κ1, κ2}.

Lemma 7.3.7. There exists a positive constant κ independent of n and A such that for all
integers r > N

2 + 2, for all ω1 ∈ Ωq+1 (M,C) and for all ω2 ∈ Ωq (M,C), if Assumption 7.3.4
holds and hn ≤ 1 then

(7.3.12)
∣∣∣〈(dA)∗Θn (ω1) ,WnRnω2

〉
0

∣∣∣ ≤ κκA,0hn‖ω1‖r‖ω2‖r .

Proof. Let r > N
2 + 2 be an integer, let ω1 ∈ Ωq+1 (M,C), let ω2 ∈ Ωq (M,C), let κ1 be the

constant κ as per Lemma 7.3.6 and let κ2 be the constant κ as per Corollary 2.3.11. Then∣∣∣〈(dA)∗Θn (ω1) ,WnRnω2

〉
0

∣∣∣ ≤ ∥∥(dA)∗Θn (ω1)
∥∥
0

∥∥ω2 + Θn (ω2)
∥∥
0

≤ κ1κA,0hn‖ω1‖r‖ω2‖0 + κ1κA,0hn‖ω1‖r
∥∥Θn (ω2)

∥∥
0

(by Lemma 7.3.6)
≤ κ1κA,0hn‖ω1‖r‖ω2‖0 + κ1κ2κA,0hn‖ω1‖r‖ω2‖r

(by Corollary 2.3.11)
(7.3.13)≤ κκA,0hn‖ω1‖r‖ω2‖r (by Lemma 2.1.8) ,

where κ = 2max {κ1, κ1κ2}

Lemma 7.3.8. There exists a positive constant κ independent of n and A such that for all
integers r > N

2 + 1, for all ω1 ∈ Ωq+1 (M,C) and for all ω2 ∈ Ωq (M,C), if hn ≤ 1 then

(7.3.14)
∣∣∣∣〈Θn

(
(dA)∗ω1

)
,WnRnω2

〉
0

∣∣∣∣ ≤ κhn∥∥(dA)∗ω1

∥∥
r
‖ω2‖r .

Proof. Let r > N
2 + 1 be an integer, let ω1 ∈ Ωq+1 (M,C), let ω2 ∈ Ωq (M,C) and let κ̂ be the

constant κ as per Corollary 2.3.11. Then∣∣∣∣〈Θn

(
(dA)∗ω1

)
,WnRnω2

〉
0

∣∣∣∣ ≤ ∥∥∥Θn

(
(dA)∗ω1

)∥∥∥
0
‖ω2‖0 +

∥∥∥Θn

(
(dA)∗ω1

)∥∥∥
0

∥∥Θn (ω2)
∥∥
0

≤ κ̂hn
∥∥(dA)∗ω1

∥∥
r
‖ω2‖0 + (κ̂)2 hn

∥∥(dA)∗ω1

∥∥
r
‖ω2‖r

(by Corollary 2.3.11)
(7.3.15)≤ κhn

∥∥(dA)∗ω1

∥∥
r
‖ω2‖r (by Lemma 2.1.8) ,

where κ = 2max
{
κ̂, (κ̂)2

}
.
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7.4 Estimates for the Adjoints of Twisted Derivatives

Two estimates, Propositions 7.4.8 and 7.4.10, on the commutativity of the adjoint of the exterior
derivative and the Whitney map are developed in this section.

Lemma 7.4.1. There exists a positive constant κ independent of A such that for all integers
r ≥ 0, for all ω ∈ Ωq (M,C) it holds that

(7.4.1)
∥∥(dA)∗ω

∥∥
r
≤ κκA,r‖ω‖r+1 .

Proof. As M is compact and (dA)∗ is a first order differential operator, it can be shown that the
operator defines a bounded map from Hqr (M,C) to Hqr+1 (M,C).

Lemma 7.4.2. There exists a positive constant κ independent of n and A such that for all
integers r > N

2 + 2 and for all ω ∈ Ωq (M,C), if Assumption 7.3.4 holds and βnh0 ≤ 1 then(∥∥(δa)
∗Rnω −Rn(dA)∗ω

∥∥
W

)2
≤ κ

(
κA,r

)2
βn‖ω‖r‖Pnω‖r + 2nq (βn)q κκA,r‖ω‖r‖WnRnPnω‖0 ,

(7.4.2)

where P qn : Ωq+1 (M,C)→ Ωq (M,C) is given by Definition 2.3.6.

Proof. Let r > N
2 + 2 be an integer, let ω ∈ Ωq (M,C), let r′ = r − 1, let κ1 be the constant κ

as per Lemma 7.3.8, let κ2 be the constant κ as per Lemma 7.3.7 and let κ3 be the constant κ
as per Lemma 7.3.1. Then as Rn(Rn)−1 = Id, it follows that(∥∥(δa)

∗Rnω −Rn(dA)∗ω
∥∥
W

)2
=
〈
(δa)

∗Rnω,RnPnω
〉
W
−
〈
Rn(dA)∗ω,RnPnω

〉
W

=
〈
(dA)∗Θn (ω) ,WnRnPnω

〉
0
−
〈

Θn

(
(dA)∗ω

)
,WnRnPnω

〉
0

+

ˆ
M
WnRnω ∧ ?Σn (RnPnω) (by Lemma 7.2.6)

≤ κ1hn
∥∥(dA)∗ω

∥∥
r′
‖Pnω‖r′ + κ2κA,0hn‖ω‖r‖Pnω‖r

+ 2nq (βn)q κ3κA,0‖ω‖r′‖WnRnPnω‖0
(by Lemmas 7.3.1, 7.3.7 and 7.3.8)

≤ κ1κ3κA,rhn‖ω‖r‖Pnω‖r′ + κ2κA,0hn‖ω‖r‖Pnω‖r
+ 2nq (βn)q κ3κA,0‖ω‖r′‖WnRnPnω‖0 (by Lemma 7.4.1)

≤ κ
(
κA,r

)2
βn‖ω‖r‖Pnω‖r + 2nq (βn)q κκA,r‖ω‖r‖WnRnPnω‖0

(by Lemmas 2.1.8 and 2.3.13) , (7.4.3)

where κ = max {κ1κ3h0 + κ2h0, κ3}.

Lemma 7.4.3. For all n = 0, 1, . . ., and for all q = 0, 1, . . . , N it holds that

(7.4.4)βn ≤ 2nq (βn)q .

Proof. Let n and q be given. Then by Corollary 2.2.26

2nq (βn)q ≥ 1

(7.4.5)≥ βn .
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Corollary 7.4.4. For all n = 0, 1, . . ., and for all q = 0, 1, . . . , N it holds that

(7.4.6)βn ≤ 2
nq
2 (βn)

q
2 .

Proof. This result follows immediately as βn ≤ 1 and hence βn ≤ (βn)
1
2 .

Lemma 7.4.5. There exists a positive constant κ independent of n and A such that for all
integers r > N

2 + 1 and for all ω ∈ Ωq (M,C), if βnh0 ≤ 1 then(
κA,0

)2
βn‖ω‖r‖Pnω‖r + 2nq (βn)q κA,0‖ω‖r‖WnRnPnω‖0 ≤ 2nq (βn)q κ

(
κA,0

)2 ‖ω‖r‖Pnω‖r .
(7.4.7)

Proof. Let r > N
2 + 1 be an integer, let ω ∈ Ωq (M,C) and let κ̂ be the constant κ as per

Corollary 2.3.11. Then by Lemma 7.4.3 and as κA,0 ≥ 1(
κA,0

)2
βn‖ω‖r‖Pnω‖r + 2nq (βn)q κA,0‖ω‖r‖WnRnPnω‖0

≤ 2nq (βn)q
(
κA,0

)2 ‖ω‖r (‖Pnω‖r +‖RnPnω‖W
)

≤ 2nq (βn)q
(
κA,0

)2 ‖ω‖r (‖Pnω‖r + ‖Pnω‖0 +
∥∥Θn (Pnω)

∥∥
0

)
≤ 2nq (βn)q

(
κA,0

)2 ‖ω‖r (‖Pnω‖r + ‖Pnω‖0 + κ̂hn‖Pnω‖r
)

(by Corollary 2.3.11)

(7.4.8)≤ 2nq (βn)q κ
(
κA,0

)2 ‖ω‖r‖Pnω‖r (by Lemma 2.1.8) ,

where κ = 2 + κ̂.

Corollary 7.4.6. There exists a positive constant κ independent of n and A such that for all
integers r > N

2 + 1 and for all ω ∈ Ωq (M,C), if βnh0 ≤ 1 then

(7.4.9)
κA,0

(
βn‖ω‖r‖Pnω‖r + 2nq (βn)q ‖ω‖r‖WnRnPnω‖0

) 1
2 + βn

∥∥(dA)∗ω
∥∥
0

≤ 2
nq
2 (βn)

q
2 κκA,0

(∥∥(dA)∗ω
∥∥
0

+
(
‖ω‖r‖Pnω‖r

) 1
2

)
.

Proof. Let r > N
2 + 1 be an integer, let ω ∈ Ωq (M,C) and let κ̂ be the constant κ as per

Lemma 7.4.5. Then by Lemma 7.4.5

κA,0
(
βn‖ω‖r‖Pnω‖r + 2nq (βn)q ‖ω‖r‖WnRnPnω‖0

) 1
2 + βn

∥∥(dA)∗ω
∥∥
0

≤ 2
nq
2 (βn)

q
2

√
κ̂κA,0

(
‖ω‖r‖Pnω‖r

) 1
2 + βn

∥∥(dA)∗ω
∥∥
0

(7.4.10)≤ 2
nq
2 (βn)

q
2 κκA,0

(∥∥(dA)∗ω
∥∥
0

+
(
‖ω‖r‖Pnω‖r

) 1
2

)
(by Corollary 7.4.4) ,

where κ = max
{

1,
√
κ̂
}
.

Corollary 7.4.7. There exists a positive constant κ independent of n and A such that for all
integers r > N

2 + 1 and for all ω ∈ Ωq (M,C), if βnh0 ≤ 1 then

(7.4.11)
κA,0

(
βn‖ω‖r‖Pnω‖r + 2nq (βn)q ‖ω‖r‖WnRnPnω‖0

) 1
2 +

(
κA,0

)2
βn‖ω‖r

≤ 2
nq
2 (βn)

q
2 κ
(
κA,0

)2(‖ω‖r +
(
‖ω‖r‖Pnω‖r

) 1
2

)
.
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Proof. This follows from Lemma 7.4.5 and Corollary 7.4.4 in the same way as Corollary 7.4.6.

Proposition 7.4.8. There exists a positive constant κ independent of n and A such that for all
integers r > N

2 + 2 and for all ω ∈ Ωq (M,C), if Assumption 7.3.4 holds and βnh0 ≤ 1 then

(7.4.12)
∥∥Wn(δa)

∗Rnω − (dA)∗ω
∥∥
0
≤ κκA,r

(
βn‖ω‖r‖Pnω‖r + 2nq (βn)q ‖ω‖r‖WnRnPnω‖0

) 1
2

+ κβn
∥∥(dA)∗ω

∥∥
0
.

Proof. Let r > N
2 + 2 be an integer, let ω ∈ Ωq (M,C), let κ1 be the constant κ as per

Corollary 2.3.11 and let κ2 be the constant κ as per Lemma 7.4.2. Then∥∥(δa)
∗Rnω −Rn(dA)∗ω

∥∥
W

=
∥∥∥Wn(δa)

∗Rnω − (dA)∗ω −Θn

(
(dA)∗ω

)∥∥∥
0

(7.4.13)≥
∥∥Wn(δa)

∗Rnω − (dA)∗ω
∥∥
0
−
∥∥∥Θn

(
(dA)∗ω

)∥∥∥
0
.

Hence by Corollary 2.3.11∥∥Wn(δa)
∗Rnω − (dA)∗ω

∥∥
0
≤
∥∥(δa)

∗Rnω −Rn(dA)∗ω
∥∥
W

+ κ1hn
∥∥(dA)∗ω

∥∥
0

≤
√
κ2κA,r

(
βn‖ω‖r‖Pnω‖r + 2nq (βn)q ‖ω‖r‖WnRnPnω‖0

) 1
2

+ κ1βnh0
∥∥(dA)∗ω

∥∥
0

(by Lemma 7.4.2)

(7.4.14)≤ κκA,r
(
βn‖ω‖r‖Pnω‖r + 2nq (βn)q ‖ω‖r‖WnRnPnω‖0

) 1
2

+ κβn
∥∥(dA)∗ω

∥∥
0
,

where κ = max
{
κ1h0,

√
κ2
}
.

Corollary 7.4.9. There exists a positive constant κ independent of n and A such that for all
integers r > N

2 + 2 and for all ω ∈ Ωq (M,C), if Assumption 7.3.4 holds and βnh0 ≤ 1 then

(7.4.15)
∥∥Wn(δa)

∗Rnω − (dA)∗ω
∥∥
0
≤ 2

nq
2 (βn)

q
2 κκA,r

(∥∥(dA)∗ω
∥∥
0

+
(
‖ω‖r‖Pnω‖r

) 1
2

)
.

Proof. This result follows immediately from Proposition 7.4.8 by Corollary 7.4.6.

Proposition 7.4.10. There exists a positive constant κ independent of n and A such that for
all integers r > N

2 + 2 and for all c ∈ Cq (Kn,C), if Assumption 7.3.4 holds and βnh0 ≤ 1 then∥∥Wn(δa)
∗c− (dA)∗Wnc

∥∥
0

≤ κκA,r
(
βn

∥∥∥(Rn)−1c
∥∥∥
r

∥∥∥Pn(Rn)−1c
∥∥∥
r

+ 2nq (βn)q
∥∥∥(Rn)−1c

∥∥∥
r

∥∥∥WnRnPn(Rn)−1c
∥∥∥
0

) 1
2

+ κ
(
κA,r

)2
βn

∥∥∥(Rn)−1c
∥∥∥
r
.

(7.4.16)

Proof. Let r > N
2 + 2 be an integer, let c ∈ Cq (Kn,C), let κ1 be the constant κ as per

Proposition 7.4.8, let κ2 be the constant κ as per Lemma 7.3.6 and let κ3 be the constant κ as
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per Lemma 7.4.1. As Rn(Rn)−1c = c, it follows that (Rn)−1c = Wnc−Θn

(
(Rn)−1c

)
. Hence

by Proposition 7.4.8, with ω = (Rn)−1c

∥∥Wn(δa)
∗c− (dA)∗Wnc

∥∥
0
−
∥∥∥∥(dA)∗Θn

(
(Rn)−1c

)∥∥∥∥
0

≤ κ1
((
κA,r

)2
βn

∥∥∥(Rn)−1c
∥∥∥
r

∥∥∥Pn(Rn)−1c
∥∥∥
r

+ 2nq (βn)q κA,r

∥∥∥(Rn)−1c
∥∥∥
r

∥∥∥WnRnPn(Rn)−1c
∥∥∥
0

) 1
2

+ κ1βn

∥∥∥(dA)∗(Rn)−1c
∥∥∥
0
.

(7.4.17)

Therefore by Lemma 7.3.6 it follows that∥∥Wn(δa)
∗c− (dA)∗Wnc

∥∥
0

≤ κ1κA,r
(
βn

∥∥∥(Rn)−1c
∥∥∥
r

∥∥∥Pn(Rn)−1c
∥∥∥
r

+ 2nq (βn)q
∥∥∥(Rn)−1c

∥∥∥
r

∥∥∥WnRnPn(Rn)−1c
∥∥∥
0

) 1
2

+ κ1βn

∥∥∥(dA)∗(Rn)−1c
∥∥∥
0

+ κ2κA,rhn

∥∥∥(Rn)−1c
∥∥∥
r

≤ κκA,r
(
βn

∥∥∥(Rn)−1c
∥∥∥
r

∥∥∥Pn(Rn)−1c
∥∥∥
r

+ 2nq (βn)q
∥∥∥(Rn)−1c

∥∥∥
r

∥∥∥WnRnPn(Rn)−1c
∥∥∥
0

) 1
2

+ κκA,rβn

∥∥∥(Rn)−1c
∥∥∥
r

(by Lemmas 2.1.8 and 7.4.1) , (7.4.18)

where κ = max {κ1, κ1κ3 + κ2h0}.

Corollary 7.4.11. There exists a positive constant κ independent of n and A such that for all
integers r > N

2 + 2 and for all c ∈ Cq (Kn,C), if Assumption 7.3.4 holds and βnh0 ≤ 1 then

(7.4.19)

∥∥Wn(δa)
∗c− (dA)∗Wnc

∥∥
0

≤ 2
nq
2 (βn)

q
2 κ
(
κA,r

)2∥∥∥(Rn)−1c
∥∥∥
r

+

(∥∥∥(Rn)−1c
∥∥∥
r

∥∥∥Pn(Rn)−1c
∥∥∥
r

) 1
2

 .

Proof. This result follows immediately from Proposition 7.4.10 by Corollary 7.4.7.

Corollary 7.4.12. There exists a positive constant κ independent of n and A such that for all
integers r > N

2 + 2 and for all c ∈ Cq (Kn,C), if Assumption 7.3.4 holds and βnh0 ≤ 1 then

(∥∥Wn(δa)
∗c
∥∥
0

‖Wnc‖0

)2

≥

(∥∥(dA)∗Wnc
∥∥
0

‖Wnc‖0

)2

−2
nq
2
+1 (βn)

q
2 ϑ̃2n (c)κ

(
κA,r

)2
+2nq (βn)q ϑ̃3nκ

2
(
κA,r

)4
,

(7.4.20)

where ϑ̃2n and ϑ̃3n depend on r.
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Proof. Let r > N
2 + 2 be an integer, let c ∈ Cq (Kn,C) then by applying the triangle inequality

to Corollary 7.4.11 gives the following for some positive constant κ(∥∥Wn(δa)
∗c
∥∥
0

‖Wnc‖0

)2

≥


∥∥(dA)∗Wnc

∥∥
0
− 2

nq
2 (βn)

q
2 κ
(
κA,r

)2(∥∥∥(Rn)−1c
∥∥∥
r

+
(∥∥∥(Rn)−1c

∥∥∥
r

∥∥∥Pn(Rn)−1c
∥∥∥
r

) 1
2

)
‖Wnc‖0


2

=

(∥∥(dA)∗Wnc
∥∥
0

‖Wnc‖0

)2

−

2
nq
2
+1 (βn)

q
2 κ
(
κA,r

)2 ∥∥(dA)∗Wnc
∥∥
0

∥∥∥(Rn)−1c
∥∥∥
r

+

(∥∥∥(Rn)−1c
∥∥∥
r

∥∥∥Pn(Rn)−1c
∥∥∥
r

) 1
2


(
‖Wnc‖0

)2

+

2nq (βn)q κ2
(
κA,r

)4∥∥∥(Rn)−1c
∥∥∥
r

+

(∥∥∥(Rn)−1c
∥∥∥
r

∥∥∥Pn(Rn)−1c
∥∥∥
r

) 1
2

2

(
‖Wnc‖0

)2
(7.4.21)=

(∥∥(dA)∗Wnc
∥∥
0

‖Wnc‖0

)2

− 2
nq
2
+1 (βn)

q
2 ϑ̃2n (c)κ

(
κA,r

)2
+ 2nq (βn)q ϑ̃3nκ

2
(
κA,r

)4
.
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CHAPTER

1826 1866 GEORG RIEMANN (German)

Lower Bound

This chapter establishes a large chain of technical estimates required for the lower bound
(Theorem 4.4.1), first in the non-adjoint setting (Corollary 8.1.15) and then in the adjoint setting
(Corollary 8.2.7) after which the lower bound is proved.

8.1 Estimate for Twisted Derivatives

Initially, for ω ∈ Ωq (M,C), an estimate for

(8.1.1)

∣∣∣∣∣〈WδaRω,WδaRω〉0
〈WRω,WRω〉0

−
〈dAω, dAω〉0
〈ω, ω〉0

∣∣∣∣∣
is derived depending on ω. Subsequently, it is shown that this bound can be made independent
of ω.

8.1.1 Estimate Dependent on Differential Form

Lemma 8.1.1. For all ω ∈ Ωq (M,C) let v = WδaRω − dAω. Then

(8.1.2)〈WδaRω,WδaRω〉0 = 〈dAω, dAω〉0 + 〈v, v〉0 + 2Re
(
〈v, dAω〉0

)
.

Proof. Let ω ∈ Ωq (M,C) and let v = WδaRω − dAω then

〈WδaRω,WδaRω〉0 = 〈dAω + v, dAω + v〉0
= 〈dAω, dAω〉0 + 〈v, v〉0 + 〈v, dAω〉0 + 〈dAω, v〉0

(8.1.3)= 〈dAω, dAω〉0 + 〈v, v〉0 + 2Re
(
〈v, dAω〉0

)
.

Lemma 8.1.2. For all ω ∈ Ωq (M,C) \ {0} let v = WδaRω − dAω then

(8.1.4)

∣∣∣∣∣〈WδaRω,WδaRω〉0
〈WRω,WRω〉0

−
〈dAω, dAω〉0
〈ω, ω〉0

∣∣∣∣∣ ≤ (‖dAω‖0)2
∣∣∣(‖WRω‖0

)2 − (‖ω‖0)2∣∣∣(
‖WRω‖0

)2 (‖ω‖0)2
+ ‖v‖0

2‖dAω‖0 + ‖v‖0(
‖WRω‖0

)2
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Proof. Let ω ∈ Ωq (M,C) \ {0} and let v = WδaRω − dAω. Then by Lemma 8.1.1∣∣∣∣∣〈WδaRω,WδaRω〉0
〈WRω,WRω〉0

−
〈dAω, dAω〉0
〈ω, ω〉0

∣∣∣∣∣
=

∣∣∣∣∣〈dAω, dAω〉0 + 〈v, v〉0 + 2Re
(
〈v, dAω〉0

)
〈WRω,WRω〉0

−
〈dAω, dAω〉0
〈ω, ω〉0

∣∣∣∣∣
≤

∣∣∣∣∣∣
(
‖dAω‖0

)2(
‖WRω‖0

)2 −
(
‖dAω‖0

)2(
‖ω‖0

)2
∣∣∣∣∣∣+

∣∣∣∣∣∣
(
‖v‖0

)2
+ 2Re

(
〈v, dAω〉0

)(
‖WRω‖0

)2
∣∣∣∣∣∣

≤
(
‖dAω‖0

)2 ∣∣∣(‖WRω‖0
)2 − (‖ω‖0)2∣∣∣(

‖WRω‖0
)2 (‖ω‖0)2 +

∣∣∣∣∣∣
(
‖v‖0

)2
+ 2Re

(
〈v, dAω〉0

)(
‖WRω‖0

)2
∣∣∣∣∣∣

(8.1.5)≤
(
‖dAω‖0

)2 ∣∣∣(‖WRω‖0
)2 − (‖ω‖0)2∣∣∣(

‖WRω‖0
)2 (‖ω‖0)2 +‖v‖0

2‖dAω‖0 + ‖v‖0(
‖WRω‖0

)2 .

Lemma 8.1.3. There exists a positive constant κ independent of n such that for all integers
r > N

2 + 1 and for all ω ∈ Ωq (M,C) it holds that

(8.1.6)
(
‖WnRnω‖0

)2 ≥ (‖ω‖0)2 − 2κhn‖ω‖0‖ω‖r .

Proof. Let r > N
2 + 1 be an integer and let ω ∈ Ωq (M,C). Then by Corollary 2.3.11 for some

positive constant κ
κhn‖ω‖r ≥ ‖WnRnω − ω‖0

(8.1.7)≥ ‖ω‖0 − ‖WnRnω‖0 .

Hence
(8.1.8)‖WnRnω‖0 ≥ ‖ω‖0 − κhn‖ω‖r ,

and therefore (
‖WnRnω‖0

)2 ≥ (‖ω‖0 − κhn‖ω‖r
)2

=
(
‖ω‖0

)2 − 2κhn‖ω‖0‖ω‖r + κ2 (hn)2
(
‖ω‖r

)2
(8.1.9)≥

(
‖ω‖0

)2 − 2κhn‖ω‖0‖ω‖r .

The later lemmas frequently require an upper bound on the size of hn which allows the
following lemmas to be applied.

Lemma 8.1.4. For all integers r > N
2 + 1 and for all ω ∈ Ωq (M,C) \ {0}, if

(8.1.10)hn ≤
‖ω‖0

4κ‖ω‖r
,

where κ is defined as per Lemma 8.1.3, then

(8.1.11)
(
‖WnRnω‖0

)2 ≥ 1

2

(
‖ω‖0

)2
.
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Proof. Let r > N
2 + 1 be an integer and let ω ∈ Ωq (M,C) \ {0}. Then by the hypothesis

(8.1.12)2κhn‖ω‖r ≤
1

2
‖ω‖0 .

Lemma 8.1.3 gives(
‖WnRnω‖0

)2 ≥ (‖ω‖0)2 − 2κhn‖ω‖0‖ω‖r

(8.1.13)≥ 1

2

(
‖ω‖0

)2 (by (8.1.12)) .

Lemma 8.1.5. For all integers r > N
2 + 1 and for all ω ∈ Ωq (M,C) \ {0}, if

(8.1.14)hn ≤
‖dAω‖0

κκA,0
(
‖ω‖r + ‖dω‖r

) ,
where κ is defined as per Proposition 2.3.16, then

(8.1.15)‖WnδaRnω − dAω‖0 ≤‖dAω‖0 .

Proof. Let r > N
2 + 1 be an integer and let ω ∈ Ωq (M,C) \ {0}. Then by the hypothesis

(8.1.16)κκA,0hn
(
‖ω‖r + ‖dω‖r

)
≤‖dAω‖0 .

Proposition 2.3.16 gives

‖WnδaRnω − dAω‖0 ≤ κκA,0hn
(
‖ω‖r + ‖dω‖r

)
(8.1.17)≤‖dAω‖0 (by (8.1.16)) .

Lemma 8.1.6. For all ω ∈ Ωq (M,C) \ {0} it holds that

(8.1.18)‖dAω‖0 ≤ κA,0
(
‖dω‖0 + ‖ω‖0

)
.

Proof. Let ω ∈ Ωq (M,C) \ {0}. Then

‖dAω‖0 ≤ ‖dω‖0 + ‖iA ∧‖op‖ω‖0
(8.1.19)≤ κA,0

(
‖dω‖0 + ‖ω‖0

)
.

Lemma 8.1.7. There exists a positive constant κ independent of n and A such that for all
integers r > N

2 + 1 and for all ω ∈ Ωq (M,C) \ {0}, if κ̂ = max {κ1, κ2} where κ1 is defined to be
the constant κ in Proposition 2.3.16 and κ2 is defined to be the constant κ in Lemma 8.1.3, and

(8.1.20)hn ≤ min

{
‖dAω‖0

κ̂κA,0
(
‖ω‖r + ‖dω‖r

) , ‖ω‖0
4κ̂‖ω‖r

}
,

then
(8.1.21)‖v‖0

2‖dAω‖0 + ‖v‖0(
‖WnRnω‖0

)2 ≤ 6κ
(
κA,0

)2
hn
(
‖ω‖r + ‖dω‖r

) ‖dω‖0 + ‖ω‖0(
‖ω‖0

)2 ,

where v = WnδaRnω − dAω.
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Proof. Let r > N
2 + 1 be an integer, let ω ∈ Ωq (M,C) \ {0}, let κ be the constant κ as per

Proposition 2.3.16 and let v = WδaRω − dAω. Then by Lemma 8.1.5

‖v‖0
2‖dAω‖0 + ‖v‖0(
‖WnRnω‖0

)2 ≤ 3‖v‖0
‖dAω‖0(

‖WnRnω‖0
)2

≤ 6‖v‖0
‖dAω‖0(
‖ω‖0

)2 (by Lemma 8.1.4)

≤ 6κA,0‖v‖0
‖dω‖0 + ‖ω‖0(
‖ω‖0

)2 (by Lemma 8.1.6)

(8.1.22)≤ 6κ
(
κA,0

)2
hn
(
‖ω‖r + ‖dω‖r

) ‖dω‖0 + ‖ω‖0(
‖ω‖0

)2
(by Proposition 2.3.16) .

Lemma 8.1.8. There exists a positive constant κ independent of n such that for all integers
r > N

2 + 1 and for all ω ∈ Ωq (M,C), if hn ≤ 1 then

(8.1.23)
∣∣∣(‖WnRnω‖0

)2 − (‖ω‖0)2∣∣∣ ≤ κhn (‖ω‖r)2 .
Proof. Let r > N

2 + 1 be an integer, let ω ∈ Ωq (M,C) \ {0} and let κ̂ be the constant κ as per
Corollary 2.3.11. Then by bilinearity of the inner product∣∣∣(‖WnRnω‖0

)2 − (‖ω‖0)2∣∣∣ =
∣∣∣(‖WnRnω − ω‖0

)2
+ 2Re

(
〈WnRnω − ω, ω〉0

)∣∣∣
≤
(
‖WnRnω − ω‖0

)2
+ 2‖WnRnω − ω‖0‖ω‖0

≤
(
κ̂hn‖ω‖r

)2
+ 2κ̂hn‖ω‖0‖ω‖r (by Corollary 2.3.11)

≤ hn
(
κ̂2
(
‖ω‖r

)2
+ 2κ̂‖ω‖0‖ω‖r

)
≤ hn

(
κ̂2
(
‖ω‖r

)2
+ 2κ̂

(
‖ω‖r

)2) (by Lemma 2.1.8)

(8.1.24)= κhn
(
‖ω‖r

)2
,

where κ = κ̂2 + 2κ̂.

Lemma 8.1.9. For all integers r > N
2 + 1 and for all ω ∈ Ωq (M,C) \ {0}, if κ is defined as per

Lemma 8.1.3 and

(8.1.25)hn ≤ min

{
1,
‖ω‖0

4κ‖ω‖r

}
,

then

(8.1.26)
(
‖dAω‖0

)2 ∣∣∣(‖WnRnω‖0
)2 − (‖ω‖0)2∣∣∣(

‖WnRnω‖0
)2 (‖ω‖0)2 ≤ 2κ

(
κA,0

)2
hn
(
‖ω‖r

)2‖dω‖0 + ‖ω‖0(
‖ω‖0

)2
2

.
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Proof. Let r > N
2 + 1 be an integer and let ω ∈ Ωq (M,C) \ {0}. Then by Lemma 8.1.8

(
‖dAω‖0

)2 ∣∣∣(‖WnRnω‖0
)2 − (‖ω‖0)2∣∣∣(

‖WnRnω‖0
)2 (‖ω‖0)2 ≤

(
‖dAω‖0

)2 κhn
(
‖ω‖r

)2(
‖WnRnω‖0

)2 (‖ω‖0)2
≤ 2κhn

(
‖ω‖r

)2 ‖dAω‖0(
‖ω‖0

)2
2

(by Lemma 8.1.4)

(8.1.27)≤ 2κ
(
κA,0

)2
hn
(
‖ω‖r

)2‖dω‖0 + ‖ω‖0(
‖ω‖0

)2
2

(by Lemma 8.1.6) .

Proposition 8.1.10. There exists a positive constant κ independent of n and A such that for
all integers r > N

2 + 1 and for all ω ∈ Ωq (M,C) \ {0}, if κ̂ = max {κ1, κ2} where κ1 is defined
to be the constant κ in Proposition 2.3.16 and κ2 is defined to be the constant κ in Lemma 8.1.3,
and

(8.1.28)hn ≤ min

{
1,

‖dAω‖0
κ̂κA,0

(
‖ω‖r + ‖dω‖r

) , ‖ω‖0
4κ̂‖ω‖r

}
,

then∣∣∣∣∣〈WnδaRnω,WnδaRnω〉0
〈WnRnω,WnRnω〉0

−
〈dAω, dAω〉0
〈ω, ω〉0

∣∣∣∣∣ ≤ κ (κA,0)2 hn
(
‖dω‖r + ‖ω‖r
‖ω‖0

)2
(‖ω‖r
‖ω‖0

)2

+ 1

 .

(8.1.29)

Proof. Let r > N
2 + 1 be an integer, let ω ∈ Ωq (M,C) \ {0}, let κ1 be the constant κ as per

Lemma 8.1.3 and let κ2 be the constant κ as per Lemma 8.1.7 and let v = WnδaRnω − dAω.
Then by Lemma 8.1.2∣∣∣∣∣〈WnδaRnω,WnδaRnω〉0
〈WnRnω,WnRnω〉0

−
〈dAω, dAω〉0
〈ω, ω〉0

∣∣∣∣∣ ≤ (‖dAω‖0)2
∣∣∣(‖WnRnω‖0

)2 − (‖ω‖0)2∣∣∣(
‖WnRnω‖0

)2 (‖ω‖0)2
+ ‖v‖0

2‖dAω‖0 + ‖v‖0(
‖WnRnω‖0

)2
≤ 2κ1

(
κA,0

)2
hn
(
‖ω‖r

)2‖dω‖0 + ‖ω‖0(
‖ω‖0

)2
2

+ 6κ2
(
κA,0

)2
hn
(
‖ω‖r + ‖dω‖r

) ‖dω‖0 + ‖ω‖0(
‖ω‖0

)2
(by Lemmas 8.1.7 and 8.1.9)

≤ κ
(
κA,0

)2
hn
‖dω‖0 + ‖ω‖0(
‖ω‖0

)2
(‖ω‖r)2 ‖dω‖0 + ‖ω‖0(

‖ω‖0
)2 + ‖ω‖r + ‖dω‖r


(where κ = max {2κ1, 6κ2})

≤ κ
(
κA,0

)2
hn

(
‖dω‖r + ‖ω‖r
‖ω‖0

)2
(‖ω‖r
‖ω‖0

)2

+ 1

 (by Lemma 2.1.8) . (8.1.30)



74 8 Lower Bound

8.1.2 Estimate Independent of Differential Form

By Theorem 2.1.12, there exists a Hilbert basis of Hq0 (M,C) of eigenforms of ∆A.

Chapter Definition 8.1.11. Fix such a Hilbert basis
{
$q
j

}∞
j=1

such that $q
j is an eigenform

of λqj .

Context permitting, $j is used.

Definition 8.1.12. For a given q, define V q
m ⊆ Ωq (M,C) to be the vector space spanned by the

first m eigenforms $q
j of ∆A.

Hence
(8.1.31)V q

m = span
{
$q

1, $
q
2, . . . , $

q
m

}
,

and
(8.1.32)

{
$q

1, $
q
2, . . . , $

q
m

}
,

is an orthonormal basis for V q
m with respect to 〈·, ·〉0.

Chapter Definition 8.1.13. For a given ω ∈ V q
m, define constants ηj such that

(8.1.33)ω =
m∑
k=1

ηj$j .

Proposition 8.1.14. There exists a positive constant κ dependent of m such that for all integers
r > N

2 + 1 and for all ω ∈ V q
m \ {0} it holds that

(8.1.34)

(
‖dω‖r + ‖ω‖r
‖ω‖0

)2
(‖ω‖r
‖ω‖0

)2

+ 1

 ≤ κ .
Proof. Let r > N

2 + 1 be an integer and let ω ∈ V q
m \ {0}. Then by Chapter Definition 8.1.11(

‖dω‖r + ‖ω‖r
‖ω‖0

)2
(‖ω‖r
‖ω‖0

)2

+ 1



=


∥∥∥d∑m

j=1 ηj$j

∥∥∥
r

+
∥∥∥∑m

j=1 ηj$j

∥∥∥
r∥∥∥∑m

j=1 ηj$j

∥∥∥
0


2


∥∥∥∑m

j=1 ηj$j

∥∥∥
r∥∥∥∑m

j=1 ηj$j

∥∥∥
0


2

+ 1



≤

(∑m
j=1

∣∣∣ηj∣∣∣ (∥∥d$j

∥∥
r

+
∥∥$j

∥∥
r

))2

(∥∥∥∑m
j=1 ηj$j

∥∥∥
0

)2


(∑m

j=1

∣∣∣ηj∣∣∣∥∥$j

∥∥
r

)2
(∥∥∥∑m

j=1 ηj$j

∥∥∥
0

)2 + 1



=

(∑m
j=1

∣∣∣ηj∣∣∣ (∥∥d$j

∥∥
r

+
∥∥$j

∥∥
r

))2

∑m
j=1

(∥∥∥ηj$j

∥∥∥
0

)2


(∑m

j=1

∣∣∣ηj∣∣∣∥∥$j

∥∥
r

)2
∑m

j=1

(∥∥∥ηj$j

∥∥∥
0

)2 + 1

 (by Theorem 2.1.7)
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(8.1.35)=

(∑m
j=1

∣∣∣ηj∣∣∣ (∥∥d$j

∥∥
r

+
∥∥$j

∥∥
r

))2

∑m
j=1

∣∣∣ηj∣∣∣2

(∑m

j=1

∣∣∣ηj∣∣∣∥∥$j

∥∥
r

)2
∑m

j=1

∣∣∣ηj∣∣∣2 + 1


(by orthonormal basis) .

Let κ̂ = maxj=1,2,...,m

{∥∥$j

∥∥
r
,
∥∥d$j

∥∥
r

+
∥∥$j

∥∥
r

}
and hence

(
‖dω‖r + ‖ω‖r
‖ω‖0

)2
(‖ω‖r
‖ω‖0

)2

+ 1

 ≤ κ̂2
(∑m

j=1

∣∣∣ηj∣∣∣)2∑m
j=1

∣∣∣ηj∣∣∣2
 κ̂2

(∑m
j=1

∣∣∣ηj∣∣∣)2∑m
j=1

∣∣∣ηj∣∣∣2 + 1


≤ mκ̂2

(
mκ̂2 + 1

)
(quadratic mean bounds arithmetic mean)

(8.1.36)= κ ,

where κ = mκ̂2
(
mκ̂2 + 1

)
.

Corollary 8.1.15. There exists a positive constant κ independent of n and A such that for all
integers r > N

2 + 1 and for all ω ∈ V q
m \ {0}, if κ̂ = max {κ1, κ2} where κ1 is defined to be the

constant κ in Proposition 2.3.16 and κ2 is defined to be the constant κ in Lemma 8.1.3, and

(8.1.37)hn ≤ min

{
1,

‖dAω‖0
κ̂κA,0

(
‖ω‖r + ‖dω‖r

) , ‖ω‖0
4κ̂‖ω‖r

}
,

then

(8.1.38)

∣∣∣∣∣〈WnδaRnω,WnδaRnω〉0
〈WnRnω,WnRnω〉0

−
〈dAω, dAω〉0
〈ω, ω〉0

∣∣∣∣∣ ≤ κ (κA,0)2 hn .
Proof. This result follows immediately by applying Proposition 8.1.14 to Proposition 8.1.10.

Corollary 8.1.16. There exists a positive constant κ independent of n and A such that for all
integers r > N

2 + 1 and for all ω ∈ V q
m \ {0}, if κ̂ = max {κ1, κ2} where κ1 is defined to be the

constant κ in Proposition 2.3.16 and κ2 is defined to be the constant κ in Lemma 8.1.3, and

(8.1.39)hn ≤ min

{
1,

‖dAω‖0
κ̂κA,0

(
‖ω‖r + ‖dω‖r

) , ‖ω‖0
4κ̂‖ω‖r

}
,

then

(8.1.40)
〈WnδaRnω,WnδaRnω〉0
〈WnRnω,WnRnω〉0

≤ κ
(
κA,0

)2
hn +

〈dAω, dAω〉0
〈ω, ω〉0

.

Proof. This result follows immediately from Corollary 8.1.15 by the triangle inequality.
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8.2 Estimate for the Adjoint of Twisted Derivatives

8.2.1 Estimate Dependent on Differential Form

Lemma 8.2.1. For all ω ∈ Ωq (M,C) let v = W (δa)
∗Rω − (dA)∗ω. Then

(8.2.1)
〈
W (δa)

∗Rω,W (δa)
∗Rω

〉
0

=
〈
(dA)∗ω, (dA)∗ω

〉
0

+ 〈v, v〉0 + 2Re
(〈
v, (dA)∗ω

〉
0

)
.

Proof. This result can be proven using the same method as used in Lemma 8.1.1.

Lemma 8.2.2. For all ω ∈ Ωq (M,C) \ {0} let v = W (δa)
∗Rω − (dA)∗ω. Then

(8.2.2)

∣∣∣∣∣
〈
W (δa)

∗Rω,W (δa)
∗Rω

〉
0

〈WRω,WRω〉0
−
〈
(dA)∗ω, (dA)∗ω

〉
0

〈ω, ω〉0

∣∣∣∣∣
≤
(∥∥(dA)∗ω

∥∥
0

)2 ∣∣∣(‖WRω‖0
)2 − (‖ω‖0)2∣∣∣(

‖WRω‖0
)2 (‖ω‖0)2 + ‖v‖0

2
∥∥(dA)∗ω

∥∥
0

+ ‖v‖0(
‖WRω‖0

)2 .

Proof. This result can be proven using the same method as used in Lemma 8.1.2.

Lemma 8.2.3. For all integers r > N
2 + 1 and for all differential forms ω ∈ Ωq (M,C) \ {0} let

v = Wn(δa)
∗Rnω − (dA)∗ω, if

(8.2.3)hn ≤
‖ω‖0

4κ‖ω‖r
,

where κ is defined as per Lemma 8.1.3 then

(8.2.4)‖v‖0
2
∥∥(dA)∗ω

∥∥
0

+ ‖v‖0(
‖WnRnω‖0

)2 ≤ 2‖v‖0
2
∥∥(dA)∗ω

∥∥
0

+ ‖v‖0(
‖ω‖0

)2 .

Proof. This result follows immediately from Lemma 8.1.4.

Lemma 8.2.4. There exists a positive constant κ independent of n such that for all integers
r > N

2 + 1 and for all ω ∈ Ωq (M,C) \ {0}, if

(8.2.5)hn ≤
‖ω‖0

4κ̂‖ω‖r
,

where κ̂ is defined as per Lemma 8.1.3 then

(8.2.6)
(∥∥(dA)∗ω

∥∥
0

)2 ∣∣∣(‖WnRnω‖0
)2 − (‖ω‖0)2∣∣∣(

‖WnRnω‖0
)2 (‖ω‖0)2 ≤ 2κhn

(
‖ω‖r

)2∥∥(dA)∗ω
∥∥
0(

‖ω‖0
)2
2

.

Proof. Let r > N
2 + 1 be an integer, let ω ∈ Ωq (M,C) \ {0}, and let κ be the constant κ as per

Lemma 8.1.8. Then by Lemma 8.1.8

(∥∥(dA)∗ω
∥∥
0

)2 ∣∣∣(‖WnRnω‖0
)2 − (‖ω‖0)2∣∣∣(

‖WnRnω‖0
)2 (‖ω‖0)2 ≤

(∥∥(dA)∗ω
∥∥
0

)2 κhn
(
‖ω‖r

)2(
‖WnRnω‖0

)2 (‖ω‖0)2
(8.2.7)≤ 2κhn

(
‖ω‖r

)2∥∥(dA)∗ω
∥∥
0(

‖ω‖0
)2
2

(by Lemma 8.1.4) .
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Proposition 8.2.5. There exists a positive constant κ independent of n and A such that for all
integers r > N

2 + 2 and for all ω ∈ Ωq (M,C) \ {0}, if Assumption 7.3.4 holds and

(8.2.8)βnh0 ≤ min

{
1,
‖ω‖0

4κ̂‖ω‖r

}
,

where κ̂ is defined to be the constant κ in Lemma 8.1.3 then

(8.2.9)

∣∣∣∣∣
〈
Wn(δa)

∗Rnω,Wn(δa)
∗Rnω

〉
0

〈WnRnω,WnRnω〉0
−
〈
(dA)∗ω, (dA)∗ω

〉
0

〈ω, ω〉0

∣∣∣∣∣
≤ κ

(
κA,r

)2
βn
(
‖ω‖r

)2‖d?ω‖0 + ‖ω‖0(
‖ω‖0

)2
2

+

2
nq
2 (βn)

q
2 κκA,r

∥∥(dA)∗ω
∥∥
0

(∥∥(dA)∗ω
∥∥
0

+
(
‖ω‖r‖Pnω‖r

) 1
2

)
(
‖ω‖0

)2
+

2nq (βn)q κ
(
κA,r

)2(∥∥(dA)∗ω
∥∥
0

+
(
‖ω‖r‖Pnω‖r

) 1
2

)2

(
‖ω‖0

)2 .

Proof. Let r > N
2 + 2 be an integer, let ω ∈ Ωq (M,C) \ {0}, let κ1 be the constant κ as per

Lemma 8.2.4, let κ2 be the constant κ as per Corollary 7.4.9 and let v = Wn(δa)
∗Rnω − (dA)∗ω.

Then by Lemma 8.2.2∣∣∣∣∣
〈
Wn(δa)

∗Rnω,Wn(δa)
∗Rnω

〉
0

〈WnRnω,WnRnω〉0
−
〈
(dA)∗ω, (dA)∗ω

〉
0

〈ω, ω〉0

∣∣∣∣∣
≤
(∥∥(dA)∗ω

∥∥
0

)2 ∣∣∣(‖WnRnω‖0
)2 − (‖ω‖0)2∣∣∣(

‖WnRnω‖0
)2 (‖ω‖0)2 + ‖v‖0

2
∥∥(dA)∗ω

∥∥
0

+ ‖v‖0(
‖WRnω‖0

)2
≤ 2κ1

(
κA,r

)2
hn
(
‖ω‖r

)2‖d?ω‖0 + ‖ω‖0(
‖ω‖0

)2
2

+ 2‖v‖0
2
∥∥(dA)∗ω

∥∥
0

+ ‖v‖0(
‖ω‖0

)2
(by Lemmas 8.2.3 and 8.2.4)

(8.2.10)

≤ κ
(
κA,r

)2
βn
(
‖ω‖r

)2‖d?ω‖0 + ‖ω‖0(
‖ω‖0

)2
2

+

2
nq
2 (βn)

q
2 κκA,r

∥∥(dA)∗ω
∥∥
0

(∥∥(dA)∗ω
∥∥
0

+
(
‖ω‖r‖Pnω‖r

) 1
2

)
(
‖ω‖0

)2
+

2nq (βn)q κ
(
κA,r

)2(∥∥(dA)∗ω
∥∥
0

+
(
‖ω‖r‖Pnω‖r

) 1
2

)2

(
‖ω‖0

)2 (by Corollary 7.4.9) ,

where κ = max
{

2κ1h0, 4κ2, 2 (κ2)
2
}

and κ2 is defined as per Corollary 7.4.9.
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8.2.2 Estimate Independent of Differential Form

Proposition 8.2.6. There exists a positive constant κ independent of n and A such that for all
integers r > N

2 + 1 and for all ω ∈ V q
m \ {0} it holds that

(8.2.11)

κ̂
(
κA,r

)2
βn
(
‖ω‖r

)2‖d?ω‖0 + ‖ω‖0(
‖ω‖0

)2
2

+

2
nq
2 (βn)

q
2 κ̂κA,r

∥∥(dA)∗ω
∥∥
0

(∥∥(dA)∗ω
∥∥
0

+
(
‖ω‖r‖Pnω‖r

) 1
2

)
(
‖ω‖0

)2
+

2nq (βn)q κ̂
(
κA,r

)2(∥∥(dA)∗ω
∥∥
0

+
(
‖ω‖r‖Pnω‖r

) 1
2

)2

(
‖ω‖0

)2
≤ κ

(
κA,r

)2
βn + 2

nq
2 (βn)

q
2 κκA,r + 2nq (βn)q κ

(
κA,r

)2
.

Proof. This result can be proven using the same method as used in Proposition 8.1.14.

Corollary 8.2.7. There exists a positive constant κ independent of n and A such that for all
integers r > N

2 + 2 and for all ω ∈ V q
m \ {0}, if Assumption 7.3.4 holds and

(8.2.12)βnh0 ≤ min

{
1,
‖ω‖0

4κ̂‖ω‖r

}
,

where κ̂ is defined to be the constant κ in Lemma 8.1.3 then

(8.2.13)

∣∣∣∣∣
〈
Wn(δa)

∗Rnω,Wn(δa)
∗Rnω

〉
0

〈WnRnω,WnRnω〉0
−
〈
(dA)∗ω, (dA)∗ω

〉
0

〈ω, ω〉0

∣∣∣∣∣
≤ κ

(
κA,r

)2
βn + 2

nq
2 (βn)

q
2 κκA,r + 2nq (βn)q κ

(
κA,r

)2
.

Proof. This result follows immediately by applying Proposition 8.2.6 to Proposition 8.2.5.

Corollary 8.2.8. There exists a positive constant κ independent of n and A such that for all
integers r > N

2 + 2 and for all ω ∈ V q
m \ {0}, if Assumption 7.3.4 holds and

(8.2.14)βnh0 ≤ min

{
1,
‖ω‖0

4κ̂‖ω‖r

}
,

where κ̂ is defined to be the constant κ in Lemma 8.1.3 then

(8.2.15)

〈
Wn(δa)

∗Rnω,Wn(δa)
∗Rnω

〉
0

〈WnRnω,WnRnω〉0
≤
〈
(dA)∗ω, (dA)∗ω

〉
0

〈ω, ω〉0
+ κ

(
κA,r

)2
βn

+ 2
nq
2 (βn)

q
2 κκA,r + 2nq (βn)q κ

(
κA,r

)2
.

Proof. This result follows immediately from Corollary 8.2.7 by the triangle inequality.
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8.3 Proof of Theorem 4.4.1

Lemma 8.3.1. For all ω ∈ V q
m it holds that

(8.3.1)
〈∆Aω, ω〉0
〈ω, ω〉0

≤ λm .

Proof. Let ω ∈ V q
m, then by Chapter Definition 8.1.13

(8.3.2a)
〈∆Aω, ω〉0
〈ω, ω〉0

=

〈
∆A

∑m
j=1 ηj$j ,

∑m
k=1 ηk$k

〉
0〈∑m

j=1 ηj$j ,
∑m

k=1 ηk$k

〉
0

(8.3.2b)=

〈∑m
j=1 λjηj$j ,

∑m
k=1 ηk$k

〉
0〈∑m

j=1 ηj$j ,
∑m

k=1 ηk$k

〉
0

(8.3.2c)=

∑m
j=1 λj

∣∣∣ηj∣∣∣2∑m
j=1

∣∣∣ηj∣∣∣2 (by orthonormal basis)

(8.3.2d)≤ max
j

{
λj
}

(8.3.2e)= λm .

The following proof proves Theorem 4.4.1 and shows that the analytic eigenvalues are bounded
below by the combinatorial eigenvalues of the corresponding combinatorial Laplacian operator.

Proof of Theorem 4.4.1. This proof is based on an argument used by Zahariev [30] to prove his
Theorem 4.6. Let r equal to N

2 + 3, rounded up if N is odd, let κ1 be the constant κ as per
Corollary 8.1.16, let κ2 be the constant κ as per Corollary 8.2.8. Then by Theorem 2.1.13, for a
given q, the m-th eigenvalue is given by

γm = sup
cj∈Cq(Kn,C)
j=1,2,...,m−1

inf
c∈Cq(Kn,C)\{0}
〈c,cj〉W=0

j=1,2,...,m−1

〈sac, c〉W
〈c, c〉W

≤ sup
cj∈Cq(Kn,C)
j=1,2,...,m−1

inf
c∈RnV qm\{0}
〈c,cj〉W=0

j=1,2,...,m−1

〈sac, c〉W
〈c, c〉W

(as infimum over a smaller set is larger)

≤ sup
c∈RnV qm\{0}

〈sac, c〉W
〈c, c〉W

(as infimum ≤ supremum)

= sup
ω∈V qm\{0}

〈saRnω,Rnω〉W
〈Rnω,Rnω〉W

= sup
ω∈V qm\{0}

(
〈WnδaRnω,WnδaRnω〉0
〈WnRnω,WnRnω〉0

+

〈
Wn(δa)

∗Rnω,Wn(δa)
∗Rnω

〉
0

〈WnRnω,WnRnω〉0

)

≤ sup
ω∈V qm\{0}

(
〈dAω, dAω〉0
〈ω, ω〉0

+

〈
(dA)∗ω, (dA)∗ω

〉
0

〈ω, ω〉0

)
+ κ1 (κA)2 hn + κ2 (κA)2 βn

+ 2
nq+n

2 (βn)
q+1
2 κ2κA + 2nq+n (βn)q+1 κ2 (κA)2 (by Corollaries 8.1.16 and 8.2.8)
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(8.3.3)= sup
ω∈V qm\{0}

〈∆Aω, ω〉0
〈ω, ω〉0

+ κ1 (κA)2 hn + κ2 (κA)2 βn + 2
nq
2 (βn)

q
2 κ2κA

+ 2nq (βn)q κ2 (κA)2 .

As V q
m is a finite dimensional space, there exists an ω̂ ∈ V q

m \ {0} for which the supremum is
attained and hence by applying Lemma 8.3.1 to ω̂ it follows that

(8.3.4)γm ≤ λm + κ (κA)2 βn + 2
nq
2 (βn)

q
2 κκA + 2nq (βn)q κ (κA)2 ,

where κ = κ1h0 + κ2.



PART III CONCLUDING REMARKS





CHAPTER

1815 1897 KARL WEIERSTRASS (German)

Upper Bound

This chapter discusses why it appears difficult to generalise Zahariev’s methods [30] to derive an
upper bound for the eigenvalues of the Laplacian operator.

9.1 Outline of Method for Upper Bound

Lemma 9.1.1. For all inner product spaces H, for all closed subspaces V ⊆ H, for all functions
f : H → R, and for all m = 1, 2, . . . ,dim (V ), it holds that

(9.1.1)sup
xj∈V

j=1,2,...,m

inf
x∈V \{0}
〈x,xj〉H=0

j=1,2,...,m

f (x) = sup
yj∈H

j=1,2,...,m

inf
x∈V \{0}
〈x,yj〉H=0

j=1,2,...,m

f (x) .

Proof. Let V ⊆ H be a closed subspace, let f : H → R, and let m be given. Consider x ∈ V \{0}
and yj ∈ H. Then yj can be decomposed into the component yVj ∈ V in the subspace V and
the component y⊥j ∈ V ⊥ in the orthogonal complement of the subspace V . Hence let

(9.1.2)yj = yVj + y⊥j .

Therefore 〈
x, yj

〉
H

=
〈
x, yVj

〉
H

+
〈
x, y⊥j

〉
H

(9.1.3)=
〈
x, yVj

〉
H
,

as x ∈ V and y⊥j ∈ V ⊥. Therefore

(9.1.4)
〈
x, yj

〉
H

= 0 ⇐⇒
〈
x, yVj

〉
H

= 0 .

Hence
sup
yj∈H

j=1,2,...,m

inf
x∈V \{0}
〈x,yj〉H=0

j=1,2,...,m

f (x) = sup
yj∈H

j=1,2,...,m

inf
x∈V \{0}〈
x,yVj

〉
H
=0

j=1,2,...,m

f (x)

(9.1.5)= sup
xj∈V

j=1,2,...,m

inf
x∈V \{0}
〈x,xj〉H=0

j=1,2,...,m

f (x) .
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Corollary 9.1.2. For all inner product spaces H, for all closed subspaces V ⊆ H, for all
functions f : H → R, and for all m = 1, 2, . . . ,dim (V ), it holds that

(9.1.6)sup
xj∈V

j=1,2,...,m

inf
x∈V \{0}
〈x,xj〉H=0

j=1,2,...,m

f (x) ≥ sup
yj∈H

j=1,2,...,m

inf
x∈H\{0}
〈x,yj〉H=0

j=1,2,...,m

f (x) .

Proof. This result follows immediately as the infimum over a larger set is smaller.

The following working is the extent to which the techniques of this thesis can be combined
with the argument used by Zahariev [30] to prove his Theorem 4.6.

Let κ̂1 be the constant κ as per Corollary 7.1.6 and let κ̂2 be the constant κ as per Corol-
lary 7.4.12. Then from Theorem 2.1.13 it is known that

γm = sup
cj∈Cq(Kn,C)
j=1,2,...,m−1

inf
c∈Cq(Kn,C)\{0}
〈c,cj〉W=0

j=1,2,...,m−1

〈sac, c〉W
〈c, c〉W

= sup
cj∈Cq(Kn,C)
j=1,2,...,m−1

inf
c∈Cq(Kn,C)\{0}
〈c,cj〉W=0

j=1,2,...,m−1

(
〈δac, δac〉W
〈c, c〉W

+

〈
(δa)

∗c, (δa)
∗c
〉
W

〈c, c〉W

)
.

(9.1.7)

≥ sup
cj∈Cq(Kn,C)
j=1,2,...,m−1

inf
c∈Cq(Kn,C)\{0}
〈c,cj〉W=0

j=1,2,...,m−1

(
‖dAWnc‖0

)2
+
(∥∥(dA)∗Wnc

∥∥
0

)2
〈c, c〉W

− 2nq+n+1 (βn)q+1 ϑ̂1nκ̂1κA,r − 2
nq
2
+1 (βn)

q
2 ϑ̂2nκ̂2

(
κA,r

)2
+ 22nq+2n (βn)2q+2 (κ̂1)

2 (κA,r)2 + 2nq (βn)q ϑ̂3n (κ̂2)
2 (κA,r)4

(by Corollaries 7.1.6 and 7.4.12)

Let κ1 = 2max {κ̂1, κ̂2} and (κ2)
2 = min

{
(κ̂1)

2 , (κ̂2)
2
}
. Hence by Corollary 2.2.26

γm ≥ sup
cj∈Cq(Kn,C)
j=1,2,...,m−1

inf
c∈Cq(Kn,C)\{0}
〈c,cj〉W=0

j=1,2,...,m−1

〈∆AWnc,Wnc〉0
〈Wnc,Wnc〉0

− 2nq+n (βn)q+1 ϑ1,2n κ1
(
κA,r

)2
+ 2nq (βn)q ϑ3n (κ2)

2 (κA,r)2

(9.1.8)

= sup
ωj∈Wn(Cq(Kn,C))

j=1,2,...,m−1

inf
ω∈Wn(Cq(Kn,C)\{0})

〈ω,ωj〉0=0

j=1,2,...,m−1

〈∆Aω, ω〉0
〈ω, ω〉0

− 2nq+n (βn)q+1 ϑ1,2n κ1
(
κA,r

)2
+ 2nq (βn)q ϑ3n (κ2)

2 (κA,r)2 .
This is as far as Zahariev’s method works in conjunction with the results of this thesis. The next
step would likely involve applying Corollary 9.1.2 but this is not possible as Wn

(
Cq (Kn,C)

)
is
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not a subset of Hq1 (M,C) as pointed out by Remark 4.4 of Zahariev’s thesis [30]. The final step
of the proof would be using the fact that by Theorem 2.1.13

sup
ωj∈Hq0(M,C)
j=1,2,...,m−1

inf
ω∈Hq1(M,C)\{0}
〈ω,ωj〉0=0

j=1,2,...,m−1

〈∆Aω, ω〉0
〈ω, ω〉0

− 2nq+n (βn)q+1 ϑ1,2n κ1
(
κA,r

)2
+ 2nq (βn)q ϑ3n (κ2)

2 (κA,r)2

= λm − 2nq+n (βn)q+1 ϑ1,2n κ1
(
κA,r

)2
+ 2nq (βn)q ϑ3n (κ2)

2 (κA,r)2 . (9.1.9)

The use of the min-max principle for the Laplacian operator requires special care as the Laplacian
operator has a domain that is a dense subspace of the respective Hilbert space. For more details
concerning the analysis of densely-defined operators, see Chapter 13 of Rudin’s book [22].

There does not appear to be an obvious way to apply the methods of this thesis to complete
the proof of the upper bound.

9.2 Example Calculation

This section provides some concrete calculations in the case of M = S1. The barycentric
coordinates as well as the Whitney map applied to edges are derived.

Without loss of generality up to affine homeomorphism, any triangulation of the circle is
determined by the number of vertices in the triangulation. Let the number of vertices and edges
be m (that is m =

∣∣∣K0
n

∣∣∣ =
∣∣∣K1

n

∣∣∣) and adopt the following labelling of vertices and edges:

S1

e1

e2

em−1

em

ej

Kn

v1

v2

v3

vm−1

vm

vj

vj+1

Kn+1

e1,1

e1,2
e 2
,2e 2
,3

e
m
−
1,m
−
1

e
m
−
1,m

em,m

e1,m

ej, j

ej, j+1
v1

v 2
v 3

v
m
−
1

v
m

v1,2
v 2
,3

v
m
−
1,m

v1,m

vj

vj+1

vj, j+1

All edges are oriented in a counter clockwise direction and hence a choice of Kn is equivalent to
choosing a value for m.

Let θ be the angle of a point on the circle, then the barycentric coordinates for j = 2, 3, . . . ,m
are given by

(9.2.1)µj (θ) =


−m

2πθ + j if θ ∈
[
2(j−1)π

m , 2jπ
m

]
m
2πθ − j + 2 if θ ∈

[
2(j−2)π

m , 2(j−1)π
m

]
0 otherwise

,
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and

(9.2.2)µ1 (θ) =


−m

2πθ + 1 if θ ∈
[
0, 2π

m

]
m
2πθ −m+ 1 if θ ∈

[
2(m−1)π

m , 2π
]

0 otherwise

.

By definition Wvj = µj as q = 0 and hence it follows that Wc ∈ H0
1

(
S1,C

)
. This is holds as

Wc is a linear combination of continuous piecewise linear functions and all continuous piecewise
linear functions have weak derivatives.

Compare this with the case of q = 1 where

(9.2.3)Wej (θ) =


m
2π dθ if θ ∈

[
2(j−1)π

m , 2jπ
m

]
0 otherwise

,

which is not a continuous function even though it is piecewise linear. Hence it does not have a
weak derivative and therefore Wej /∈ H1

1

(
S1,C

)
.

As a result, the method outlined in Section 9.1 cannot be used as the image of the Whiney
map does not lie in H1

1

(
S1,C

)
, verifying Remark 4.4 of Zahariev’s thesis [30], and hence no

upper bound can be derived using this method for even the simplest of manifold.
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Generalised Problem Setup

This chapter defines the additional notation required to present possible future paths of investi-
gation for research in this area. In essence it generalises the problem setup of Chapter 2 from
complex valued differential forms and cochains to ones with values in a Hermitian complex vector
bundle.

To aid with reading, instead of introducing new notation, some of the notation used in
Chapter 2 is redefined for this more general setting. For example Definition 2.1.1 is generalised
to Definition 10.1.1 whilst the notation 〈·, ·〉0 remains the same for both definitions. The context,
specifically if the differential forms and cochains are complex or vector valued allows for the
distinguishing of the two definitions.

10.1 Analytic Setting

For a Hermitian complex vector bundle E of rank ε over M with connection ∇E , let Ωq (M,E)
be the set of smooth sections of (ΛqT ∗M) ⊗ E. That is, the vector space of q-th degree smooth
differential forms on M with values in E and let 〈·, ·〉V be the inner product for the vector space
that is each fibre, with associated norm |·|V .

The Hodge star operator is generalised to the map ? : Ωq (M,E)→ ΩN−q (M,E) where

(10.1.1)? ($ ⊗ v) = (?$) ⊗ v .

The exterior product is extended to the map ∧ : Ωq1 (M,E) × Ωq2 (M,E) → Ωq1+q2 (M,C)
where

(10.1.2)$1 ⊗ v1 ∧ $2 ⊗ v2 = 〈v1, v2〉V $1 ∧ $2 .

Definition 10.1.1. Define the inner product 〈·, ·〉0 on Ωq (M,E) by

(10.1.3)〈ω1, ω2〉0 =

ˆ
M
ω1 ∧ ?ω2 .

For a given Hermitian connection ∇E on E, let ∇q : Ωq (M,E) → Ωq+1 (M,E) be the
induced covariant differential where

(10.1.4)∇q ($ ⊗ v) = (d$) ⊗ v + (−1)q$ ∧
(
∇Ev

)
.
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This connection is notated ∇ for short and is the associated covariant derivative. With respect to
the inner product 〈·, ·〉0, denote the (formal) adjoint of ∇q by (∇q)∗ : Ωq+1 (M,E)→ Ωq (M,E).

Consider a coordinate chart
(
U, x1, x2, . . . , xN

)
, a point p ∈ U and a differential form

ω ∈ Ωq (M,E). Let Υ1,Υ2, . . . ,ΥN be a local orthonormal basis (smooth 1-forms) for the
cotangent space with respect to the metric g. Then locally

(10.1.5)ω =
∑

1≤ν1<ν2<···<νq≤N
fν1,ν2,...,νq Υν1 ∧ Υν2 ∧ · · · ∧ Υνq ⊗ vν1,ν2,...,νq ,

for some collection of smooth functions fν1,ν2,...,νq : U → C and local smooth sections vν1,ν2,...,νq
of E.

Definition 10.1.2. Define the pointwise norm |·|p of a differential form ω ∈ Ωq (M,E) at a
point p to be

(10.1.6)|ω|p =

 ∑
1≤ν1<ν2<···<νq≤N

(∣∣∣fν1,ν2,...,νq (p)
∣∣∣∣∣vν1,ν2,...,νq ∣∣V )2

 1
2

.

Definition 10.1.3. Define ‖·‖r to be the Sobolev norm on Ωq (M,E) with parameter r ∈ N to
be

(10.1.7)‖ω‖r =

 r∑
j=0

ˆ
M

(∣∣∣(∇q)j ω∣∣∣
p

)2

dVolg

 1
2

,

where (∇q)j is the covariant derivative on Ωq (M,E) as defined in (10.1.4) applied j times.

By a short computation, for Ωq (M,E), the norm associated to 〈·, ·〉0 is ‖·‖0.

Definition 10.1.4. Define the Sobolev space Hqr (M,E) to be the completion of Ωq (M,E) with
respect to the norm ‖·‖r.

Hence Hq0 (M,E) is the L2 completion of Ωq (M,E) with respect to the inner product 〈·, ·〉0.
That is, the space of square integrable differential q-forms on M .

Definition 10.1.5. Define the Laplacian ∆q : Ωq (M,E)→ Ωq (M,E) to be

(10.1.8)∆q = (∇q)∗∇q +∇q−1(∇q−1)∗ .

Where clear from context, the Laplace operator (Laplacian) is also denoted by ∆.
This general definition of the Laplacian encapsulates many common variants of the Laplacian

through a suitable choice of E and connection on E. For example, ∆ = d∗d + dd∗ can be
recovered by letting E = C be the trivial line bundle with connection d.

The eigenvalues of ∆q are denoted by†

(10.1.9)λq1 ≤ λ
q
2 ≤ · · · ≤ λ

q
j ≤ · · · ,

where eigenvalues are repeated according to their multiplicity.
†A priori it may not be clear that the eigenvalues are real, bounded below and that there are infinitely many

of them, however this property holds by Theorem 2.1.12 and hence the notation makes sense.
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10.2 Combinatorial Setting

10.2.1 Cochains

Let Cq (K,E) be the vector space of q-th degree cochains on K with values in E. For each
simplex σ, fix a reference point pσ in the interior of σ. A q-cochain c can be defined of as a
function c : Kq → E that assigns to each q-simplex a vector in the bundle with the property
that for all σ ∈ Kq, c (σ) is in Epσ , the fibre above the reference point of σ. Alternatively, it can
be defined of as a formal sum of q-simplices

(10.2.1)c =
∑
σ∈Kq

cσσ

for some vector coefficients cσ in the fibre at the reference point of σ. The translation between
the two approaches is given by c (σ) = cσ for all σ ∈ Kq.

Definition 10.2.1. Define the inner product 〈·, ·〉C on Cq (K,E) by

(10.2.2)〈c1, c2〉C =
∑
σ∈Kq

〈
c1 (σ) , c2 (σ)

〉
V
.

This gives an associated norm, ‖·‖C,2, on cochains.

Definition 10.2.2. Define the supremum norm, ‖·‖C,∞ on cochains to be

(10.2.3)‖c‖C,∞ = max
σ∈Kq

∣∣c (σ)
∣∣
V
.

Definition 10.2.3. Define the simplicial coboundary operator δq : Cq (K,E)→ Cq+1 (K,E) to
be

(10.2.4)
(
(δqc)

)
(σ) =

q∑
j=0

(−1)j c
(
∂q+1
j σ

)
,

where c ∈ Cq (K,E) and σ ∈ Kq+1.

10.2.2 The de Rham and Whitney Maps

Definition 10.2.4. The de Rham map, Rqn : Ωq (M,E)→ Cq (Kn, E), is defined by de Rham [7]
and generalised by Dodziuk and Patodi [10, Page 4] as

(10.2.5)
(
Rqn ($ ⊗ v)

)
(σ) =

(ˆ
σ
$

)
v|pσ ,

where $ is a smooth section of ΛqT ∗M , v is a smooth section of E and q > 0. When q = 0, the
de Rham map is defined as the evaluation of the differential form at the vertices.

Consider a q-simplex σ =
[
p0, p1, . . . , pq

]
and let µj be the barycentric coordinate function

corresponding to the vertex at pj for j = 0, 1, . . . , q.

Definition 10.2.5. The Dodziuk and Patodi [10, Page 5] generalised Whitney map [28, Chap-
ter VII.11 (16)] W q

n : Cq (Kn, E)→ Hq0 (M,E) is defined to be

(10.2.6)W q
ncσσ = q!

q∑
j=0

(−1)j µj dµ0 ∧ dµ1 ∧ · · · ∧ dµj−1 ∧ dµj+1 ∧ · · · ∧ dµq ⊗ cσ ,

for q > 0. When q = 0, define
(10.2.7)W 0

ncσσ = µ0 ⊗ cσ .

This definition extends linearly to any cochain by viewing the cochain as a formal sum.
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10.2.3 Construction of the Combinatorial Laplacian

Definition 10.2.6. Define the Whitney inner product 〈·, ·〉W on Cq (K,E) by

(10.2.8)〈c1, c2〉W = 〈Wc1,Wc2〉0 .

This inner product makes sense as W is injective by Proposition 2.3.2. The associated norm
is denoted by ‖·‖W .

Using Definition 2.2.19 as a starting point for the finite open cover
{
U j
}m
j=1

of M , the
combinatorial construction of the Laplace operator assumes the following additional properties
of this open cover.

Assumption 10.2.7. For a given K and for all j = 1, 2, . . . ,m, it holds that cl
(
U j
)
is a

subsimplicial complex of K, denoted by Lj‡.

In other words, cl
(
U j
)
is the union of some collection of N -simplices of K.

Assumption 10.2.8. For all j = 1, 2, . . . ,m, the restriction of the vector bundle E to cl
(
U j
)
,

E|cl(Uj), is trivial.

It can be seen that given U and trivialisations of E that the required finite open cover
{
U j
}m
j=1

can be constructed through suitable refinements of U and the given triangulation K.
The following construction of the combinatorial Laplacian is due to Zahariev [30, Chapter 5].

It differs slightly from the combinatorial Laplacian considered by Dodziuk and Patodi [10, Page 6]
as detailed in Section 10.2.4.

The key ingredient for constructing the combinatorial Laplacian is the following theorem by
Narasimhan and Ramanan [16], but in the form developed by Quillen [18, Appendix].

Theorem 10.2.9. Let E be a vector bundle of rank ε over M equipped with an inner product
and ∇ a connection that preserves this inner product. Then there exists a trivial Hermitian
vector bundle B of rank b and an isometric embedding of bundles ι : E → B such that ∇ = ι∗dι,
where ι∗ is the fibrewise adjoint taken with respect to the inner products on the fibres of E and B
respectively.

An outline of some of key steps of the construction of B and ι will help introduce the notation
required for the combinatorial Laplacian.

Notation 10.2.10. Let
{
ψj
}m
j=1

to be a modified partition of unity subordinate to
{
U j
}m
j=1

such that ψj : M → [0, 1] is a smooth function whose support is compact and contained in U j,
and

(10.2.9)
m∑
j =1

(
ψj
)2

= 1 .

Quillen [18, Appendix] shows such a partition of unity can easily be constructed from a
conventional partition of unity

{
ψ̂j

}m
j=1

with
∑m

j=1 ψ̂j = 1 by defining

(10.2.10)ψj = ψ̂j

 m∑
k=1

(
ψ̂k

)2− 1
2

.

‡Care must be taken with the notation of the subcomplex as the subscript j indexes which open set U j is
associated to Lj . This is in contrast to subscripts on Kn where n indexes the number of subdivisions that have
been performed. The dependence of n on Lj is implied and is not notated.
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Technically speaking for each j = 1, 2, . . . ,m, ψj : M → [0, 1] ⊆ C and by definition ψj is
smooth and hence ψj ∈ Ω0 (M,C). This viewpoint will be important later.

For each j = 1, 2, . . . ,m, let Bj = M ×Cε be the trivial vector bundle with the standard flat
metric. Then by Assumption 10.2.8, E|Uj is trivial and hence by the use of an orthonormal frame
of sections for E over U j , let ιj : E|Uj → Bj

∣∣
Uj

be a specific isometric embedding satisfying
some additional conditions. These additional conditions are required in order for ∇ = ι∗dι to
hold but these are not relevant for the construction of the combinatorial Laplacian and hence
not mentioned here. For the full details of the construction of this embedding, see Quillen [18,
Appendix]. From this define

(10.2.11)B =
m⊕
j=1

Bj ,

and ι : E →
⊕m

j=1Bj where
(10.2.12)ι = (ι1ψ1, ι2ψ2, . . . , ιmψm) .

It is this construction that necessities the condition imposed by (10.2.9) as it ensures ι∗ι = Id
and subsequently ∇ = ι∗dι [18, Appendix].

Chapter Definition 10.2.11. For a given j = 1, 2, . . . ,m and p ∈ cl
(
U j
)
, consider the local

trivialisation of the bundles E and B on cl
(
U j
)
and define the maps pr2, ι

p
j , χ and ϕEj by means

of the following diagram:

E|cl(Uj) cl
(
U j
)
× Cε Cε

B|cl(Uj) cl
(
U j
)
× Cb Cb

ϕEj

'

ι|
cl(Uj)

pr2

Id×χ χ

ιpj

Id
=

pr2

ιpj

(10.2.13)

Here pr2 is the canonical projection map and ιpj is the canonical inclusion maps where for a
fixed p ∈ cl

(
U j
)
, by definition ιpj (v) = (p, v). The map χ is constructed in the same manner as

transition functions are constructed for vector bundles. For a given p ∈ cl
(
U j
)
, it holds that χp

is a b× ε matrix of complex numbers. Notationally, χpr,s will denote the (r, s)-th entry of this
matrix. Separately, for fixed r and s but varying p, the map χpr,s : cl

(
U j
)
→ C can be viewed as

a smooth function and hence χpr,s ∈ Ω0
(

cl
(
U j
)
,C
)
, an important viewpoint for later.

It should be noted that the dependence on j of the map χ is implied and not notated.
The embedding map ι : E → B induces the maps ιq : Ωq (M,E) → Ωq (M,B) and

ιq : Cq (K,E)→ Cq (K,B) in the following ways. For a given $ ⊗ v ∈ Ωq (M,E), define

(10.2.14)ιq ($ ⊗ v) = $ ⊗ (ιv) .

Recall that for each σ ∈ K a reference point pσ was fixed such that the coefficient of the simplex,
cσ ∈ Epσ , is a value in the fibre of the reference point. Hence given a c ∈ Cq (K,E) define

(10.2.15)ιq

∑
σ∈Kq

cσσ

 =
∑
σ∈Kq

(
ι|Epσ cσ

)
σ .

Where clear from context, the superscript is omitted.
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Definition 10.2.12. For a given j = 1, 2, . . . ,m, define the map ΦE
j : Cq (K,E)→ Cq

(
Lj ,Cε

)
as follows. Given a c ∈ Cq (K,E) define

(10.2.16)ΦE
j

∑
σ∈Kq

cσσ

 =
∑
σ∈Lqj

(
pr2 ◦ ϕEj (cσ)

)
σ .

In the above definition, the dependence on q is implied and not notated.

Definition 10.2.13. For a given j = 1, 2, . . . ,m and using the appropriate reference points for
each simplex, define the map ΦB

j : Cq
(
Lj ,Cb

)
→ Cq (K,B) as follows. Given a c ∈ Cq

(
Lj ,Cb

)
define

(10.2.17)ΦB
j

∑
σ∈Lqj

cσσ

 =
∑
σ∈Lqj

(
ιpσj cσ

)
σ +

∑
σ∈Kq\Lqj

0σ ,

where the second sum assigns the zero vector in the fibre of the corresponding reference point for
each simplex as the coefficient for all simplices not contained in Lqj .

In the above definition, the dependence on q is implied and not notated.
For a cochain c ∈ Cq

(
Lj ,Cε

)
, each coefficient cσ is a vector in Cε and hence define the

notation (cσ)k to be the k-th component of the vector cσ. Similarly, define

(10.2.18)(c)k =
∑
σ∈Lqj

(cσ)k σ ,

which is an element of Cq
(
Lj ,C

)
.

Definition 10.2.14. For a given j = 1, 2, . . . ,m, define the map Iqj : Cq
(
Lj ,Cε

)
→ Cq

(
Lj ,Cb

)
as follows

(10.2.19)
(
Iqjc
)
r

=
ε∑
s=1

(
R0χr,s

)
∪ (c)s .

This is where the viewpoint of χr,s as an element of Ω0
(

cl
(
U j
)
,C
)
is required in order to

apply de Rham map and cup product.

Definition 10.2.15. For a given j = 1, 2, . . . ,m, define the map Ψq
j : Cq (K,E)→ Cq

(
Lj ,Cε

)
as follows

(10.2.20)
(

Ψq
jc
)
s

=
(
R0ψj

)
∪
(

ΦE
j c
)
s
.

This is where the viewpoint of ψj as an element of Ω0
(

cl
(
U j
)
,C
)
is required in order to

apply de Rham map and cup product.

Definition 10.2.16. Define the map Iq : Cq (K,E)→ Cq (K,B) as follows

(10.2.21)Iqc =
m∑
j=1

ΦB
j I

q
jΨ

q
jc .
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Where clear from context, this map is notated as I.
Let I∗ be the adjoint of I with respect to the inner products on the fibres of E and B

respectively.
These maps allow the definition of the twisted versions of the de Rham and Whitney maps.

Definition 10.2.17. Define the twisted de Rham map, R̃
q

n : Ωq (M,E)→ Cq (Kn, E), to be

(10.2.22)R̃
q

n = (Iq)∗Rqnι
q .

Definition 10.2.18. Define the twisted Whitney map, W̃
q

n : Cq (Kn, E)→ Hq0 (M,E), to be

(10.2.23)W̃
q

n = (ιq)∗W q
nI

q .

Definition 10.2.19. Define the twisted Whitney inner product 〈·, ·〉
W̃

on Cq (K,E) by

(10.2.24)〈c1, c2〉W̃ =
〈
W̃ c1, W̃ c2

〉
0
.

This inner product is makes sense as W̃ is injective for sufficiently fine triangulation by
Zahariev’s Lemma 5.3 [30].

Definition 10.2.20. Define the combinatorial covariant derivative tq : Cq (K,E)→ Cq+1 (K,E)
to be

(10.2.25)tq = (Iq)∗δqIq .

Denote the adjoint of tq by (tq)∗ : Cq+1 (K,E) → Cq (K,E) with respect to the inner
product 〈·, ·〉

W̃
.

The interplay of all of these various maps is best visualised via the following not necessarily
commutative diagram:

Ωq (M,E) Ωq+1 (M,E)

Ωq (M,B) Ωq+1 (M,B)

Cq (K,E) Cq+1 (K,E)

Cq (K,B) Cq+1 (K,B)

∇

R, R̃

ι

∇∗

R, R̃

W, W̃

ι

ι ∗

d

d∗

R

ι ∗

t

ι, I

W , W̃

t∗

ι, I

δ

ι ∗, I ∗

R

W

δ∗

ι ∗, I ∗

W

(10.2.26)

Definition 10.2.21. Define the combinatorial Laplacian sq : Cq (K,E)→ Cq (K,E) to be

(10.2.27)sq = (tq)∗tq + tq−1(tq−1)∗ .
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This definition of the Laplacian does not encapsulate all combinatorial versions of the various
analytic variants of the Laplacian considered in this thesis. The details of these discrepancies
are discussed in Section 10.2.4.

The eigenvalues of sq are denoted by

(10.2.28)γq1 ≤ γ
q
2 ≤ · · · ≤ γj

q ≤ · · · ≤ γq
dim(Cq(K,E))

,

where eigenvalues are repeated according to their multiplicity.
This formal construction allows Theorem 3.4.1 to be stated precisely and leads to the natural

question of what analogous conclusions can be drawn in the positive degree setting. This is
discussed in Section 11.4.

10.2.4 Comparison of the Combinatorial Laplacians

Dodziuk and Patodi [10] also constructed a combinatorial Laplacian for the case of a flat
vector bundle. This combinatorial Laplacian is not dependent on an embedding and hence
the two combinatorial Laplacians are not equivalent in the flat vector bundle setting as a
different embedding results in a different combinatorial Laplacian. The difference between the
combinatorial Laplacian Zahariev uses and the one used by Dodziuk and Patodi lies in the fact
that the partition of unity

{
ψj
}
used by Zahariev satisfies

(10.2.29)
∑
j

(
ψj
)2

= 1 .

Chasing the definitions reveals that the two combinatorial Laplacians would be identical if the
partition of unity used by Zahariev is a conventional one§. In such a case on a trivial vector
bundle I = Id and hence it is clear that Zahariev’s construction reduces to that of the one used
by Dodziuk and Patodi, but this is not the case.

§A conventional partition of unity
{
ψ̂j

}
shares all of the properties of the partition of unity used by Zahariev

except that
∑
j ψ̂j = 1 compared with (10.2.29).
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1811 1832 ÉVARISTE GALOIS (French)

Future Work

This chapter provides an overview of the types of results that could be achieved using this thesis
as a basis. It includes a discussion of the excepted difficulties and possible methods to overcome
these.

11.1 Dependence on Choices

As was discussed in Section 4.7, there are some choices that are made in order to derive Theo-
rem 4.4.1. It would be of interest to understand exactly how these choices affect Theorem 4.4.1.
It is also anticipated that understanding this dependence in detail will aid with Section 11.2.

11.2 Path to Theorem 3.3.1 for Arbitrary Degree

The main aim of this thesis is to prove a statement analogous to Theorem 3.3.1 for arbitrary
degree. Completing this aim is the logical next step for this area, requiring work in a number of
areas as detailed in Sections 11.2.1 to 11.2.3. A possible alternative method for achieving this
aim is presented in Section 11.2.4.

11.2.1 Upper Bound

As outlined in Chapter 9, the methods of this thesis are unable to derive an upper bound for the
eigenvalues. The key obstacle being the fact thatWn

(
Cq (Kn,C)

)
is not contained in Hq1 (M,C).

There does not seem to be an obvious approach to overcome this obstacle. The key missing
ingredient appears to be a space that contains both Wn

(
Cq (Kn,C)

)
and Hq1 (M,C) and allows

the use of the min-max principle.

11.2.2 Assumption 7.3.4

At its core, the missing link of this thesis is the need for Assumption 7.3.4. In order to be able
to remove this assumption, there would appear to be three paths of investigation to explore.
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11.2.2.1 Direct Approach

The obvious approach is to try and prove Assumption 7.3.4 directly. If this estimate is provable or
at least an estimate of this form would allow Assumption 7.3.4 to be removed from Theorem 4.4.1.
Obtaining this result would appear to be a careful analysis problem dealing with Sobolev spaces
and when the operator d is bounded.

11.2.2.2 Adjoint Approximation

Alternatively, the work of Smits [24] and later Arnold, Falk, Guzman and Tsogtgerel [3] could
provide a different path to proving Assumption 7.3.4. They established that the adjoint of
the coboundary operator approximates the adjoint of the exterior derivative as required but
only for degree one using the regular standard subdivision. However Arnold, Falk, Guzman
and Tsogtgerel also provided counter examples when convergence failed in the setting of other
subdivision schemes such as the standard subdivision and separately, in the case of higher degree
differential forms and cochains [3, Page 5489].

Using these results it is possible to derive the lower bound without Assumption 7.3.4. However
the upper bound still requires the assumption and assumes that the Whitney map growth rate
calculations can be adapted to the setting of the subdivision scheme considered. It may well
be the case that through careful examination of the proves used by Arnold, Falk, Guzman and
Tsogtgerel that they can be adapted to produce the estimates required for the upper bound and
hence remove Assumption 7.3.4 entirely.

11.2.2.3 Combinatorial Hodge Star

Finally, the work by Wilson [29] and later Tanabe [26] who showed that the combinatorial Hodge
star operator approximates the analytic Hodge star operator in a number of ways that could
offer a path to proving Assumption 7.3.4. As the Hodge star is included of the definition of
the adjoint of the exterior derivative, it is possible that using the combinatorial Hodge star for
defining the adjoint of the coboundary operator allows for the required estimates to be derived.

11.2.3 Convergence

In order for the eigenvalues to converge, the error terms in both the upper and lower bounds
must converge to zero as n→∞.

11.2.3.1 Lower Bound

As a consequence of Corollary 2.2.26, in the best case scenario (βn = 2−n), the error term
approaches a constant and in all other cases the error term grows in size. This growth in error
is a direct result of the growth rate of the Whitney map. Therefore, the only way to reduce
the growth rate is to consider a different subdivision scheme for which the growth rate of the
Whitney map is reduced.

This problem has many aspects to it considering the complicated and extensive relationship
between the subdivision scheme and Whitney map. Hence it is difficult to say if it is possible to
reduce the growth rate of the Whitney map but worth investigating.
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11.2.3.2 Upper Bound

A first step for the upper bound is to establish the behaviour of the ϑn terms. Whilst it is
strongly suspected that the ϑn terms grow in size as n→∞, it may be the case that they do
not grow. In this case, the problem of having the error terms converge to zero is identical to the
lower bound setting and hence already discussed (in Section 11.2.3.1).

Should the ϑn terms grow in size, the exact growth rate will determine if the error term goes
to zero or not. Of course any improvement in the rate of convergence from the lower bound will
aid in the convergence of the upper bound.

In the case where the growth rate of ϑn terms is too large, tighter estimates for Proposi-
tions 7.1.4 and 7.4.10 will be required. This would be a fairly major undertaking and likely will
require a significantly different approach to the one used by this thesis.

11.2.4 Application of Theorem 3.4.1

It is of note that even though Zahariev’s Theorem 3.4.1 is for the case of q = 0, by the following
construction, it may be able to provide an approximation for the eigenvalue problem in the trivial
line bundle case for q = 0, 1, . . . , N .

In Theorem 3.4.1, suppose E = C ⊗ ΛqT ∗M , where C is viewed as the trivial line bundle
and the connection ∇ on this vector bundle C ⊗ ΛqT ∗M is that which is induced by the given
connection dA on C and the Levi-Civita connection on ΛqT ∗M with respect to the metric g, then
the Bochner Laplacian operator ∇∗∇ acting on differential forms with values in C ⊗ ΛqT ∗M has
the same symbol (up to a fixed constant) as the Hodge Laplacian operator (dA)∗ dA + dA(dA)∗

considered throughout this thesis. The two operators thus differ by a first order operator (by
Weitzenböck formulas), which can be viewed as a compact operator when acting on Hq2 (M,C)
sections. Hence using Zahariev’s Theorem 3.4.1, the eigenvalues of this Bochner Laplacian, ∇∗∇,
can be approximated by Zahariev’s discrete methods, and therefore, in some sense, so too can
the eigenvalues of the Hodge Laplacian considered in this thesis, (dA)∗ dA + dA(dA)∗. However,
the precise nature of that latter approximation is by no means straightforward to determine nor
to estimate by discrete methods and for this reason, this approach was not pursued but offers a
possible future path of investigation.

11.3 Path to Trivial Vector Bundle

To generalise the work of Section 11.2 to trivial vector bundles of arbitrary rank in the case of
degree zero requires the generalisation of the cup product to matrix valued cochains and letting
A be a matrix of 1-forms according to Zahariev [30, Remark 4.7].

Whilst not investigated for any obstacles, it is excepted that this approach can also be
employed for arbitrary degree.

11.4 Path to Theorem 3.4.1 for Arbitrary Degree

In the setting of degree zero, Zahariev [30] constructs a very specific combinatorial Laplacian for
the case of any arbitrary vector bundle. This construction is presented in detail in Chapter 10.

Generalising Zahariev’s proof of Theorem 3.4.1 to higher degrees may be possible from
Section 11.3 and is the ultimate goal of this path of investigation.
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Considering some of Zahariev’s intermediate results are only for degree zero (such as his
Lemma 6.1 [30]), there would appear to be obstacles for higher degrees that need to be overcome.
These obstacles have not been investigated and hence no comment can be made as to the
feasibility of overcoming them.

11.5 New Paths of Investigation

Once Theorem 3.4.1 for arbitrary degree has been proved, it concludes a logical sequence of
generalisation of convergence of eigenvalues from the Laplacian action on functions to the
Laplacian action on any degree differential forms with values in an arbitrary vector bundle. From
this point, there are at least two logical paths of investigation to continue on.

11.5.1 Universal Combinatorial Laplacian

As was discussed in Section 10.2.4, the combinatorial Laplacian considered by Dodziuk and
Patodi [10] and the one considered by Zahariev [30] are not equivalent. Therefore it would be
of interest if it is possible to construct a combinatorial Laplacian for the setting of an arbitrary
vector bundle that coincides with the Dodziuk and Patodi combinatorial Laplacian on flat bundles
and converges in eigenvalues to its analytic counterpart.

Alternatively, it may prove beneficial to define a more general combinatorial Laplacian or
family of such combinatorial Laplacians that encapsulate both the Dodziuk and Patodi, and
Zahariev constructions as special cases whilst at the same time having eigenvalues that converge
to the eigenvalues of the analytic Laplacian.

11.5.2 Expanding Candidate Manifolds

So far, this sequence of converge results has been for manifolds that are connected and closed
amongst other conditions. Naturally one might wonder if these conditions can be relaxed.

The non-compact setting is of particular interest as Sunada [25] studies the twisted Laplace
operator, or discrete magnetic Laplacian (DML), acting on infinite graphs. The discrete magnetic
Laplacian is the combinatorial analogue to the analytic magnetic Schrödinger operator. Therefore
the non-compact setting as is of importance for physicists. Zahariev [30] provides some suggestions
into paths of investigation in his Chapters 7 and 8.
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Hasse Diagram for Partial Ordering

Figure A.1 provides a large Hasse diagram for the partial order with an explicit ordering for up
to q = 16.
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0, q

0, q − 1

0, q − 2

1, q

2, q1, q − 1

1, q − 2

1, q − 3

2, q − 1

3, q − 1

0, q − 3

0, q − 4

3, q

4, q2, q − 2

2, q − 3

2, q − 4

3, q − 2

4, q − 2

1, q − 4

1, q − 5

4, q − 1

5, q − 1

0, q − 5

0, q − 6

5, q

6, q3, q − 3

3, q − 4

3, q − 5

4, q − 3

5, q − 3

2, q − 5

2, q − 6

5, q − 2

6, q − 2

1, q − 6

1, q − 7

6, q − 1

7, q − 1

0, q − 7

0, q − 8

7, q

8, q4, q − 4

4, q − 5

4, q − 6

5, q − 4

6, q − 4

3, q − 6

3, q − 7

6, q − 3

7, q − 3

2, q − 7

2, q − 8

7, q − 2

8, q − 2

1, q − 8

1, q − 9

8, q − 1

9, q − 1

0, q − 9

0, q − 10

9, q

10, q5, q − 5

5, q − 6

5, q − 7

6, q − 5

7, q − 5

4, q − 7

4, q − 8

7, q − 4

8, q − 4

3, q − 8

3, q − 9

8, q − 3

9, q − 3

2, q − 9

2, q − 10

9, q − 2

10, q − 2

1, q − 10

1, q − 11

10, q − 1

11, q − 1

0, q − 11

0, q − 12

11, q

12, q6, q − 6

6, q − 7

6, q − 8

7, q − 6

8, q − 6

5, q − 8

5, q − 9

8, q − 5

9, q − 5

4, q − 9

4, q − 10

9, q − 4

10, q − 4

3, q − 10

3, q − 11

10, q − 3

11, q − 3

2, q − 11

2, q − 12

11, q − 2

12, q − 2

1, q − 12

1, q − 13

12, q − 1

13, q − 1

0, q − 13

0, q − 14

13, q

14, q7, q − 7

7, q − 8

7, q − 9

8, q − 7

9, q − 7

6, q − 9

6, q − 10

9, q − 6

10, q − 6

5, q − 10

5, q − 11

10, q − 5

11, q − 5

4, q − 11

4, q − 12

11, q − 4

12, q − 4

3, q − 12

3, q − 13

12, q − 3

13, q − 3

2, q − 13

2, q − 14

13, q − 2

14, q − 2

1, q − 14

1, q − 15

14, q − 1

15, q − 1

0, q − 15

0, q − 16

15, q

16, q8, q − 8

0, 0 q, q1, 1 q − 1, q − 1

Figure A.1: Hasse diagram for partial ordering of vertices of Sσ where σ is a q-simplex. Note
the small overlap of the figure across both pages to aid with reading.
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0, q

0, q − 1

0, q − 2

1, q

2, q1, q − 1

1, q − 2

1, q − 3

2, q − 1

3, q − 1

0, q − 3

0, q − 4

3, q

4, q2, q − 2

2, q − 3

2, q − 4

3, q − 2

4, q − 2

1, q − 4

1, q − 5

4, q − 1

5, q − 1

0, q − 5

0, q − 6

5, q

6, q3, q − 3

3, q − 4

3, q − 5

4, q − 3

5, q − 3

2, q − 5

2, q − 6

5, q − 2

6, q − 2

1, q − 6

1, q − 7

6, q − 1

7, q − 1

0, q − 7

0, q − 8

7, q

8, q4, q − 4

4, q − 5

4, q − 6

5, q − 4

6, q − 4

3, q − 6

3, q − 7

6, q − 3

7, q − 3

2, q − 7

2, q − 8

7, q − 2

8, q − 2

1, q − 8

1, q − 9

8, q − 1

9, q − 1

0, q − 9

0, q − 10

9, q

10, q5, q − 5

5, q − 6

5, q − 7

6, q − 5

7, q − 5

4, q − 7

4, q − 8

7, q − 4

8, q − 4

3, q − 8

3, q − 9

8, q − 3

9, q − 3

2, q − 9

2, q − 10

9, q − 2

10, q − 2

1, q − 10

1, q − 11

10, q − 1

11, q − 1

0, q − 11

0, q − 12

11, q

12, q6, q − 6

6, q − 7

6, q − 8

7, q − 6

8, q − 6

5, q − 8

5, q − 9

8, q − 5

9, q − 5

4, q − 9

4, q − 10

9, q − 4

10, q − 4

3, q − 10

3, q − 11

10, q − 3

11, q − 3

2, q − 11

2, q − 12

11, q − 2

12, q − 2

1, q − 12

1, q − 13

12, q − 1

13, q − 1

0, q − 13

0, q − 14

13, q

14, q7, q − 7

7, q − 8

7, q − 9

8, q − 7

9, q − 7

6, q − 9

6, q − 10

9, q − 6

10, q − 6

5, q − 10

5, q − 11

10, q − 5

11, q − 5

4, q − 11

4, q − 12

11, q − 4

12, q − 4

3, q − 12

3, q − 13

12, q − 3

13, q − 3

2, q − 13

2, q − 14

13, q − 2

14, q − 2

1, q − 14

1, q − 15

14, q − 1

15, q − 1

0, q − 15

0, q − 16

15, q

16, q8, q − 8

0, 0 q, q1, 1 q − 1, q − 1
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APPENDIX B JOSEPH-LOUIS LAGRANGE (Italian)

Matrices of Barycentric Coordinates

On the following pages are explicit expressions for the matrices Ξ̂ and Ξ from (5.4.6) and (5.4.14)
respectively.
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The matrices Ξ and Ξ̂ have the following form printed across two pages

(B.0.1)Ξ̂ =

1
,2

1
,3

1
,4

1
,5

... 1
, |K

0 n
|−

3

1
, |K

0 n
|−

2

1
, |K

0 n
|−

1

1
, |K

0 n
|

2
,2

2
,3

2
,4

2
,5

... 2
, |K

0 n
|−

3

2
, |K

0 n
|−

2

2
, |K

0 n
|−

1

2
, |K

0 n
|

3
,3

3
,4

3
,5

... 3
, |K

0 n
|−

3

3
, |K

0 n
|−

2

3
, |K

0 n
|−

1

3
, |K

0 n
|

4
,4

4
,5

... 4
, |K

0 n
|−

3

4
, |K

0 n
|−

2

4
, |K

0 n
|−

1

4
, |K

0 n
|

... |K
0 n
|−

2
, |K

0 n
|−

2

|K
0 n
|−

2
, |K

0 n
|−

1

|K
0 n
|−

2
, |K

0 n
|

|K
0 n
|−

1
, |K

0 n
|−

1

|K
0 n
|−

1
, |K

0 n
|

|K
0 n
|, |
K

0 n
|

2 In 0 . . . . . . . . . . . . . . . . . . 0 2 In . . . . . . . . . . . . . . . . . . In 0 . . . . . . . . . . . . . . . . . . 0 0 . . . . . . . . . . . . . . 0 ... 0 . . . 0 0 0 0
3 0 In 0 . . . . . . . . . . . . . . . . 0 0 In 0 . . . . . . . . . . . . . . . . 0 2 In . . . . . . . . . . . . . . . . In 0 . . . . . . . . . . . . . . 0 ... 0 . . . 0 0 0 0
4 0 0 In 0 . . . . . . . . . . . . 0 0 0 In 0 . . . . . . . . . . . . 0 0 In 0 . . . . . . . . . . . . 0 2 In . . . . . . . . . . . In ... 0 . . . 0 0 0 0

...
...

. . . . . . . . .
...

...
. . . . . . . . .

...
...

. . . . . . . . .
...

. . .. . .. . . ...
...

...

|K0
n|−2 0 . . . . . . . . . . . . 0 In 0 0 0 . . . . . . . . . . . . 0 In 0 0 0 . . . . . . . . . 0 In 0 0 0 . . . . 0 In 0 0 ... 2 In In 0 0 0

|K0
n|−1 0 . . . . . . . . . . . . . . . 0 In 0 0 . . . . . . . . . . . . . . . 0 In 0 0 . . . . . . . . . . . . 0 In 0 0 . . . . . . . . 0 In 0 ... 0 In 0 2 In 0

|K0
n| 0 . . . . . . . . . . . . . . . . . . 0 In 0 . . . . . . . . . . . . . . . . . . 0 In 0 . . . . . . . . . . . . . . . 0 In 0 . . . . . . . . . . . 0 In ... 0 0 In 0 In 2

,

and

(B.0.2)Ξ =

1
,1

1
,2

1
,3

1
,4

1
,5

... 1
, |K

0 n
|−

3

1
, |K

0 n
|−

2

1
, |K

0 n
|−

1

1
, |K

0 n
|

2
,2

2
,3

2
,4

2
,5

... 2
, |K

0 n
|−

3

2
, |K

0 n
|−

2

2
, |K

0 n
|−

1

2
, |K

0 n
|

3
,3

3
,4

3
,5

... 3
, |K

0 n
|−

3

3
, |K

0 n
|−

2

3
, |K

0 n
|−

1

3
, |K

0 n
|

4
,4

4
,5

... 4
, |K

0 n
|−

3

4
, |K

0 n
|−

2

4
, |K

0 n
|−

1

4
, |K

0 n
|

... |K
0 n
|−

2
, |K

0 n
|−

2

|K
0 n
|−

2
, |K

0 n
|−

1

|K
0 n
|−

2
, |K

0 n
|

|K
0 n
|−

1
, |K

0 n
|−

1

|K
0 n
|−

1
, |K

0 n
|

|K
0 n
|, |
K

0 n
|

1 2 In . . . . . . . . . . . . . . . . . . . . . In 0 . . . . . . . . . . . . . . . . . . . . . 0 0 . . . . . . . . . . . . . . . . . . 0 0 . . . . . . . . . . . . . . 0 ... 0 . . . 0 0 0 0
2 0 In 0 . . . . . . . . . . . . . . . . . . 0 2 In . . . . . . . . . . . . . . . . . . In 0 . . . . . . . . . . . . . . . . . . 0 0 . . . . . . . . . . . . . . 0 ... 0 . . . 0 0 0 0
3 0 0 In 0 . . . . . . . . . . . . . . . . 0 0 In 0 . . . . . . . . . . . . . . . . 0 2 In . . . . . . . . . . . . . . . . In 0 . . . . . . . . . . . . . . 0 ... 0 . . . 0 0 0 0
4 0 . . . 0 In 0 . . . . . . . . . . . . 0 0 0 In 0 . . . . . . . . . . . . 0 0 In 0 . . . . . . . . . . . . 0 2 In . . . . . . . . . . . In ... 0 . . . 0 0 0 0

...
...

. . . . . . . . .
...

...
. . . . . . . . .

...
...

. . . . . . . . .
...

. . .. . .. . . ...
...

...

|K0
n|−2 0 . . . . . . . . . . . . . . . 0 In 0 0 0 . . . . . . . . . . . . 0 In 0 0 0 . . . . . . . . . 0 In 0 0 0 . . . . 0 In 0 0 ... 2 In In 0 0 0

|K0
n|−1 0 . . . . . . . . . . . . . . . . . . . 0 In 0 0 . . . . . . . . . . . . . . . 0 In 0 0 . . . . . . . . . . . . 0 In 0 0 . . . . . . . . 0 In 0 ... 0 In 0 2 In 0

|K0
n| 0 . . . . . . . . . . . . . . . . . . . . . . 0 In 0 . . . . . . . . . . . . . . . . . . 0 In 0 . . . . . . . . . . . . . . . 0 In 0 . . . . . . . . . . . 0 In ... 0 0 In 0 In 2

.

Due to space constraints, the superscripts of the indicator functions Ir,sn have been omitted. The
superscripts of In are given by the column number. For example the In in Ξ̂ denotes I2,4n as it
is in the (2, 4) column.

It should be noted that the dots iterate over two variables in a nested fashion. For a given
column number (r, s), the inner iteration is over the variable s and the outer iteration is over the
variable r. The black dots indicate the inner iteration over s whilst the red dots indicate the outer
iteration over r which in turn contains the inner iterations over s. The terms encircled in red
correspond to the ‘diagonal elements’ if for each r, the iteration over s is viewed as a block matrix.
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(B.0.1)Ξ̂ =

1
,2

1
,3

1
,4

1
,5

... 1
, |K

0 n
|−

3

1
, |K

0 n
|−

2

1
, |K

0 n
|−

1

1
, |K

0 n
|

2
,2

2
,3

2
,4

2
,5

... 2
, |K

0 n
|−

3

2
, |K

0 n
|−

2

2
, |K

0 n
|−

1

2
, |K

0 n
|

3
,3

3
,4

3
,5

... 3
, |K

0 n
|−

3

3
, |K

0 n
|−

2

3
, |K

0 n
|−

1

3
, |K

0 n
|

4
,4

4
,5

... 4
, |K

0 n
|−

3
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1 2 In . . . . . . . . . . . . . . . . . . . . . In 0 . . . . . . . . . . . . . . . . . . . . . 0 0 . . . . . . . . . . . . . . . . . . 0 0 . . . . . . . . . . . . . . 0 ... 0 . . . 0 0 0 0
2 0 In 0 . . . . . . . . . . . . . . . . . . 0 2 In . . . . . . . . . . . . . . . . . . In 0 . . . . . . . . . . . . . . . . . . 0 0 . . . . . . . . . . . . . . 0 ... 0 . . . 0 0 0 0
3 0 0 In 0 . . . . . . . . . . . . . . . . 0 0 In 0 . . . . . . . . . . . . . . . . 0 2 In . . . . . . . . . . . . . . . . In 0 . . . . . . . . . . . . . . 0 ... 0 . . . 0 0 0 0
4 0 . . . 0 In 0 . . . . . . . . . . . . 0 0 0 In 0 . . . . . . . . . . . . 0 0 In 0 . . . . . . . . . . . . 0 2 In . . . . . . . . . . . In ... 0 . . . 0 0 0 0

...
...

. . . . . . . . .
...

...
. . . . . . . . .

...
...

. . . . . . . . .
...

. . .. . .. . . ...
...

...

|K0
n|−2 0 . . . . . . . . . . . . . . . 0 In 0 0 0 . . . . . . . . . . . . 0 In 0 0 0 . . . . . . . . . 0 In 0 0 0 . . . . 0 In 0 0 ... 2 In In 0 0 0

|K0
n|−1 0 . . . . . . . . . . . . . . . . . . . 0 In 0 0 . . . . . . . . . . . . . . . 0 In 0 0 . . . . . . . . . . . . 0 In 0 0 . . . . . . . . 0 In 0 ... 0 In 0 2 In 0

|K0
n| 0 . . . . . . . . . . . . . . . . . . . . . . 0 In 0 . . . . . . . . . . . . . . . . . . 0 In 0 . . . . . . . . . . . . . . . 0 In 0 . . . . . . . . . . . 0 In ... 0 0 In 0 In 2

.

Due to space constraints, the superscripts of the indicator functions Ir,sn have been omitted. The
superscripts of In are given by the column number. For example the In in Ξ̂ denotes I2,4n as it
is in the (2, 4) column.

It should be noted that the dots iterate over two variables in a nested fashion. For a given
column number (r, s), the inner iteration is over the variable s and the outer iteration is over the
variable r. The black dots indicate the inner iteration over s whilst the red dots indicate the outer
iteration over r which in turn contains the inner iterations over s. The terms encircled in red
correspond to the ‘diagonal elements’ if for each r, the iteration over s is viewed as a block matrix.
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APPENDIX C NICOLAUS COPERNICUS (Polish)

Symbols

C.1 Greek Symbols

α set of indexing variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

β mesh reduction parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

γ eigenvalue of s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22, 94

∆ Laplacian operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9, 88
δ combinatorial exterior derivative . . . . . . . . . . . . . . . . . . . . . . . 19, 21, 89
δ∗ adjoint of δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

ε rank of E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28, 87

ζ collection of constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

η collection of constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47, 74

Θ map on differential forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
θ fullness, angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 85
ϑ constant dependent on n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 97
ϑ̂ constant dependent on n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
ϑ̃ function on cochains dependent on n . . . . . . . . . . . . . . . . . . . . . 25, 57, 66

ι inclusion, embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14, 90
ι∗ adjoint of embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

κ arbitrary constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
κA constant dependent on A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
κA,r constant dependent on A and r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
κ parameter of triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

λ eigenvalue of ∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9, 88

µ barycentric coordinate function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
µ vector of barycentric coordinate functions . . . . . . . . . . . . . . . . . . . . . 38, 43
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ν set of indexing variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8, 40

Ξ barycentric coordinate function matrix . . . . . . . . . . . . . . . . . . . . . . . 42, 43
ξ vector of barycentric coordinate functions . . . . . . . . . . . . . . . . . . . . . 40, 43

π circle constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
π1 (·) fundamental group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
$ differential form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74, 87

ρ simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Σ map on cochains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24, 57
σ simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

τ simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Υ orthonormal basis for T ∗M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8, 88

Φ vector bundle trivialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
ϕ coordinate chart, vector bundle trivialisation . . . . . . . . . . . . . . . . . . . 10, 91

χ set of indexing variables, matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 45, 91

Ψ combinatorial partition of unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
ψ partition of unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Ω (·, ·) smooth differential forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 87
ω differential form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 87

C.2 Latin Symbols

A fixed real smooth 1-form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
a fixed 1-cochain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

B trivial vector bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
b rank of B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

C set of complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Cq (·, ·) cochains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 89
c cochain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
cl (·) closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

D matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38, 40
d exterior derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 9
d∗ adjoint of d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 9
dgσ (·, ·) local Euclidean distance on M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
det (·) determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
dim (·) dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
dVolg Riemannian volume form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8



Latin Symbols 111

E vector bundle over M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87, 90
e edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

F homeomorphism of triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
f function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

g Riemannian metric on M , group element . . . . . . . . . . . . . . . . . . . . . 7, 28
gσ local Euclidian metric on M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

H Hilbert space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Hqr (·, ·) Sobolev space of differential forms . . . . . . . . . . . . . . . . . . . . . . . . . 8, 88
h mesh of triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

I combinatorial embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
I∗ adjoint of combinatorial embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Id identity operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
I indicator function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
i imaginary unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
inf infimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
int (·) interior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

j indexing variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

K triangulation of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
k indexing variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

L subcomplex of K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
log (·) natural logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

m indexing variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
M manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
M̃ universal cover of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
max maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
min minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

N dimension of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
N set of natural numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
n iteration of subdivision of K0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

O representation of fundamental group . . . . . . . . . . . . . . . . . . . . . . . . . . 28

P quasi projection map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22, 63
p point in M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8, 15, 89
pr projection operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Q domain of associated quadratic form . . . . . . . . . . . . . . . . . . . . . . . . . . 9
q order of differential forms or cochains . . . . . . . . . . . . . . . . . . . . . . . . . . 7

R de Rham map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 89, 93
R−1 linear right inverse of R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Re (·) real part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
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R set of real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
r parameter of norm, indexing variable . . . . . . . . . . . . . . . . . . . . . . . . 8, 15

S1 circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
S standard subdivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
s indexing variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
span span of vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
sup supremum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
supp (·) support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

TM tangent space of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
T ∗M cotangent space of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8, 87
T transpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

U local neighbourhood of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
U finite set of coordinate charts of M . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
u linear operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

V vector space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
v vertex, vector, differential form . . . . . . . . . . . . . . . . . . . . . . . . 11, 28, 69
vol (·) Riemannian volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

W Whitney map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 89, 93

x local coordinate, coordinate, vector . . . . . . . . . . . . . . . . . . . . . . . 8, 38, 83

y local coordinate, coordinate, vector . . . . . . . . . . . . . . . . . . . . . . 14, 38, 83
y vector of coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Z set of integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

C.3 Other Symbols

1Kq unity cochain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 52
∞ infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

∧ exterior product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 87
⊗ tensor product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
∪ cup product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
⊆ subset (including equality) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
⊇ superset (including equality) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
∼ equivalence relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
? Hodge star operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 87

s combinatorial Laplacian operator . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 93
∇ covariant derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8, 87
∇∗ adjoint of ∇ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
t combinatorial covariant derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
t∗ adjoint of t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



Other Symbols 113

∂ face map, partial derivate, boundary of space . . . . . . . . . . . . . . . . 18, 23, 58

∅ empty set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

· complex conjugate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
! factorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

|·| absolute value, cardinality of set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
|·|p pointwise norm on Ωq (·, ·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8, 88
|·|V Hermitian norm on E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

‖·‖r Sobolev norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8, 88
‖·‖σr local seminorm on differential forms depended on K . . . . . . . . . . . . . . . . . 20
‖·‖Kr global norm on differential forms depended on K . . . . . . . . . . . . . . . . . 20, 56
‖·‖C,r norm on Cq (·, ·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 89
‖·‖W Whitney norm on Cq (·, ·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
‖·‖op operator norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

〈·, ·〉0 inner product on Ωq (·, ·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 87
〈·, ·〉C inner product on Cq (·, ·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 89
〈·, ·〉W Whitney inner product on Cq (·, ·) . . . . . . . . . . . . . . . . . . . . . . . . . 21, 90
〈·, ·〉V inner product on V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
〈·, ·〉

W̃
twisted Whitney inner product on Cq (·, ·) . . . . . . . . . . . . . . . . . . . . . . . 93



114 C Symbols



APPENDIX D GEORGE BOOLE (English)

Index

For efficient finding of each term, in the thesis the referenced term is written in red.

A

Adjoint of operator 7, 9, 88
Formal adjoint 7, 9, 88

B

Barycentric coordinates 11
Binomial coefficient 39

C

Chapter definition 7, 45
Cochain 10, 89

Unity cochain 10
Combinatorial

covariant derivative 93
Laplacian 93, 94
Twisted combinatorial Laplacian 21

Conjugation (complex) 7
Connection 8, 87
Coordinate chart 8, 18, 88
Covariant derivative 88
Cup product 21

D

de Rham map 21, 89
Twisted de Rham map 93

Distance
Local distance 19

E

Eigenvalue 9, 22, 88, 94
Exterior

derivative 7
Twisted exterior derivative 9

product 7, 87

F

Face map 18

H

Hasse diagram 15, 102
Hodge star operator 7, 87

I

Identity operator 22
Indexing variable 40, 45
Indicator function 39
Inner product 7, 10, 87, 89

Whitney inner product 21, 90
Twisted Whitney inner product 93

L

Laplacian 88
Twisted Laplacian 9

Linear right inverse 22

M

Mesh 19
Min-Max Principle 9
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N

Norm
Global norm 20
Local seminorm 20
Pointwise norm 8, 88
Sobolev norm 8, 88
Supremum norm 11, 89

O

Open cover 90
Ordering

Lexicographical ordering 15
of vertices see Triangulation
Partial ordering 15, 102

Orthonormal
basis 74, 88
frame 8

P

Partition of unity 90
Modified partition of unity 90

Q

Quadratic form 9

S

Simplicial coboundary operator 19, 89
Smooth 7
Sobolev space 8, 88
Symbol (of operator) 97

T

Triangulation 10
Fullness 20
Initial triangulation 15
Ordering of vertices 14
Reference point 89
Subdivision of triangulation 15
Barycentric subdivision 15, 20
Regular standard subdivision 35
Standard subdivision 15, 20

Twisted combinatorial exterior derivative 21

V

Volume form 8
Volume of simplex 20

W

Whitney map 13, 89
Twisted Whitney map 93
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