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Abstract

This thesis consists of two parts. The first (Chapters I and II) is a thorough introduction to
the theory of diffeology. We provide a ground-up account of the theory from the viewpoint of plots
(in contrast to the sheaf-theoretic treatments). This includes a proof that the category Diffeol
of diffeological spaces and smooth maps is complete and cocomplete, (locally) Cartesian closed,
and a quasitopos. In addition, we treat many examples, including a detailed recollection of the
classification of irrational tori.

The second part (Chapters III to VI) is a proposal for a framework of diffeological Morita
equivalence. We give definitions of diffeological groupoid actions, -bundles, and -bibundles, general-
ising the known theory of Lie groupoids and their corresponding notions. We obtain a bicategory
DiffeolBiBund of diffeological groupoids and diffeological bibundles. This has no analogue in the
Lie theory, since we put no ‘principality’ restrictions on these bibundles. We then define a new notion
of principality for diffeological (bi)bundles, and subsequently obtain a notion of Morita equivalence
by declaring that two diffeological groupoids are equivalent if and only if there exists a biprincipal
bibundle between them. Our main new result is the following: two diffeological groupoids are Morita
equivalent if and only if they are weakly equivalent in the bicategory DiffeolBiBund. Equivalently,
this means that a diffeological bibundle is weakly invertible if and only if it is biprincipal. This
significantly generalises the original theorem in the Lie groupoid setting, where an analogous state-
ment can only be made if we assume one-sided principality beforehand. As an application of this
framework, we prove that two Morita equivalent diffeological groupoids have categorically equival-
ent action categories. We also prove that the property of a diffeological groupoid to be fibrating is
preserved under Morita equivalence.

In a subsequent chapter, we propose an alternative framework for diffeological Morita equivalence
using a calculus of fractions. We prove that the notion of Morita equivalence obtained in this way
is identical to the one obtained from the bibundle theory. As a corollary, we prove that there is
a diffeomorphism between the orbit spaces of two Morita equivalent diffeological groupoids. This
generalises the well-known result from the Lie groupoid setting, where in general one only has a
homeomorphism.

We then give a detailed construction of the germ groupoid of a space, and sketch a theory of
atlases. To each atlas on a diffeological space we associate a transition groupoid, capturing the
structure of the transition functions between the charts. We prove that two diffeological spaces are
diffeomorphic if and only if their transition groupoids are Morita equivalent. This generalises earlier
ideas of orbifold atlases to the diffeological setting.
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Preface

“What is space?” This was once asked to me in a lecture on the history of quantum mechanics back
in 2016. It caught me off guard. Mostly because it had never occurred to me, in any serious sense, to
think about it. But it gave me a sense of mysterious excitement'. To me, it was in the same category of
questions as “what is a thing?” or “what is truth?” And this thesis, even though not its point to provide
an answer, is the closest opportunity I have had to touch upon it. Therefore, I would like to start the
Introduction in Chapter I by sketching the landscape of generalised smooth spaces, which should lead
naturally into the main topic of this thesis: diffeology.

There is something intriguing about the idea that there is an uttermost fundamental structure to it
all. Not the form of differential equations or the definition of a smooth atlas, but the very structures that
capture those ideas, and then the further structures that underlie those in turn. For me, it is exciting
and maybe even comforting to imagine that such a thing exists. During my undergraduate lectures I
was fairly close-minded in the way I estimated the broader context of the theories we encountered. The
jump from metric spaces to topological spaces was logical, but to think that there is something beyond
topology? Something beyond C*-algebras? Something beyond manifolds? Inside of those theories
everything was well-behaved and pleasant, but beyond the boundaries of my ignorance I could not
imagine anything else being necessary. Of course, the more I learn, the more these boundaries begin to
vanish?. Now, I think a large part of what intrigues me about mathematics is the ways those boundaries
can be broken.

One of these boundaries has been broken by diffeology, which extends the world of differential
topology, reformulating what it means to be smooth. This will be the central notion in this thesis. In
Chapter II we provide a detailed introduction to this theory. The main contribution of this thesis
describes a generalisation of the theory of Lie groupoids and bibundles to the diffeological setting. In
this we get a notion of Morita equivalence for diffeological groupoids. To read more on What this thesis
is all about, please refer to Section 1.2.

A short note on tangent structures and diffeology. The topic of this project started with
groupoids, moved to tangent structures, and then went back to groupoids. Even though the results
in this thesis do not relate to tangent structures directly, we nevertheless would like to make some
remarks to document some findings that are not part of the main body of this thesis.

The motivation for this thesis has its origins in [BFW13] and [G119]. There, the authors con-
sider embeddings of hypersurfaces in a 4-dimensional Lorentzian manifold that represent solutions to
the initial value problem of the Einstein equations. Recalling from [G119, Section II.2.1], given a
3-manifold X, a X-universe is a certain equivalence class of proper embeddings i : ¥ < (M,g) as
space-like hypersurfaces into a Lorentzian 4-manifold. Two embeddings are equivalent when there exists
an orientation-preserving isometry on the ambient Lorentzian manifold that sends the image of one
embedding to the other. A pair of embeddings (iy,40), where i1,ig : & < (M, g), subject to a similar
equivalence relation, then forms a groupoid of X-evolutions. The equivalence class of a pair of embed-
dings (i1,140) is interpreted as a Cauchy development of the initial data that ¥ represents. [G119] proves
that the smooth structure on this groupoid defined in [BFW13] makes it into a diffeological groupoid.

For physical reasons we want to know the bracket structure of the associated algebroid of X-
evolutions. These so-called constraint brackets determine the Einstein equations. Even though this
‘algebroid’ is calculated in [BEFW13; G119], there is no general construction that associates a “diffeolo-
gical algebroid” to an arbitrary diffeological groupoid. The first goal of this thesis was then to provide
such a construction.

It became apparent quite quickly that the foundations for such a construction had yet to be laid. The
definition of a Lie algebroid of a Lie groupoid depends heavily on the structure of the tangent bundle

INot dissimilar to the impressions I got as a teenager when watching documentaries like What the Bleep Do We Know!?,
containing quite mystical accounts of quantum mechanics, which in hindsight must have contributed to my choice of going
into physics.

20ne memorable glimpse of this realisation was during a differential geometry lecture by Gil Cavalcanti. The lecture
was about Lie algebras, and the claim was made that the Lie algebra of a diffeomorphism group is the same as the space
of vector fields. When a student asked why this was true, we were promptly reassured that the proof was beyond the
scope of this course.
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of a smooth manifold, which is not something that we have access to in the diffeclogical case. In fact,
there seems to be no unambiguous notion of tangency on a diffeological space. However, as suggested
in [G119, Section 1.2.3], there is a way to obtain an algebroid-like object for diffeological groupoids,
mimicking a technique that is used for Lie groupoids. Namely, [SW15] proves that the Lie algebroid of
a Lie groupoid can be obtained as the Lie algebra of the group of bisections. In this sense the question
of defining a diffeological algebroid is reduced to defining a diffeological Lie algebra associated to a
diffeological group®. There has been little work done on this [Les03; Laull], none of which treats the
general case.

This leads us to the theory of tangent structures. It was Rosicky who first formalised this notion
in [Ros84]. A lot of the differential geometric structure of smooth manifolds seemed to be encoded in
certain properties of the tangent bundle functor 7' : Minfd — Mnfd, and Rosicky was able to condense
them into a concise list of functorial and natural conditions. In the two papers [CC14; CC16] the
theory is developed in a more modern account, and we refer the interested reader to those papers®.
Why is this relevant to our discussion? It appears that the information needed to define a Lie algebra
of a Lie group is already encoded in the tangent functor. Generally, the space of vector fields on an
object in a tangent category carries a Lie bracket. Therefore, to any group object in such a category we
can associate a Lie algebra. Recent work even suggests that we can get algebroids of internal groupoids
[Burl?].

Before arriving at a theory of diffeological algebroids, it therefore became clear there was much more
work to be done understanding the notion of a tangent structure on diffeological spaces. It was our next
goal, then, to prove that one of the several notions of tangent bundles on diffeological spaces [Vin08;
CW14] actually formed a tangent structure on Diffeol. I found that the most intriguing notion was
the internal tangent bundle, which in its correct form was first defined in [CW14]. Let us explain
what we mean by ‘correct.” Already in [Hec95], Hector gave a definition of a tangent bundle THX on
a diffeological space X. This was further developed in [HMV02], and also appearing in [Lau06]. It
is lacking in an important way, however, as pointed out in [CW14, Example 4.3]. Namely, both the
scalar multiplication and fibrewise addition on 7" X may fail to be smooth (showing that [HMV02,
Proposition 6.6] and [Lau06, Lemma 5.7] do not always hold). The failure of smoothness prohibits
Hector’s tangent bundle from being a tangent structure. In [CW14] this defect was remedied using a
technique that already appeared in [Vin08], and it is the resulting tangent bundle that we studied. It has
also been studied further in [CW17a]. The result is a diffeological vector pseudo-bundle (cf. [Per16])
TX — X, called the internal tangent bundle’. Based on this construction, we obtain a tangent functor
T : Diffeol — Diffeol, sending each smooth map f : X — Y to the internal differential df : TX — TY .
I proved (which is elementary) that this functor forms an additive bundle, the elementary ingredients
that comprise a tangent structure. In this sense, we have a reasonable contender for a tangent structure
functor on the category of all diffeological spaces. My problem was that I could not prove it satisfied the
axioms of a tangent structure! I already got stuck on proving that it preserves its own pullbacks. I tried
imitating the construction for manifolds, where one can relate tangent spaces of embedded submanifolds
and of preimages etc., but I found no straightforward generalisation of this to diffeology. It is not hard
to write down a function from the tangent space of a fibred product to the fibred product of tangent
spaces, but the problem is proving that this map is bijective. The difficulties are in part due to the fact
that the behaviour of subspaces and tangent spaces can be a bit pathological: certain subspaces can
have a higher-dimensional tangent space than the ambient space.

To circumvent these difficulties I tried to consider special classes of diffeological spaces. First, it was
known that the internal tangent bundle on a diffeological group was particularly well-behaved [CW14].
The issue arises that 7' : DiffeolGrp — Diffeol needs to be an endofunctor. Dan Christensen suggested
to me in an email that T'G could be equipped with a group structure by taking the internal differentials
of the group operations of G. I did not end up pursuing this idea in the end.

Another nice class of diffeological spaces I considered was that of the weakly filtered spaces, stud-
ied first in [CW17a]. Their tangent behaviour is particularly nice, since their tangent spaces are

3The group of bisections has a natural diffeological structure.

4Beware that in those articles they write the composition of arrows in “diagrammatic order,” whereas we adopt the
standard notation for composition. So where we would write f o g or fg to mean “f after g,” they write gf.

51 propose the notation ‘T’ of an inverted hat, pointing inward. [CW14] uses the notation qdvs,
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1-representable. This means that every tangent vector can be represented by the velocity of a curve in
the underlying space, something that is true for smooth manifolds but not for arbitrary diffeological
spaces. I was hoping to use this to simplify calculations. (This already excludes spaces like the cross
in the plane.) This class is the same as the L-type ones introduced by Leslie in [Les03]. Note that
Laubinger’s PhD thesis [Lau06] also defines L-type spaces, but not correctly. Again, we need to ensure
that the tangent functor 7 is an endofunctor, which in this case would amount to T'X being weakly
filtered whenever X is. [Lau06] attempts to prove this, but does not seem to be correct.

The recently published [ADN20] offers a new perspective of the internal tangent bundle as a section
of a cosheaf. This potentially allows us to extend the internal tangent bundle to a broader class of
sheaves, since this construction is independent on the underlying set of points of a diffeological space.
We do not know if this point of view can help answer the question about the existence of the internal
tangent structure.

As T understand it now, the fundamental obstruction to constructing an internal tangent structure
seems to lie in the failure of commutation of limits and colimits. On the one hand, we have the internal
tangent spaces, which are defined as colimits. On the other hand, the definition of a tangent structure
requires the tangent functor 7" to preserve its own pullbacks. Therefore, for the internal tangent bundle
functor to satisfy this demand, we need to have a commutation of these specific limits and colimits. The
question of commuting limits and colimits is complicated, and it seems that there is no straightforward
solution to the problem of when they do or do not commute. For lack of an answer to this problem,
there seem to be two routes to take: either we modify the definition of a tangent structure, or we need
to find an alternative notion of tangency on diffeological spaces, that is either not defined in terms of
colimits, or is better behaved®.

Around February of 2020, I put forward a suggestion to Klaas Landsman to study a Hilsum-Skandalis
category of diffeological groupoids. From that meeting onwards, I started studying diffeological group-
oids and bibundles instead, the result of which is this thesis!

6 Actually, there is a third route: we abandon diffeology, and look for a notion of space that better supports a notion
of tangency. A fundamental reason that the internal tangent space is defined as a colimit seems to be the fact that a
diffeology is defined using the “maps in” approach, i.e., a diffeology is defined in terms of maps defined on Euclidean
domains U C R™ into a set X. This means that the tangent space structure of the Euclidean domains has to be pushed
forward onto X, and hence the colimit. There are other notions of generalised smooth spaces, some of which we will discuss
in Section 1.1, that take the “maps out” approach. For these, to transfer the tangent space structure of Euclidean spaces,
we need to pull back, hence a limit, instead of a colimit. Since limits commute with limits, the fundamental obstruction
described above would vanish.



It is with pleasure and humility that I can finally present this thesis. Writing it has been a labour of
love for me, even (perhaps especially) under lockdown during the SARS-COV-2 pandemic, and I hope
this finds you in good health. I am satisfied with it to a good extent; there is more I would have liked
to add, clarify, polish, prove, confirm, apply... But I have learned a lot; about what it might feel like
to do research, about my own interests in mathematics, about diffeology, about how to approach the
writing process, about all of the things I wish I could have done differently, and about the many things
I wish I knew more about! In any case, I hope that you will find something useful down there. We
present motivation for the main subject in Section 1.2.2. An extensive outline of the contents and our
results can be found in the bird’s eye view 1.2.3, at the end of Chapter I. Enjoy!
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Chapter I
Introduction

GEOMETRY (from the Ancient Greek ge(o)-, “earth,” and -metria, “measuring”), the study of distance,
angles and size, has existed since ancient times. One of the most famous mathematical theorems, the
Pythagorean Theorem, known since at least c. 500 BC, is a geometrical one:

b a® + b =2

a

Some two hundred years later, Euclid published The Elements, c. 300 BC, containing the first axiomat-
isation of geometry, and in particular of the notion of “space.” It is fair to say that, with his work,
Euclid ushered in an age of mathematical thinking with axioms and rigorous proofs that still sets the
standard to this day. His was a logical, synthetic approach to geometric reasoning. Two millennia later,
in the first half of the 17th century, René Descartes introduced the analytic method to geometry: that
of reasoning with coordinate systems, which now permeates modern mathematics and physics. It is to
them we pay tribute when using the words Fuclidean space and Cartesian coordinate system.

Over in the 19th century, we find the start of the story of the first modern conception of a manifold in
Riemann’s Habilitationsschrift [Rie54]. The modern definition of an arbitrary-dimensional manifold in
terms of an atlas is credited to Whitney [Whi36], although earlier modern forms occurred for Riemann
surfaces sometime earlier in the work of Weyl [Wey14]. Other sources credit [WV32]. Of course, the
actual turn of events is far more gradual as the definition of a manifold did not spring out of nowhere.
Historical accounts are in [Die09; Frél18; Sch99].

1.1 A panoramic view of the landscape of generalised smooth spaces

Let us jump now to the mid-20th century, where our story truly starts. The concept of manifold was
now starting to be well-understood, supported by rigorous foundations of analysis and topology. Cartan
defined notions of fibre bundles with connections, capturing both Riemann’s ideas of curved spaces, and
Klein’s homogeneous spaces. The ideas of Chern subsequently elevated Cartan’s work to global intrinsic
geometry, leading to the modern way of thinking in differential geometry [Yau06].

But that is not the end of the story. There was more to be discovered, beyond the realm of manifolds.
In the following we would like to sketch a brief history of these developments. These remarks must be
taken with a grain of salt, since the author was neither there when they happened, nor is expert enough
to understand their origins. The outline we describe below is based on various snippets and remarks of
other authors. These are mainly: [BH11; BIKW17; 1Z13; 1Z17; LS86; Wik20], but other online
resources such as the nLab and The n-Category Café have also been helpful.

1.1.1 A need for new spaces in geometry

In the mid-20th century, algebraic topologists started looking for alternatives to the category Top of
topological spaces and continuous maps. This was no doubt in part motivated by the growing influence
of category theory since the early 1940s. Under this pressure, the categorical properties of Top were
pushed into the spotlight, and its cracks were showing. People were finding Top to be an ‘inconvenient’
category in which to do topology. One of the main reasons for this was that there is no canonical topology
on the spaces of continuous functions, and Top is therefore not Cartesian closed” (Definition A.5). We
recall that, if a category C is Cartesian closed, this means that for any two objects A, Y € ob(C), there

“Which unfortunately means that Top ¢ Topos.



is a third object Y € ob(C) called the exponent, which is typically the collection of all arrows A — Y,
such that there is a natural bijection between two types of arrows:

X —Y4
XxA—Y’

In Top, Y4 is (or rather, should be) the function space C(A,Y’) of all continuous functions A — Y.
But there is no canonical topology on such a space, generally, so Y4 lies outside of the category. This
is quite unsatisfactory when doing, for instance, homotopy theory, where one is studying exactly those
kinds of spaces. In order to study the homotopy of a topological space, one had to, in a sense, step
out of Top to perform any serious study in the first place, which was considered a flaw. Certainly as
bare sets the spaces of continuous functions seemed to lose some of the topological information that
was there. Besides that, it would not be possible to study the homotopy of function spaces themselves,
such as loop spaces. These types of concerns were voiced by Brown [Bro63; Bro64], and later also
more explicitly by Steenrod [Ste67], who came up with a notion of a convenient category of topological
spaces. Such a category of spaces should be Cartesian closed, and closed under several other natural
categorical operations. These concerns can be summarised by the quote [Mac71, Section VII.8&]:

“All told, this suggests that in Top we have been studying the wrong mathematical objects.
8 »

The right ones are the spaces in CGHaus®.
Grothendieck faced similar problems in algebraic geometry. In the late 1950s he introduced schemes,
first published in his famous Eléments de Géométrie Algébrique [Gro60], to generalise algebraic varieties,
in part motivated to provide an encompassing framework in which to solve the Weil conjectures, but since
providing the foundations of modern algebraic geometry. His approach was fundamentally different from
the one described in the quote above. Whereas the algebraic topology-motivated approach by Brown,
Steenrod, and others, was to reduce the category Top to a subcategory with nicer spaces, Grothendieck’s
approach was exactly the opposite: he introduced a larger class of spaces, flexible enough to encapsulate
all of the desired categorical constructions. In doing so, one inevitably ends up with spaces that appear
pathological from the viewpoint of the old class of spaces. There is a loss of structure, in a sense”’. But
this loss of structure is sometimes worth the pay-off, and can even lead to more fundamental insights,
as was certainly the case for Grothendieck’s approach. The success of schemes over varieties led to the
following motto'’:

“It’s better to have a good category with bad objects than a bad category with good objects.”

Starting in the 1960s, these ideas started spreading to differential geometry as well. The categor-
ical influence on differential topology and -geometry started already in the decade prior with the work
of Charles Ehresmann [Ehr59], who introduced topological- and Lie groupoids, and more generally,
the idea of internalisation (see also [Pra07; Ehr07]). This is a general concept where mathemat-
ical structures can be defined inside of a specified category''. This idea allowed for the analysis of
smooth categorical structures, and led to the application of category-theoretic techniques into differen-
tial geometry (and to that end, Ehresmann established the journal Cahiers de Topologie et Géométrie
Différentielle Catégoriques in 1957). Being the foundation for modern differential geometry, Minfd was
consequently pushed into the categorical spotlight as well, right next to Top, and it also had some cracks
to show. The category Mnfd of finite-dimensional (second countable Hausdorff) smooth manifolds is
generally even worse behaved than Top, since it is not even (co)complete. It is not Cartesian closed,
either. Although (to be fair), it is possible to define on a function space C*° (M, N) a structure of an in-
finite-dimensional manifold (such as Hilbert-, Banach- or Fréchet manifolds, or the infinite-dimensional
manifolds of [KM97]), but then the spaces of smooth maps on those become ever more hard to work

8The category of compactly generated Hausdorff spaces.

90ne can liken this to the concept of strength of a formal set of axioms. The more axioms you define, the more restricted
your theory becomes, but the more theorems you can prove. In a theory with fewer axioms, the less you can prove, but
the more objects you allow. A perfect example of this is the distinction between groups and abelian groups.

10This quote is sometimes attributed to Grothendieck himself, but there seems to be no concrete source, see [Mos13].

For instance, a group can be internalised into the category Top of topological spaces, which gives the notion of a
topological group; a group internal to the category Mnfd of smooth manifolds is a Lie group, etc.



with, and are still not always Cartesian closed. But there are other problems to speak of, the main one
of which many would consider to be singular quotients. It is not hard to come up with an example of
an equivalence relation on a manifold whose quotient space has no canonical smooth structure. And
yet quotients appear as important constructions, such as orbit spaces of group actions, leaf spaces of
foliations, or fibres of a bundle. Yet a third shortcoming is the existence of smooth structures on sub-
spaces of manifolds. Generally the set of points in a space where two smooth functions coincide does
itself not have a canonical smooth structure (i.e., Mnfd does not have equalisers). A simple example of
this fact is that the cross {(z,y) € R? : y = 0} in R? is not a smooth manifold. This prevents us from
constructing spaces such as pullbacks, which are particularly important to define a smooth version of
the notion of a groupoid!?. We therefore identify three main needs:

1. Infinite-dimensional spaces (Cartesian closure);
2. Quotient spaces (colimits);
3. Subspaces (limits).
All of this is captured in the following quote by Stacey [StalOa]:
“Manifolds are fantastic spaces. It’s a pity that there aren’t more of them.”
In a most general sense, we can phrase the problem as follows:

Wishlist 1.1. We want a (co)complete Cartesian closed category Spaces of “nice smooth spaces,” such
that there exists a canonical fully faithful embedding Mnfd < Spaces of finite-dimensional smooth
manifolds.

In the rest of this section, let us discuss some of the responses to this need for new spaces in
geometry. In our recollection of the story, we will distinguish between two main schools. The first is
the family of approaches just mentioned, largely inspired by the work of Lawvere (and to some extent
Grothendieck), resulting in synthetic differential geometry and related theories, which we might dub
the categorical generalisations. The others can collectively be termed as the set-based generalisations of
differential topology, which includes the approaches by Sikorski [Sik67], Chen [Che77], and of course:
diffeology [Sou80]. Although, the distinction between these two categories might not be as sharp as here
portrayed, for the purposes of exposition this will be a useful separation. Our focus here will definitively
be on the set-based approaches, although we would like to take a detour through the ideas of Lawvere
first.

Why Cartesian closedness? Perhaps the decisive spark, where the “good categories over good spaces”
idea was inserted firmly into the field of differential geometry, happened during Lawvere’s 1967 Chicago
lectures, titled Categorical Dynamics [Law67], in which he outlined a programme for the axiomatisation
and formalisation of geometry using category theory, leading to the field that is now known as synthetic
differential geometry. These ideas have gained much esteem since then, and many people have taken up
the task of developing them. A modern textbook account is [Koc06].

One of Lawvere’s critical insights was that it is not just the specific incarnation of the spaces them-
selves that is important, but rather the properties of the collective algebra of spaces. By that we mean
not the properties of function algebras such as L?(X), C(X) or C*°(X), but rather the laws of mappings
between the spaces themselves; their categorical properties. In the introduction to [Koc06], Kock quotes
Lawvere:

“In order to treat mathematically the decisive abstract general relations of physics, it is
necessary that the mathematical world picture involve a cartesian closed category & of smooth
morphisms between smooth spaces.” [Law80, Section 1]

12And we will see in Chapter IV that the definition of a Lie groupoid reflects this fact.



Why does Lawvere so ardently insist on a category that is Cartesian closed? In the introduction of
[LS86], he gives an elementary physical argument, which we shall here adopt. For a lighter introduction
we refer to [LS09, Session 30.2].

Suppose that we want to describe, in a most general sense, the movement of a physical body in space
and time. There will be three main ingredients: a space E describing the spatial dimensions of our
system, a space I describing the temporal interval, and a space B representing the physical body itself,
all three of which we suppose live in a category Spaces. To each point (let us assume there are points)
b € B of the physical body, and to each point ¢ € I in time, the motion associates a point p(b,t) € F in
space. In all, this is represented by an arrow

BxI—2 s E.

Now, if there is some scalar quantity E — R (where R is to be thought of as a real numbers object),
then the composition B x I — E — R describes the dynamics of that quantity along the evolution of
the motion.

On the other hand, the centre of mass no longer depends on a single given point b € B, but rather on
the configuration of the body as a whole. The space of all physical configurations (even those physically
impossible ones) is EZ, representing the collection of all arrows B — E. That we can associate to each
physical configuration a specified centre of mass is represented by the existence of an arrow (generally

obtained by integral calculus)
integration

EP E.
To calculate the evolution of the centre of mass corresponding to the motion, the arrow p needs to be

reinterpreted as an arrow
I — EF,

which to every point in time ¢ € I associates the physical configuration p(—,t) : B — E, describing
the movement of the body as a whole. The evolution of the centre of mass is then determined by the
composition I — EP — E.

Lastly, we have a space ET of allowed (read: smooth) “paths” traversing E. Generally, to any path
in E7 we can by way of differentiation obtain its velocity as a path in (T'E)!, where TE is an abstract
tangent bundle. This is represented by the existence of an arrow

E[ differentiation (TE)] )

In order to calculate the velocity of the motion, we should be able to determine the path that each
point b € B traces in space as parametrised by time. Again, a point (b,t) € B x I does not contain the
information to determine this, since the velocity depends rather on an interval of time, and not on a
snapshot. The two equivalent descriptions B x I — E and I — EP of p are therefore of little use here.
Instead, we need to describe the motion as yet a third arrow

B — Ef,

associating to each point b € B the path p(b,—) : I — E in space. The velocity of the body traversing
this movement is then encoded in the composition B — ET — (TE)!.

Thus it seems there is, from elementary considerations, necessarily a conceptual equivalence between
the following three sorts of arrows:

e B x I — FE for quantities that depend only on the positions of parts of the body.
o I — EP for quantities that depend on the configuration of the body as a whole.
e B — E! for quantities that depend on the movement of (parts of) the body.

[Law80] gives concrete examples of physical quantities for each of these three descriptions of a physical
motion. It is clear that none of these three arrows contain less or more information than the others, yet
they are each necessary in their own right for certain calculations. In other words, Spaces should be
Cartesian closed. Lawvere [LS86] argues that this ability to interchange between these realisations of

pis



“[...Jobviously more fundamental for phrasing general axioms and concepts of continuum
physics than is the precise determination of the concepts of spaces-in-general (of which E,
[I], B are to be examples), yet these transformations are not possible for the commonest such
determinations (for example Banach manifold).”

Taking Cartesian closedness as a fundamental axiom, it is not much of a further leap to arrive at toposes.
The central objects in synthetic differential geometry are then smooth toposes: universes of generalised
smooth spaces, containing a distinguished object that behaves like the real number line, in which one
can reason rigorously about geometry using infinitesimals. In this abstract theory, it begs the question
what types of spaces actually fit the mould of synthetic differential geometry. Many examples of this
can be found in the book [MR91].

Synthetic differential geometry does not deal per se with objects that are of geometric origin. Besides,
the complicated topos-theoretic framework could be distracting to those who just want to focus on
geometry. There is a need to stay close to the intuitions of classical differential topology, and yet to be
able to deal with infinite-dimensional objects and singular quotients as if they were smooth manifolds
(and not as if they were objects in a topos). This leads us to:

The set-based theories. What we mean by set-based generalisation is, roughly, a theory of gener-
alised smooth spaces that relies on putting some form of smooth structure on a bare set. (This may
or may not prerequire a topological structure.) We do this to distinguish these ideas from synthetic
differential geometry, and other theories such as the categorical approaches using stacks [BX11], the
algebro-geometric approaches of C*°-schemes [Joy12], the categorical atlas approach [Los94], noncom-
mutative geometry [Con94], the sheaf approach of ‘abstract differential geometry’ [Mal98; AE15],
or the (higher) sheaf-theoretic approaches [Sch20] (which we discuss in Section 1.1.3). Whereas the
synthetic approach focuses on the bare axiomatics of differential geometry, in which in principle the
particular definition of space is irrelevant, the set-based approaches start with explicit definitions of
smooth structure, each in its own way trying to provide an answer to Wishlist 1.1. As Stacey points
out in the introduction to Comparative Smootheology [Stall], each of the main set-based approaches
was developed with a specific goal in mind. This distinguishes them from Lawvere’s approach, which
was to determine the axiomatic underpinnings of all differential geometry. As for the set-based the-
ories, we can interpret them as trying to push the boundaries of classical differential geometry, to see
which assumptions for fundamental geometric theorems are essential or not, and in which ways they
can be extended. Omne of the first approaches in the set-based style seems to be [Smi66]. Smith’s
approach is an investigation to what extent the de Rham Theorem can be generalised beyond the scope
of finite-dimensional smooth manifolds. The connection between the two schools is that the need for
well-behaved infinite-dimensional spaces often amounts to the need for Cartesian closure. In that sense
Lawvere’s philosophy described above is not lost here. We identify the following five set-based smooth
theories, listed in approximate chronological order of publication:

o Smith spaces [Smi66],

o Sikorski spaces [Sik67; Sik71],

o Chen spaces [Che73; Che75; Che77],
« Diffeological spaces [Sou80; Sou84],

o Frolicher spaces [Fro82; FK88].

What is their general idea, and how do we arrive at their technical definitions? The fundamental
philosophy here is a categorical idea in disguise: that objects are characterised by the morphisms going
in- and out of it. An elementary example of this idea is the celebrated Yoneda Lemma. If nothing more,
then, a smooth structure should serve exactly as to determine which functions are smooth, and which
ones are not.

The structure of a smooth manifold M determines which maps R¥ — M or M — R* are smooth.
As it is well-known that a smooth map with multiple components is smooth if and only if each of its



components is smooth, to distinguish the latter kind of map it suffices to determine the algebra of
real-valued smooth functions'® C°°(M,R). The maps R¥ — M are actually also determined by the
1-dimensional smooth curves, due to the less well-known theorem by Boman:

Theorem 1.2 ([Bom68, Theorem 1)). If a function f : R™ — R satisfies that f ou € C(R) for all
smooth curves u : R — R™, then f itself is smooth.

So, together with Boman’s Theorem, we have the following three equivalent characterisations of
smooth functions [BIKW17, Section 1]:

Lemma 1.3. A function f: U — V between open subsets U C R™ and V C R™ is smooth if and only
if at least one (and hence all) of the following three equivalent conditions are satisfied:

1. For each open subset W C RF and smooth h : W — U, the composition foh : W — V is smooth.
2. For every real-valued smooth function g € C*°(V,R), the composition go f : U — R is smooth.
3. For every smooth curve v : R — U, the composition f oy :R — V is smooth.

This lemma tell us that the smoothness of the function f : U — V can be probed by smooth curves
going in- and out of the domain and codomain. In other words, for the class of spaces that are of
the form U C R™, the smoothness of maps defined on it are equivalently captured by its algebra of
real-valued smooth functions C*°(U,R), as by the space of smooth curves C*°(R,U), as well as by the
space of smooth functions C*°(W,U), where W is allowed to range over all open subsets of the spaces
R* of varying dimension.

The fundamental idea is then this: to enlarge the class of objects U C R™ to an arbitrary set X, on
which the smoothness of its functions are determined by three types of objects: real-valued functions,
curves, and higher-dimensional curves. This also presents a fundamental shift compared to the way
smoothness is typically defined for manifolds, where the smooth structure determines which functions
are smooth (being its principal purpose), whereas here the idea is that a smooth structure is determined
by exactly which functions are smooth. More precisely, this gives rise to three types of new structures:

o The first condition Lemma 1.3(1) says that the smooth structure of U is determined by the spaces
C>(W,U), of smooth functions on open subsets of R* into it. On an arbitrary set X, we can
then define a notion of smoothness by furnishing X with a family Dx, containing exactly those
functions of the form W — X which we deem to be smooth, subject to some natural consistency
axioms. The notion of smoothness for a function X — Y between two such spaces is then almost
verbatim as described in the first condition Lemma 1.3(1): if and only if for all those maps W — X
in the family Dx, the composition W — X — Y is ‘smooth’, meaning to be an element of Dy.
This is exactly the idea of diffeology.

o The second condition Lemma 1.3(2) says that the smooth structure of V' is determined by the
algebra C*°(V,R) of real-valued smooth functions, and this fully determines which functions U —
V are smooth. On an arbitrary set X we can then define a notion of smoothness by declaring a
family Fx of exactly those real-valued functions X — R that are supposed to be smooth (again,
subject to some consistency axioms). And again, the notion of smoothness for a function X — Y
between two such spaces can be copied from the lemma: if and only if for all Y — R in Fy, the
composition X - Y — R is in Fx. This is exactly the idea behind Sikorski spaces.

e The third condition Lemma 1.3(3), which exists because of Boman’s Theorem 1.2, says that
the smooth structure of U is determined by its smooth curves C*°(R,U). Combining this with
the second condition Lemma 1.3(2), the smooth structure of U is determined by the two spaces
C*(R,U) and C*°(U,R). We can define a notion of smoothness on an arbitrary set X by equipping
it with two families of functions: one family Cx of would-be smooth curves R — X of, and another
family Fx of would-be smooth real-valued functions. This is the idea behind the notion of a
Frolicher space.

131n fact, a smooth manifold M is already characterised by its algebra C°° (M, R) of real-valued smooth functions (and
some authors take this as a starting point to develop the theory [Nes03]).



The surprising result is that when one adopts one of these three new types of structures, one finds
that they are much more general than manifolds. That is to say that there are spaces X that have,
to go with the Sikorski structures as an example, an algebra of real-valued smooth functions Fx that
behaves like the algebra of real-valued functions C*° (M, R) on a smooth manifold, but does not have to
be quite precisely a smooth manifold itself. This newfound generality comes from the fact that we now
allow spaces X for which these different types of structures Dx and Fx no longer need to determine to
each other. In a sense, it is a letting-go of Lemma 1.3.

To summarise: the idea is that the smooth structure of a space X is simultaneously captured and
defined by the smooth maps into it, and those out of it. In a broader setting, this leaves some room for
interpretation to answer: maps from where, and into what? The general answer is that these should be
the model spaces (or test spaces), spaces which have a definitive canonical smooth structure, which we
want to transfer to X. For differential topology these model spaces are Fuclidean domains: the open
subsets U C R™, or some close variant thereof. Simply put, a smooth structure on X is determined by
which smooth arrows in the following diagram are allowed to exist:

—
7

R™ DU

R

X — R

This is a modern version of the Cartesian analytic method of describing a space by coordinates. Each
of the main theories can be seen as a specific way of filling in the types of subsets U C R™ and types
of arrows in this diagram. We see that diffeology takes the “maps in” approach, Sikorski took the
“maps out” approach, and Frolicher spaces are defined in terms of a combination of the two. The
detailed paper [Stall] that we just mentioned describes an overarching framework in which all of the
set-based theories can be unified through this idea of test spaces. Stacey provides concrete comparisons
between the categories in terms of adjunctions. The paper [BIKW17] shows that Frolicher spaces are an
‘intersection’ (in a technical sense) of diffeological- and Sikorski spaces. In the next section we shall only
describe a qualitative and conceptual comparison between the three approaches we have found above:
Sikorski-, diffeological-, and Frolicher spaces. We refer the reader to the two previously mentioned
papers for more details (also on Smith- and Chen spaces). Neither will we discuss the S-manifolds of
Van Est [vEs84], the V-manifolds (now known as orbifolds) of Satake [Sat56], or subcartesian spaces
[Aro67; AS80], since they live on a lower level of generality.

1.1.2 Conceptual Smootheology'’

In this section we give a brief statement of the definition of Sikorski-, diffeological-, and Frolicher
structures. The main reference is [BIKW17]. After stating the main definitions, we discuss some of
their conceptual differences through examples.

In the late 1960s Sikorski introduced his “differential structures” [Sik67; Sik71] (what we shall call
Sikorski structures). His notion followed from the observation that many of the properties of a smooth
manifold are captured by its ring of smooth real-valued functions. When pushed much further, this
idea evolves into the study of C*°-schemes [Joy12]. The modern textbook account for Sikorski spaces
is [Sn13].

Definition 1.4. A Sikorski space (also known in the literature as a differentiable space) is a topolo-
gical space (X, 7) together with a non-empty family F of real-valued functions on X, called a Sikorski
structure, such that:

1. (Topological Compatibility) The topology T is the initial topology generated by the members of F.
2. (Smooth Compatibility) If f1,..., fr, € F and F € C(RF), then Fo (fi,...,fx) € F.

3. (Locality) If f : X — R is a function such that, for every point x € X, we can find an open
neighbourhood z € U C X and an element g € F such that g|y = f|u, then f € F.

4 Cf. Comparative Smootheology, [Stall].



We are to think of the family F as the space C*°(X) of would-be smooth real-valued functions on X.
Since the topology 7 is determined by F, a Sikorski space can equivalently be defined as a pair (X, Fx),
consisting of a bare set X with a Sikorski structure Fx satisfying the second and third axioms, and
equipping X with the initial topology generated by Fx.

A function F': (X, Fx) — (Y, Fy) between Sikorski spaces is called Sikorski smooth if for all f € Fy
we have f o F € Fx. We shall denote the collection of all Sikorski smooth maps between X and Y by
CS5 (X, Y). Equipping R with its standard Sikorski structure Fg := C*°(R), we find that Fx = Cg5 (X),
where the latter now includes smooth functions in this new sense.

In the early 1970s, Chen gave his first definition of a “differentiable space” (what we shall call Chen
spaces) [CheT3]. The definition was modified in [Che75], and the final definition (the one we state) was
first published in [Che77, Definition 1.2.1]. Chen’s motivation was to study the differential topology
and cohomology of loop spaces, which lie outside of the reach of finite-dimensional manifolds.

Definition 1.5. A Chen space is a pair (X, P), where X is a set and P is a family of maps into X
defined on convex subsets of Euclidean spaces, such that:

1. (Covering) Every constant map C — X is in P.

2. (Smooth Compatibility) If ¢ : C — X isin P and h : D — C is a smooth map between convex
subsets in the usual sense, then ¢ o h € P.

3. (Locality) If p : C' — X is a function defined on a convex domain such that there is an open cover
(Ci)ier of C, where each C; is convex, and such that each restriction ¢|¢, is in P, then ¢ € P.

A function f: (X, Px) — (Y, Py) between Chen spaces is called Chen smooth if we have fop € Py
for all p € Px.

We state Chen’s definition because of its remarkable resemblance to the definition of a diffeology.
The first published definition of a diffeological space is in [Sou84], although the concept had been
defined four years before for groups in [Sou80]. Souriau’s motivation was to study infinite-dimensional
symplectomorphism groups in symplectic geometry, general relativity, and geometric quantisation. The
definition of a diffeological space (Definition 2.2) can be stated almost verbatim as that of a Chen space,
replacing the word “conver” with “open.” For the subtle differences between diffeology and Chen spaces
we refer to the remarks in [Stall, Section 6]. All of the proper terminology around diffeology will be
introduced in Chapter II. The textbook account is [Diffeology].

Definition 1.6. Let X be a set. A diffeology on X is a collection D of functions U — X, defined on
Euclidean domains, satisfying the three axioms of a Chen space in Definition 1.5, replacing the convex
subsets with open subsets. The elements « € D of a diffeology are called plots, to distinguish them from
arbitrary functions. A set X, paired with a diffeology (X, Dx), is called a diffeological space.

If we have a function f : (X,Dx) — (Y, Dy) between diffeological spaces, we say it is diffeologically
smooth if for all « € Dx we have that f o a € Dy, i.e., it sends plots to plots. We denote by
C35(X,Y) the space of all diffeologically smooth functions X — Y. If we equip each Euclidean domain
U C R™ with its natural diffeology, determined by all those smooth functions into it, then we can write
Dx = Uy Ci(U, X).

Out of these approaches, Frolicher spaces [Fro82] are closest to smooth manifolds. Frolicher spaces
originated from a functional analytic angle, where Frolicher, Michor, Kriegl and others were motivated to
develop a foundation for a Cartesian closed category of infinite-dimensional manifolds. This motivation
started from the study of Banach manifolds, for which it was known that the smooth curves determine
the smooth real-valued functions (thanks to a stronger version of Boman’s Theorem). However, the
category of Banach manifolds is not Cartesian closed. This led Frolicher and others to look for a
more general framework in which Cartesian closedness could be achieved. This modern framework is
essentially the one in [KM97]. Before we state the definition, we introduce some technical terminology:

Definition 1.7. Fix a set X, and let § C Homget (X, R) be a family of real-valued functions on X. We
then define
I'F={c:R— X:VfeTF: foceC®R)},



the collection of curves R — X that compose with all elements of F into a smooth function on R.
Let € C Homget (R, X) be a family of curves in X. We define

PC:={f: X —R:VeeC: foce C®R)},
the set of all real-valued functions that send the curves in € to smooth maps on R.

Definition 1.8. A Frolicher space is a triple (X, F, C), where X is a set, F is a collection of real-valued
functions on X, and € is a collection of functions of the form R — X, such that:

C=TF and Ir's==¢.

The compatibility of F and € ensures that there are three equivalent definitions of smoothness for
functions F': (X, Fx,Cx) — (Y, Fy, Cy) between Frolicher spaces. These are:

1. For every f € Fy we have fo F € Fx.
2. For every c € Cx and f € Fy we have fo Foce C®(R,R).

3. For every c € Cx we have F oc € Cy.
If F satisfies one, and hence all, of these conditions, then we call it Frolicher smooth.

Note how the three equivalent conditions for Frolicher smoothness resemble Lemma 1.3. In that
sense, one could say that Frolicher spaces capture most closely the smooth behaviour of manifolds. They
are the most general notion of a smooth space for which Lemma 1.3 still holds.

Examples and counterexamples. As we have pointed out already, every smooth manifold can
naturally be seen as an example of either of these generalised smooth spaces. It is the way they behave
beyond the realm of manifolds that distinguishes them. Here are some of these examples, which can
also be found in [Stall; Wat12; Diffeology; BIKW17]. The diffeological technology that underlies
these examples will be developed in Chapter II.

The ideas behind these examples rely on the fact that each diffeology determines a Sikorski structure,
and vice versa. Namely, equipping R with its natural diffeology, any diffeological space X gets a Sikorski
structure defined by C35%:(X), consisting of all diffeologically smooth real-valued functions on X. On
the other hand, if X is a Sikorski space and we equip each open subset U C R™ with its natural Sikorski
structure C*°(U), then we get a diffeology D x, consisting of those Sikorski smooth functions CS; (U, X).
These two claims are proven in [BIKW17, Proposition 2.7]. It can be proved that ([Wat12, Lemmas
2.59 and 2.61]) these procedures respect quotients and subsets, respectively. In the following examples
we will see that the two theories indeed behave differently with respect to these two constructions.

e On the Euclidean plane R? we can define a diffeology consisting of those functions U — R?
that factor locally through R. Let us denote this space by R2, .. This diffeology is called the
wire diffeology, because every smooth map U — X looks locally like a wire. First of all, we
note that this space is not diffeomorphic to ordinary Euclidean space, because the identity map
idge : R? — R? is smooth, while idgz : R? — R2.  is not, since it cannot factor through R. We

construct the wire diffeology rigorously in Example 2.17.

The diffeology on R2,  determines a space of diffeologically smooth real-valued functions
Fwire := CS5¢(R2,..), which is a Sikorski structure on R Of course, it also has the standard
Sikorski structure Fpz = C (R2). The standard Sikorski structure is actually contained in Fyire,
since the identity map idge : R2,  — R? is diffeologically smooth. What does it mean for a
function f to be an element in Fyie? It means that f: R2, = — R is diffeologically smooth, and
by the definition of the wire diffeology, this just means that for every smooth curve ¢ : U — R
the composition foc: U — R has to be smooth. But Boman’s Theorem 1.2 then implies that
f : R? — R has to be smooth! In other words, the Sikorski structure induced by the wire diffeology
is just equal to the standard Sikorski structure on R?: Fyire = Fpe.

This shows that there exists non-diffeomorphic diffeological structures (R? 2 R2. ), that are

wire
nevertheless indistinguishable as Sikorski- or Frélicher spaces.



e Any subset A C X of a diffeological- or Sikorski space acquires a natural smooth structure itself.
The diffeology Dacx contains exactly those functions U — X in Dx whose image lies in A
(Definition 2.51). The Sikorski structure Facx contains those real-valued functions g : A — R
that locally extend to a smooth real-valued function on X, i.e., for every x € A there exists an
open neighbourhood z € V C X and a smooth map f € F such that glyna = flvna.

Consider then the rational numbers Q@ C R. First, it gets the subset diffeology Dgocr. By
the Intermediate Value Theorem, this diffeology only contains the plots that are locally constant.
It follows that any real-valued function Q@ — R is diffeologically smooth, so the induced Sikorski
structure is the trivial one: ¥ = Homget(Q, R). If we alternatively start with the Sikorski subspace
structure Fpcr, again the Intermediate Value Theorem says that each space Cg5 (U, Q) can only
contain the locally constant functions, and therefore the diffeology that Fpcr generates is equal
to the subset diffeology Docr.

This shows that there are non-diffeomorphic Sikorski structures (Fgcr 7 Homget (Q,R)), that
define the same diffeological structure Docr.

o We can think of the subspace of R? containing the coordinate axes in two ways. First, as literally
a subset E = {(z,y) € R? : 2y = 0}, and the other as a wedge product W = (R; LURy)/~, where
~ identifies the two origins of the different copies of R. The set W gets a natural diffeology of
those maps U — W that factor through R; — Ry URy — W, where i € {1,2} and the last
map is the canonical quotient map. (Technically, this diffeology is a combination of quotient- and
disjoint union diffeologies, cf. Section 2.2.) On the other hand, F gets the natural Sikorski subset
structure Fpcre. Each of these defines a notion of smooth curve and smooth real-valued functions
on the respective spaces. In this way we get triples

(Wa eVV?g:W) = (VV, Cg?ff(va)anfff(W)) and (Ea GE,SCE) = (Ea CSO?k(RvE)73:E§R2)'

Now, [BIKW17, Example 5.1] proves that, with this equipment, (E, Cg, Fg) is a Frolicher space,
while (W, Cw, Fw) is not. (The proof resembles what we discuss in Example 2.18.)

e An extraordinary example that singles out diffeology from the rest is the irrational torus. We
discuss this example in great detail in Section 2.3. The irrational torus can be defined as the
quotient Tp := R/(Z + 6Z) of the additive subgroup Z + 6Z := {n + 6m : n,m € Z}, where
6 € R\ Q is an irrational real number. It is well-known by Kronecker’s Density Theorem (see e.g.
[BS06]) that this is a dense subgroup, so the quotient topology on Ty is trivial (Proposition 2.78).
The Topological Compatibility Axiom of a Sikorski structure then forces it to be trivial: it contains
only the constant real-valued functions (cf. Proposition 2.80 for a more detailed proof). This also
forces the Frolicher structure to be trivial. However, the diffeology of Ty is decidedly non-trivial,
which can be seen from its classification in Theorem 2.81. In fact, the diffeclogy is so rich that
it can distinguish whether 6 is the solution to a quadratic equation with integer coefficients or
not [IZ17]. Moreover, its smooth fundamental group is m1(Ty) = Z x Z, while its topological
fundamental group is of course entirely trivial.

The last example shows that there are objects whose topology can be very poor (even trivial), while
their smooth structure is very rich! This suggests also that a topology should not necessarily be a
prerequirement for a definition of a smooth structure, challenging the philosophy of

“smooth object = topological object + extra structure,”

of which smooth manifolds are the perfect example. In terms of the comparison between the types
of smooth structures, one takeaway is this: diffeology treats quotients well (even those with trivial
topological structure), while Sikorski spaces seem to preserve more information of subspaces. For the
use of Frolicher spaces we should emphasise the obvious upside of being closer to manifolds, making it
so that there is much more structure to work with (and hence more to prove), while losing some freedom
of generality. In the end, is up to the individual geometer and their goals to make a decision which path
to choose.

Even though diffeology is able to reproduce the classification of noncommutative tori (Theorem 2.81),
we speculate that in other situations the Sikorski definition of smooth spaces may have implications in a
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noncommutative geometry sense as well, since it is so based around working with algebras of coordinate
functions. However, so far, we are not aware of any work in this direction.

1.1.3 Smooth sets and beyond

From now on we shall focus our attention on diffeology (let us not forget the first word in the title
of this thesis!). We will motivate the choice of diffeology more below, but before we do that, we take
another small detour along a different path in the landscape of generalised smooth spaces. Looking
at the definition of a diffeology above, it smells like something sheafy is going on. To see this, let us
introduce the notation of Eucl to mean the category consisting of all Euclidean domains U C R™, and
smooth maps between them (in the usual sense). Then each diffeological space (X, Dx) determines a
presheaf X : Bucl®® — Set, a contravariant functor from Eucl to Set, sending Euclidean domains
U C R™ to C35(U, X), and with X (h) := — o h. However, looking at the three axioms presented in
Definitions 1.5 and 1.6, there is clearly more structure present than just that of a presheaf. In fact,
looking closely, we can recognise the sheaf axiom. We briefly recall the definition of sheaves on a site
[MM94, Section III.2]:

Definition 1.9. Let C be a category with pullbacks. A coverage (also known as a Grothendieck
pretopology) is a function Cov, assigning to every object C' € ob(C) a collection Cov(C') consisting of
covering families (f; : U; — C);er, satisfying the following axioms:

1. If g : D — C' is an isomorphism, then (¢ : D — C) € Cov(C) is a covering family for C.

2. If (fi : Ui = C)ier € Cov(C) is a covering family for C, and g : D — C' is an arrow, then the
family of pullbacks (pry : ¢*U; = U; Xy D — D);e; € Cov(D) is a covering family for D.

3. If (fi : Uy = C)ier € Cov(C) is a covering family for C, and for each ¢ € I we have a covering
family (g;; : Vij = Us)jes, € Cov(U;), then the compositions (f; 0 gi; : Vij = Cicr jes, € Cov(C)
form a covering family for C.

A category C equipped with a coverage is called a site.

Definition 1.10. Consider now a presheaf F' : C°? — Set on a site C, and a covering family
(fi : Ui = C)ier of the object C' € ob(C). A compatible family is a collection (z;);c; of elements
x; € F(U;), such that for every two arrows a : D — U; and b: D — U; satisfying f;oa = f; o b we have
Fla)(z:) = P(b) ().

A presheaf F is called a sheaf if, for every compatible family (z;);cr of a covering family (f; : U; — C)ier,
there exists a unique element x € F(C) such that F(f;)(x) = x; for all i € I.

To summarise: a site is a category in which it makes sense to talk about the notion of a cover
(Ui)ier for its objects C. A compatible family contains elements x; € F(U;) of the presheaf, such that
when evaluated along compatible arrows they coincide. The sheaf axiom says that the elements of a
compatible family can always be “glued together” into a unique element x € F(C). The prototypical
example of a site is the category of open sets O(X) of a topological space (X,7), consisting of the
open subsets U € T as objects, and inclusions V' < U of open subsets as arrows. On &(X) we have a
canonical coverage, namely the one assigning to each open set U € 7 the collection Cov(U) of all open
covers of U. The prototypical example of a sheaf is the functor F': &(X)°P — Set, sending each open
set U € 7 to the space of continuous real-valued functions F(U) := C(U,R). The fact that continuous
functions f : U — R are determined uniquely by their local behaviour, i.e. can be obtained through
gluing of the restricted functions f|y, : U; — R along an open cover, ensures that F' is a sheaf. A sheaf
on a site is thus, roughly speaking, a means of gluing together consistent local data into a unique global
object.

Let us now unpack what these notions mean in the case of the presheaf X : Eucl®® — Set, corres-
ponding to a diffeological space (X,Dx). First, the category Eucl gets a coverage Cov by assigning
to each U C R™ the collection Cov(U) consisting of open covers of U, just as for the category of open
subsets of a topological space. A covering family then consists of a collection (f; : U; < U);cr of open
subsets U; C U, where each f; is the smooth inclusion function, and such that J,.; U; = U. With
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this coverage, Eucl is called the Fuclidean site. To each element U; of the open cover, the presheaf X
associates the diffeologically smooth functions X (U;) = C55(U;, X). A compatible family (z;);e; then
consists of smooth functions x; : U; — X, defined on open subsets of U. If a : D — U; and b: D — U;
are smooth functions between Euclidean domains, then the equation f;oa = f; ob just means that they
agree on the intersection U; NU; C U. The compatibility of the family then boils down to the equations
Tilv,nu; = 7jlu,nu;, for all 4,5 € I. The sheaf aziom then says that, to each compatible family, there
exists a unique smooth function z : U — X such that x|y, = x;. That this holds is guaranteed by the
Axiom of Locality in Definition 1.6. This shows that X is not just a presheaf, but that it is a full-fledged
sheaf on the Euclidean site. Although Chen did not use the language of sheaves explicitly, the definition
of Chen spaces appears to be the first time that the idea of sheaves was used to understand the concept
of a smooth space (the refinements he made to his definition in the sequence of publications [Che73;
Che75; Che77] was each a step closer to capturing the notion of a sheaf). We refer to [G119] for a
more detailed description of diffeological spaces as sheaves.

The above therefore describes an assignment Diffeol — Sh(Eucl) : X — X, of diffeological spaces
to the sheaves on Eucl. But, it turns out that diffeological spaces are merely the concrete sheaves on
Eucl. This means that, in a technical sense, the sheaf X is determined by the underlying set X. This is
not surprising, since we started with a set-based object. It was first proven in [BH11] that the category
Diffeol of diffeological spaces is in fact equivalent to cSh(Eucl), the category of concrete sheaves on
Eucl:

Diffeol ~ c¢Sh(Eucl).

(We elaborate more on this, and what concreteness means, in Section 2.7.) It is also known, due to the
nice local behaviour of smooth functions on manifolds, that there is an equivalence

cSh(Eucl) ~ ¢Sh(Mnfd),

between the concrete sheaves on Eucl and the concrete sheaves on Mnfd. This is true in spite of
concreteness. Essentially, this means that we could as well have stated the definition of a diffeology by
using arbitrary manifolds M, instead of just open subsets U C R™, the latter clearly being preferable
for its simplicity. The realisation of diffeological spaces as concrete sheaves on Eucl brings with it some
pleasant consequences: categories of concrete sheaves are generally well-behaved, they are known as
quasitoposes. This is a category with properties not dissimilar to that of a topos, but slightly weaker.
An immediate corollary of this equivalence is then that Diffeol is such a quasitopos, and compared to
Mnfd, its categorical properties therefore appear far superior. The entire situation can be sketched as
follows:
cSh(Mnfd) ~ cSh(Eucl) ~ Diffeol

l l

Sh(Mnfd) ~ Sh(Eucl) =: SmoothSet.

Here, a new category appears: the category SmoothSet of smooth sets, defined as the category of all
sheaves on Eucl. This is categorically even nicer, and a question then arises: why not just take this
category, which does form a genuine topos? An answer is that, yes, one can do this, leading to what
is known as cohesive topos theory, which originated from Lawvere’s ideas he developed in parallel to
synthetic differential geometry [Law91]. A cohesive topos & is a category in which there is a notion of
“coherence” (of “hanging together”) between the points of its objects. Technically, this is achieved by
equipping a topos with an adjoint triple Disc 4 U  coDisc:

Disc
%

L
U—— Set,
L

coDisc

&

where U represents a forgetful functor (into Set), and the other functors describe a way to equip any
set with a discrete of codiscrete cohesive structure. All other types of cohesion must lie in between these
two: discrete cohesion means that none of the points hang together, while codiscrete cohesion means
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all of the points hang together. We refer to [nL20] for a detailed exposition. For a familiar example,
think of the discrete and indiscrete topologies on a set. In diffeology we have similar constructions
(Definition 2.23), although neither of these are examples of a cohesive topos. So while Diffeol is not a
cohesive topos, this new category SmoothSet does form an example of such a category. To get back to
the question of which of these to choose, the following quote by Stacey [StalOb] may be illuminating:

“The problem is that there are some ornery people who really like manifolds as they are, but
sometimes have to work with things that are almost but not quite completely unlike manifolds.
For these people, the further away from true manifolds they get, the more uncomfortable they
feel. One of the biggest steps for such people is losing the underlying set. So diffeological
spaces are a category in which those people can have most of the benefits of sheaves without
having to discard their comfort blanket of something that still resembles manifolds in some
way. So diffeological spaces are a convenient (yes, I use the word deliberately!) half-way
house whereby those who have Seen The Light can still talk to those still quivering under
their comfort blankets.”'>

See also [Car10; Nik10]. Pushing the cohesive topos train of thought further, into the realm of higher
categories, one arrives at cohesive (0o, 1)-toposes and cohesive homotopy type theory. This has been
developed by Schreiber [Sch20] and others. This produces a whole hierarchy of generalised smooth
spaces, the bottom-end of which might be pictured as follows:

Eucl — Mnfd — Diffeol — SmoothSet — SmoothGrpd — SmoothocoGrpd — --- 7
1R Il
c¢Sh(Eucl) «— Sh(Eucl) — PSh(Eucl)

Actually, as remarked in [nL19d], diffeology arises naturally from the cohesive theory. If one follows
the philosophy of cohesive toposes, the natural cohesive topos for differential geometry is SmoothSet.
This is because smooth sets are in a sense the most general type of nice smooth spaces built on Cartesian
coordinate systems. That Cartesian coordinate systems themselves are appropriate as a foundation for
physics and geometry is widely accepted but not often motivated directly. The fundamental premise
here, as described in [nL19a, Section 1], is that “The abstract worldline of any particle is modelled by
the continuum real line R.” Whether or not there is good reason to doubt this premise (as some do
[Bael6]), for our purposes it will be sufficient to accept it. (If R is not smooth, then what is?) In a sense,
the sheaves on Cartesian spaces then form the most general type of smooth objects that behave locally
like Euclidean spaces in a consistent way'® (see more at [nL19b]). If we then allow the conclusion that
SmoothSet is the natural cohesive topos for differential geometry, diffeclogy actually follows naturally.
Every cohesive topos has a canonical induced quasitopos of concrete spaces. The concrete spaces are
induced in some sense by the subtopos of codiscrete objects. A codiscrete object is something like a
topological space with its codiscrete (or indiscrete) topology, i.e., only containing the empty set and
entire space. For diffeology, codiscreteness means coarseness (Definition 2.23). Lawvere refers to the
passage of the entire cohesive topos to the subtopos of codiscrete spaces as “pure Becoming” [Law91l,
p.7]. For the cohesive topos SmoothSet of differential geometry, the concrete spaces are exactly the
diffeological spaces [BH11, Proposition 24]. This shows that diffeology arises from very fundamental
assumptions that underlie our geometric intuitions.

1.2 What this thesis is all about

Above, we hope to have portrayed an accurate sketch of (part of) the landscape of generalised smooth
spaces. Out of all options, we choose here for diffeology. Our choice was initially made for pragmatic
reasons, which we explain below. Particularly in relation to the discussion directly above, more is known
about diffeology than about smooth sets. We mean this in a technical sense that more can be proven,
but also in terms of existing literature. There also seems to be no definitive advantage of smooth sets

15We should emphasise that Stacey himself identifies as belonging to the latter group of people! Personally, my toes are
poking out from under the blanket.
16Presheaves in PSh(Eucl) would be even more general, but their local behaviour might be inconsistent.
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over diffeological spaces for the problem we are studying. That being said, we believe that a natural
extension of this thesis would be to develop the theory (of Morita equivalence) also for smooth sets
(and beyond). The theory of diffeological groupoids and their Morita equivalence seemed interesting
enough, and was sufficiently close to the theory of Lie groupoids to appear to be of some significance and
usefulness in that field. Nevertheless, it is possible to motivate the choice of diffeology even in hindsight,
which we try to do below.

1.2.1 What diffeology offers

The Preface of the [Diffeology] textbook lists many examples suggesting a need for diffeology (each
of which is in one form or another a reflection of one of the three shortcomings of manifolds we listed
above): the irrational torus and its relation to quasiperiodic potentials in physics, orbifolds in relation
to symplectic reduction, spaces of connections and differential forms in gauge theory, groups of sym-
plectomorphisms in symplectic geometry and geometric quantisation, coadjoint orbits of diffeomorphism
groups, etc.

“Diffeology did not spring up on an empty battlefield,” to quote [Diffeology|. Diffeology was dis-
covered around the same time as Rieffel’s publication on érrational rotation algebras [Rie81], which
was one of the motivations for noncommutative geometry. With the publication of [DI83], the first
classification of diffeological irrational tori (Theorem 2.81), we saw a hint that diffeology could be
an alternative to noncommutative geometry. Diffeology offers a more comfortable alternative to the
functional-analysis-heavy C*-algebraic framework'”. The relation between the two theories has only
recently begun to be explored [KLMV14; Ber16; IZL18; IZP20].

1.2.2 Why diffeological bibundles?

Our ultimate reason for choosing diffeology for this project was motivated by the work of [BFW13;
G119], where diffeology is used to study general relativity. As we mentioned in the preface, the aim
was at first to provide a more solid foundation for a theory of “diffeological algebroids.” As this started
to look unfeasible, given the author’s lack of expertise and time and progress, eventually a decision was
made to study a Hilsum-Skandalis category of diffeological groupoids. Having worked briefly with Walter
van Suijlekom on a project in noncommutative geometry the year before, relating to Lie groupoids and
orbifolds, there was already some familiarity with the notion of a bibundle. Having been intrigued in the
meantime by the work of Jan Glowacki on diffeological groupoids in general relativity, the connection
was subsequently made.

Rings, like groups, can be studied through their actions, i.e., their modules. Many important prop-
erties in fact turn out to be captured by their representation theory. In [Mor58], Morita introduced a
notion of equivalence between rings that preserves the behaviour of their representation theory. Indeed,
this is exactly the external definition: two rings R and S are equivalent if and only if their module
categories R-Mod and S-Mod are equivalent. Morita proved that, for rings, this notion of equivalence
is identical to the following internal definition: R and S are equivalent if and only if there exists an
equivalence bimodule RrEg between them. This later came to be known as Morita equivalence.

Some time later, Rieffel extended these ideas to the C*-realm [Rie74]. For technical reasons, the two
definitions given above are not equivalent in this setting, and the definition of strong Morita equivalence
of C*-algebras is now usually given in terms of equivalence bimodules. (Although, it can also be defined
as isomorphism in a suitable category of C*-algebras and C*-correspondences.) Subsequently, the work of
Hilsum and Skandalis [HS87] was motivated by providing a geometric realisation of earlier C*-algebraic
results on the theory of foliations [HS83] in terms of groupoids. Hilsum-Skandalis morphisms, what
we shall call bibundles, are then essentially an adaptation of the notion of bimodules in the setting
of groupoids. It appeared that this new type of morphism between groupoids was more appropriate
to study the geometry of foliations than the ordinary definition of a functor between groupoids. The
first intrinsic definition of Morita equivalence of locally compact Hausdorff groupoids appears to be in
[MRWS87]. It is now a well-known folk theorem that two groupoids are Morita equivalent if and only

17 «Physicists Tun fast; if we want to stay close to them we need to jog lightly,” quoting the Preface in [Diffeology].
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if there exists an invertible Hilsum-Skandalis morphism between them. (A generalised version of this
statement is our main theorem: Theorem 4.69.)

The introduction of these notions turned out to be very fruitful, for several reasons. First, the
structure of the C*-algebras of foliations was reflected by their corresponding (Lie) groupoids. Indeed,
due to a construction first given in Renault’s PhD thesis [Ren80], we since know that there exists a
functorial assignment

C* : LCHGrpd — C*Alg,

of locally compact Hausdorff groupoids with Haar systems (an appropriate generalisation of a Haar
measure from groups to groupoids) and Hilsum-Skandalis maps to a suitable category of C*-algebras
and bimodules (up to technical details, cf. [Lan00]). In particular, a foliation of a smooth manifold
induces a holonomy groupoid, which is a Lie groupoid that captures in some sense the smooth paths
along the leaves of the foliation. Then, it can be shown that the smooth structure of a Lie groupoid gives
rise to a canonical Haar system, and in this way the above functor gives the C*-algebra corresponding
to the foliation. Together with the aforementioned folk theorem, the functoriality here ensures that
Morita equivalence of the holonomy Lie groupoids is preserved. With this, it became apparent that the
theory of groupoids and their Morita equivalence could be used to supplement the C*-algebraic theory
of foliations.

From an entirely different angle, there were attempts at applying the algebro-geometric notion of a
stack to differential geometry. Out of these efforts evolved the notion of a differentiable stack [BX11],
which is yet another type of generalised smooth space. These types of objects were motivated in part
by the study of orbifolds [Moe02], spaces that are locally homeomorphic to quotients of Euclidean
spaces by finite group actions. It so happened that these objects could be geometrically represented
by Lie groupoids, up to Morita equivalence [BX11, Theorem 2.26]. The philosophy here is that a Lie
groupoid (a perfectly good smooth object) is a model for its underlying (often singular) space of orbits,
and Morita equivalence is a suitable equivalence that preserves the orbit spaces and the transversal
geometry. Therefore, two Morita equivalent groupoids serve as the same model, or atlas, of the orbit
space. In the particular case of foliation theory, the holonomy Lie groupoid of the foliation serves as a
model for a singular leaf space (such as the irrational torus).

Now it appears that, since its birth in operator theory, the notion of Morita equivalence of groupoids
has become an important notion in its own right. It is used further in Poisson geometry, where there
exists a notion of Morita equivalence for symplectic groupoids [Xu91]. This connects also to the
way that Morita equivalence has been used by Landsman [Lan0la; Lan01b; LanOlc; Lan06] in the
context of quantization (where “Poisson manifolds are the classical analogue of C*-algebras,” [Xu91]).
Independently, notions of bibundles and Morita equivalence have appeared in topos theory [Moe91].

Below are some points motivating the study of diffeological groupoids and their Morita equivalence:

e Of all the set-based approaches to generalised smooth spaces, diffeology is one of the most de-
veloped, with an active research community and an excellent textbook [Diffeology]. In particular,
the theory of diffeological groupoids has been known since [Igl85], so there was a solid foundation
to build this work on. Besides, as we have pointed out, diffeology has sufficient implications about
the classical world of differential topology so that a theory of Morita equivalence for diffeological
groupoids could be of future use in the theory of Lie groupoids.

« Diffeological groupoids have recently been used in mathematical physics [BFW13; G119].

e As already mentioned, diffeology intrinsically deals well with quotients. In the sense that differ-
entiable stacks are used to model spaces with singular quotients, diffeology could be a natural
supplement in that regard. Instead of using Lie groupoids as representations for differentiable
stacks, we could consider diffeological groupoids instead, leading to what we could call “diffeolo-
gical stacks.” A notion of Morita equivalence for diffeological groupoids would be essential for
that. The relation between diffeology and stacks is beginning to be explored [WW19]. Since
both diffeology and the theory of differentiable stacks deal well with objects such as the irrational
torus, it would be interesting to see to what extent there is a relation between the two. More
related research is [KW16]
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o There is a mature theory of symplectic diffeology [Diffeology, Chapter 9]. In fact, one of Souriau’s
original motivations for diffeology was to study symplectomorphism groups. A notion of Morita
equivalence between diffeological groupoids might extend Xu’s definition of Morita equivalence
between symplectic groupoids [Xu91] to the diffeological world.

o Recently, in [GZ19] a new notion for Morita equivalence for holonomy groupoids of singular
foliations has been proposed. As the authors of that article suggest, this could fit naturally into a
framework of diffeological Morita equivalence, but also remark “[t]he theory of Morita equivalence
for diffeological groupoids has not been developed yet,” [GZ19, p.3]. This also relates to work
in preparation on the integration of singular subalgebroids [AZ] using diffeological groupoids. We
hope the contents of this thesis can be of use here.

o In [Berl6; IZL18; IZP20], people have begun to explore the relation between diffeology and
noncommutative geometry. There is already a bridge between the theory of Lie groupoids (differ-
entiable stacks) and noncommutative geometry, by associating to each Lie groupoid its groupoid
C*-algebra, which preserves Morita equivalence. This bridge is already being explored in [IZL18;
IZP20] for the special classes of diffeological orbifolds and gquasifolds. Our theory of Morita
equivalence between diffeological groupoids would be a natural framework to capture the Morita
equivalences described in those papers. Hence, it seems that a proper notion of Morita equival-
ence for diffeological groupoids is important to understand fully a relation between diffeology and
noncommutative geometry. To complete this bridge, we need a functorial assignment

C* : DiffeolGrpd — C*Alg,

of a groupoid C*-algebra for an arbitrary diffeological groupoid. It is currently unknown if such a
functor exists. Some constructions have been suggested for a special class of groupoids [ASZ19].
The main ingredient in the corresponding construction for locally compact Hausdorff groupoids
is that one assumes the groupoid is equipped with a Haar system: a family of measures on the
space of arrows of the groupoid. These measures are used to define a convolution algebra, which
can be completed into a C*-algebra. For the construction of the functor above, we then seem to
be missing a crucial ingredient: diffeological measure theory's.

e In particular, it seems that the notion of Morita equivalence we propose can be used to unify
the arguments in [IZL18; IZP20] about diffeological orbifolds and quasifolds. Classically, Satake
defined orbifolds in terms of atlases [Sat56]. The modern way is to view orbifolds as Morita
equivalence classes of proper étale Lie groupoids [Moe02; Ler08]. The reason for this is that
such groupoids are locally isomorphic to action groupoids of finite groups on Euclidean domains
[Ler08, Proposition 2.23]. Since action groupoids are smooth geometric models for the quotient
space of their action, a proper étale Lie groupoid is a model for a space that looks locally like the
quotient of a FEuclidean space by a finite group action, i.e., orbifolds. Orbifolds have also been
described in noncommutative geometry [RV08; Harl4]. Since quotients of Euclidean spaces
are perfectly fine diffeological spaces, orbifolds can be studied quite naturally in the setting of
diffeology [IKZ10] (without using groupoids as models). It would be interesting to know the
precise relation between the Lie groupoid, noncommutative geometry, and diffeology approaches
to orbifolds.

18 Also, as pointed out by Klaas Landsman, the category C*Alg is a (noncommutative) topological world. Given the
dichotomy between topology and diffeology, as showcased by the irrational torus, it is unclear what the interpretation of
such a functor would be. On the other hand, the irrational torus can be modelled by a Lie groupoid, either as the holonomy
groupoid of the Kronecker foliation, or as an action groupoid. Neither of these groupoids are topologically trivial, and
both return the irrational rotation C*-algebra. Is diffeology able to capture noncommutative topological information, while
carrying no topological data at all?
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1.2.3 A bird’s-eye view

To help the reader find their ground in this thesis, we provide a short outline of the contents. We
summarise the contents of each section, and highlight important results obtained in them. Some things
that you might find:

1. A succinct, yet detailed introduction to the theory of diffeology (Chapter IT). This includes a
thorough discussion of limits and colimits (Section 2.2.6) and functional diffeologies (Section 2.4).

2. A proof, without sheaf technology, that Diffeol is a quasitopos (Theorem 2.118).
3. A generalisation of the theory of Lie groupoid bibundles to the diffeological setting (Chapter IV).

4. A proof that this forms a general framework to study Morita equivalence of diffeological groupoids
(Theorem 4.69). This could lead to a more elegant treatment of diffeological orbifolds (and
other such objects) in relation to both noncommutative geometry and the theory of stacks. We
also obtain a genuine diffeomorphism between the orbit spaces of Morita equivalent groupoids
Theorem 5.18, whereas for Lie groupoids this is generally only a homeomorphism ([CM18, Lemma
2.19]).

5. A detailed construction of the germ groupoid of a space (Section 6.1), and a rudimentary study
of atlases and their groupoids of transition functions (Section 6.1.1).

Below, we outline the contents of this thesis, highlighting its main results.

Diffeology. In Chapter IT we provide a detailed account of the theory of diffeology a la [Diffeology]
in terms of plots (Definition 2.2). This textbook is indeed our main reference for this chapter, but we
go deeper in some areas where necessary. In particular, as Chapter IT proceeds, we provide a proof
that the category Diffeol of diffeological spaces is a quasitopos. This result has been known at least
since [BH11, Theorem 52], but we provide an account from a more down-to-earth view without using
any sheaf theory. We chose this approach mainly because [BH11; G119] already contain excellent
sheaf-theoretic proofs of this fact, but also because the later contents of this thesis are approached from
this more down-to-earth view as well, and it would be jarring if we suddenly switched from sheaves to
plots. Tt is well known that the category of sheaves on a site forms a topos ([MIM94]). In that sense,
the proof that Diffeol is a quasitopos from the sheaf point of view can be seen as a top-down approach,
realising diffeological spaces into a setting which is inherently topos-theoretic. Our approach is more
ground-up, where we start just from the Axioms of Diffeology, and get topos-like properties from there.

We start Chapter IT with the definition of a diffeological space, and prove that smooth manifolds
Mnfd form a full subcategory of Diffeol (Theorem 2.11). This means that we can think of diffeology as
a genuine extension of classical differential topology. In Section 2.2 we discuss categorical constructions
such as products and coproducts, which will be used extensively later on, and in Section 2.2.6 we
prove that Diffeol is complete and cocomplete (Theorem 2.72). As an intermezzo, we give a detailed
discussion of the irrational torus in Section 2.3. Then, in Section 2.4, we discuss the remarkable fact
that the space C*°(X,Y) of smooth maps between diffeological spaces has its own canonical diffeological
structure, making Diffeol Cartesian closed (Theorem 2.93). It turns out that Diffeol is even locally
Cartesian closed (Theorem 2.97), and together with the construction of a weak subobject classifier
in Section 2.5 we prove that Diffeol is a quasitopos (Theorem 2.118). Finishing off this chapter, in
Section 2.6 we discuss in detail a special class of smooth functions that we need to extend the notion
of a submersion to the diffeological realm, and then finally give a short discussion of diffeological spaces
as sheaves in Section 2.7.

Diffeological Morita equivalence. In Chapter ITI we introduce the notion of a diffeological groupoid
(Definition 3.16), in preparation for the later discussion to come. Diffeological groupoids have already
been studied in [Igl85; Diffeology]. We give some basic examples that generalise from the theory
of Lie groupoids, and also discuss some diffeological examples. The main definition in this chapter is
of the 2-category DiffeolGrpd of diffeological groupoids, smooth functors, and smooth natural trans-
formations (Definition 3.18). This is not our working category, however, and the subsequent chapters
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are devoted to the construction and study of a bigger bicategory. In Section 3.3 we introduce the
special class of fibration groupoids (Definition 3.41), which have been used to study diffeological fibre
bundles [Diffeology, Chapter 8] (Definition 3.42). In Section 3.4 we propose a definition for smooth
linear representations (Definition 3.51) of diffeological groupoids, based on the notion of diffeological
vector pseudo-bundles [Per16] (Definition 3.47). As an example, we construct the smooth left reqular
representation (Example 3.52), which is generally an infinite-dimensional representation.

Chapter I'V contains the main new results of this thesis. Its first part is a proposal for a theory of
diffeological Morita equivalence, in which we define, study, and give examples of: diffeological groupoids,
-actions, -bundles, and -bibundles. The presentation of this material closely follows the theory of Lie
groupoids and bibundles as already studied in the literature. Especially we like to recommend [Blo08;
dHo12], and other references are [Lan0la; Lan01b; Lan0Olc; Ler08; Lil5]. In Chapter V we also
draw inspiration from, in particular, [Moe02; MMO03; MMO05], which focuses on the calculus of
fractions approach to Morita equivalence of Lie groupoids. We discuss a calculus of fractions approach
for diffeological groupoids in that chapter, while Chapter I'V focuses on the use of bibundles.

In Section 4.1 we define and study diffeological groupoid actions (Definition 4.1), and the correspond-
ing category Act(G = Gy) of smooth groupoid actions and equivariant smooth maps. This category
can be thought of as a general setting of smooth groupoid representation theory. It is also here that we
lay the groundwork for the balanced tensor product (Construction 4.12). In Section 4.2 we introduce
the new notion of diffeological groupoid bundles (Definition 4.14). These are smooth groupoid actions,
together with an invariant smooth map. It is here that the diffeological theory of groupoids starts to
diverge conceptually from the Lie theory. This is mostly because the flexibility of diffeology circumvents
all of the technical restrictions that appear in the theory Lie groupoids. In particular, in many instances
we need special conditions to ensure that quotients and fibred products stay inside the category of
smooth manifolds. Since Diffeol is closed under such constructions, these special conditions become
redundant. This allows us to dissect the conceptual progression in the Lie groupoid theory, and adapt it
here to give a more transparent presentation in the diffeological setting. Most importantly, the definition
of a principal groupoid bundle splits into two separate components (Definitions 4.17 and 4.18). Con-
tinuing into Section 4.2.2, we prove that equivariant smooth maps between principal groupoid bundles
have to be diffeomorphisms (Proposition 4.30). We then arrive at Section 4.3, where we finally define
diffeological bibundles (Definition 4.31). In Section 4.3.2 we show how the earlier introduced balanced
tensor product allows us to transfer smooth groupoid actions along bibundles (functorially). Then
in Section 4.3.3 we use this to define the composition of diffeological bibundles (Construction 4.48),
which gives the promised bicategory DiffeolBiBund of diffeological groupoids, bibundles, and smooth
biequivariant maps (Theorem 4.51). Tt is already worthwhile to mention that this bicategory has no
analogue in the Lie theory, because there bibundle composition can only be defined for left principal
bibundles. The sections Sections 4.3.4 and 4.3.5 are where we obtain our main new results. The first of
these (Theorem 4.62) is an analogue of the theorem about weak invertibility of left principal bibundles
between Lie groupoids (see e.g. [Blo08, Section 3] or [Lan0la, Proposition 6.7]). But we go further: we
prove that any diffeological bibundle is weakly invertible if and only if it is biprincipal (Theorem 4.69).
This fully justifies the bicategory DiffeolBiBund as being the correct setting for Morita equivalence
of diffeological groupoids. Closing off Chapter IV, we discuss some applications of this framework in
Section 4.4. The first of these is a proof that Morita equivalent diffeological groupoids have equivalent
action categories (Theorem 4.70), which directly generalises [Lan0la, Theorem 6.6], in which a similar
result for the Lie case is proved. Next, in Section 4.4.2 we prove that the property of a diffeological
groupoid being fibrating is preserved under Morita equivalence. In Section 4.4.3 we pose the open
question whether diffeological Morita equivalence between Lie groupoids reduces to the standard notion
of Morita equivalence between Lie groupoids (Question 4.80).

The contents of Chapter V consists mainly of an alternative development of the notion of Morita
equivalence through the use of a calculus of fractions. We prove that this notion of Morita equivalence
coincides with the one defined in terms of bibundles (Theorem 5.14). As an application of this altern-
ative framework, in Section 5.2 we prove that the orbit spaces of two Morita equivalent groupoids are
diffeomorphic (Theorem 5.18).

Lastly, in Chapter VI we study the groupoid of germs of a diffeological space, and use it to study
the local structures of spaces. We use it to define a rudimentary notion of atlas (Definition 6.9), and
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define diffeological groupoids of transition functions (Definition 6.11). We prove that two diffeological
spaces are diffeomorphic if and only if they admit atlases whose groupoid of transition functions are
Morita equivalenct (Theorem 6.20).

Future questions. We list here some open questions and ideas for future research:

1. The construction of a theory of bibundles for a more general framework of concrete sheaves
([BH11, Definition 19]), or even arbitrary sheaves, perhaps in relation to [MZ15]. A theory
of principal bibundles seems to exist in a general setting for groupoids in co-toposes: [nL18a].

2. Finding an answer to the open Question 4.80 about diffeological Morita equivalence between Lie
groupoids.

3. What is the precise relation between differentiable stacks and diffeological groupoids (cf. [WW19])?
Using our notion of Morita equivalence, what types of objects are “diffeological stacks” (i.e., Morita
equivalence classes of diffeological groupoids)?

4. Can the Hausdorff Morita equivalence for holonomy groupoids of singular foliations introduced in
[GZ19] be understood as a Morita equivalence between diffeological groupoids?

5. The general construction of diffeological groupoid C*-algebras and the preservation of Morita
equivalence. One step in this direction has already been taken in [ASZ19]. More generally: is
there a precise relation between diffeology and noncommutative geometry? There is a small amount
of research investigating this question: [Ber16; IZL18; IZP20]. There could be a tremendous
benefit to link these theories more closely. On the one hand, we have the powerful framework
of noncommutative geometry, which has deep implications for physics and mathematics, but is
analysis-heavy. On the other hand we have diffeology, which is simple, light-weight and intuitive.
A hybrid theory, combining the best of both worlds, could bring intuition to noncommutative
geometry and analytic power to diffeology. We hope that the framework of diffeological Morita
equivalence that we present here can help in building this link.

6. A theory of ‘VpB-groupoids’, generalising the theory of VB-groupoids to the diffeological setting.
We use the abbreviation ‘VpB’ in reference to the theory of vector pseudo-bundles [Per16]. This
could be used to study infinite-dimensional linear representations of groupoids. A linear rep-
resentation of a Lie groupoid is defined in terms of the frame groupoid of a vector bundle. As
long as the vector bundle is finite-dimensional, the frame groupoid is a Lie groupoid. Having
introduced these notions in Section 3.4, what could be their applications in the representation
theory of groupoids (cf. e.g. [Bos07])? Using diffeology, the frame groupoid can be extended also
to infinite-dimensional vector bundles, or even vector bundles with varying fibres. Since Hilbert
spaces have a canonical diffeology (the fine diffeology), this can also be used to define unitary rep-
resentations of groupoids. Choosing a notion of tangency on diffeological spaces, we should define
a tangent groupoid, which would naturally form a VpB-groupoid over itself. From Lie groupoid
theory it is known that the tangent groupoid is closely related to its Lie algebroid. This theory
of VpB-groupoids could shine more light on the question of “diffeological algebroids.” We briefly
remark on this in Section 3.4.1.

7. What is the physical interpretation of the notion of Morita equivalence for the diffeological group-
oids used in general relativity [ BEW13; G119]? What physical notion does the Morita equivalence
class of the groupoid of X-evolutions represent?
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Chapter II
Diffeology

DIFFEOLOGY'Y was introduced by Souriau in [Sou80]. In that publication, Souriau describes five
axioms for “groupes différentiels,” which we can now recognise as the definition of a diffeological group
(cf. Definition 3.1). It took a further four years for the definition of “espaces différentiels” to be
distilled from these five axioms into the three Azioms of Diffeology we know today (Definition 2.2). We
recommend [IZ13] for a short first-person account of these developments.

A very extensive development of the elementary theory of diffeology can be found in the first two
chapters of the Diffeology textbook by Iglesias-Zemmour. This special reference will be denoted by:
[Diffeology]. A lot of the content in this section is based on that monograph. Some results appear
to be new (although not profound), as they were tailor-made to develop some of the theory in later
sections. For a thorough treatment on the categorical constructions of diffeological spaces we refer to
the expositions in [G119, Section I.1] and the paper [BH11]. Another good elementary introduction to
diffeology is in [Vin08], which resembles more closely the approach we take here.

Intuitively, diffeology is somewhere in the realm of differential topology and differential geometry.
But it is not quite either of those: diffeology doesn’t require topology (although it does generate one),
and it is as much geometric as the theory of smooth manifolds. But clearly diffeology is differential
something. We could call it differential pre-topology. Maybe we should call it differential set theory?’.

The basic goal of diffeology is to lift the differential topology of Euclidean domains to a larger class
of objects. Recall that a Fuclidean domain is an open subset of a Euclidean space R"™, for some n € N.
These, together with the next definition, form the building blocks of the theory:

Definition 2.1. Let X be a set. A parametrisation on X is a function U — X defined on a Euclidean
domain. We denote by Param(X) the set of all parametrisations on X.

A diffeology on a set X determines which parametrisations U — X are ‘smooth’ These smooth
parametrisations are called plots. It does this in a way that translates the local behaviour of Euclidean
domains onto X. In particular, we can describe the following intuitive understanding of a diffeology.
First, every point in the set X must be in the image of some plot. Second, plots may be reparametrised
by smooth functions between Euclidean domains. Here the notion of smooth function between Euclidean
domains is just the usual one, as if they were smooth manifolds. Lastly, whether a parametrisation is
smooth is determined by its local behaviour. That means if the domain of a parametrisation U — X
has an open cover for which each of the restrictions are plots, then the entire parametrisation must
be a plot. This reflects the fact that a function should be smooth if and only if it is locally smooth
everywhere.

Definition 2.2 (Axioms of Diffeology). Let X be a set. A diffeology on X is a collection of paramet-
risations Dx C Param(X), containing what we call plots, satisfying the following three axioms:

1. (Covering) Every constant map U — X is a plot.

2. (Smooth Compatibility) For every plot a : U, — X in Dx and every smooth function h: V — U,
between Euclidean domains, we have that aoh € Dx.

3. (Locality) If « : U, — X is a parametrisation and (U;);cr an open cover of U, such that each
restriction «|y, is a plot of X, then so is a.

19The etymology of the word is explained in the afterword to [Diffeology]. Souriau first used the term “différentiel”, as
in ‘differential’ (from the Latin differentia, “difference”). Through a suggestion by Van Est, the name was later changed
to “difféologie,” as in “topologie” (‘topology’, from the Ancient Greek tépos, “place,” and -(0)logy, “study of”). Hence the
term: diffeology.

20This would definitely be in line with the definition of a smooth set. Recall from Section 1.1.3 that smooth sets are
the sheaves on the site of Euclidean domains. I think the terminology ‘smooth set’ is not quite appropriate, since sheaves
do not in general have an underlying set. (But calling them smooth spaces could also be confusing.)
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A set X, paired with a diffeology (X,Dx), is called a diffeological space. Note that the distinction
between diffeological spaces and diffeologies is merely superficial, because, by the Axiom of Covering,
the information of the set is entirely coded in the constant plots of its diffeology. Nevertheless, we
find the viewpoint of diffeological spaces more appealing and intuitive, so we shall continue to view
diffeologies as structures on sets?!.

The following equivalent characterisation of the Axiom of Covering explains its name.
Proposition 2.3. If Dx is a diffeology, the Aziom of Covering is equivalent to |J,cp , im(a) = X.

Proof. If the Axiom of Covering holds, then the values of the plots certainly cover X, because each
point « € X is hit by any of its corresponding constant plots.

Conversely, suppose that UaeDX im(a) = X, and let const, : U — X be a constant plot, say, taking
the value x € X. Since the images of the plots cover X, we can find an actual plot a : U, — X such
that « € im(«). There must therefore be at least one point ¢y € U, such that a(ty) = z. Now, the
constant map consty, : U — U, is certainly smooth between Euclidean domains, so by the Axiom of
Smooth Compatibility const; = « o consty, is a plot in Dx. O

Definition 2.4. A function f: (X,Dx) — (Y, Dy) between diffeclogical spaces is called smooth if for
every plot a € Dy, the composition with f also gives a plot: f o« € Dy. When the diffeologies on
the sets X and Y are understood, we will just write f : X — Y. Unlike in Section 1.1, we will make
no terminological distinction with the usual definition of smooth functions between manifolds, since we
will see later that they are equivalent. Hence, from now on, smooth will be used synonymously with
diffeologically smooth. A function f: X — Y is called a diffeomorphism if it is a smooth bijection whose
inverse is also smooth.

Proposition 2.5. The composition of two smooth maps between diffeological spaces is again smooth.

Proof. Let f: (X,Dx)— (Y,Dy) and g : (Y, Dy) — (Z,Dz) be two smooth maps. To show that go f
is smooth, we need to show that (g o f) oa € Dy, for any a € Dx. But, if a is a plot of X, then
goa € Dy, because ¢ is a smooth map. And, since f is also smooth, we thus get fo (goa) € Dy,
which is just what we need up to associativity. O

It is also clear that the identity map idx : (X,Dx) — (X,Dx) is smooth (in fact, it is a diffeo-
morphism). The underlying structure of the category Set of sets and functions now transfers directly
to diffeological spaces and smooth maps:

Definition 2.6. The category of diffeological spaces and smooth maps between them is denoted by
Diffeol. The set of smooth maps X — Y is denoted by C*°(X,Y"), and the set of diffeomorphisms
is denoted by Diff(X,Y"). The set of diffecomorphisms X — X is denoted by just Diff(X), instead of
Diff(X, X).

Before we dive further into the study of diffeology, we will demonstrate how this theory encapsulates
that of smooth manifolds, in a fully faithful way. In this way we will show that our intuitions of smooth
manifolds are genuinely allowed to transfer to that of diffeclogical spaces.

Example 2.7. Any Euclidean domain U € Eucl has a Fuclidean diffeology Dy (also called the
canonical- or standard diffeology), which is just the collection of parametrisations that are smooth
in the classical sense:
Dyi= |J CRtaa(VI0),
VeEucl

where CRg,sq(M, N) denotes the set of smooth functions between two manifolds*”. It clear that this
satisfies the axioms of Definition 2.2. Note that, in particular, this gives us standard diffeologies Dy~
for each Cartesian space R™.

21 Although, when taken seriously, the idea that the underlying set is captured by the diffeology itself is what leads
naturally to the sheaf-theoretic point of view.
22This notation is introduced only temporarily, as we will soon see (Proposition 2.10) that it is a superficial distinction.
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Proposition 2.8. With respect to the Fuclidean diffeologies, plots are exactly the smooth parametrisa-
tions.

Proof. Let a : U — X be a plot of a diffeological space (X,Dx), and endow U with its Euclidean
diffeology Dy. Then take a plot h: V — U in Dy. The map o h is then a plot of X by the Axiom of
Smooth Compatibility, which proves that « is smooth.

Conversely, let @ : U — X be a parametrisation that is smooth with respect to the Euclidean
diffeology Dy;. The identity map idy is a plot in Dy, so it follows immediately that « = acidy € Dx. O

Once we know that the smoothness of maps between manifolds is determined by their local behaviour,
Example 2.7 can be extended to all smooth manifolds. But this we do know, for instance through
[Leel3, Corollary 2.8], which says that a compatible family of smooth maps on an open cover of a
manifold glues together uniquely into a smooth map on the entire manifold, and every smooth map
arises in this way. Given moreover the fact that the composition of smooth maps between manifolds is
smooth, and that constant maps are smooth, the following definition gives a genuine diffeology for every
smooth manifold:

Definition 2.9. Let M be a smooth manifold. The manifold diffeology D s (also known as the standard
diffeology) on M is just the collection of parametrisations that are smooth in the usual sense:

Dui= |J CNtusa(U, M).
U€Eucl

Given the above remarks, we see that this satisfies all three axioms of Definition 2.2. See also [Dif-
feology, Chapter 4] for an in-depth treatment of manifolds in the theory of diffeology. Note also that
the Euclidean diffeology of Example 2.7 coincides with the manifold diffeology on Euclidean domains.

Proposition 2.10. Let f : M — N be a function between smooth manifolds. Then f is smooth as a
function between manifolds if and only if it is smooth with respect to the manifold diffeologies. In other
words: C*°(M,N) = Cyinea(M,N).

Proof. Suppose first that f is a smooth map between manifolds. Take a plot a € Dy, in the manifold
diffeology. That means that o : U, — M is smooth as a function between manifolds. Therefore the
composition foa is also smooth between manifolds, which immediately gives foa € Dy by the definition
of the manifold diffeology on N.

Conversely, suppose that f : (M, Dy) — (N,Dy) is smooth as a map between diffeological spaces.
Let A = (V; £5% R™);c; be an atlas of M, with m = dim(M). Given the differentiable structure on
M, the charts ¢; : V; — im(y;) =: U; become diffeomorphisms, where each U; is an open subset of R™.
By [Leel3, Corollary 2.8], f is smooth if and only if each f|y, is smooth. In turn, since each ¢; is a
diffeomorphism onto its image Uj;, the restrictions of f are smooth if and only if

fowoit=Ff
are smooth. Since 90;1 : U; — V; € M are smooth in the manifold sense, they are in fact plots in the
manifold diffeology Dys. It follows by smoothness of f : (M, Dys) — (N,Dy) that fog;* € Dy, for
each ¢ € I. But, by definition of the manifold diffeology on NV, this just means that each f o gpi_l is

smooth as a map on manifolds, and hence gives that each restriction fl|y,, and hence f itself, must be
smooth. O

viowp; U — N

This proposition now fully justifies the following theorem:

Theorem 2.11. The inclusion functor Minfd — Diffeol, sending each smooth manifold to the diffeolo-
gical space with its manifold diffeology, is fully faithful.

The smooth manifolds are clearly a big class of examples, already making diffeology very rich. And as
a contender for an extension of classical differential topology, Theorem 2.11 is essential. But the power
of diffeology comes from its ability to reach beyond the classical realm. Many diffeological constructions
in the rest of this chapter will actually do so: disjoint unions, quotients, fibred products, and subsets,
just to name some elementary ones (all of which we discuss in Section 2.2.) Before we go there, let us
demonstrate some of the most basic examples.
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Example 2.12. The easiest way to ensure that the Axioms of Diffeology are satisfied is to declare
Dx = Param(X). This makes the smooth structure on X particularly unstructured, since there is
no distinction between plots and parametrisations. This diffeology is called the coarse diffeology, see
Definition 2.23.

Example 2.13. The one-point set 1 := {*} has a unique diffeology: D1, containing all parametrisations.
To see that this is the only option, consider that the Axiom of Covering demands that there be at least
one plot const, : R® — 1. But then any other parametrisation o € Param(1) can be written as
a = const, o consty, where const§ : dom(a) — R? is the (unique) smooth constant map from the
domain of « to the origin R® = {0}. The Axiom of Smooth Compatibility forces a to be a plot, and
hence Dy = Param(1). It is easy to see that any function f : X — 1 defined on a diffeological space has
to be smooth, and therefore (1, D1) defines a terminal object in Diffeol.

The empty set & also has a unique diffeology. Any set X admits a unique empty parametrisation
@ — X, since the empty set is itself a Fuclidean domain. Hence, there is a unique parametrisation
& — @ of the empty set, which is vacuously constant, so the Axiom of Covering declares that it must be
a plot. The only admissible diffeology is thus Dy = {& — @} (whereas the empty family @ C Param(o)
violates the Axiom of Covering). Any function f : @ — X defined onto a diffeological space is vacuously
constant, and hence smooth. Therefore (&, Dy ) defines an initial object in Diffeol. In general it will
be safe to assume that all of our diffeological spaces are non-empty.

Example 2.14. There exists exactly two diffeologies on the two-point set 2 := {0,1}. One of them
is the set of all parametrisations Param(€2). The other one is described as follows. Its plots are those
parametrisations a : U, — €2 such that, for all ¢t € U, there is an open neighbourhood t € V' C U,, such
that aly = constg or «|y = const;. That is, it contains exactly those plots that are locally constant.
This diffeology is called the discrete diffeology, see Definition 2.23. We will discuss this object {2 more
in Section 2.5.

Example 2.15. Let (X,7) be a topological space. It then makes sense to talk about continuous
parametrisations « : U, — X, since every Euclidean domain has a standard topology, defined by the
Euclidean metric on R™. The collection D, of all continuous parametrisations, called the continuous
diffeology [Don84, Section 2.8], forms a diffeology on X. Tt is easy to see that if f: (X,7x) — (Y, 7y)
is a continuous map between topological spaces, then f : (X,D,,) — (Y,D,, ) is a smooth map with
respect to the continuous diffeologies. See [CSW 14, Proposition 3.3] for more.

Example 2.16 (The circle). The circle is arguably the simplest manifold that is not a Euclidean space.
We describe here its diffeological structure ([Diffeology, Article 1.11]). As a set, we take the unit circle
in the complex numbers:

Sti={z€C:|z| =1} = {&™ .z € R}.
We claim that the following characterisation defines a diffeology Dg1 on S':

A parametrisation o : U, — S! is in Dg: if and only if for every t € U, we can find an open
neighbourhood ¢ € V' C U, and a smooth map 6 : V — R such that aly(s) = e?70().

Proof. We check that Dg1 satisfies the three Axioms of Diffeology. First let o be a constant paramet-
risation. Then there exists a real number x € R such that a(t) = 2™ for all t € U,. Clearly, setting
0 = const, to be the constant plot of R then gives the desired equation. Hence D1 satisfies the Axiom
of Locality.

For the Axiom of Smooth Compatibility, let o : U, — S be an element of Dg1 and consider a
smooth map h : V — U, between Euclidean domains. For any ¢ € U, we can write aly(s) = ¢>70(s)
for some plot 6 : W — R. Then a o hl,-1w)(s) = e2mi(0°h(s)) - But the diffeology on R satisfies the
Axiom of Smooth Compatibility, so 6 o h|,-1yy is a plot. But this means « o h satisfies exactly the
defining characteristic of parametrisations in Dg1, so o h € Dgi. This shows D g1 satisfies the Axiom
of Smooth Compatibility.

Lastly, for the Axiom of Locality, take a parametrisation o : U, — S' that admits an open cover
(Vi)ier of U, such that for each i € I we have a|y, € Dgi. Then for each ¢t € U, there is an element V;
of the open cover such that ¢t € V; C U,,. In turn, since a|y, € Dg1, there is another open neighbourhood
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t € W C V; such that aly(s) = €2™) for some smooth § : W — R. Since t € U, was arbitrary,
this just shows that the entire parametrisation « is an element of Dg1, so the Axiom of Locality is
satisfied. ]

In Example 2.68 we will see that the circle is diffeomorphic to the quotient R/Z.

Example 2.17 (The wire diffeology). The wire diffeology (called the spaghetti diffeology by Souriau)
is an example of a diffeology on R™ that does not coincide with the Euclidean diffeology ([Diffeology,
Article 1.10]). It is characterised by those parametrisations that locally factor through R. This means
that a parametrisation « : U, — R" is a plot in the wire diffeology if and only if for every ¢ € U, there
exists an open neighbourhood ¢t € V' C U,, a smooth map h : V — R, and a smooth map f € C°(R,R")
such that «|y = foh. It is an easy exercise to check that this defines a collection of parametrisations
that satisfies all three Axioms of Diffeology. That R™ with the wire diffeology is not diffeomorphic to
the Euclidean R™ can be seen by noting that the identity map idg~ is not a plot in the wire diffeology
(unless n = 1), while it is trivially a plot for the Euclidean diffeology. This example is a specific case of
a diffeology generated by a predetermined family of parametrisations (Definition 2.26), which we shall
encounter in Section 2.1.

Example 2.18 (The crosses). Another important illustrative example is the space X that is the union
of the coordinate axes in R? ([Vin08, Example 3], [CW 14, Example 3.19]). As a set we have

X ={(z,y) € R? : zy = 0}.

It turns out that there are two natural yet non-diffeomorphic diffeological structures on X. One comes
from seeing X as a subset of R? (Definition 2.51), and the other from seeing X as a gluing of two real
lines at the origin (which could be realised as a pushout). We can give precise descriptions of these
diffeologies once we know about limits and colimits (Section 2.2). Two conceptual descriptions are as
follows.

The first, denoted Dgyp, consists of all parametrisations o € Param(X) such that, when composed
with the natural inclusion i : X < R2, gives a genuine plot i o a € Dgz. The other, denoted Dijpe,
consists of parametrisations oz € Param(X) that are locally contained entirely either in the x- or y-axis,
and are there smooth in the usual sense. The identity map idx : (X, Diine) — (X, Dsup) is then smooth,
but not a diffeomorphism. To see this, define a smooth map

-1 if
h:R— R; T — exp(=1/z) %x>0’
0 if x <0.
We then get a parametrisation « : x — (h(z), h(—z)) of the cross X. Clearly a € Dgyp, but @ ¢ Diine,
because there is no open neighbourhood around 0 € R such that o takes values exclusively in the z- or
y-axis. In fact, «=1({(0,0)}) = {0}. In that sense Dgyp, contains ‘singular’ curves, while Dy, does not.

Example 2.19 (Diffeological vector spaces). As is well known, addition and multiplication in R are
smooth. More generally, addition and scalar multiplication in the vector space R™ are smooth. This
shows that Euclidean spaces are examples of diffeological vector spaces. More generally, consider a
vector space V' that is also equipped with a diffeology Dy . In that case we can put a natural product
diffeology on V x V| which contains exactly those parametrisations a : U, — V x V such that both
pry o and pry o« are smooth. We discuss the product diffeology in detail in Section 2.2. If the addition
+: VxV — V and scalar multiplication R x V' — V are smooth (where R has the Euclidean diffeology),
then we say (V, Dy) is a diffeological vector space, and Dy is called a vector space diffeology for V. The
diffeological vector spaces R™ are the special class of finite-dimensional fine vector spaces. These are the
vector spaces equipped with the finest diffeology (Definition 2.22) that turns them into a diffeological
vector space. This diffeology always exists, and in finite dimensions, each fine vector space is isomorphic
to some R".

Example 2.20 (Fréchet diffeology). Recall that a Fréchet space is a locally convex topological vector
space that is complete with respect to a translation-invariant metric. There exists a notion of calculus
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for functions between Fréchet spaces, defined by the Gateaux derivative. If F : U — Y is a function
defined on an open subset U C X between Fréchet spaces, the derivative of F' at uw € U in the direction
v € X is the function d,F': U — Y defined by

dy F(u) := lim Fluttv) = F(u)
t—0 t

)

whenever the limit exists. If it exists for all v € U and v € X and the induced map
dF:Ux X —Y; (u,v) — dy F(u)

is continuous, we say that F is continuously differentiable, or a C'-function. Inductively, we can define
higher order derivatives and notions of C*-functions, for natural numbers k € N. We say that F is
Fréchet smooth if it is a C*-function for all & € N. Euclidean spaces are naturally Fréchet spaces, so
it makes sense to talk about the smoothness of parametrisations of Fréchet spaces in this sense. In
this way we get a canonical Fréchet diffeology for any Fréchet space X, which is the collection of all
Fréchet smooth parametrisations. (On Banach spaces this reduces to the Banach diffeology defined
in [Diffeology, Exercise 72].) Even more generally, any Fréchet manifold gets a canonical Fréchet
diffeology in the same way. It was proved in [Los92] (and noted in [Los94, Theorem 3.1.1]) that the
inclusion functor
FréMnfd —— Diffeol

of Fréchet manifolds into the category of diffeological spaces is fully faithful. This generalises the result
about the inclusion functor of finite-dimensional smooth manifolds in Theorem 2.11.

This example generalises further in the diffeological setting:

Example 2.21 (Diffeological manifolds). One other advantage of diffeology is that it is even less
technical than the ordinary definition of a smooth manifold, yet subsumes the latter. In fact, we could
study smooth manifolds entirely within the framework of diffeclogy without ever defining notions such
as smooth atlases, differentiable structures or manifold diffeologies. A diffeological manifold is just a
diffeological space X that is locally diffeomorphic (Section 2.4.1) to a diffeological vector space E. A
smooth manifold is just a diffeological space that is locally diffeomorphic to some R™. Diffeological
manifolds are treated in detail in [Diffeology, Chapter 4], where they also prove that diffeological
manifolds modelled on F = R™ correspond exactly to smooth m-dimensional manifolds. In this way
Hilbert-, Banach-, and Fréchet manifolds get canonical diffeclogies that make them into diffeological
manifolds, and we get a diagram of inclusion functors:

Eucl——

HilbMnfd
C DiffeolMnfd — Diffeol.

o
BanMnfd
\> FréMnfd

Before we give more examples of diffeological spaces, we first discuss what types of constructions we
can perform with them. This will allow us to create many new interesting examples.

2.1 Constructions with diffeologies

One of the main appeals of working with generalised smooth spaces (over smooth manifolds) is that they
are closed under many categorical constructions, especially those that smooth manifolds are notoriously
bad at handling. In the next section we will give an exposition on some of these constructions, such as
products, pullbacks, and quotients. We do this here from the perspective of Definition 2.2. In this way
we can see, through very natural definitions, that Diffeol indeed handles these categorical constructions
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much better. The profound reason that all of this works is because diffeological spaces are (concrete)
sheaves, a point of view that we will explain in Section 2.7. The advantage of the more down to earth
view of diffeological spaces in terms of plots is that one gets nearly all the advantages of working with
sheaves, while being much more accessible. Besides, there are already excellent expositions exploiting
the sheaf-theoretic point of view in [BH11] and [G119, Section I.1]. For those reasons, we choose here
to give a detailed exposition of the various categorical constructions in Diffeol from an as elementary
viewpoint as possible. This is also described in [Vin08, Section 1.3], which however delegates the proofs
to another paper (by the same author), which we were unable to find. Here we redevelop those results
independently, under guidance of that reference.

But before we can treat the constructions with diffeological spaces, we need to study constructions
with diffeologies themselves. We will discover that the structure of diffeologies on one set is already
quite rich. In fact, the collection of diffeologies on a set forms a complete lattice. The main contents of
this section are also developed in [Diffeology, Chapter 1].

Let us draw a short analogy to topology. Suppose we have two topologies 7 and 75 on a set X.
Then 7, is called finer than 79 if 7 C 7. This makes sense: 71 has more open sets, and can therefore
possibly detect more local behaviour of the points of X, and hence could be called ‘finer’. We also say
Ty is coarser than 7. Now, this can be expressed in terms of the continuity of the identity function
idx: 7 is finer than 75 if and only if the map idx : (X, 7)) — (X, 72) is continuous. We can mimic this
definition in diffeology.

Definition 2.22. Consider two diffeologies Dy and Dy on a set X. We say Dy is finer than Do if the
identity map idx : (X,D1) — (X, D3) is smooth. We also say that Dy is coarser than D;.

Note that D is finer than D5 if and only if D; C Dy. The relation of fineness on diffeologies can
be expressed as subset inclusions that are exactly opposite to the case of topology! At first glance it
may appear counterintuitive to say a diffeology is finer if it contains less plots than another, but we can
understand this as follows. A diffeology determines what functions into a set are smooth. If all of them
are smooth (which is the case when the diffeology is just Param(X), see Definition 2.23), then we may
as well treat it like a set, because there is no distinction between smooth- and non-smooth functions.
That is the least refined notion of smoothness on a set, the coarsest smooth structure. The fewer plots
we allow, then, the finer the smooth structure becomes.

Definition 2.23. Let X be a fixed set. The set of all diffeologies on X is a partially ordered set, whose
relation is that of fineness, defined just previously. We will see now that the partial order is bounded.

The coarse diffeology on X is just the collection of all parametrisations: D% := Param(X). All
three axioms of Definition 2.2 are trivially fulfilled. If X*® denotes the set X equipped with its coarse
diffeology, then every function into a coarse space is smooth: C°(Y, X*®) = Homget (Y, X). The coarse
diffeology D% is an upper bound for the partial order of diffeologies on X.

On the other hand, we can define a lower bound as follows. A parametrisation o : U, — X is
called locally constant if there exists an open cover (U;);c; of U, such that each «|y, is constant. The
collection DS of all locally constant parametrisations forms a diffeology, called the discrete diffeology.
We prove that the discrete diffeology on X is indeed the finest. Take any other diffeology Dx on X,
and pick a locally constant plot o € DS as above. By the Axiom of Covering, each «|y, is an element
of Dx. But then it follows immediately by the Axiom of Locality that the entire plot @ must be in D,
and hence D§ € Dx. If we denote the set X endowed with its discrete diffeology by X°, then we get
C>®(X°Y) = Homget(X,Y).

Every diffeology Dx on a set X therefore lives somewhere in between the discrete- and coarse
diffeologies:
D;( - ®X Cc 'D;O

proving that the diffeologies on a fixed set, ordered by fineness, form a bounded partially ordered set.
We will see now that it is in fact a bounded complete lattice, which means that all infima and suprema
exist. The following proposition will help us prove this.

Proposition 2.24. Consider a family of diffeologies (D;)icr on a fived set X. Then D :=(\,c; D; is
also a diffeology. In fact, it is the unique coarsest diffeology on X contained in each D;.
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Proof. We verify that the three Axioms of Diffeology are satisfied for D.

The Axiom of Covering is clearly satisfied, for each D; contains every constant parametrisation, and
hence so must D.

For the Axiom of Smooth Compatibility, let o : U, — X be a plot in D, and consider a smooth
map h: V — U, between Euclidean domains. Smooth Compatibility holds in each D;, so we get that
aoh € Dy, for every i € I. Hence avoh € D.

Lastly, for the Axiom of Locality, pick a parametrisation o € Param(X), with an open cover (U;) e
of its domain such that the restrictions a|y; are plots in D. Then for each pair (i,j) € I x J we have
a|y, € Dy, so by the Axiom of Locality for D; we get that a € D;, and since i is arbitrary, we get o € D.

That D is the unique coarsest diffeology on X contained in each D; is clear from its construction. [

The result of this proposition will help us create many interesting diffeological constructions, because
it allows us to define the infimum and supremum of any family of diffeologies.

Definition 2.25. Let X be a fixed set, and consider a family of diffeologies D = (D;);e;r on X. The
infimum of (D;)er is the diffeology obtained by taking the intersection:

inf(D) = Z;g?Di = m D;.
iel
This is the coarsest diffeology that is contained in each D;.
To define the supremum, we introduce the collection of diffeologies that contains every element of
the family: D := {diffeology D : Vi € I : D; C D}. Note that D is not empty, because it contains the
coarse diffeology D% . We then define

sup(D) = sup D; := inf(D).
icl

This is the finest diffeology containing each D;.

We refer to [Diffeology, Article 1.25] for more discussion on these notions. We will use them to
construct the diffeologies of the categorical constructions. Note that the existence of infima and suprema
of diffeologies on X means that the partially ordered set of diffeclogies, seen as a category, is complete
and cocomplete (Section 2.2.6). An important and useful tool in the description of diffeologies is the
following.

Definition 2.26. Let ¥ C Param(X) be a family of parametrisations on a set X. There is a unique
finest diffeclogy (F) on X containing F, called the diffeology generated by F. It is defined as the infimum
over the family of diffeologies that contain F, i.e., the supremum over the single element family D = {F}.
Given a diffeology D x such that Dx = (F), we say that F is a generating family for Dx. If; in addition,
the images of the elements of I cover X, i.e. (J;cqim(f) = X, we say that F is a covering generating
family.

The plots of a diffeology generated by a family are characterised as follows ([Diffeology, Article
1.68)):

Proposition 2.27. Let F be a family of parametrisations on a set X. In general, the plots of (F) are
characterised as follows:

A parametrisation « : Uy, — X is a plot in (F) if and only if for every t € U, there exists
an open neighbourhood t € V. C U, such that either a|y is constant, or is of the form
aly = foh, where f: W — X is an element in F, and h : V. — W is a smooth map between
Euclidean domains.

If F is a covering generating family, the condition of a|y to be constant can be left out, and we get a
simpler characterisation:

A parametrisation o : Uy, — X is a plot in (F) if and only if for every t € U, there exists
an open neighbourhood t € V.C U, such that a|y = f o h, where f : W — X is an element
inF, and h: V — W is a smooth map between Fuclidean domains.
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Proof. Let us denote by D; and Dy the collections of parametrisations defined by these two charac-
terisations. (So, D is the set of all parametrisations that are locally constant, or factor smoothly
through an element of F.) Starting with the first claim, it suffices to show that D; is a diffeology
that contains F, and is contained in every other diffeology that contains F. The very definition of D1
ensures that the Axioms of Covering and Locality hold. We therefore need only confirm the Axiom of
Smooth Compatibility. For that, let « : U, — X be a parametrisation in Dq, and fix a smooth map
h: W — U, between Euclidean domains. We need to show that c o h € D;. Each t € W gives a point
h(t) € Uy. Since a € Dy, we can find an open neighbourhood h(t) € V' C U, such that either oy
is constant, or ay = f ok as described. If a|y is constant, then h=1(V) is an open neighbourhood
of t € W, and (a0 h)|p-1(v)y = alv o hlp-1¢v) is then also constant. Similarly, if aly = f ok, we get
(aoh)|p-1¢vy = fo(koh|,-1(yv)), which is exactly of the desired form. This proves that D, is a diffeology
on X.

The diffeologies Dy and Dy both contain F, which we can see by setting h = idy. Suppose that
D is another diffeology on X that contains F. Let « : U, — X be a plot in D;, and consider the
restriction aly that is either constant or of the form f o h. If it is constant, then «fy is clearly also in
D. And by the Axiom of Smooth Compatibility, together with the assumption that D contains F, it
follows that also a|y = foh € D. In this way we can create an open cover (V;):cp, of U, such that
each restriction a|y, is in D. The Axiom of Locality then gives that the entire plot o must be in D, and
we conclude D; C D. This proves that D, is a diffeology on X that contains F, and is contained in any
other diffeclogy that contains &, and so Dy = (F), as claimed.

The result for the second characterisation follows similarly. Almost the exact same argument proves
that Dy is also a diffeology. Only, instead of using the local constancy of the plots, we need to use
Proposition 2.3 together with the fact F covers X to show that D, satisfies the Axiom of Covering.
The rest of the argument is the same, which shows that if F is a covering family of parametrisations,
then Dy = (F). O

The definition of generating families gives a more intuitive definition of the supremum of a family of
diffeological spaces:

Proposition 2.28. Let D = (D;);er be a family of diffeologies on X. Then the supremum of D is the
diffeology generated by the union of all its elements:

sup(D) = <U Di>.

icl

Proof. The supremum sup(D) is, by definition, the finest diffeology on X that contains each D;. But
(Uier Di) contains J;c; Dy, so in particular each individual diffeology D;. Hence sup(D) C (U,¢; Di)-

Conversely, ({J,c; Di) is the finest diffeology containing [ J;c; D;. But sup(D) contains each D;, so
in particular their union. Hence ({J,c; D;) C sup(D), and the equality follows. O

Example 2.29. The empty family of parametrisations generates the discrete diffeology: (@) = D%,
and the collection of all parametrisations generates the coarse diffeology: (Param(X)) = D%.

Example 2.30. Unsurprisingly, any diffeology D generates itself: D = (D).

Example 2.31. Any smooth manifold M admits an atlas <7, consisting of (depending on your con-
ventions) a covering family of local homeomorphisms & = (¢; : U; = M);cs, defined on Euclidean
domains. With respect to the differentiable structure on M, these charts become smooth, so from the
definition of the manifold diffeology D,; (Definition 2.9), it follows that (/) C Djp;. But the ele-
mentary characterisation of smooth maps between manifolds is that their local coordinate expressions
are smooth (cf. [Leel3, Proposition 2.5]**). This means that if « € Dy is a plot U, — M in the
manifold diffeology, which just means that « is smooth in the manifold sense, then for every point

23Note that in the standard definition of an atlas, charts map from the manifold to a Euclidean domain. Here it is more
convenient to work with charts that map in the other direction, because they directly form a family of parametrisations,
making it easier to think about the generated diffeology.
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t € U, there exists a chart h : V — U, around ¢, and a chart ¢ : W — M containing «(t), such
that o ~! o a0 h is smooth between the Euclidean domains h=!(a~!(im(p))) — W. Since h is a local
diffeomorphism, we even get that ¢! o @|a-1(im(p)) 18 smooth. Looking at Proposition 2.27, we then
see that afq—1(im(p)) = @0 (p71o @|a-1(im(p))) is exactly of the form that plots in (&) are supposed to
have. This shows that we have the other inclusion Dj; C (o) as well, and can thus conclude that any
atlas of a smooth manifold generates the manifold diffeology:

(o) =Dy

This example shows that any given diffeology is generally not generated by a unique family of paramet-
risations. Namely, a smooth manifold generally admits many non-equal atlases ) # of5 that describe
the same differentiable structure, but their generated diffeologies are equal: (@) = D = (k).

Example 2.32. In Example 2.17 we found a diffeology on R? that was not diffeomorphic to the
Euclidean diffeology. This was the wire diffeology, whose plots all factor locally through curves in R.
With the language of generated diffeologies, we now see that the wire diffeology is just the one generated
by the family of all smooth curves:

Dwire = <C’°°(]R, R2)> .

One very important tool the construction of a generated diffeology provides is the following lemma:
the smoothness of functions is completely determined by those plots that come from the generating
family. This result will be used many times throughout our proofs. Remark that we use all three
Axioms of Diffeology in this proof.

Lemma 2.33. Let X be a diffeological space whose diffeology is generated by a family . Then a function
f: X =Y between diffeological spaces is smooth if and only if for every g € F we have fog e Dy.

Proof. The “only if” direction is immediate, because ¥ C Dx. For the other direction, suppose that f
sends all generating parametrisations g € JF to plots fog € Dy. We need to show that f is smooth.
Take then o € Dx to be an arbitrary plot, so that by Proposition 2.27 we know that locally |y = goh
for some g € F, or ay is constant. If a|y is constant, clearly also foaly will be, and hence in that case
foaly € Dy by the Axiom of Covering. If on the other hand a|y = g o h, then the Axiom of Smooth
Compatibility and our hypothesis gives f o aly = fogoh € Dy. Hence in either case f o aly € Dy,
and it follows by the Axiom of Locality that f o a € Dy, showing that f is smooth. O

Lemma 2.34. Let F1 and Fy be two families of parametrisations on X, such that 1 C Fy. Generating
diffeologies preserves this inclusion: (F1) C (Fa).

Proof. Using Proposition 2.27, a plot a € (F7) is locally constant, or locally of the form f o h, where
f € F1, and hence f € Fy. In either case, « is locally in (F3), and the result follows by the Axiom of
Locality. O

Lemma 2.35. Suppose that D1 = (F1) and Dy = (F3) are two generated diffeologies on X. Then
<5_r1 Uffg> e <®1 U Dg>

Proof. Since either diffeology D; and Dy contains its generating family, the inclusion (F; U Fa) C
(D1 U Dy) follows immediately from the previous Lemma 2.34.

For the converse inclusion, suppose that a € (D U D) is a plot. Then, locally, we have a|y = Boh,
where § € D; UDy. We can do this by the second characterisation in Proposition 2.27. However, since
in turn these diffeclogies are generated by F; and Fy, we can further find a restriction such that either
B|w is constant, or f|w = f ok, where f € F3 UTF,. In that case, we get ap—1w) = Blw o hlp-1w) =
f ok oh|,-1wy, which is exactly what the plots of (3 U J3) locally look like. O
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Pulling back diffeologies. Given a function f : X — Y on sets, it will be of interest to know
how a diffeology on either its domain or codomain interacts with f itself. We have already seen in
Definition 2.23 that if its domain is discrete, or its codomain is coarse, then f will automatically be
smooth. But what if this is not the case? In particular, we may ask: given a diffeology Dy on its
codomain, what is the coarsest diffeology on the domain X such that f is smooth?

Definition 2.36. Let f: X — Y be a function, and let Dy be a diffeology on Y. Let D be the family
of diffeologies on X such that f is smooth. The pullback diffeology is defined as f*(Dy ) := sup(D). We
claim that this is the coarsest diffeology on X such that f is smooth, and that it is given by:

[ (Dy) ={a e Param(X): foa € Dy}.

Proof. Note that D is non-empty, because it contains DS . Let us denote the collection of parametrisa-
tions on the right hand side of the above equation by D. It is easy to see that D is itself a diffeology
on X that makes f smooth, so D € D. It follows that D C f*(Dy). At the same time, if D’ € D, then
it follows immediately from the explicit definition of D that D’ C D. This means that D is an upper
bound for D, and hence f*(Dy) C D, giving equality. O

Corollary 2.37. A function f : (X,Dx) — (Y,Dy) is smooth if and only if Dx C f*(Dy).

A special class of functions is the one consisting of those injective functions for which the diffeology
on their domain is the coarsest making it smooth:

Definition 2.38. An injective function f : (X,Dx) — (Y, Dy ) between diffeological spaces is called an
induction if Dx = f*(Dy). Inductions are exactly the smooth injective functions that are diffeomorph-
isms onto their images (Proposition 2.54).

[Diffeology, Article 1.31] gives a criterion for a smooth map to be an induction:

An injective smooth map f : X — Y is an induction if and only if, for every plot o : U, — Y
taking values in im(f), the parametrisation f~! o« is a plot for X.

Proof. We prove that the criterion is valid. Suppose we start with an induction f: X — Y, and a plot
a € Dy taking values in the image im(f). Then f~!oa is a plot for X if and only if f~*oa € f*(Dy),
which by the definition of the pullback diffeology is in turn equivalent to f o f 'a = a € Dy-.
Conversely, suppose that f satisfies the property described in the criterion. Since f is smooth,
we already know that Dx C f*(Dy) (Corollary 2.37). To prove the other inclusion, take a plot
a € f*(Dy), which means that f o« € Dy. Obviously, f o « takes values in the image of f, so by
hypothesis f~' o f o a = a € Dy, proving the equality Dx = f*(Dy). O

Lemma 2.39. Let f:Y = Z and g : X = Y be two smooth functions. If f o g is an induction, then g
is an induction.

Proof. We use the criterion of Definition 2.38 to prove this claim. First, from elementary set theory we
know that g must be injective. We therefore consider a plot « : U, — Y taking values in im(g). Then,
since f is smooth, we get another plot foa : U, — Z taking values in im(f o g). Since the composition
is an induction, it follows by the criterion that (fog)~!o foa is a plot of X. We do not know whether
the left inverse of f exists or not, but in any case, this function is equal to g~! o a. Again using the
criterion, this shows that g is an induction. O

Pushing forward diffeologies. Of course, we also get a converse question: given a diffeology Dx on
the domain of f, what is the finest diffecology on Y such that f is smooth?

Definition 2.40. Let f: X — Y be a function between sets, and let Dx be a diffeology on X. Let D
be the family of diffeologies on Y such that f becomes smooth. The pushforward diffeology is defined
as f«(Dx) := inf(D). Note that D is non-empty, because it contains the coarse diffeology D3, .

It is characterised as follows:
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A parametrisation o : U, — Y is a plot in f,(Dx) if and only if for every point ¢ € U, there
exists an open neighbourhood ¢t € V' C U, such that «a|y is either constant, or there exists
a plot 8:V — X in Dx such that a|y = fof.

In other words, every plot in f,(Dx) lifts locally through a plot in Dx along f. We claim that f,(Dx)
is the finest diffeology on Y such that f is smooth.

Proof. Let D denote the set of parametrisations described in the characterisation above, i.e., the ones
that are locally constant or locally lift through plots of X along f. It is easy to check that D forms a
diffeology on Y. We will show that it is simultaneously a lower bound and an element of D. It is clear
from the characterisation of D that f becomes smooth, because for every 8 € D x, the composition fof
even globally lifts along f. Hence D € D. Now let D’ € D be another diffeology on Y such that f
becomes smooth. Every plot a € D then has the property that locally «|y is constant, or a|y = f o 3,
for 8 € Dx. If a|y is constant, then it is an element of D’ by the Axiom of Covering. If oy = f o 3,
then since f is smooth with respect to D', we also get a|y € D’. By the Axiom of Locality it then
follows the entire plot o must be in D', showing that D C D’. It follows immediately that D = f.(Dx)
is the finest diffeology on Y such that f is smooth. O

Corollary 2.41. A function f: (X,Dx) — (Y, Dy) is smooth if and only if f.(Dx) C Dy.

The dual notion of an induction (Definition 2.38) is the following. They are the class of surjective
functions whose diffeology on the codomain is the finest making them smooth:

Definition 2.42. Let f : (X,Dx) — (Y, Dy) be a function between diffeological spaces. We call f
a subduction if it is surjective, and f.(Dx) = Dy. Note that f automatically becomes smooth by
Corollary 2.41.

Since subductions will play a very special role for us in Chapter IV, we will discuss them in more
detail in Section 2.6. They also play a key part in defining diffeologies on quotients of spaces, see
Definition 2.64.

Lemma 2.43. Let f : X — Y be a function, and consider a diffeology Dx on the domain. Then the
pushforward diffeology satisfies f.(Dx) = (f o Dx), where foDx :={foa:a € Dx}.

Proof. Clearly (f o Dx) makes f smooth, so f.(Dx) C (f o Dx). The other inclusion directly follows
from the characterisation in Proposition 2.27 of plots in a generated diffeology, which agrees with the
defining characterisation in Definition 2.40. O

This lemma makes it easy to check smoothness of functions defined on the codomain of a subduction.
Namely, if f: X — Y is a subduction, and g : Y — Z is a function, then we only need to check whether
the parametrisations of the form g o f o a are plots of Z, for a« € Dx. This follows directly from
Lemmas 2.33 and 2.43. This will become useful later, when we study quotients.

The initial- and final diffeologies. In what follows we describe two constructions that generalise
the pushforward- and pullback diffeologies to allow instead for diffeologies to be generated by families
of smooth maps. These constructions are defined in [Vin08, Section 1.3.2], and are called the strong-
and weak diffeologies. For their proofs they refer to an article (by the same author) that we could not
find, so we reproduce them here, independently. Note that these two constructions are the same as the
ingtial- and final diffeologies, respectively, mentioned (but not constructed) in [CSW14, Section 2]. We
adopt their terminology.

Definition 2.44. Let Dx be a diffeology on a set X, and consider a family D of diffeologies on X. We
say that D covers Dx if sup(D) = Dx, and we say that D cocovers Dx if inf(D) = Dx. In those cases,
we say that D is a cover or cocover of D x, respectively.

The reason for the terminology of covering makes more sense in light of the notation of Proposi-
tion 2.28, which says that (D;);ecr covers Dx if and only if <Uiel Di> = Dx. The following proposition
gives even more justification.
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Proposition 2.45. Let D = (D;);er be a cover for Dx. Then f: (X,Dx) — (Y, Dy) is smooth if and
only if f:(X,D;) — (Y,Dy) is smooth for alli € I.

Similarly, if D = (D;)ier cocovers Dx, then f: (Z,Dz) — (X,Dx) is smooth if and only if for
each i € I the map f:(Z,Dz) — (X,D;) is smooth.

Proof. We prove the first assertion. Suppose that D covers Dx. Note that sup(D) is the finest diffeology
containing each D;, so in particular we have D; C Dx. It follows immediately that if f : (X,Dx) —
(Y, Dy) is smooth, then each f: (X,D;) — (Y, Dy) is also smooth.

Conversely, suppose that f: (X, D;) — (Y, Dy) is smooth for every i € I, and pick a plot « € Dx.
By Propositions 2.27 and 2.28 we know that we can find an open cover (V;)tcy, of Uy, together with
plots 8 € U,c; Di and smooth maps hy, such that aly, = 3; o hy. Now each j3; is contained in some
D;, for which f is smooth, so f o 5, € Dy. It follows from the Axiom of Smooth Compatibility for Dy
that foaly, = f o B ohy € Dy. The Axiom of Locality hence gives that f o a € Dy, which proves
f:(X,Dx)— (Y,Dy) is smooth.

The claim about cocovers is much easier, because if D is a cocover for D x, then we know Dy is just
the intersection (,c; D;. The result then follows quite straightforwardly from the fact that foa € Dy
if and only if f o« € Dy, for every i € I. O

Lemma 2.46. Let D = (D;);cs be a family of diffeologies on the diffeological space (X, Dx). We then
have the following characterisations of covers and cocovers:

1. The family D covers Dx if and only if for every diffeological space (Y,Dy) we have

C®(X,Y) = () C¥(X,Y),
i€l

where X; denotes the set X equipped with the diffeology D;.

2. The family D cocovers Dx if and only if for every diffeological space (Z,Dz) we have

C>(2,X)=()C>(2,X).

el

Proof. Let us prove the first point. If D covers Dy, the desired equation follows immediately from
Proposition 2.45. We therefore focus on the converse implication. Suppose that the displayed equation
holds; we need to show Dx = sup(D). In particular, we can set Y = X, as diffeological spaces. Then
idx € C*°(X, X), so it follows that for all ¢ € I the identity map idy : X; — X is smooth, which just
means that D; C Dx. But sup(D) is the finest diffeology containing each D;, so it follows sup(D) C Dx.
For the other inclusion, note that each identity map idx : (X,D;) — (X,sup(D)) is smooth because
sup(D) contains each D;. But then the displayed equation then gives that idx : (X, Dx) — (X, sup(D))
is smooth, which gives the other inclusion: Dx C sup(D). This proves the first claim.

The proof of the second claim is quite similar. Again, if D cocovers D x, the desired equation follows
from the second part of Proposition 2.45. Suppose therefore that the second displayed equation in the
lemma holds; we need to show Dx = inf(D). Setting Z = X as diffeological spaces give that for every
i € I the identity map idx : X — X, is smooth, which gives D C D;. But inf(D) is the coarsest
diffeology contained in each D;, so Dx C inf(D). For the other inclusion, note that inf(D) is contained
in each D;, so that each identity map idx : (X,inf(D)) — (X, D;) is smooth, which by the displayed
equation gives that inf(D) C Dx. Hence D is a cocover for Dx, and the second claim is proven. O

Theorem 2.47. Consider a family of functions (f; : X; — A)icr, defined on a family of diffeological
spaces (X;,D;)icr. Then the following three conditions are equivalent for a diffeology D4 on A:

1. The diffeology D 4 is the finest diffeology on A such that each map f; is smooth.
2. The family ((fi)«(Di));c; of pushforward diffeologies covers D 4.

3. A function g : A — B is smooth if and only if each g o f; is smooth.
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Proof. (1 = 2) Each pushforward diffeology (fi)«(D;) makes the map f; smooth, so sup;c;(fi)«(D;)
is a diffeology on A that makes every map f; smooth. But D4 is the finest such diffeology, so D4 C
sup;c;(fi)«(D;). For the other inclusion, note that all plots in (f;).(D;) are locally constant, or of
the form f; o 8, where § € D; (recall Definition 2.40). But f; : X; — B is smooth, so it follows
(fi)«(D;) € Dy for every i € I. This means that D, contains the union (J;c;(fi)«(Ds), but from
Proposition 2.28 we know that sup;c;(fi)«(D;) is the finest diffeology that contains that union, so we
obtain the other inclusion: sup;c;(fi)«(D;i) € Da.

(2 = 3) For this, we use the first part of Lemma 2.46, and the characterisation of the pushforward
diffeology in Lemma 2.43. A function g : A — B is smooth if and only if ¢ : A; — B is smooth for
every i € I, where A; is the set A endowed with the pushforward diffeology (f;)«(D;) = (fi o D;). Then
Lemma 2.33 says that g¢; is smooth if and only if for every g € D; we have go f; o § € Dp, which is
just equivalent to g o f; being smooth.

(8 = 1) Lastly, suppose that any function g : A — B is smooth if and only if each g o f; is smooth.
Setting ¢ = idy and Dg = D4 gives that every f; is smooth with respect to D4. If D’ is another
diffeology on A that makes every f; smooth, then ids : (4,D4) — (A4,D’) is smooth, which gives
Dy CD. O

Theorem 2.48. Consider a family of functions (g; : B — X,;)icr, defined into a family of diffeological
spaces (X;,D;)icr. The following three conditions for a diffeology D on B are equivalent:

1. The diffeology Dp is the coarsest diffeology on B such that all the maps g; become smooth.

2. The family (g7 (D;)),.; of pullback diffeologies cocovers Dp.

iel
3. A function f: A — B is smooth if and only if each g; o f is smooth.

Proof. The proof of this is, to a large extent, analogous to (and simpler than) that of Theorem 2.47.
We shall leave the details to the reader.

(1 = 2) The intersection inf;c; gf(D;) makes every map g; smooth, so if Dp is the coarsest such
diffeology, then inf;cs g7 (D;) C Dp. Conversely, because each pullback ¢;(D;) is the coarsest diffeology
such that g; is smooth, we get Dp C inficy g7 (D;).

(2 = 3) This follows from the second part of Lemma 2.46.

(8 = 1) The identity map idp is smooth, and hence every g; is smooth with respect to Dp. If D’ is
another diffeology on B making each g; smooth, then idg : (B,D’) — (B, Dp) is smooth, which proves
that D' C Dp. O

Definition 2.49. Given a family of functions (f; : X; — A);er, defined on a family of diffeological spaces
(X, Ds)icr, we call the diffeology sup;c;(fi)«(D;) satisfying the equivalent conditions of Theorem 2.47
the final diffeology on A generated by (f;)icr-

Given a family of functions (g; : B — X;);cr, defined on a family of diffeological spaces (X;, D;)icr,
we call the diffeology inf;cr gf(D;) satisfying the equivalent conditions of Theorem 2.48 the initial
diffeology on B generated by (g;)icy-

Example 2.50. A diffeology is itself the final diffeology induced by its plots with their Euclidean
diffeologies. Let Dx be a diffeology on X. Then (o (Daom(a)))acdx covers Dy, that is:

Dx = sup a*(Ddom(a)) —< U a*(®dom(a))>'

aeDx aeDx

Proof. We already know that plots are smooth (Proposition 2.8), which by Theorem 2.47(1) immedi-
ately gives sup,ep, @ (Ddom(a)) € Dx. The other inclusion is trivial, because if a € Dx, then « lifts
globally along itself, so o € . (Daom(a))- O

In the next section we will use the initial- and final diffeologies to describe basic categorical con-
structions in Diffeol. In Section 2.2.6 we will use these to construct arbitrary limits and colimits.
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2.2 Constructions with diffeological spaces

In this section we describe how to perform elementary categorical (or set-theoretical?*) constructions
in the category of diffeological spaces. Some of the material here is also discussed in [BH11, Section
3] and [G119, Section I.1]. We focus on: subsets, products, pullbacks, quotients, and coproducts. It
should be noted that Diffeol is in fact complete and cocomplete, something which will follow very
directly from the sheaf analysis in Section 2.7. It is also from that analysis that we can explain why the
underlying set structure of the diffeological spaces transforms in the ways we expect: namely because
the limits and colimits of (pre)sheaves can be calculated point-wise. This implies that the forgetful
functor Diffeol — Set preserves limits and colimits. (We prove this directly in Proposition 2.69.) The
underlying set of the product of diffeological spaces then has to be the product of sets, and the underlying
set of the disjoint union of diffeological spaces has to be the disjoint union of sets, etc. The general idea
is then as follows: each of the underlying set-theoretic constructions is accompanied by certain canonical
maps defined to or from the original diffeological spaces. The point of the new diffeclogy is then that
these canonical maps become smooth in the “nicest” way possible. The main tools for this will be the
pushforward- and pullback diffeologies, defined in Section 2.1.

2.2.1 Subsets

In classical differential topology, there are several conditions to ensure that a subset of a smooth manifold
is itself a smooth manifold (sometimes in a unique way), see for example [Leel3, Chapter 5]. In a
diffeological space, any old subset gets a canonical diffeology from the ambient one:

Definition 2.51. Let X be a fixed, ambient diffeological space. The subset diffeology®®, defined on
a subset A C X, is the collection Dscx of plots in X that take values in A. That means that, if
ia: A — X is the inclusion map, then

Dacx = {a € Param(A4) :igo0a € Dx}.

To ease the notation, we will usually just denote the subset diffeology of A by D4, since it will
be clear from the context which ambient space it inherits the smooth structure from. Note that if A
is endowed with its subset diffeology, the inclusion map i4 : A < X becomes smooth. In fact, the
subset diffeology is exactly the pullback diffeology % (Dx) from Definition 2.36. Therefore the subset
diffeology is exactly the diffeology that makes the inclusion map into an induction (Definition 2.38).

Example 2.52. The subset diffeology of an open subset in Cartesian space is just the Euclidean
diffeology. An open subset of a smooth manifold gets a unique differentiable structure. The subset
diffeology is exactly the manifold diffeology it gets from the ambient manifold.

Example 2.53. The diffeology Dy, of the cross in R? defined in Example 2.18 is just the subset
diffeology inherited from R2.

The definition of the subset diffeology ensures that the inclusion map defines a diffeomorphism onto
its image.

Proposition 2.54. Leti: A — X be an induction (Definition 2.38), and endow im(i) with the subset
diffeology in X. Then A = im(i).

Proof. Clearly i : A — im(¢) is a bijection, so it has a set-theoretic inverse p : im(i) — A, sending
i(a) = a. We claim that p is smooth. To see that, let o € Djy,(;) be a plot of the subset diffeology of
im(7). Hence « is just a plot in D x, taking values in the image of .. We need to show that poa : U, — A
is a plot. But ¢ is an induction, so the plots of A are exactly those such that, when composed with i,
are plots in of X. This holds for p o a because p is the inverse of ¢, so that we get iopoa =a € Dx.
This proves that p is smooth, and hence we get a diffeomorphism A 2 im(3). O

24Gince the forgetful functor U : Diffeol — Set preserves limits and colimits (Proposition 2.69), the terms ‘categorical-’
and ‘set-theoretical’ constructions really are almost synonymous here. See also the discussion in Section 2.2.6.

253ome authors call this the subspace diffeology. Since the term ‘space’ may imply some extra conditions (think of linear
subspace, embedded submanifolds, etc.), we prefer the term subset diffeology.
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Proposition 2.55. Let f: X — Y be a smooth function between diffeological spaces. For any subset
A C X, when endowed with the subset diffeology, the restriction f|a: A —Y is smooth.

Proof. The restriction f|4 is smooth because for every a € Dycx, flaoca= foa € Dy. O

2.2.2 Coproducts

In the theory of smooth manifolds, we can only take disjoint unions of manifolds as long as they have
the same dimension. That means R U R? is not even a manifold, classically speaking. Diffeology deals
easily with such objects, because it is built on bare sets, and does not discriminate based on dimension.
Recall the definition of the disjoint union of sets. If (X;);cs is a family of sets, then the disjoint union
is defined as

HXi ={(,x):iel,x e X;}.

i€l
Each component X; is naturally injected into the disjoint union through the function ¢; : X; — [],c; X;
defined by = — (j,z). If each X; is accompanied by a diffeology D,, it is our task to construct a good
diffeology on [[,.; Xi. The most obvious candidate is the final diffeology induced by the family (z;)ie;.
Definition 2.56. Let (X;,D;);cs be a family of diffeological spaces. The coproduct diffeology on the
disjoint union [, ; X; is the final diffeology induced by the family of canonical inclusion maps (¢;)ier-

Whenever we encounter a disjoint union of diffeological spaces, we will assume that it is endowed

with the coproduct diffeology, unless mentioned otherwise, the main exception being Definition 2.95.
Unpacking the definition of the final diffeology, we see that a parametrisation a of [],.; X is a plot if
and only if it is locally of the form ¢; o 8, where 8 € D;. As we would expect, each component X; of
the family sits diffeomorphically in the disjoint union. We can demonstrate this by showing that each
canonical inclusion ¢; is an induction. The property that X; 2 im(¢;) then follows from Proposition 2.54.

Proposition 2.57. The canonical injections v; : X; = [[;c; Xi are inductions.

iel
Proof. Let D denote the coproduct diffeology on [ [, ; X;. The pullback diffeology ¢; (D) contains exactly
the parametrisations o € Param(X;) such that ;0o € D. Propositions 2.27 and 2.28 then tell us that
t; o v is locally of the form ¢; o 3, for some j € I and 8 € D;. But for this to hold it has to be the case
that ¢ = j, and hence 8 € D;. Since the inclusion ¢; is injective, it follows that « itself has to be locally,
and hence globally, in D;. This shows that ¢;(D) = D;, proving that ¢; is an induction. O

A special case is the disjoint union of just two diffeological spaces. Following Proposition 2.28
and Lemmas 2.35 and 2.43, we get that the coproduct diffeology on X LY is

Dxuy = <LXO'DXuLyODy>.

This means that the plots of X LY are just the ones that are locally either plots of X or Y.
An interesting application of the coproduct diffeology is the following.

Proposition 2.58. Let F be a covering generating family for a diffeology Dx on X. Then the map

ev:Hdom(f)—>X; (f,t) — f(2)

feF

is a subduction, and in particular, borrowing Proposition 2.66 below, we get a diffeomorphism

X Hdom(f)/ev.

feF
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Proof. First we need to prove that ev is smooth with respect to the coproduct diffeology induced
by the Euclidean diffeologies on the domains dom(f) of each generating plot f € F. These plots
a: Uy = [[jegdom(f) are locally of the form aly = ¢y o h, where h : V' — dom(f) is a plot in
the Euclidean diffeology. Then ev o a|y = f o h, and since F generates the diffeology Dx on X, this
expression is smooth. It follows by the Axiom of Locality for Dy that ev is smooth.

To prove subductiveness, fix a plot a : U, — X in Dy, and a point ¢t € U,. Since the family
F is covering and generates Dy, the second characterisation in Proposition 2.27 allows us to find an
open neighbourhood t € V' C U,, together with some generating plot f € F and a smooth function
h:V — dom(f) such that a|y = f o h. This data gives a plot ¢ o h of er? dom(f), and it is easy to
check that evotfoh = foh = aly. This proves that ev is a subduction. O

The interpretation of this result is that any diffeological space can always be obtained as the quotient
(see Definition 2.64 below) of some disjoint union of Euclidean domains. Note that this does not mean
that any diffeological space is always the quotient of a manifold, since this disjoint union can certainly
be very big or change dimension.

2.2.3 Products

Forming the product of spaces is one of the few categorical constructions that the theory of manifolds
handles fairly well. The main exceptions to this rule are infinite products, which usually are not
finite-dimensional. We shall now construct the product of an arbitrary family of diffeological spaces
(Xi,D;)icr. We start by sketching the construction for an arbitrary indexing family, and then move on
to the special case of binary products, which are the only ones that we will really need.

First we recall the set-theoretic definition of a product. If (X;);cs is a family of sets, then we have a
projection pry : [[,c; Xi — I, sending each point (i, z) = i to its corresponding index. Elements of the
product of (X;);es are exactly the sections of this projection:

HXZ' = {IQHXi:prlos:idl}.

el el

We think of elements of [],.; X; as families (2;);cs of points z; € X;, which determines (and is de-
termined by) the section s : 4 +— (i,2;). The canonical family of maps belonging to a product are the
projections: (z;);er + x;j, which formally corresponds to the function

pr; :HXi—>Xj; $ +— pry 0 8(4).
iel

Definition 2.59. Let (X;, D;);cr be a family of diffeological spaces. The product diffeology on [, X;
is the initial diffeology induced by the family of canonical projections (pr;)icy-

Set-theoretically, a function f: A — [],.; X; into the product can be decomposed into components
f = (fi)ier, where f; = pr,o f: A — X;. Theorem 2.48(3) then says that f is smooth if and only if
each f; is smooth.

Just like the coproduct diffeology makes the canonical inclusions inductions, the projection maps are
subductions:

Proposition 2.60. The canonical projections pr; : [[;c; Xi — X; are subductions.

Proof. We borrow the result Proposition 2.120 from Section 2.6 below. Since the projections are smooth
surjections, it suffices to check the second condition in that proposition. Given a plot a : Uy, — X, we
define a plot © of [],.; X; as follows. The idea is that 2 moves like « in the jth component, and stays
constant everywhere else. Using the Axiom of Choice, for every i € I\ {j} we can pick z; € X;. For
each t € Uy, Q(t) is the function

Q) 1T —[[Xs e®6) = {(j ol®) ifizj

iel



It is then obvious that Q : U, — Hie ; Xi is a parametrisation of the product, and that it satisfies
pr; o Q = a. It therefore suffices to show that {2 is a plot. For this we use Theorem 2.48(8). The ith
component of 2 is just the constant map const,,, which is smooth, and the jth component is «, which
is also smooth, proving that §2 is smooth. O

The construction of binary products will be very important for us. If X,Y € Diffeol, how are the
plots of X x Y characterised? By definition, the product diffeology is the initial diffeology generated by
the projection maps:

Dxxy =pri(Dx) Npr3(Dy).

Since the plots of X x Y are exactly the smooth maps U — X x Y, Theorem 2.48 shows that o € Dxxy
if and only if pr; o € Dx and pry o a € Dy. This means that a parametrisation o = (a1, o) is a plot
if and only if each of its components «; and «s are plots. This is, in practise, often an easy condition
to check (or ensure). Another characterisation of the product diffeology is the following:

Lemma 2.61. Let X and Y be two diffeological spaces whose diffeologies are generated by two families
of parametrisations Fx and Fy, respectively. Then the product diffeology on X X Y is generated by
?Xx’fy::{axﬂ:aeﬁx,ﬁeffy}.

Proof. The proof of this lemma relies on the trick that for a parametrisation a: U, — X x Y, we have
(a1,2) = (o1 X ag) o Ay, where Ay, @ Uy — U, X U, is the diagonal map ¢ — (t,t). Note that
Ay, is smooth, because it is just the map whose components are the identity maps on U,. Hence we
have already shown that Dxyy C (Fx x Fy), because every plot of X x Y globally factors through an
element of Fx x Fy.

For the other inclusion it suffices to show that each oy X asg is a plot. But this follows in turn from
another trick, namely that pr; o (aq X ag) = ;o pr;, where the projection on the right hand side is that
of the product U,, x U,,, which is clearly smooth. Thus both projections of a; X cg are smooth, so it
must be a plot of X x Y. O

Note that in particular a diffeology generates itself, so that the product diffeology is generated by
the product of the diffeologies: Dxxy = (Dx x Dy). This observation, together with Lemma 2.33,
will be used countless times throughout this thesis.

Example 2.62. The product diffeology on R x R agrees with the Euclidean diffeology on R2.

2.2.4 Pullbacks

Consider two functions f : X — Z and g : Y — Z, with the same codomain. We know that the pullback
of f and g in Set is (up to unique bijection):

X 5PV ={(z,y) e X x Y : f(z) = g(y)}-

This is just a subset of the product X x Y, which, if X and Y have diffeologies, already gets the product
diffeology. We therefore define:

Definition 2.63. If f: X — Z and g : Y — Z are two smooth maps between diffeological spaces, the
pullback diffeology on X xé’g Y is the subset diffeology it gets from the product diffeology on X x Y.

The characterisation of the plots of the pullback diffeology is quite straightforward, and again some-
thing that is easy to check in practise. Namely, by definition of the subset diffeology, o : U, — X Xé’g Y
is a plot if and only if it is a plot of X x Y that takes values in the pullback. Hence this means the
components a; and as must be plots of X and Y, respectively, satisfying foa; = go as:

®Xxé,gy ={a € Dxxy : foa; =goas}.
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2.2.5 Quotients

The last construction we discuss is that of quotients, which provide one of the other main advantages
of diffeological spaces over manifolds. In general, if we have an equivalence relation ~ on a smooth
manifold M, the quotient set M/~ does not have a differentiable structure such that the projection
map M — M/~ is a submersion (or even smooth). The quotient behaves nicely as a manifold if and
only if the Godement criterion is satisfied ([Ser65, Theorem 2, p. 92]):

1. The set R={(z,y) € M x M : x ~ y} is an embedded submanifold of M x M.
2. The projection map pry|g : R — M is a submersion.

This gives in particular the famous fact that the quotient M /G of a smooth Lie group action G ~ M
exists as a manifold if and only if the action is free and proper (JAMT8, Proposition 4.1.23]). In
diffeology, however, every quotient X /~ of a diffeological space has a natural diffeology:

Definition 2.64. Consider a diffeological space X, with diffeology Dx. Let ~ be an equivalence relation
on the set X. We denote the equivalence classes under this relation by [z] := {y € X : © ~ y}, and
the quotient X/~ is naturally the collection of all equivalence classes. In other words, it is the image
of the canonical projection map p: X — X/~ : x — [x], also known as the quotient map. The quotient
diffeology on X /~ is the pushforward diffeology p.(Dx) of Dx along the canonical projection map.
This is the finest diffeology on the quotient that makes the projection map smooth. In fact, p becomes
a subduction.

The way in which diffeology handles quotients is in fact what distinguishes it from other approaches
to generalised smooth structures. Lots of interesting examples come from two types of constructions:
fibres of surjections, or quotients of group actions.

Example 2.65. Let 7 : X — B be a surjection between sets. This defines an equivalence relation on X,
where elements are equivalent if and only if they inhabit the same m-fibre. The equivalence classes are
therefore [z], = {y € X : n(z) = 7(y)} = 71 ({x}). We denote the quotient of X by this equivalence
relation by X /7. If X has a diffeology, then X /7 gets the quotient diffeology as the pushforward of D x
along the projection map X — X /7 : z — [z],.

Proposition 2.66. If 7 : X — B is a subduction, there is a diffeomorphism B = X /.

Proof. Note, first of all, that there is a bijection ® : X /7 — B which sends each fibre [z]; to its base
point 7(x). Writing the projection of the quotient as p: X — X /7 we have 7 = ® o p.

Suppose now that 7 is a subduction, so that both the diffeology D on B, and the diffeology on X /7
are determined by a pushforward of the diffeology Dx on X. Lemma 2.121 and Proposition 2.123
below immediately give that ® is a diffeomorphism, but we prove this here explicitly. First we show
that ® is a subduction. For that, take a plot o : U, — B, and pick a point ¢ € U,. The map 7 is
a subduction, so we can find a plot §: V — X defined on an open neighbourhood ¢t € V' C U,, and
providing a local lift «|yy = mo 8. If we now substitute m = ® o p, we see that the plot po5:V — X /x
defines a local lift for a along ®. This shows that ® is a subduction. But ® is also a bijection, so it
has a set-theoretic inverse ® 1. If we can show this is smooth, we are done. For that, let o : U, — B
be a plot, and find a local lift «|yy = ® o f. We can do this because ® is a subduction. But then:
dloaly=p¢€ Dx /r. It follows by the Axiom of Locality of the quotient diffeology that dloaisa
plot, and hence that ®~! is smooth. This gives the desired diffeomorphism. O

The other common way of obtaining quotients is through the orbits of group actions. Quotients
M /G of Lie groups acting smoothly on a manifold M sometimes admit a differentiable structure, but to
define the diffeological quotient the action does not even need to be smooth. We discuss smooth group
actions in Section 3.1.2.

Example 2.67. Let X be a diffeological space, and consider a group action G ~ X, denoted

GxX— X, (9,2) — gux.
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We denote the orbits of this action by Orbg(z) := {gz : g € G}. We denote the orbit space by X /G,
which is defined as the set of all orbits:

X/G :={Orbg(z) :z € X}.

The quotient diffeology on X /G is the pushforward of Dx along the projection map X — X /G :
x +— Orbg(z). This is the same diffeology as defined by the equivalence relation ~g on X, which
identifies two points if and only if they are in the same orbit.

A special case of this is the quotient G/H of a group by some subgroup H C G. The cosets of this
subgroup are just the orbits of the right multiplication of H on G. If G carries a diffeology, then G/H
gets a quotient diffeology by the equivalence relation where two group elements are identified if and
only if they are in the same coset. We study groups with a diffeological structure further in Section 3.1.
Here we assume nothing about the compatibility between the group structure of G and its diffeology.

Example 2.68. Recall from Example 2.16 that we had a diffeology on the circle S*. This diffeology
agrees with its standard manifold structure. We exhibit here two equivalent ways to realise the circle
as a diffeological quotient.

The first of these characterisations follows trivially, given the diffeological structure exhibited in
Example 2.16. Namely, the smooth map exp : R — S given by x — €?™* is a subduction. Therefore,
by Proposition 2.66 we immediately get S* = R/exp.

On the other hand, the additive group of integers Z acts by translation on the real numbers R. For
the sake of simplicity, we assume that this action is scaled by a factor of 27, so that the action is given
by Z x R = R : (n,z) — x + 27n. We denote this quotient by R/Z, and its equivalence classes are
[x]z = {x +27n :n € Z} C R. Tt is easy to see that, with our conventions, the orbits of this action are
exactly the fibres [z]exp Of the exponential map. We therefore get a commutative square

R—%® R

| l

R/Z —— R/exp,

where the vertical arrows are the quotient maps, and ® : [z]z — [2]exp. It is easy to see that ® is a
diffeomorphism (this follows also from Lemma 2.121 below). We therefore have diffeomorphisms

S' 2 R/Z = R/exp.

The circle S! is an example of a diffeological quotient that happens to be a manifold. [Diffeology,
Article 4.6] gives a general recipe of necessary and sufficient conditions for the quotient X/~ of any
diffeological space to be a smooth manifold.

2.2.6 Limits and colimits of diffeological spaces

In this section we calculate the diffeologies of arbitrary limits and colimits in Diffeol. Again, some of
these results already appear in [Vin08, Section 1.3.2], whose proofs we were unable to locate. Hence
we reproduce them here independently. They are also sketched in [CSW14, Theorem 2.5]. We will
see that (co)completeness of Diffeol follows entirely from (co)completeness of Set, together with the
(co)completeness of the partial orders of diffeologies on a set. Compare also to [BH11, Sections 5.1,
5.3], where (co)limits are calculated using sheaves.

Proposition 2.69. The forgetful functor U : Diffeol — Set preserves limits and colimits.

Proof. From Definition 2.23 we get two functors, (—)® : Set — Diffeol, sending each set to its coarse
diffeological space, and (—)° : Set — Diffeol, sending each set to its corresponding discrete diffeological
space. Then, as we have already seen, since every map defined on a discrete space is smooth, and every
map defined into a coarse space is smooth, we get natural bijections:

C=(X°,Y) = Homset(X,U(Y))  and  Homses(U(X),Y) 2 C®(X,Y*),
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so we have a chain of adjunctions (—)° 4 U  (—)*® that proves the claim?°:
(=)°

1L
Diffeol U—— Set. O

(=)

This shows that the underlying set of the (co)limit of a diagram of diffeological spaces (up to a unique
bijection) has to be the (co)limit of the underlying set of each space in the diagram. Since we know
Set is complete and cocomplete, to construct (co)limits in Diffeol is therefore equivalent to putting
diffeologies on the corresponding (co)limits in Set.

The following two theorems provide these diffeologies, and prove that the category Diffeol of dif-
feological spaces and smooth maps is complete and cocomplete. Together, they encapsulate all of the
constructions that we have discussed in Section 2.2. (See [Vin08, Theorems 1.3.17, 1.3.18].)

Theorem 2.70. Let F' : I — Diffeol be a small diagram of diffeological spaces, and denote Fi = (X;, D;)
foreachi € 1. ThenUoF : 1 — Set has a limit, which we denote by X := lim;c1 X;, with accompanying
cone (X LN Xi)iex- Then the limit of F exists, and is given by the cone:

(<lim X;, 1n£ M;(u-)) 2 (X, m)
1€

lim so that liléIIl(Xi, D;) = (hm Xi,%rgui (Dl)) .

i€l el
Proof. Note that U o F' : I — Set has a limit, because Set is complete (see e.g. [Mac71, Theorem
V.1.1]). We denote the limiting cone of this limit by z = (X 2% X;)scr, as in the theorem statement.
Thus we have a (natural) family of functions defined into a family of diffeological spaces, so on the limit
X = lim;er X; we put the initial diffeology Dx := inf;er p (D;) (Definition 2.49). By Theorem 2.48(1),
each function p; then becomes smooth. Hence p: Ax p,) — F'is a cone for F, and not just for U o F.
We prove that it is also limiting. For that, let ¥ be another cone for F', consisting of smooth functions
vi: (Y,Dy) = (X, D). Then Uov = (Uy; : Y — X;)ier is a cone for the limit X in Set, so by the
universal property there exists a unique function € : Y — X such that for all 1 € T we have p; 0 Q = v;.
However, each v; is smooth, so by Theorem 2.48(3) it follows that Q : (Y, Dy) — (X, Dx) must be
smooth as well. So not only does 2 form the unique morphism of cones from Uov to u: Ax - UoF,
but also from v to p: A(x,p,) — F. This proves that p is a limiting cone for F. Therefore, F' has a
limit, and since limits are unique up to isomorphism, it is of the form as claimed in the theorem. O

Theorem 2.71. Let F : I — Diffeol be a small diagram of diffeological spaces, and write Fi = (X;, D;)
for each i € I. Then Uo F : 1 — Set has a colimit, which we denote by X := colim;c1 X;, with
accompanying cocone (X LN X)ier. Then the colimit of F exists, and is given by the cocone:

i€l icl icl i€l i€l iel
Proof. This proof will obviously be analogous to that of Theorem 2.70. The functor U o F' : I — Set
has a colimit, because Set is cocomplete (solve e.g. [Mac71, Exercise V.1.8]). We denote the colimiting
cocone by p = (X; LN X)ier. On X = colim,ecr X; we put the final diffeology D x := sup;cy(its)«(Di).
Theorem 2.47(1) then ensures each p; becomes smooth, and hence p : F' — A(x p,) is a cocone for
F. To prove that it is colimiting, take another cocone v : F' — Ay p,) on F. Applying the forgetful
functor U to v, the universal property of the colimit X gives a unique function Q : X — Y satisfying
Qo u; =, for all i € I. Theorem 2.47(3) then makes Q : (X,Dx) — (Y, Dy) smooth, and we may
conclude that p is a colimiting cocone for F'. By construction of the cocone p, it follows that the colimit
of F' is indeed of the desired form. O

Theorem 2.72. The category Diffeol of diffeological spaces is complete and cocomplete.

26 Coincidentally, this adjoint triple, which we could write as Disc 4 U - coDisc, defines the fundamental cohesive
structure of SmoothSet [nL19c].
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Infima and suprema as limits and colimits. For purely aesthetic reasons, we can force our per-
spective such that limits in Diffeol can be fully expressed as limits over other categories (as opposed
to using the infimum and supremum). We have seen in Definition 2.25 that any non-empty family of
diffeologies has an infimum and a supremum. This can be explained as the (co)completeness of the
partial order of diffeologies on a set. For any given fixed set X, let Diffeol(X) denote the set of all
diffeologies on X:

Diffeol(X) := {D C Param(X) : D is a diffeology} .

Together with the relation of fineness (Definition 2.22), this becomes a partially ordered set. We view
it as a category, which has arrows

{(D1,D2)} if Dy C Do,

Hompireon(x) (D1, D2) = { %) otherwise.

A diagram F : I — Diffeol(X) in this category is just a family of diffeologies (D;);cr1, where D; = Fi. If
there exists an arrow 2 — j in I, this just means that D; C D;. A cone for F' is then just a diffeology on
X that is contained in every member of this family. It is then easy to see that the limit lim F is just the
coarsest diffeology on X that is contained in each D;. In other words, lim F' has to be the infimum over
(Fi)ier. Similarly, we find that the colimit over F' has to be the supremum over (Fi);c1. We therefore
have:

Theorem 2.73. For any set X, the category Diffeol(X) of diffeologies on X is complete and cocomplete,
and for any small diagram F : 1 — Diffeol(X) we have

lim F' = inf F'i, and colim F' = sup Fi.
el icl
This viewpoint leads to the following two results (whose easy proofs we leave to the reader).

Proposition 2.74. Let f : X — Y be a function. Then the functors f, : Diffeol(X) — Diffeol(Y)
and f* : Diffeol(Y) — Diffeol(X) form an adjunction: f. - f*.

Corollary 2.75. Let (D;)icr be a family of diffeologies on X. Consider one function f : A — X into
X, and another function g : X — B defined on X. Then:

f (zlgDZ) = igﬁf (D,), and G« (sup Di> = sup g«(D;).

i€l i€l

2.3 The irrational torus

The way diffeology is able to capture the smooth structure of quotients is one of its key strengths. Here
we describe in detail one of the most illuminating examples of this fact: the irrational torus. This section
is based on Exercises 4 and 31 in [Diffeology|, and [IZ17]. The irrational torus was originally studied
within diffeology in [DI83]. The noncommutative geometry approach is summarised in [CMO08, Section
6], to which we here make a light comparison.

Definition 2.76. Let § € R\ Q be an irrational number. We consider the reals R as an additive
group, with its Euclidean diffeology. We can see this as a diffeological group (Definition 3.1), since the
diffeology comes from the Lie group structure of R. It has an additive subgroup

Z+0Z={n+60m:n,meZ}

acting naturally on R. Two real numbers z,y € R are therefore in the same equivalence class if and
only if = y 4+ n + Om, for some n, m € Z. With the quotient diffeology (Example 2.67), the érrational
torus is defined as the diffeological space

Ty == R/(Z + 0Z).
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We can also realise the irrational torus as the leaf space of a Kronecker foliation. We explain this in
the following construction:

Construction 2.77. The 2-torus is the product S' x S' of two circles, equipped with the product
diffeology. This is just the diffeology that it gets from the usual manifold structure. Extending the
argument in Example 2.68 shows that there is a diffeomorphism S* x St 22 R? /Z2. This diffeomorphism
comes from the subduction

F:R? — St x St (z,y) — (2™, ™),

With this identification of the 2-torus as a quotient of R?, we can project curves in the plane onto
S1 x St. Of interest here will be the straight lines through the origin. Let us denote the line with slope
0 by

by :={(v,0z) : z € R} CR?.

Under the subduction F : R? — S! x S! we then get a subgroup
Ag = F(ly) = {(?™ ™07 . p ¢ R} C ST x SL.

This is known as a linear flow on the 2-torus. To characterise it, we consider the smooth map
fo : R — S' x S which defines Ay as the image of the infinite curve fy : z + (2™ €27%) Sup-
pose first that the slope is rational: § = m/n, for some m,n € Z. Then the function f,,,, becomes
periodic: fp,/n(2) = fm/n(x +n). This induces a diffeomorphism R/Z = A, ,, so that A, , is just
a circle. The idea is that, after a sufficient number of revolutions, the curve f,,,, arrives back at its
starting point fy,/,(0). This can be seen in the following illustrations:

Figure: illustrations of Ay and Ag )y, respectively?’.

The orange lines represent the orbits of single points in S* x S! that A, /n SWeeps out through its action.
Equivalently, A, /,, is the orbit of the identity element (1,1) € S L x S'. It is then easy to imagine that
(St x SY) /A, m =2 St (but this will also follow from Proposition 2.79). In the language of foliation
theory, this quotient is known as the leaf space.

The case we are interested in is when the slope is irrational: § € R\ Q. When @ is irrational, the
curve fy : R — S' x S' is injective. To see this, suppose for the sake of contradiction that z,y € R
are two real numbers such that = # y and fp(x) = fo(y). From the latter equation it follows that there
exists integers n,m € 7Z such that x = y + n and 0z = 0y + m. Since z # y it follows that n # 0, and
we get § = m/n, contradicting our assumption that 6 is irrational. Whereas for rational slope the curve
Jm/n defines a closed path in S1 x St the fact that 6 is irrational means that the resulting curve fy on
S1 x S1 never intersects itself. This can be (approximately) pictured as follows:

Figure: illustrations of Ay, 7 and A g5, respectively.

27Programmed using the Sketch software, based on the example code [Jak12].
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In fact, fp induces a diffeomorphism R = Ay, which we can prove by showing that fy is an induction.
For that, take a plot a : U, — S x St taking values in im(fg) = Ag. From Example 2.16 we know that
plots of the circle factor locally through the exponential map, so we can find a plot 8 : V' — R? such that
aly = FoB. This is of the form afy (t) = (e27F1(1) ¢27i82(1)) "and it follows that f, ' oaly = B € Dg.
The map f, 1. Ay = R is therefore smooth, and the diffeomorphism R 2 Ay follows. This embedding
of the real line into the 2-torus is known as the drrational winding. The famous Kronecker Density
Theorem (see e.g. [BSO06]), which states that the set {e2"" : n € Z} is dense in S', shows that
the irrational winding Ay lies densely in the 2-torus S* x S'. We have seen above that for a rational
winding (S x S1)/A,, =8 1. which has both a nice topological- and smooth structure (it is a smooth
manifold). But what about the quotient (S* x S')/Ay of an irrational winding? Recall the following
proposition (cf. [IZ17, p.4]):

Proposition 2.78. Let G be a topological group, and consider a dense subgroup H C G. Then the
quotient G/H has no non-trivial open sets.

Proof. That H is dense just means that the unit coset 1cH = H C G is dense, and since the left
multiplication by an arbitrary group element g € G defines a diffeomorphism G — G, it follows that
the coset gH C @ is also dense.

We need to show that the only non-empty open subset of the quotient G/H is the entire space itself.
Suppose therefore that U C G/H is a non-empty open subset. By definition of the quotient topology
this means that the preimage 7=1(U) of U along the projection map 7 : G — G/H is a non-empty
open subset of the original group G. Since the coset gH is dense, there is a non-empty intersection
7 Y U)NgH # @. We can therefore find an element h € H in the subgroup such that gh € 7=1(U),
which gives 7(gh) € U. However 7 is constant on the cosets, so that in fact every element h € H then
satisfies w(gh) € U, so that gH C 7~ 1(U). Since H is a subgroup, we note that g € gH. And since the
element g € G was arbitrary, it follows G C 7=1(U), which gives that U = G/H. O

The quotient (S* x S)/Ag therefore loses all topological information®®, and it is therefore certainly
no longer a smooth manifold. But, as a diffeological space, it is perfectly acceptable, and even non-
trivial. This is something that we will demonstrate below. First we will prove that (S x S1)/Ay is the
irrational torus.

Proposition 2.79. For any real number 6 € R, there is a diffeomorphism
R/(Z—FGZ) =Ty = (Sl X Sl)/Ag

Proof. Let us denote the equivalence classes in the quotient (S' x S1)/Ay by [e2™%* e2™%¥]. We then
have identities of the form [e2™%, e2™¥] = [1, 2™ (¥=9%)]. With this in mind, we define the smooth map
@ : R — St x St by z — (1,e2™®). Now, for two equivalence classes [z] = [y] € R/(Z + 0Z) in the
(irrational) torus, we have a relation z = y + n 4+ 6m between the representatives, where n,m € Z. In
that case, a simple calculation shows that

[p(2)] = [1, €] = [L, MWt t0m)] = [e=2mim, 2T] = [ip(y)].
We therefore find that ¢ induces a well-defined function
®:R/(Z+0Z) — (S* x S1)/Ay; [z] — [1, 2™
at the level of quotients, fitting into the commutative diagram

R— %2 s 6lxgl

J |

R/(Z +6Z) —5— (S" x ")/ Ay

2830 far we have not discussed the relation between diffeology and topology. Diffeology purposefully does not rely on
topology for its definition, but every diffeology defines a canonical topology on its underlying set, called the D-topology.
We discuss this briefly in Section 2.4.1. It can be shown that the D-topology of a diffeological quotient agrees with the
quotient topology.
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Here the vertical maps are the canonical projections. By Lemma 2.122 it follows immediately that ®
is smooth. We will now construct a smooth inverse for ®, exhibiting the desired diffeomorphism. We
propose

T (S x SYY/Ag — R/(Z + 07); [€2™% 2™ s [y — fz].

To show that ¥ is a well-defined function, take [e27%®, 2™] = [¢27i@ ¢27i¥]  Then there exists a real
number z € R such that e2™® = ¢27i(a+2) and 2™ = 27 (0+02) 5o that in turn we can find integers
n,m € Z giving x = a + z +n and y = b + 6z + m. Well-definedness then follows:

\I/([e%”,ezmy]) — [y _ 91,] — [(b _ 9&) + (m _ 971)] — [b _ Ga] — ‘1/([627”-‘1,62“1)}).

To prove that ¥ is smooth, recall that the subduction F : R? — S x S! from the start of Construc-
tion 2.77 defines a diffeomorphism T' : R?/Z? — S! x S1. We further get a subduction p : R? — R
defined by (x,y) — y — 0. Together, we get a commutative diagram

R2/Z2 RQ

| J,,

St x st R

| !

(' x §1)/Ag —— R/(Z+0Z).

Here, each unlabelled arrow is a quotient map, so that every arrow in this diagram besides ¥ is a
subduction. Then by Lemma 2.122 it follows that ¥ is smooth (and in fact also a subduction). It is
easy to see that W and ® are mutual inverses, so the desired diffeomorphism has been constructed. [

We have thus realised the irrational torus Tp as the orbit space of the subgroup Ay C S' x St in
the 2-torus. It is worth noting that if 6 is rational it follows that R/Z = R/(Z + 6Z). The special case
where the slope is zero gives Ag = S* x {1}, and the orbits are the horizontal sections of S x S'. In
the rest of this section we shall investigate the diffeological structure of the irrational tori. First we note
that their real-valued functions are trivial, since the trivial topology of Ty allows for no others:

Proposition 2.80. Let 0 € R\ Q be irrational. Then C*°(Ty) contains only the constant functions.

Proof. Let f € C*(Ty) be a smooth real-valued function on an irrational torus. Denote the quotient
map by 7 : R — R/(Z + 0Z) = Ty. This is a plot of the irrational torus, so fomy € C®(R,R) is
smooth. But, note that for any € R and n,m € Z we then have f omg(z) = f omg(xz + n + 6m). This
shows that f omg : R — R must be constant on the subset Z + §Z C R. But this is a dense subset of a
Hausdorff space, which therefore completely determines the function f oy as a constant by continuity.
Since 7y is a surjection it follows that f itself must also be constant. O

This result motivates the noncommutative geometry approach to the irrational tori. The usual
philosophy of the Gelfand duality would have us study the commutative algebra of real-valued functions
C>(Ty) to get information about Ty itself. But since the algebra C*°(Ty) is so trivial, it serves as a poor
algebraic model. The noncommutative geometry solution is to consider instead the irrational rotation
algebra (cf. [CMO8, Section 6])?”. This is the (C*-)algebra generated by two elements u and v, subject
to the commutation relation:

vu = 2™y,

29The noncommutative geometry approach can be motivated by using groupoid C*-algebras. As we have remarked in
Chapter I, Lie groupoids are used to model singular quotient spaces. The appropriate model for the irrational torus is
the action groupoid (cf. Example 3.28) Z xg S' = S corresponding to the action of Z on S! described by n - €27® :=
e2mi(z+0n) whose quotient is yet a third description of the irrational torus. In general, if G is a Lie group acting smoothly
on a manifold M, there is an isomorphism of C*-algebras C*(G x M) = G x Co(M), where on the right hand side
we have a crossed product C*-algebra. In the case that the action is free and proper, so that the quotient M /G has
a canonical manifold structure, these C*-algebras are Morita equivalent (in the sense of Rieffel) to the commutative
coordinate algebra Co(M/G). In the case the quotient is not a manifold, the noncommutative geometry approach is to
study instead the Morita equivalent groupoid C*-algebra C*(G x M). For the irrational torus, the groupoid C*-algebra
C*(Z xg S*) 2 Z xg C(S') is exactly the irrational rotation algebra.

44



The corresponding noncommutative space is called the noncommutative torus, and has served as an
important and illuminating example in that theory, being classified first by Rieffel in [Rie81]. The next
result shows that the diffeological approach to the irrational torus returns an equivalent characterisation:

Theorem 2.81 ([DI83]). Two irrational tori Ty and T, are diffeomorphic if and only if

b
d

a+ ob
c+od

there exists (i ) € GL(2,Z) such that 0=

We recall that GL(2,7) is the group of invertible 2 x 2 matrices with integer coefficients®. Compare
this theorem to the Morita equivalence of the irrational rotation C*-algebras, which was obtained only
a few years earlier in noncommutative geometry [Rie81, Theorem 4], [Con80]. The result in fact
translates verbatim if we replace “irrational” by “noncommutative,” and “diffeomorphic” by “Morita
equivalent.” This result was the first hint that diffeology could be an alternative for noncommutative
geometry. The rest of this section will be dedicated to proving Theorem 2.81, for which we first have a
lemma:

Lemma 2.82. Let 0,0 € R\ Q be two irrational numbers, and consider a smooth map f : Ty — T,
between irrational tori. Then there exists a smooth affine map F' : R — R such that 7,0 F' = f omg.

Proof. (This proof is based on the solution of [ Diffeology, Exercise 4 (3)], found at the end of the book.)
The canonical projection g is a plot, so that f omy : R — T}, is again a plot. Since , is a subduction,
for every xg € R we can find an open neighbourhood zy € V' C R and a smooth map F : V — R such
that m, 0o F' = f o mg|y. Inside of the open neighbourhood we can find an open interval I C V', centered
around xg € V. For any = € I and n,m € Z such that x +n + 0m € [ is an element in this interval, we
can then write

mo 0 Fli(x) = fomglr(x) = fomeli(z+n+0m)=m,o0Fli(z+n+0m),
which means that there exists two integers [, k € Z such that
F(z+n+60m)=F(x)+1+ ok. (v)

In fact, since g is irrational, these integers are determined uniquely by x € I and n,m € Z. Possibly
by shrinking I, we can pick a non-empty open interval U C R centered around the origin, such that if
z €Il and n+ 0m € U then x +n + 6m € V. This new interval is the domain for n 4+ #m for which
expressions of the form F'(z + n + 0m) are still well-defined. We can moreover ensure that I C z¢ + U,
perhaps by shrinking I further. Consider then the smooth function

Q:1— TR x+— F(x +n+0m)— F(z),

fixing the integers n,m € Z as above so that n + 6m € U. As a topological space, Z + 0Z is totally
disconnected, which means that its connected components are singletons. The map @ is continuous, so
by equation (%) it maps the connected interval I to a connected subset Q(I) C Z + 0Z, which therefore
has to be a singleton, and shows that @ is in fact constant. The derivative with respect to the variable
2 is then zero, so we get that F'(z) = F'(z + n+ 6m) for all z € I and n + 6m € U, where F’ denotes
the derivative of F'. Since 6 is irrational, the intersection (Z + 6Z) N U is dense in U, so that for every
x € I we can find a sequence (n;,m;);cn in Z X Z such that x = lim;en(xo + n; + 6m;). By continuity
of the derivative F’ we thus get

F'(z) =lim F'(zo + n; + 0m;) = lim F'(x¢) = F'(z0),
ieN ieN
so that not only () is constant, but the derivative F” is also constant on I. Let us denote that slope of

F then by F'(x0) = A € R, so that F' can be written as

Fli() = Az + g, ()

30Note that, since Z is not a field but merely a ring, a matrix is in GL(2,Z) if and only if its determinant is invertible
in Z, i.e., if and only if its determinant is £1.
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for some p € R satisfying f om(0) = m,(u). We have therefore constructed an affine map F|; such that
mo0 F|r = fomg|;. Since Z+ 0Z is even dense in the interval I, we have my(I) = Tp, so that this already
completely determines the function f. But F|; can be extended to the entire real line. To show this we
need an intermediate technical result. If we substitute equation (#) into (%) we get that for all z € I
and n + 6m € U, we have A(n + 6m) = [ + pk, which shows:

Vn+60meU: An+60m) € Z+ oZ.

We claim that this in fact holds for all n+60m € Z+67Z. To show this, let us take explicitly U = (—a, a),
where a ¢ Z + 0Z. If the original boundaries of U happened to be in Z + 0Z, we can pick a € R by
slightly shrinking U. To prove the claim we take an element x € Z + 6Z outside of the interval U,
say x > a. By the Archimedean property of the reals we can find a natural number N € N such that
2/N € (0,a). The intersection (Z + 0Z) N (0,a) is dense in the interval (0,a), so the number z/N
is arbitrarily close to an element in Z + §Z. Explicitly, this means that for every ¢ > 0 we can find
y € Z + 0Z such that 0 < /N — y < e. If not already small enough, we can pick £ < a/N, so that we
even get x — Ny € (0,a) and y € (0,a). We therefore get an element  — Ny € (Z + 6Z) N U, for which
we then know that A\(x — Ny) € Z + oZ. However y was an element of (Z + 6Z) N U already, so that we
also have ANy € Z + oZ. It must therefore follow that Az € Z + oZ. 1t is clear that the argument also
works for < —a, so that the claim follows:

Vn+60meZ+0Z: \Nn+6m) €Z+ oZ.

We can now extend F|; to F' : R — R by defining  — Az + u. All that is left to show is that the
equation 7, o F' = f oy still holds. First, since the intersection (Z + 6Z) NI is dense in the interval I,
it follows that mg(I) = Ty. This means that for any z € R we can find y € I such that mp(x) = m(y),
or in other words: y = x + n + #m, for some n,m € Z. Equation (#) and our starting assumption that
o0 F|; = f omg|; then give:

fomg(x) = fomli(y) =m0 Fli(y) = mp(Az + A(n + 6m) +p1).
N————
€Z+0Z
By the claim we have proved above, it follows that A(n 4+ 6m) € Z + ¢Z, making that term vanish, and

we get:
fomp(x) = mp(Ax + ) = mp 0 F(x),

at last proving the lemma. O
The claim that we have proved in this argument also implies a relation between the coefficients

and g. Recall that the claim says that if n + 6m € Z + 0Z, then A(n + 6m) € Z + oZ. In particular, we
may set n+ 0m = 0 or n 4+ Om = 1, so that there are integers a, b, ¢, d € Z such that

A0 = a + ob, and A=c+ od.
This will help us prove the next result.

Corollary 2.83. There exists non-constant smooth functions in C*>°(Typ,T,) between irrational tori if
and only if there are integers a,b,c,d € Z such that = (a + ob)/(c + od).

Proof. Start with the case that there exists a non-constant smooth function f € C*°(Ty,T,), and let
F : x — Ax+p be the underlying affine map obtained from Lemma 2.82. The fact that f is not constant
implies that A # 0, because otherwise f o my(z) = m,(1) for all x € R. From the remarks preceding this
corollary, we can find integers a, b, ¢,d € Z such that A0 = a + pb and A = ¢+ od, where now in addition
we know that ¢ + od # 0. This allows us to perform a division, from which it easily follows that:

_a+opb
et od

Suppose now that 0 = (a + ¢b)/(c + od). We then get a smooth function f € C>(Ty,T,) defined
by the affine map F' : z — Az + u, where A\ = ¢+ od, and p € R is arbitrary. Then A # 0, because

46



otherwise the coefficient 6 would not be well-defined. Pick a real number z € R\ (Z + ¢Z), so that in
particular z # 0 as well. If f were to be constant, we would have f o mg(0) = f o my(z/\). Writing this
out in terms of F', this would mean the existence of integers [, k € Z such that z = [ + gk, contradicting
the assumption that z ¢ Z + ¢Z. The function f is therefore not constant. O

Corollary 2.83 now allows us to show that, even though the topology on the irrational torus Ty is
trivial, its canonical quotient diffeclogy is not! To see this, suppose otherwise. If Ty is discrete, then
any function f : Ty — T, is smooth, including any non-constant ones. But we can then just choose o
arbitrarily to contradict the result of Corollary 2.83. If instead T, is coarse, so that again any function
f Ty — T, is smooth, we can perform a similar trick by picking 6 to obtain a contradiction. We
therefore have strict inclusions of diffeologies:

DS, C Dy, C DY,

= =

This is one of the aspects that so distinguishes diffeology from the other set-based smooth theories such
as those of Sikorski- and Frolicher spaces, whose descriptions of the irrational tori are necessarily trivial
for topological reasons (Proposition 2.80).

We now prove the classification of irrational tori:

Proof of Theorem 2.81. Let us start by giving a characterisation of the injective and surjective smooth
maps f € C®(Tp,T,). Given such an f, let F : 2 +— Az + p be the underlying affine map from
Lemma 2.82. We claim that f is surjective if and only if A # 0. If f is surjective then it cannot
be constant, so A cannot be zero. Conversely, if A # 0, any point m,(2) € T, can be obtained as
Fomo((z— m)/A) = ().

The characterisation of injectivity is slightly more involved. Assume that A # 0. We claim that f
is injective if and only if %(Z + 07Z) C Z + 0Z. Suppose that f is injective, and take 2 € R such that
Az € Z + oZ. Then fomg(x) = mo(p) = f ome(0), so the injectivity gives that my(z) = m(0), which
just means that « € Z + 6Z. Hence we have proved that if \x € Z + 9Z then = € Z + 0Z, which (when
A # 0) gives the desired inclusion.

Conversely, suppose that %(Z + 072) C Z+ 0Z, and take z,y € R such that f omg(z) = f o m(y).
In that case we have A(z — y) € Z + 0Z, so that by the assumption we get  — y € Z + 0Z, which just
translates to mg(z) = me(y), proving that f is injective.

We can now prove the claim made in Theorem 2.81. Suppose that there exists a diffeomorphism
f:Ty — T,. Then f € C>(Ty,T,) is a bijection, so that A # 0 and %(Z + 0Z) C Z+ 0Z. We view
Z + 0Z and Z + oZ as Z-modules, defined by the bases {1g,0} and {1,, o}, respectively. They are both
isomorphic to Z x Z as Z-modules. The constant A defines a Z-module map, defined on the basis as
follows:

Ly:Z+ 07 — 7+ 0Z; Lx(1p) :=cly+dp, and Lx(0):=al,+ be.
This reflects the relations A0 = a + ob and A\ = ¢+ od obtained above. The fact that f is bijective, and
hence A # 0 and %(Z—l— 0Z) C Z+ 0Z, means that the map Ly has a well-defined inverse L;l L+ 07 —
Z + 0Z, and is hence a Z-module isomorphism. Hence, in this basis, its matrix is invertible and given
by:

(L] = <g Z) € GL(2,7).

Up to the order of the basis, this proves one direction of the desired claim.

Conversely, if the matrix [Ly] € GL(2,Z) exists and 0 = (a + pb)/(c + od), then we get a smooth
map f € C*(Ty,T,) defined by the affine curve F : & — Az for A = ¢ + od. Since [L,] is invertible
it follows by the above characterisation that f is a bijection. Its inverse is obtained by looking at the
smooth function defined by the inverse matrix [Lg] ™!, and the result follows. O

In recent work [IZP20] the philosophy of orbifolds has been extended so that it can treat objects
such as irrational tori. The authors study the groupoid C*-algebra of the locally compact Hausdorff
groupoid associated to the atlas of a diffeological quasifold. They prove that different atlases give Morita
equivalent groupoids (in the original sense of [MRW&87]), and hence that the resulting C*-algebras must
be Morita equivalent. In this way, the noncommutative geometric result of Rieffel [Rie81, Theorem 4]
follows as a corollary of Theorem 2.81 ([DI83]). The construction of these groupoids fits into the larger
picture we sketch in Chapter VI.
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2.4 Functional diffeologies and local constructions

We have seen in Theorem 2.72 that all small limits and colimits in Diffeol exist. This gives us various
interesting constructions on diffeological spaces to work with, many of which do not exist in Mnfd (as
we have already seen in Section 2.2). There are some other categorical properties that make Diffeol
particularly nice, but that are not captured by the (co)completeness. One of those properties is that
Diffeol is Cartesian closed (Definition A.5). In essence, this means that the function space C°(X,Y")
has its own natural diffeology. This set is, in almost all cases, not a finite-dimensional smooth manifold
(although it can, in some cases, be treated as an infinite-dimensional one, see [KM97, Chapter VI].)
This is one of the other key advantages of diffeological spaces over smooth manifolds, and is a big part
of the motivation for generalised smooth spaces that we discussed in Section 1.1. In this section we
shall show how to define a natural diffeology on spaces of smooth functions, and prove that Diffeol is
Cartesian closed.

Definition 2.84. Let X and Y be diffeological spaces. The evaluation map is the function
ev: C¥X,)Y)x X —Y; (f,z) — f(x).
A diffeology on C*°(X,Y’) making the evaluation map smooth is called a functional diffeology.

It is not immediate that a functional diffeology has to be unique, however one always exists, because
the discrete diffeology on C*°(X,Y’) makes the evaluation map smooth. To see this, let

(Qa):U—C®X,Y) x X

be a plot, i.e., @ € Dx, and  is locally constant. Find an open neighbourhood V' C U on which 2 is
constant, say equal to some smooth function f € C*°(X,Y). Then evo (Q,a)ly = f o aly, which is
a plot of Y by the very definition of smoothness of f. It follows by the Axiom of Locality that ev is
smooth with respect to the discrete diffeology on C*°(X,Y"). The discrete diffeology is not known to be
very interesting, so we now exhibit a diffeology on C*°(X,Y’) that makes the evaluation map smooth in
the nicest way possible. For that, we first have the following lemma, characterising when evaluating a
family of smooth maps is itself smooth.

Lemma 2.85. Let Q : Uy — C®(X,Y) be a parametrisation (where the function space does not
necessarily have a diffeology). Then the map evo (Q x idx) : Ug x X — Y is smooth if and only if for
every plot o € Dx the map evo (2 x a) : Ug x Uy, — Y is smooth.

Proof. If ev o (Q x idx) is smooth and a € Dx is a plot, then
evo (2 X a)=evo (R xidx) o (idy, X a)

is the composition of smooth maps, and hence itself smooth. Conversely, suppose that ev o (2 X «) is
smooth, for each o € Dx. By Lemmas 2.33 and 2.61 it suffices to check that evo (Q xidx) o (8 x «)
is smooth, for every «, 5 € Dx. This again follows by decomposing the composition in a smart way:

evo (2 xidx)o(f xa)=evo(Q2xidx)o (idy, x a)o (f xidy,) =evo (2 x a)o (B xidy,).
By assumption, the right hand side is the composition of smooth maps, and the result follows. O

A lot of the other proofs in this section will include compositional acrobatics of this sort. We find
this slightly more illuminating than the presentation in [Diffeology, pp. 34-40], where instead of
evo (2 X ) the author writes Q(«(t)). In our form it is more apparent that certain expressions are just
the composition of other smooth functions.

We will now prove that the equivalent conditions in Lemma 2.85 define a diffeology on C*°(X,Y),
making the evaluation map smooth.

Lemma 2.86. Consider two diffeological spaces X and Y. The collection D, consisting of all paramet-
risations Q : Ug — C°°(X,Y) such that ev o (Q x idx) is smooth, defines a functional diffeology on
C>®(X,Y).
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Proof. For the Axiom of Covering, let = consty : Uy — C*°(X,Y’) be a constant parametrisation,
with f € C*(X,Y). Then

evo (Q xidx)(t,x) =ev(Qt),z) = ev(f,z) = f(z),

so that evo (Q x idx) = f o pry, where pry : Ug X X — X is the projection onto X. This composition
is clearly smooth, since f is smooth.

For the Axiom of Smooth Compatibility, take 2 € D, together with a smooth map h : V — Uq.
Then ev o (2 x idx) is smooth, so that the composition

evo ((oh)xidx) =evo (2 xidx)o (h xidx)

is smooth, and hence Qo h € D.

Lastly, for the Axiom of Locality, we will need Lemma 2.85. Suppose Q : Uy — C®(X,Y) is
a parametrisation that is locally in D. This means that, for every ¢t € Ug, we can find an open
neighbourhood t € V' C Ug, such that Q| € D. In other words, we can find an open cover (V;)iep, of
Uq such that each restriction ]y, is in D. By Lemma 2.85 this means that for every oo € Dy, the map

evo (Qy, xa) =evo (Qx a)|lvxu,

is smooth. Now (V; x U, )tev,, is an open cover of Ug x U, on which the restrictions of ev o (2 x «) are
smooth, so by the Axiom of Locality of the diffeology of Y, we obtain evo (2 x ) € Dy . Since « was
arbitrary, it follows that 2 € D.

To finish the proof, we need to show that, if C>°(X,Y) is endowed with the diffeology D, then the
evaluation map becomes smooth. But this follows very easily from the characterisation of D. Namely,
by Lemmas 2.33 and 2.61, the evaluation map is smooth if for every Q € D and o € Dx we have
evo (2 x @) € Dy. But this is exactly the defining characteristic of the plots in D, by Lemma 2.85. [

Definition 2.87. Let X and Y be two diffeological spaces. The functional diffeology D on C*°(X,Y)
from the previous Lemma 2.86 is called the standard functional diffeology. It is the coarsest diffeology
on C*(X,Y) making the evaluation map smooth. Indeed, if D’ was another functional diffeology, and
Q € D'} it follows directly that evo (2 x idx) is smooth, because it is a composition of smooth maps,
and hence 2 € D.

Whenever we encounter a functional space C*°(X,Y"), we will assume that it is endowed with the
standard functional diffeology. While the standard functional diffeology may not be the only interesting
diffeclogy on C*°(X,Y), as we will find, it makes for some particularly nice categorical properties. It
also makes the composition of smooth maps smooth:

Proposition 2.88. Let X, Y, and Z be diffeological spaces. Then the composition map is smooth:
comp: C*(Y,Z) x C*(X,Y) — C*(X, 2); (f,g)— fog.

Proof. We use the sufficient criteria from Lemmas 2.33 and 2.61. Let Q : Uy — C*(Y,Z) and
U : Uy — C®(X,Y) be two plots in the standard functional diffeologies. We need to show that
compo (2 x ¥) is a plot of C*°(X, Z). By Lemma 2.85, this means evo ([comp o (2 x ¥)] x idx) should
be smooth. When evaluated at (¢, s,2) € Ug x Uy x X, this expression gives Q(t) o ¥(s)(z), which can
be rewritten:

Q(t) o U(s)(x) = ev (Qt), ¥(s)(x))
=evo (Qxidy) (t,evo (¥ x idx)(s,x))
=evo (Q xidy) o (idy, x [evo (¥ x idx)]) (¢, s, x).
Now, the right hand side of this equation is a composition of the smooth maps ev o (Q x idy) and

evo (¥ x idx), which proves that comp o (2 x ¥) is a plot for C*°(X,Z) in the standard functional
diffeology, and the result follows. O
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Example 2.89. The pullback map
[ C(Y) — C(X); g—gof

of any smooth function f: X — Y is smooth with respect to the standard functional diffeologies. (See
[Vin08, Proposition 2.4.2].) This follows because we have a similar computation as in Proposition 2.88
above. Note that the role of R is not special here, so we can replace the spaces of real-valued functions
by C*(X,Z) and C*(Y, Z) and the claim still holds.

Example 2.90. Let R be an equivalence relation on a diffeological space X, and endow the quotient
X /R with the quotient diffeology, as usual. If we denote by C*°(X, Y ) the subset of C>°(X,Y") of those
smooth functions that are constant on equivalence classes of R, and equip it with the subset diffeology
it gets from the standard functional diffeology, then there is a diffeomorphism:

C*(X/R,)Y) = C>®(X,Y)E

Proof. We shall construct a diffeomorphism between the two spaces. If we denote by 7 : X — X /R the
canonical quotient map, we can define a function

®:C®(X/R,)Y) — C®(X,Y)%, fr— form.

It is easy to see from Proposition 2.88 that ® is smooth. If, on the other hand, we start with a
smooth function g : X — Y that is constant on the equivalence classes of R, we get a unique function
g: X/R — Y defined by g(n(z)) := g(x). As we will formally prove in Lemma 2.122; the map g is
in fact smooth. The essence of this argument is to use Lemmas 2.33 and 2.43: any plot of X /R is
locally of the form 7 o 3, where § € Dx, and since g is smooth we therefore find that the expression
gomo 3 =go [ is smooth. We thus get a function

U:C®(X,Y)®R — C*(X/R,)Y); g—7,

which we claim defines a smooth inverse for ®. That it is an inverse is obvious, so we are left to check
smoothness. For that, we take a plot 2 : Uy — C*°(X,Y)® in the standard functional diffeology, taking
values in the R-invariant smooth functions. We need to show that ¥ o is a plot for C*°(X/R,Y’). By
Lemma 2.85 it then suffices to show that ev o (Q x a) is smooth, where we denote Q := ¥ o Q, and
a € Dx /g is an arbitrary plot of the quotient. Since 7 is a subduction, we know that « is locally of the
form a|y =7 o 8, where 8:V — X is a plot in Dx. For t € Uy and s € V, we then find:

evo (@ x aly)(t,s) = Q(t) (1(B(s))) = Qt)(B(s)) = evo (@ x B)(t, s).

Since (2 is a plot, another application of Lemma 2.85 shows that the expression on the right hand side
is smooth. The Axiom of Locality thus shows that ev o (2 x «) is smooth, and we are done. O

Example 2.91 (A familiar infinite-dimensional vector space). Consider an arbitrary diffeological space
X, and consider its space C*°(X) of real-valued smooth functions. The vector space structure of R then
transfers to C°°(X) as usual, by defining a point-wise addition + : C*(X) x C*°(X) — C*(X) and
scalar multiplication R x C°(X) — C*°(X). We claim that, with the standard functional diffeology,
this turns C*°(X) into a diffeological vector space. (Actually, this works for any space C°°(X, V'), where
V is a diffeological vector space.)

Proof. We show that the addition + : C*°(X) x C*°(X) — C*°(X) is smooth. Take two plots Q and
U in the standard functional diffeology on C*°(X), defined on a common Euclidean domain U. This
means that evo (2 xidx) : U x X — R is smooth, and similarly for ¥. We need to show that +o (€2, ¥)
is again a plot in the standard functional diffeclogy. For this, it is easy to calculate:

evo ([+0(Q,0)] xidx) (t,2) = Q) (z) + U(t)(z) = +r o (evo (2 x idx),evo (¥ x idx)) (¢, z),

where +g : R x R — R is the smooth addition map for R. The right hand side is clearly smooth, since
Q and W are standard functional plots, so this proves that the point-wise addition + has to be smooth.
That the point-wise scalar multiplication is smooth is proved analogously. O
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The space Diff(X,Y") of diffeomorphisms between two spaces is clearly a subset of C*(X,Y). In
particular, we are interested in Diff(X), because it forms a group. Clearly the group operation in Diff(X)
is smooth by Proposition 2.88. But it turns out that the subset diffeology on Diff(X) does not ensure
that the inversion is smooth. For that we need to construct a refinement of the standard functional
diffeology. We discuss this in Section 3.1.

Cartesian closedness. Since a functional space C* (Y, Z) is itself a diffeological space, it makes sense
to talk about smooth functions on or into such a space. This means that we get an internal hom-functor:

C™(X, —) : Diffeol — Diffeol; <Y ERN Z) — (C"O(X, v) L5 o (x, Z)) .

In turn, the space of smooth functions C*°(X,C>(Y, Z)) is also a diffeological space. The following
proposition characterises this space (using implicitly the Cartesian closedness of Set), and will help us
prove that Diffeol is Cartesian closed (recall Definition A.5).

Proposition 2.92. Let X, Y, and Z be diffeological spaces. Then there is a diffeomorphism
C®(X,C™(Y,Z)) —2— C®(X x Y, Z).

Proof. What we need to show, essentially, is that rewriting a pair of parentheses is a smooth operation.
Given F € C*(X,C*(Y, Z)), we define

OF)=f:XxY —2Z;  (x,y)— flz,y) = F(z)(y).

First, to show that ® is even well-defined, we need to show that f : X x Y — Z is smooth. But if
a € Dx and B8 € Dy then fo(ax f) =evo ([Foa] x f3) is clearly smooth, which is sufficient by
Lemmas 2.33 and 2.61. It is then clear that ® is a well-defined bijective function. Now, to prove that
® itself is smooth, let Q : Uy — C°(X,C*(Y,Z)) be a plot. According to Lemma 2.86, we need to
show that evo ([® 0 Q] x idx«y) is smooth. If we evaluate this at a point (¢,z,y) € Ug x X XY, we get
the expression ®(Q(t))(z,y) = (Qt)(z))(y). This can be written as:

(Q)(2))(y) = ev(Q(t)(x),y)
=ev([evo (Q xidx)|(t,x),y)
=evo ([evo (N xidy)] xidx) (¢, z,y),
which is smooth because €2 is a plot. This proves that ® is smooth.
To finish the proof, we are left to show that the inverse ®~' : f — F is smooth. Note that this is
also well defined. To prove smoothness, fix a plot Q : Ug — C°(X x Y, Z). By the equivalent condition

in Lemma 2.85, we need to show that for every o € Dx the map evo ([#7! 0 Q] x a) is smooth. In
turn, by the definition of the standard functional diffeology on C*°(Y, Z), this means that

evo(levo (@' o Q] x )] xidy) : Ug x Uy x Y — Z

has to be smooth. To make this legible, let us evaluate it at a point (¢, s, y), which gives the expression
Q(t)(a(s),y). This can be expanded as

Q(t)(a(s),y) = ev (2(t), (a(s), y))
=evo (2 x (axidy)) (ts,y)
=evo (Q xidxxy) o (idy, x (a xidy)) (¢, s,v).
Since  is a plot of C°(X x Y, Z), the term ev o (Q X idxxy) is smooth, and since « is smooth, it

follows that the entire expression must be smooth. This proves that ®~! is smooth, and hence that the
map @ exhibits the desired diffeomorphism. O

It is not much more work to then prove our goal:
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Theorem 2.93. The category Diffeol of diffeological spaces and smooth maps is Cartesian closed.

Proof. Consider a fixed diffeological space Y € Diffeol, together with its induced product functor
— x Y : Diffeol — Diffeol, which sends a smooth map f: X — Z to f x idy. There should then be
an adjunction

—xY AC™(Y,-).
But this is literally the bijection constructed in Proposition 2.92, which we know from the Cartesian
closedness of Set is natural. O

Local Cartesian closedness. The category of diffeological spaces enjoys an even stronger categorical
property: that of being localy Cartesian closed (Definition A.7). To prove that Diffeol is locally
Cartesian closed we need to show, first, that every slice category Diffeol/B has finite products, and
further, that these finite products admit a right adjoint. It is easy to see that products in slice categories
Diffeol/ B are just the pullbacks in Diffeol, which we know to exist. Therefore, to study local Cartesian
closedness of Diffeol, we need to study function spaces of pullbacks. These are also called parametrised
mapping spaces in [BH11, p. 15]. We elaborate here on the constructions discussed in that paper, and
prove that the diffeology they define is actually a generalisation of the standard functional diffeology.

To start, fix two smooth maps px : X — B and py : Y — B, playing the role of objects in the slice
category Diffeol/B. We shall denote the fibres of such maps by X}, := p;(l ({b}), for b € B. These fibres
naturally get a subset diffeology from X and Y, and so it makes sense to talk about the function spaces
C®(Xy,Y,). The parametrised mapping space (over B) is then defined as the collection of function
spaces between each of the fibres:

CF(X,Y) = [[ (X, V).
beB

Since each function space C*° (X}, Y, ) between one of the fibres carries the standard functional diffeology,
we could endow the parametrised mapping space C%(X,Y) with the coproduct diffeology. This dif-
feology is, however, too fine, because it does not allow for smooth variation between the fibres. We
therefore now give a natural extension of the standard functional diffeology to parametrised mapping
spaces. This diffeology is also sketched in [BH11, p. 16]. Again, this diffeology will be constructed to
make certain structure maps smooth. In the first place, the first projection

prl:C%O(va)HB; (baf)'—>b

should be smooth. This ensures that a family of functions can vary smoothly across fibres. And secondly,
just as for any functional diffeology, the evaluation map should be smooth:

evp : CF(X,Y) <P X — Yy ((b, f),2) — f(z).

The following is then a direct generalisation of Lemma 2.86. Note that for a parametrisation Q of

C%(X,Y), the expression evpo(£2xidx) only makes sense when restricted to the domain Ug x%rlﬂ’px X.

Lemma 2.94. The collection of parametrisations Q : Ug — CF(X,Y) such that evp o (2 xidx)|vgx s x
and prqy o Q are smooth defines a diffeology on C%F (X,Y) such that pry and evp are smooth.

Proof. Let us denote by D the collection of parametrisations that satisfy these two conditions. Take Q €
D to be a constant parametrisation, taking values as Q(t) = (b, f), for some b € B and f € C*(X,,Y}).
Then pry o Q0 = consty, which is smooth by the Axiom of Covering for the diffeology on B. Similarly,
when restricted to the right domain, we get evg o (€ x idx) = ev o (const; x idx), which is smooth
by the Axiom of Covering for the standard functional diffeology on C*°(X,,Y;). The proof that the
Axioms of Smooth Compatibility and Locality hold for D can be copied almost directly from the proof
of Lemma 2.86, which we leave to the reader. Hence D defines a diffeology on CF(X,Y).

That pr; is smooth with respect to D follows directly from its characterisation. We are therefore
left to check smoothness of evg. For that, let @ € D be a plot of CF(X,Y) and o € Dx be a plot
of X, both defined on the same Euclidean domain U, satisfying pr; o 2 = px o «. Then we can write
evpo(Q,a) =evpo(2xidy)o(idy, a). However, the first term (idy, ) takes values in U xglﬂ’px X, so
it follows evp o (2 x idx) is defined on the right domain, on which it is smooth. The result follows. O
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Definition 2.95. The diffeology on CF(X,Y) defined by the previous Lemma 2.94 is called the
standard parametrised functional diffeology. It is in fact the coarsest diffeology on C'F(X,Y) such that
both pr; and evp are smooth.

Note that the standard parametrised functional diffeology contains the coproduct diffeology. Namely,
if Q:Uq — CF(X,Y) is a plot in the coproduct diffeology on the disjoint union, then € is locally of
the form QJy = 1 0 U, where ¥ : V — C°(X},Y;) is a plot in the standard functional diffeology, and
tp is the natural inclusion. Clearly then pr; o Q| = consty, which is smooth. Moreover, the domain
for evp o (Q]y X idx) just becomes V' x Xj, on which it is equal to ev o (¥ x idx ). This is also clearly
smooth. Hence from the Axiom of Locality it follows that 2 is an element of the standard parametrised
functional diffeology as well. The main difference is that in the coproduct diffeology, the plots are not
allowed to transfer between fibres. In this sense the coproduct diffeology describes a functional diffeology
that is discretely parametrised, and if B is discrete it is easy to see that they coincide.

Proposition 2.96. For X LN B, Y 2, B, and Z 22, B three smooth maps, there is a natural
diffeomorphism

CF(X,CH(Y, Z)) —— CF(X x5 Y, Z).
Proof. This is a straightforward generalisation of Proposition 2.92. O
We now strengthen Theorem 2.93:
Theorem 2.97. The category Diffeol of diffeological spaces is locally Cartesian closed.

Note that since Diffeol has a terminal object, which is just the singleton set 1 = {*} with its unique
diffeology (Example 2.13), Theorem 2.93 is recovered from the Cartesian closedness of Diffeol/1.

2.4.1 Locally smooth maps and the D-topology

Since diffeology deals so well with quotients, it may happen that diffeological spaces have what are called
singularities in classical differential topology. Orbifolds are one type of space that are a good example
of this phenomena. For such spaces it may be interesting to look the smooth structure only on a local
level, instead of a global level. In this section, based on [Diffeology, Chapter 2], we develop the tools
to do this. This will eventually lead to a notion of an atlas on a diffeological space Section 6.1.1. Note
however that any such atlas concept has been absent at this point in the development of the diffeology,
as it can be developed fully without such a notion.
The original definition of local smoothness is [Diffeology, Article 2.1], which reads as follows®'.

Definition 2.98. Let X and Y be diffeological spaces. A function f: X DO A — Y, defined on a subset
A C X, is called locally smooth if for every plot a € Dx, the composition foal,-1(4) € Dy. We denote
such a map purposefully by f: X D A — Y, because the definition involves all plots of X, and not just
those taking values in the subset A. It is therefore good to remember X in the notation.

A map f: X — Y is called locally smooth at x € X if there exists a subset x € A C X such that
fla: X 2 A=Y islocally smooth.

There is a subtle implicit condition in this definition. For f: X D A — Y to be locally smooth,
each f o aly,-1(4) has to be a plot. But plots are special kinds of parametrisations, which are defined
only on Euclidean domains. For that composition to be a plot, then, the preimage o~ !(A) has to be an
open subset of dom(a), for every a € Dx. Therefore the domains of locally smooth maps have to be a
special kind of subset. They are exactly the open subsets in a special topology:

Definition 2.99. Let (X, Dx) be a diffeclogical space. The D-topology on X is the topology whose
open sets are exactly those subsets A C X such that a=!(A) is open for all @ € Dy. This is the final
topology on X induced by the family of plots (o : Uy — X)aepy- (See any textbook on topology
for more on the definition of the final topology, e.g. [Miig20, Section 6.1].) The open subsets in the
D-topology are called D-open.

31Beware that local smoothness has nothing to do with local Cartesian closedness.
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We will not be studying the D-topology per se in this thesis. We refer to [Diffeology, Chapter 2] for
some more elementary results, and the paper [CSW14] for a more in-depth discussion on D-topologies.
It is interesting to remark that, with respect to the D-topologies: smooth functions are continuous, and
diffeomorphisms are homeomorphisms ([Diffeology, Article 2.9]).

Proposition 2.100. Smooth maps are D-continuous.

Proof. Let f: X — Y be a smooth map between diffeological spaces, and let A C Y be a D-open subset.
We need to show that the preimage f~!(A) is D-open in X. For that, let o € Dx be a plot. Then
a Y f71(A)) = (f oa)"1(A) is D-open, because f is smooth. O

Example 2.101. The D-topology given to a manifold by its manifold diffeology is just its own topology.
(See [CSW14, Example 3.2].) The standard Euclidean topology on a Euclidean domain therefore also
agrees with the D-topology it gets from its Euclidean diffeology.

We only collect one lemma, which we will need later to study locally smooth maps.

Lemma 2.102. Let Dx be a diffeology on some set X that is generated by a family of parametrisations
F. Then A C X is D-open if and only if for every f € F the preimage f~1(A) is open.

Proof. The parametrisations f € F are plots in Dx, so the “only if” implication follows immediately
from the definition of the D-topology. We therefore prove the converse. Suppose that A C X is a
subset such that for all f € F we have f~1(A) is open. We need to show that this is the case instead for
arbitrary a € Dx. But since F generates D x, we can use Proposition 2.27 to deduce that o : U, — X is
locally constant or factors through an element of F. This means that we can find two families (V;);cr and
(W) e of open subsets of the domain U, such that: the union of these families covers Uy, a|y, = fioh;
for some f; € F and h; smooth, and aly, = const,, for some z; € X. Now the preimages of A under
each of these restrictions of « is open: first we have that (a|y,) "' (A) = h; '(f; '(A)) is open because h;
is a smooth map between Euclidean domains, and f;l(A) is open by assumption. On the other hand
(alw,) " H(A4) = const;jl(A) is empty if ; ¢ A, and equal to the open subset W; if otherwise, both of

which are open. The preimage a~!(A) can therefore be written as a union of open sets:

a1 (A4) = JelyH) () u ([ (alw,) " A) = (b (1 (A) U | const; M (A).

il jeJ il jeJ
Since the plot « was arbitrary, this shows that A C X is D-open. O

Back to locally smooth maps. The following proposition shows us that the locally smooth maps are
just those that are smooth on D-open subsets. We prefer this characterisation to the original definition
Definition 2.98 ([Diffeology, Article 2.1]), because it allows us to talk about locally smooth maps using
the original definition of smooth maps in Definition 2.4.

Proposition 2.103. Let X and Y be two diffeological spaces, and consider a subset A C X. Then
f:X D A=Y islocal smooth if and only if A is D-open and f : A —'Y is smooth with respect to the
subset diffeology on A.

Proof. Suppose f: X D A — Y is local smooth. The definition of the D-topology on X then ensures
A is D-open. Let a € Dy be a plot of X taking values in A. Then a~*(A4) = dom(a), and since
f:X 2 A —Y islocal smooth we then get foal,-14) = foa € Dy, which just means that f: A — Y
is smooth. Conversely, suppose that A is D-open and f : A — Y is smooth. Let « € Dx be an
arbitrary plot (not necessarily taking values in A). Then a~!(A) is an open subset of dom(«), making
@|q-1¢4) into a plot of A in the subset diffeology. But f is smooth with respect to that diffeology, so
foala-1a) € Dy, as required by Definition 2.98. [

We find this point of view much nicer, in which a function f : A — Y is locally smooth if we can
just check that it is smooth and it its domain is D-open. Smoothness has only to be checked for the
plots of A, and not for the plots of the entire ambient space X O A. From now on, if wesay f: A =Y
is locally smooth, we mean that it is smooth as a function A — Y and that A is D-open. A function
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f: X — Y is locally smooth at x € X if and only if there exists a D-open neighbourhood x € A C X
such that f|4 : A — Y is smooth. This gives a nice result, which is analogous to [Leel3, Corollary 2.8]
in the case of manifolds.

Proposition 2.104. A map f : X — Y is smooth if and only if it is locally smooth at every point
reX.

Proof. If f is smooth, then the desired D-open neighbourhood of x € X is just X itself. Conversely,
suppose that f is locally smooth at every point. Then we can find a D-open cover (A;).cx, where
x € A, C X, such that f|4, is smooth. Take then a plot « : U, — X in Dx. We need to show that
foa e Dy. Each t € U, gives a point a(t) € X, which is covered by a D-open neighbourhood A, y).
The preimage a™*(Aq () is then an open neighbourhood of t € Uy, and the family (o™ (Aqw))tcv.
forms an open cover of U,. If we restrict the plot « to elements of this open cover, we get plots of X
taking values in the respective A,(;), which f sends to plots in Dy. In other words, since f|Aa(t) is
smooth, we get f o O‘|a‘1(Aa<t>) = flaoay © O‘|a‘1(Aa(t)) € Dy, for every t € U,. Hence by the Axiom of
Locality for Dy, it follows that f o « is a plot, and hence that f : X — Y is smooth. O

Lemma 2.105. Let f: X DA —=Y andg:Y O B — Z be two locally smooth maps. Then the map
gof:X D fYB)— Z is also locally smooth.

Proof. In light of Proposition 2.103, we know f: A — Y and g: B — Z are two smooth maps defined
on D-open domains. By Proposition 2.55 it follows g o f|s-1(p) is smooth, so we are left to show that
f71(B) is D-open. So let a € Dx be a plot of X. Then o !(f~1(B)) = (f o a|a-1(4)) ' (B). But since
f+ A=Y is smooth, foal,-14) € Dy, and since B is D-open, it follows that a~Y(f~1(B)) is open.
Since « was arbitrary, the claim follows. O

The rest of this section is based on [IZL18, Section 2], filling in some details on their proofs. We
shall lay the groundwork here for the construction of an interesting diffeological groupoid in Section 6.1.
The space of all local smooth maps is denoted C.(X,Y). If 7x denotes the D-topology of a

diffeological space (X, Dx), then this space is explicitly given by
Choe(X,Y) :={f€C®(AY): A€ 1x}.

If the D-topology on X is rich, this is clearly a much bigger space than C*°(X,Y"). Just like the standard
functional diffeology on C'*°(X,Y"), which is the unique coarsest diffeology making the evaluation map
smooth, there is a standard local functional diffeology on the bigger space C£2(X,Y), which is the unique
coarsest diffeology making the evaluation map local smooth on a natural domain. This natural domain

is just the pairs (f,z) for which z € dom(f):

Exy = H dom(f) ={(f,z) € Co(X,Y) x X : z € dom(f)}.
fEC (XY)

loc

Here ‘€’ stands for ewvaluable. In analogy to the construction of the standard functional diffeology on
C*(X,Y) (Lemma 2.85), we shall construct a coarsest diffeology on C2(X,Y) such that Exy is
D-open and ev : Exy — Y is smooth. It is clear that the discrete diffeology on CF2(X,Y) makes
ev: Exy — Y locally smooth, so there are diffeologies that satisfy this. We want to adapt the charac-
terisation of the plots of the standard functional diffeology on C*°(X,Y), as described in Lemma 2.86.
However, if Q : Ug — C2.(X,Y) is a parametrisation, the expression ev o (2 x idx) may not be defined
everywhere, because there could exist a pair (¢,2) € Ug x X such that z ¢ dom(€2(¢)). To remedy this,
instead of demanding full-on smoothness of ev o (2 x idx ), we will only demand local smoothness. The
maximal domain that we can allow for this is the following:

UQ = (Q X idx)_l(ex,y) = {(t,x) € UQ xX:x¢€ dOHl(Q(t))}

We can then say something about the local smoothness of evo (Q x idx )|, and we will now show that
the collection of parametrisations {2 that make this expressions locally smooth defines a diffeology:
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Lemma 2.106. The collection of parametrisations 2 : Ug — C2(X,Y), making ev o (Q X idx)|ug,
locally smooth, defines a diffeology on C2(X,Y).

Proof. This is a generalisation of the proof of Lemma 2.86, but the idea remains the same. In addition
we need to prove that each of the domains Ug are D-open. Denote the collection of parametrisations as
in the claim by D.

Let us start with the Axiom of Covering. For that, let Q : Uy — C22.(X,Y) be a constant para-
metrisation, taking values on a locally smooth map f € C°(X,Y). Then Un = Uq x dom(f), which is
clearly D-open. Then evo (2 x idx)|u, = f © praju,, is smooth by Proposition 2.55. This proves the
collection D contains all constant parametrisations.

For the Axiom of Smooth Compatibility, let Q : Ug — C2.(X,Y) be a parametrisation in D, and
take a smooth function h : V' — Ug. Then h x idx is smooth and D-continuous, and an easy calculation
shows that Uqoen, = (h x idx)~!(Ug), which is therefore D-open because Ug is D-open. It follows then
that

ev o ((Q © h) X idX) IUQO;L =evo (Q X idX)|uQ © (h X idX)|quh

is smooth, because ev o (2 X idx )|y, is smooth (and Proposition 2.55).

Lastly, for the Axiom of Locality, let Q : Ug — C2(X,Y) be a parametrisation together with an
open cover (V;);er of Ug, such that each restriction |y, is an element of D. Then we know that each
Ugqy, =Ua N (Vi x X)) is D-open. Since (V;);es covers Uq, we get that

Uuﬂ\vi = Uuﬂﬁ(Vi xX)=UaN Uqg x X) =Uq
iel iel

forms a D-open cover, which proves that Uq itself also has to be D-open. Lastly, because each term
evo (Qy, x idx)lug,, is smooth, it follows that ev o (2 x idx)[u, restricts to smooth maps on the

D-open cover (Ugj,, )icr, so by the Axiom of Locality for Dy and Proposition 2.104 it follows that €
satisfies the defining condition of D. This proves that D satisfies all three Axioms of Diffeology. O

We equip C2.(X,Y") with this diffeology, and subsequently € x,y with the induced subset diffeology.
Note that, for similar reasons we touched upon in our discussion on the standard parametrised functional
diffeology on parametrised mapping spaces, the diffeology on € x y is not simply the coproduct diffeology.

Proposition 2.107. The evaluation map ev : Exy — Y is locally smooth with respect to the diffeology
in Lemma 2.106.

Proof. First we need to prove that €x y is D-open in C.(X,Y) x X, when C2 (X,Y) is endowed with
this diffeology. By Lemmas 2.61 and 2.102 it suffices to check for preimages by plots of the form  x «,
where e € Dx and Q : Uy — C2.(X,Y) is a plot as in Lemma 2.106. We can then write

loc
(Q X a)_l((ch’y) = (ldUn X a)_l ((Q X idx)_l(gx’y)) = (idUg2 X Ck)_l(UQ).

But Ug, is D-open since €2 is a plot, and idy,, X a is D-continuous, so the right hand side of this equation
is open. Hence €x y is D-open.

That leaves us to show that ev : €x y — Y is smooth with respect to this diffeology. By Lemmas 2.33
and 2.61 it suffices to check smoothness for plots of the form 2 x o as above taking values in €x v,
meaning that for every (¢, s) € Ug x U, we have a(s) € dom(€2(t)). But, in that case, Ug x im(a) C Ug,
so that

evo (2 x a)=-evo (2 xidx)|u, o (idy, X @),

in which every term is smooth, so the result follows. O

Definition 2.108. The diffeology on C°.(X,Y) from Lemma 2.106 is called the standard local func-
tional diffeology. Just like the standard functional diffeology on C*°(X,Y’), it is easy to see that this
diffeology is the coarsest one on C22(X,Y) such that the evaluation map is locally smooth on Ex y.
From now, we will assume that C£2(X,Y) is always equipped with the standard local functional dif-

loc
feology.
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Since the space of globally smooth functions C*°(X,Y") sits naturally in the locally smooth ones, we
can ask what diffeology C*°(X,Y") inherits from the standard local functional diffeology. It turns out
that it is just the standard functional diffeology:

Proposition 2.109. The subset diffeology of C>*(X,Y) C C2.(X,Y) coincides with the standard
functional diffeology of Definition 2.87.

Proof. This is easy to see, once we observe that for any plot Q : Uy — C.(X,Y) taking values in
C>(X,Y) we have Ug = Ug x X. O

We also have a result generalising Proposition 2.88 to the local setting.

Proposition 2.110. Let X, Y, and Z be diffeological spaces. The local composition map is then smooth:
COMpy, - Cloc-%(Yv Z) X Oﬁ)?c(X7 Y) — Cl%OC(Xa Z)7 (fa g) — (f © g)|g*1(dom(f))-

Proof. Note first that comp,,, is well-defined by Lemma 2.105. To prove that comp,,. is smooth, take
two plots Q : Ug — C2(Y,Z) and ¥ : Uy — C2(X,Y). As we know, by Lemmas 2.33 and 2.61
it suffices to prove that comp,,. o (2 x ¥) is a plot of C22 (X, Z). To shorten notation, let us denote
U := Ucomp,,.o(2xw), Which is the set of points (¢, s, z) € Ug x Uy x X satisfying z € ¥(s) ' (dom(Q(t))).
We need to prove that U is D-open. To see this, note that (¢, s, z) € Uif and only if ¥(s)(z) € dom((t)).
We can rewrite U(s)(z) = evo (¥ xidx)(s,z). If we discard the term Uq through the smooth projection

pr:Uq x Uy x X — Uy x X, which maps (¢, s,z) — (s,z), then we get a smooth map:
(pryg.evo (¥ xidx)|u, opr) : Ug x Ug X X — Ug X Y; (t,s,2) — (£, U(s)(x)).

The codomain of this map contains Uq. It is straightforward to see that the preimage of Uq under this
map is U, which proves that it is D-open. That leaves us to show that evo ([comp,,. o (2 x ¥)] x idx) |u
is smooth. This transpires much the same way as in the proof of Proposition 2.88. From the displayed
equation in that proof, we get a similar equation for each (¢,s,x) € U:

ev o ([comp),, o (2 x ¥)] x idx) |u(t,s,2) =evo (Q x idy) o (idy,, X [evo (¥ x idx)]) (¢, s, ).

We know something about the smoothness of the terms ev o (Q X idy )|y, and ev o (¥ X idx )|y, , since
Q and ¥ are plots. Therefore, if we can show that those terms in the right hand side of the above
equation take values in Ug and Uy, we are done. But this follows because (¢, s,z) € U, which implies
x € U(s)~1(dom(Q(¢))), which immediately gives (s,2) € Uy and (¢, ¥(s)(z)) € Ug. This shows that
the left hand side of the above equation is smooth, and hence evo ([comp),, o (2 x ¥)] x idx) |y satisfies
the conditions to be a plot of C£2 (X, Z), which proves that comp,,. is smooth. O

loc

All of this technology about locally smooth maps will be put to good use in Section 6.1.

2.5 A weak subobject classifier for diffeological spaces

So far we have seen that Diffeol is (co)complete, Cartesian closed, and even locally Cartesian closed.
To finish off our discussion of the categorical aspects of diffeology, we will here provide the proverbial
icing on the diffeological cake by showing that Diffeol has a weak subobject classifier (Definition 2.114),
and is hence a quasitopos (Definition 2.117). Much of this section is based on the sheaf-theoretic results
found throughout [BH11], but we have translated them here into the language of plots.

Proposition 2.111. The epimorphisms and monomorphisms in Diffeol are just the surjective and
injective smooth functions, respectively.

Proof. This follows in one direction because the forgetful functor U : Diffeol — Set preserves limits
and colimits (Proposition 2.69). The other direction follows because U is faithful, and hence reflects
mono- and epimorphisms. O
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Definition 2.112. A monomorphism i : A — X in a category C is called strong if for every epimorphism
p: E — B and two arrows f : E — A, g : B — X making a commutative square, there is a unique
arrow fitting into the following commutative diagram:

—>

E
|
B

—>

><<—_a:|>

Proposition 2.113. The strong monomorphisms in Diffeol are exactly the inductions.

Proof. Let i: A — X be a strong monomorphism in Diffeol. From the characterisation of monomorph-
isms between diffeological spaces in Proposition 2.111 we already know that ¢ is a smooth injection. In
light of the fact that this map is smooth if and only if D4 C i*(Dx) (Corollary 2.37), we are left to
show i*(Dx) C D 4. For that, let a : U, — A be a parametrisation of A such that ioca € Dx. We need
to show that o € D 4. For this we shall use the universal defining property of strong monomorphisms.
Let f:im(a) — A and g : im(i o &) < X be the respective smooth inclusion maps, where each of the
domains has the subset diffeology. We then get a commuting diagram:

In this diagram, a : U, — im(«) is the unique function so that foa = «, and b: U, — im(i o «) is the
unique arrow such that gob = io«. Then, save for a (the corestriction of ), we know that everything is
smooth. In particular, b is smooth because im(i o o) has the subset diffeology. From the commutativity
of the diagram it follows that i 0« =iotob, and since i is injective this gives o = t o b. Hence « is the
composition of two smooth maps, and must therefore be a plot in A. This shows that Dy = i*(Dx),
and therefore the map ¢ is an induction.

For the converse implication, suppose now that we have an induction 7 : A — X. Start with the
data of Definition 2.112, i.e., we have a smooth surjection (Proposition 2.111) p : E — B and two
smooth maps f : E — A and g : B — X such that i o f = g o p. We will construct the unique arrow
t: B — A making the following diagram commute:

E —> A

l // El’t J

B —> X.
To construct this smooth map, recall that by Proposition 2.54 we get a diffeomorphism i : A — im(3).
Moreover, since the outer square commutes and p is surjective, we have im(g) im(gop) =im(io f) C
im(4). In particular, the induction then restricts to a diffeomorphism i|;p sy : im(f) — im(io f) = im(g),
which allows us to define ¢ := (ifim(s)) ' 0 g : B — A. This is clearly the unique smooth map that we
are after, proving that 7 is a strong monomorphism. O

Definition 2.114. Let C be a category with finite limits, whose terminal object we denote by 1¢. For
any object C' € ob(C) we then have a unique arrow t¢ : C — lc. A weak subobject classifier is an
object © € ob(C) together with an arrow called true : 1¢ — €2, so that for every strong monomorphism
i:C — D in C there is a pullback diagram:



We call these subobject classifiers weak because they only classify the subobjects of strong mono-
morphisms, whereas a genuine subobject classifier classifies every monomorphism. The arrow x; : D — )
is called the characteristic function of i : C'— D. In the category of sets, these are actually the char-
acteristic functions of subsets, so that Q = {0,1} and true = const;.

Construction 2.115. We construct a weak subobject classifier for the category Diffeol of diffeological
spaces. This construction just adopts the construction of the subobject classifier for Set into the
diffeological setting (cf. [Mac71, Section IV.9]). Recall that the terminal object in Diffeol is just the
one-point space 1 = {*}, which has a unique diffeology (the discrete one, which happens to align with
the coarse one). As a set, we then define Q = {0,1}. This set only has two diffeologies, and we choose
Dq := Param(). The elements of {2 are usually interpreted as bivalent truth-values. This also explains
the notation of the function true : 1 — €2, which is then just the constant map * — 1 taking values on
the positive truth-value. Since 2 carries the coarse diffeology, this map is smooth. Moreover, for any
induction i : A < X we define the characteristic function

1 i .
xi: X — T — 1x€1m(z),

0 if x ¢ im(4).
Theorem 2.116. The arrow true : 1 — Q and the characteristic functions from Construction 2.115
form a weak subobject classifier for Diffeol.

Proof. We just need to prove that if ¢ : A < X is an induction (Proposition 2.113), then we have a
pullback:

But for that it suffices to show there exists a diffeomorphism A = X x 1 compatible with the projections
of X xq 1 onto its components. The fibred product is just X xq 1 = {(z,*) : x;(z) = 1} = im(¢) x 1.
Since 1 is the terminal object, the projection therefore induces a diffeomorphism X xq 1 2 im(3).
However, we know that inductions induce diffeomorphisms onto their images (Proposition 2.54), which
immediately gives A 2 im(i) & X xq 1. More precisely, this diffeomorphism is induced by the map
D:A— X xq1 defined as a — (i(a),*). It is easy to check that pry o ® = ¢ and pry o ® = t4, which
proves that the diagram is a pullback. O

It is from this proof that we can also see why Diffeol might not be a genuine topos: because the
smooth injections ¢ : A < X in general do not induce diffeomorphisms A 2 im(z).

Definition 2.117. A category C is called a quasitopos if it has all finite limits and finite colimits, is
locally Cartesian closed, and admits a weak subobject classifier. (See also [BH11; nL18b].)

Just as Grothendieck toposes (sheaves on a site) form an important class of examples of a topos, the
special class of concrete sheaves on a concrete site form an important example of quasitoposes. For the
general study of these types of categories we refer to [Dub79; GL12]. [BH11] contains an account of
the quasitoposes of concrete sheaves, including case-studies on diffeological- and Chen spaces.

Theorem 2.118. The category Diffeol of diffeological spaces and smooth maps is a quasitopos.

Proof. This is the culmination of Theorems 2.72, 2.97 and 2.116. O
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According to [GL12, p.2], the main difference between a topos and a quasitopos is that the latter
does not have to be balanced. This means that, in a quasitopos, there may exist morphisms that are
epic and monic, but not invertible. On the other hand, every topos is balanced (and in fact, a balanced
quasitopos is a topos). This is clear in the case of Set, where every injective surjection is a bijection. In
Diffeol, since the epi- and monomorphisms are just the surjective- and injective functions respectively
(Proposition 2.111), it is easy to find a bijective smooth function that is not a diffeomorphism (for
example R — R : z — x3). We do not know an interpretation or the significance of this fact.

2.6 Subductions

The concept of a subduction will be very important in Chapter IV, because it will replace that of a
submersion. There is no unambiguous notion of submersion between arbitrary diffeological spaces as
there is for smooth manifolds, in terms of differentials. Luckily, one can show that local subductions agree
precisely with submersions between Euclidean domains (Proposition 2.128). So it would be acceptable
to take local subductions as the replacement for the concept of submersion. However, as we will see, it
turns out that everything works for subductions as well, although this is a strictly weaker notion than
of a local subduction®?.
Recall Definition 2.42:

Definition 2.119. A map f : X — Y between a diffeclogical spaces is called a subduction if f is
surjective and f.(Dx) = Dy. Note that subductions are automatically smooth. The subductions are
exactly the surjective functions such that the diffeology of its codomain is the finest diffeology making
it smooth.

In practice, it is cumbersome to continually calculate pushforwards of diffeologies to verify that a
map is a subduction. We therefore need a more hands-on characterisation. This is provided by the
following proposition, which will almost entirely replace Definition 2.119 throughout our proofs.

Proposition 2.120. Let f : X — Y be a function between diffeological spaces. Then f is a subduction
if and only if the following two conditions are both satisfied:

1. The map f is smooth.

2. For every plot a: Uy, =Y and every point t € Uy, there exists an open neighbourhoodt € V C U,
and a plot B:V — X such that a|y = f o B. (In other words, the plots of Y lift locally along f.)

Proof. First let f be a subduction. The first condition is then immediately satisfied. Moreover, since f
is surjective, the family of parametrisations f o Dx on Y is covering, and so by Lemma 2.43 and the
second characterisation in Proposition 2.27 we find the second condition fulfilled.

Conversely, suppose that the two listed conditions are satisfied for some arbitrary function f : X — Y.
That f is smooth gives the inclusion f,(Dx) C Dy, as per Corollary 2.41. The second condition shows
that every plot in Dy is locally in f o Dy, so the Axiom of Locality gives the other inclusion. Lastly,
to prove that f is surjective, take y € Y and consider the constant plot const, : R — Y. Even this must
lift through f, so locally consty,|y = f o 3. It follows y = f(z) for z = 5(0) € X. O

Note that this proposition is a slight improvement on [Diffeology, Article 1.48], where the author in
addition assumes in the first condition that f has to be a surjection. As we see here, this is redundant,
as it is already ensured by the second condition. A big upside to Proposition 2.120 is that most of the
maps we want to be subductions are already smooth (surjections), so that we only have to verify the
second condition.

Lemma 2.121. Let f: Y — Z and g : X — Y be two smooth maps between diffeological spaces. If fog
s a subduction, then so is f.

32The example of a subduction that is not a local subduction in [Diffeology, Exercise 61] is based on a non-manifold.
We will show in Example 2.129 that these notions do not even collapse on Euclidean domains.
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Proof. Assuming the hypothesis of the claim, and taking a plot a : U, — Z, then for every t € U, we
can find an open neighbourhood ¢ € V C U, and a plot 8 : V — X such that a|y = (f o g) o 8. Using
associativity then shows that g o 8 € Dy is the desired local lift of « along f. Also, it is elementary
that f is a surjection, so that by Proposition 2.120 the result follows. O

A direct and very useful corollary of this is that any map that admits a global smooth section has
to be a subduction.

The following generalises a property of submersions in the case of manifolds (see e.g. [Leel3,
Theorem 4.29]) to the diffeological world:

Lemma 2.122. Let 7 : X — B be a subduction, and f: B =Y a function. Then f is smooth if and
only if f om is smooth. Moreover, f is a subduction if and only if f o w is a subduction.

Proof. The first claim follows directly from Theorem 2.47(3), or, alternatively, from Lemmas 2.33
and 2.43. But, to see the underlying mechanism at work, we give an explicit proof here as well. Our
proof looks different, but is equivalent, to the one in [Diffeology, Article 1.51]. Let’s start with the
first claim. If f is smooth, it follows immediately that f o is smooth. Conversely, suppose that fomr is
smooth, and fix a plot o : U, — X. Since 7 is a subduction we can find an open cover (V;)icp, of U,
together with plots 8; : V; — X such that |y, = woS;. It follows that each restriction foaly, = fomof
is a plot, and hence by the Axiom of Locality it follows foa € Dy.

For the claim about subductions, again it is trivial if f is a subduction (with the above). The
converse follows from Lemma 2.121. O

Proposition 2.123. Any injective subduction is a diffeomorphism.

Lemma 2.124. Let f : X — Z be a subduction, and g : Y — Z be a smooth map. Then the

projection onto the second component restricted to the fibred product pro|y. .y + X x’;g Y =Y isalso
z

a subduction. In other words, in Diffeol, subductions are preserved under pullback.

Proof. Consider a plot o : U, — Y, giving another plot go « € Dz. Since f is a subduction, for every
t € U, we can find a plot 8: V — X on an open subset t € V C U, such that go aly = f o 8. Now
(Byaly) : V= X xz Y is a plot that satisfies pry|x«,v © (8, a|v) = aly, showing that the restricted
projection is a subduction. O

We need to know how subductions interact with fibred products.

Lemma 2.125. Let f: X - Y and g : V — W be two subductions, and consider two commutative
diagrams of smooth maps between diffeological spaces:

x—7 Ly

V——w
NN A
A A.
Then the map
(f X Dlxxav : X xGV —= Y xFEWs (2,0) — (f(x), 9(0))
is also a subduction.

Proof. Clearly f X g is smooth, so we are left to show that it is surjective and that the second condition
in Proposition 2.120 is fulfilled. For surjectivity, take (y,w) € Y xi’L W. Since f and g themselves are
surjective, we can find z € X and v € V such that f(z) =y and g(v) = w. But then

r(z) = Ro f(z) = R(y) = L(w) = I(v),

so we get an element (z,v) € X x3' V such that (f x g)(z,v) = (y, w).
Now take a plot (a,8) : U = Y xﬁ’L W, i.e., we have two plots a € Dy and 8 € Dy such that
Roa = Lop. Fix apoint t € U in the domain. Then since f and g are subductive we can find two plots
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a: U, — X and B Us — V, defined on open neighbourhoods of ¢ € U, such that aly, = foaand
Blu, = go B. Now (a|v,nvus, Bluanus) : Ua NUg — X x V takes values in the fibred product because

roaly, =Ro foaly, = Roalv.nv, = Lo Blu.nu, =10 Blu.,
and moreover we have that (f x g) o (@|v.nv,. Blu.nvs) = (@ B)|v.nu,, proving the claim. O

Corollary 2.126. If f : X - Y andg:V — W are two subductions, then so is their Cartesian product
fXg: X xV =Y xW.

Proof. This follows immediately from Lemma 2.125 by setting A to be the singleton space {x}. O

2.6.1 Local subductions and submersions

We have seen in Lemma 2.121 that subductiveness is a relatively weak condition, since any smooth map
that admits a global smooth section is a subduction. Here we introduce a refinement of this notion, which
is called local subductiveness. The jump from subductions to local subductions is tantamount to the jump
from global section-admitting maps to submersions. We will make this precise in Proposition 2.128.
The idea is as follows: if 7 : X — B is a global section-admitting smooth map (and hence a subduction),
then it is possible to map any point b € B to a point o(b) € X, in such a way that moo(b) =b. In a
sense, this means that it is possible to pick for each point b in the base B a corresponding point o (b) in
the w-fibre of that point. But this does not imply that every point in the total space X can be reached
in such a fashion. In other words, there may be points € X through which no section runs. A local
subduction, then, is a map that does allow (local) sections through each point of its domain. Let us
make this precise now:

Definition 2.127. A smooth surjection f : X — Y is called a local subduction if for every pointed
plot a : (Uy,0) — (Y, f(x)), there exists another pointed plot 8 : (V,0) — (X, z), defined on an open
neighbourhood 0 € V' C U,, such that a|y = f o 8.

Compare this to the characterisation of a subduction in Proposition 2.120. Clearly every local
subduction is also a subduction. But for subductions, the plot 8 does not have to hit the point x at all.

We expand on the remarks in [Diffeology, Article 2.16]:

Proposition 2.128. The local subductions between manifolds are exactly the surjective submersions.

Proof. Since smooth manifolds are locally diffeomorphic to Euclidean domains, it suffices to prove the
claim for the latter. Suppose first that 7 : U — V is a local subduction at = € U between two Euclidean
domains, as usual equipped with their Euclidean diffeologies. We need to show that the differential
dym @ ToU — Tr(,)V is surjective. For that, let v € Ty (,)V be a tangent vector that is the velocity
v = doy(9;) of some smooth curve v : (R,0) — (V,n(x)). Note that we can interpret v as a pointed
plot of V. Therefore, by local subductiveness, we can find a plot 8 : (I,0) — (U, z) defined on an open
interval 0 € I C R such that vy|; = 7o 8. It then follows by the chain rule that

v =doy(0) = do(7]7)(0;) = do(m 0 B)(9;) = dpm 0 doB(0y),

which is clearly in the image of d,m. The argument does not depend on the point € U, so m must be
a submersion.

The converse follows from the rank theorem, see e.g. [Leel3, Theorem 4.12]. This says that constant
rank maps, in particular submersions, look locally like projections. For us, if 7 : U — V is a submersion
and x € U, there exist charts (U, ) and (V1) around z and m(z) respectively, such that 7(U) C V,
and the coordinate representation of 7 in these charts is of the form

Yomo &y, . Tny Tygts e Ton) = (T1,...,20),

where m = dim(U) and n = dim(V'). Now take a pointed plot « : (U,,0) = (V,7(z)). If we project
the plot along v, it is clear from the previous equation how « lifts along 7, at least locally. Namely, we
can define § : (W,0) — (U,z) in such a way that ¢ o 8 = (¢ o a, const), where const : W — R™™" is
some constant function. Locally, m then just projects 8 onto the ¥ o a component, and lifting back to
V along 1! then shows that 7o 3 = alw. O
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Since the concept of a submersion is so central to the definition of a Lie groupoid, this proposi-
tion provides a key part in building the bridge to the diffeological theory of bibundles we describe in
Chapter IV. (Although we show that the theory generalises further to where we can even work with
plain subductions.)

Example 2.129. Proposition 2.128 proves that local subductions between Euclidean domains are
exactly the submersions. From Lemma 2.121 it follows that if a smooth map has a global section, then
it must be a subduction. This clearly is not sufficient for local subductiveness, and it is therefore easy
to find examples of subductions that are not local subductions, even on manifolds. Consider the map
7 : R? — R, defined by the product (x,y) + zy. This is clearly smooth, when R is endowed with
the Euclidean diffeology. The map x — (1, z) gives a global section of 7, so it must be a subduction.
However, by [Leel3, Problem 4-8], 7 is not a submersion at the origin (its derivatives are zero there),
and hence not a local subduction.

Note that this distinguishes submersions from subductions in the sense that having a global smooth
section implies that a map is a subduction, whereas it does not imply it is a submersion.

Proposition 2.130. The composition of local subductions is a local subduction.

Proof. Clearly if f:Y — Z and g : X — Y are local subductions, then f o g is a smooth surjection.
Consider then a pointed plot « : (U,,0) — (Z, f o g(x)). Since f is a local subduction, there exists a
pointed plot 5 : (V,0) — (Y, g(x)), defined on an open subset 0 € V' C U,, such that a|y = foS. In
turn, since g is a local subduction, there exists a pointed plot v : (W,0) — (X, x), again defined on an
open neighbourhood 0 € W C V|, such that S|y = g o~. It is then clear that « defines the desired lift

of fog,since alw = foBlw =fogon. O

Lemma 2.131. Let f:Y — Z and g : X — Y be two smooth functions. If f o g is a local subduction
and g is a surjection, then f is a local subduction.

Proof. If f o g is a local subduction, it follows that f has to be a smooth surjection. Then consider a
pointed plot « : (U,,0) — (Z, f(y)). Since g is a surjection, we can choose y = g(z), for some z € X.
In that case, since f o g is a local subduction we can find a pointed plot 8 : (V,0) — (X, ), defined on
an open neighbourhood 0 € V' C U, such that a]y = fogo . But then go g : (V,0) — (Y, g(z)) is
the desired lift of f. O

The result of Lemma 2.122 extends to local subductions as well:

Lemma 2.132. Let f: B — Y be a smooth map, and 7 : X — B a local subduction. Then f is a local
subduction if and only if f o7 is a local subduction.

Proof. This follows directly from Proposition 2.130 and Lemma 2.131. O

2.7 Diffeological spaces as concrete sheaves

The many wonderful properties of the category of diffeological spaces (by which we mean Theorems 2.72
and 2.118) can be explained by their realisation as the concrete sheaves on Eucl. One of the first places
where this idea is made explicit is the paper [BH11]. But, for another great and detailed discussion of
this perspective, we refer to [G119, Section I.1]. This section is fully based on these two references, and
we leave the details to them.

This viewpoint of diffeological spaces is already motivated by some remarks we made in Defini-
tion 2.2: that the underlying set of a diffeological space is captured by the diffeology itself. If we denote
the category of sheaves on the category of Euclidean domains (with its natural Grothendieck topology)
by Sh(Eucl), then we can naturally associate the following sheaf to any diffeological space:

Definition 2.133. For X € Diffeol any diffeological space, we define X € Sh(Eucl) as the presheaf

X :=C®(—, X) : Eucl®® — Set; X(U) :=C>(U,X).
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The underlying set X is encoded in the set X (1) = C*°(1,X), where 1 = {0} = R is the zero-
dimensional Euclidean domain. Each point x € X corresponds to the unique smooth function 1 — X
given by 0 — z. Generalising this observation gives rise to the idea of concrete sheaves. A sheaf
F : C°P — Set on a concrete site C is called concrete if for every object D € ob(C) there is a bijection

F(D) & Homget (Home(1, D), F(1)),

where 1 € ob(C) is a terminal object. Here Homg (1, D) stands in analogy to C*°(1, X), and therefore
represents something like the underlying set of points of the object D € ob(C). The same holds for
X := F(1), which represents the underlying space of the sheaf F. This bijection, and hence the
concreteness of F, therefore means that F(D), which is supposed to represent the allowed morphisms
D — Xp, is in bijective correspondence with the functions Homg (1, D) — Xp. Concreteness can
therefore broadly be interpreted as “admitting an underlying set.” See [BH11, Definitions 18-19] for
details. We denote the category of concrete sheaves on a concrete site C and natural transformations
between them by ¢Sh(C).

Given this observation, we see that the sheaf X € Sh(Eucl) defined by a diffeological space
X € Diffeol actually satisfies this concreteness condition. We therefore get a functor

Diffeol — c¢Sh(Eucl); X r— X.

This functor induces an equivalence of categories (cf. [G119, Lemma 1.1.16]):

Theorem 2.134 ([BH11, Proposition 24]). The category Diffeol of diffeological spaces is equivalent
to the category of concrete sheaves on the category Eucl of Fuclidean domains:

Diffeol ~ c¢Sh(Eucl).

We further have a characterisation of the concrete sheaves on Eucl as the concrete sheaves on Mnfd:

Proposition 2.135 ([WW19, Lemma 2.9]). The categories of concrete sheaves on Eucl and on Mnfd
are equivalent: cSh(Mnfd) ~ cSh(Eucl).

Given this proposition, it follows that the three Axioms of Diffeology in Definition 2.2 could also
have been given using smooth manifolds, instead of Euclidean domains:

Corollary 2.136 ([WW19, Corollary 2.10]). The category Diffeol of diffeological spaces is equivalent
to the category of concrete sheaves on the category Mnfd of smooth manifolds:

Diffeol ~ cSh(Mnfd).

[BH11, Theorem 52] proves that any category of the form c¢Sh(C) is a quasitopos, and given the
equivalence Diffeol ~ c¢Sh(Eucl) our Theorem 2.118 follows as a special case.
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Chapter III
Diffeological groupoids

3.1 Diffeological groups

Historically, diffeology started as a theory of groups. Souriau first introduced “differentiable groups”
[Sou80] to study the smooth structure of infinite-dimensional groups of symplectomorphisms. As [IZ17]
recalls, it took some years to extract from these “differentiable groups” the concept of a “differentiable
space,” and the first formal definition of diffeology was given in [Sou84]. Diffeological groups are
discussed in the textbook [Diffeology, Chapter 7], but it also returns in other literature on diffeology,
such as [Hec95; HMV02; Les03; CW17b]. Before we move to groupoids, let us therefore first briefly
discuss that what gave birth to the theory in the first place:

Definition 3.1. A diffeological group is a group G with a diffeological structure such that the mul-
tiplication map mg : G X G — G and inversion invg : G — G are smooth. These are exactly the
groups internal to the category Diffeol. A diffeology D on a group G that makes its multiplication
and inversion smooth is called a group diffeology.

The morphisms between diffeological groups are what one would expect: a smooth (group) homo-
morphism f : G — H between two diffeological groups is a group homomorphism that is smooth with
respect to the underlying diffeologies. The category of diffeclogical groups and smooth group homo-
morphisms is denoted DiffeolGrp. The isomorphisms in this category are just the arrows that are also
diffeomorphisms.

Any given group G may have multiple diffeologies that turn it into a diffeological group, and generally
there are at least two of them:

Example 3.2 (Coarse- and discrete groups). Both the coarse- and discrete diffeologies on a group G
define diffeological groups. For the coarse diffeology this is easy, since both multiplication and inversion
are then functions into a coarse space, and hence are smooth. If G has the discrete diffeology, it follows
immediately that the inversion is smooth. For the smoothness of multiplication we need to make the
small mental jump that the product of two discrete spaces is again discrete (use e.g. Lemma 2.61).

A group structure alone is therefore not enough to define a canonical diffeology (putting them in
contrast to vector spaces, which do have the canonical fine diffeology). Despite this non-uniqueness,
there is often a natural diffeology compatible with the group structure. For instance, it may occur (see
Section 3.1.1) that G already gets a diffeology from someplace else, in which case there may be a natural
refinement or coarsening to turn it into a diffeological group. Of course, another class of examples where
the diffeology is canonical is the following one:

Example 3.3. Every Lie group with its manifold diffeology is a diffeological group.
Many constructions of Lie groups extend and generalise in the diffeological setting.

Example 3.4 (Subgroups). Let H C G be a subgroup, and suppose that G has a group diffeology Dg.
Then H, endowed with its subset diffeology, is also a diffeological group. This follows in essence from
Proposition 2.55; since the inversion and multiplication of H are just that of G, restricted appropriately,
they remain smooth with respect to the subset diffeology. To be precise, the inclusion functioni : H — G
is an induction (hence smooth), and if we denote the multiplication and inversion maps of G and H by
mg, invg, my and invy, respectively, then we get my = mg o (¢ X ¢) and invyg = invg o4, which shows
that they must be smooth.

Contrast this to a theorem of E. Cartan (first proved by von Neumann for matrix groups), which
says that any closed subgroup of a Lie group is naturally a Lie group itself. The induction ¢ : H — G
here plays the role of the embedding.

Example 3.5 (Products). If G and H are diffeological groups, then the product diffeology on the direct
product G x H is a group diffeology.
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Example 3.6 (Normal subgroups). Suppose that N <G is a normal subgroup, meaning that for every
group element g € G and n € N we have gng~! € N. The quotient group is the group G /N, consisting of
the cosets gN := {gn : n € N}, with multiplication (¢N)(hN) := (gh)N and inversion (¢N)~! := g~ N.
We denote the canonical projection homomorphism by 7 : G — G/N.

Suppose now that G is furnished with a group diffeology Dg. The projection map 7 induces the
quotient group diffeology on G /N, which is just Dg/n = m«(Dg). We claim that, with this diffeology,
G/N is also diffeological group.

Proof. Let us show that the multiplication m¢g/y : G/N x G/N — G/N is smooth. Keeping Lem-
mas 2.33 and 2.43 in mind, take two plots of the form Toa, 70 € Dg/n, where o, 8 € Dg. It is then
easy to calculate

mgn o [(moa) x (moB)](t s) = (a(t)N)(B(s)N) = (a(t)B(s)N) = womg o (a x B)(t,s),

which is indeed smooth. The smoothness of the inversion map is just as simple, since we have a similar
expression: invg,y omoa = mToinvg o a. O

3.1.1 Diffeomorphism groups

The space Diff(X) of diffeomorphisms on X gets the subset diffeology from the standard functional
diffeology on C*°(X, X). By the above Proposition 2.88, the composition of diffecomorphisms therefore
also becomes smooth. Since Diff(X) naturally has the structure of a group, we may ask if the inversion
map inv : Diff(X) — Diff(X) is also smooth with respect to this subset diffeology, which would make
it into a diffeological group. For smooth manifolds, this seems to be ensured by the inverse function
theorem ([Leel3, Theorem 4.5], cf. [Diffeology, Article 1.61]). It is not known if this is the case for
arbitrary diffeological spaces, so we need to refine the diffeology on Diff(X) to make the inversion map
smooth.

Definition 3.7. Let X be a diffeological space, and let D be the subset diffeology on Diff(X) inherited
from the standard functional diffeology D on C*°(X, X). The standard diffeomorphism diffeology on
Diff(X) is the coarsest diffeology such that the evaluation and inversion maps are smooth. Concretely,
it is the intersection inv*(D) N D. This means that a parametrisation Q : Ug — Diff(X) is a plot in
the standard diffeomorphism diffeology if and only if Q and Q7! := inv o Q are both plots in D (i.e.,
in the standard functional diffeology). As remarked above, the inverse function theorem ensures that
the standard diffeomorphism diffeology agrees with the standard functional diffeology whenever X is a
manifold.

Example 3.8. For any diffeological vector space E we get the general linear group GL(E), containing
all linear diffeomorphisms on E. As such, GL(E) is a subgroup of Diff(F), and so inherits the subset
diffeology from the standard diffeomorphism diffeology, making it into a diffeological group.

If E is a fine finite-dimensional space, then GL(FE) is isomorphic (as a diffeological group) to the
Lie group GL(n;R), where n = dim(F). When F is infinite-dimensional, its general linear group is no
longer a Lie group. In particular we can consider a Hilbert space ¢, with its fine vector space diffeology
(where now C is equipped with its standard diffeology). The group U(J#) of unitary operators on %
also becomes a diffeological group with respect to the subset diffeology it gets from GL(.7#°). When J#
is finite-dimensional we reobtain the classical Lie groups U(n). We are not aware of any research on
(unitary or infinite-dimensional) representation theory of diffeological groups. In particular, in functional
analysis the unitary group is often treated from a topological viewpoint, in which it is important to
distinguish between several non-equivalent topologies on U(.%#°) (such as the norm-, strong-, or weak
operator topologies). We do not know about the D-topological properties of the diffeology on U(.57), if
it can be refined in useful ways, or what its relation is to the functional analytic approaches.

Example 3.9. The following is an example suggested in [Hec95, Example 4.2]. We recall the definition
of an infinite general linear group (also known as the stable general linear group, and which should not
be confused with a general linear group of an infinite-dimensional vector space). For simplicity, we use
the base field R, with its standard Euclidean diffeology, making it into a diffeological field. We denote

GL(n;R) := GL(R"),
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where on the right hand side we have the diffeological general linear group as in in the previous example.
The idea is that, for each n € N, we have an inclusion homomorphism, represented by the following
function on matrices:

I, : GL(n;R) — GL(n + 1;R); M +— diag(M, 1) := (]\04 (1)) ,

mapping each invertible n x n matrix M to the (n+ 1) X (n+ 1) matrix containing M in the upper left
corner, filled out with zeroes on the bottom row and rightmost column, and containing 1 on the final
entry. It can be shown that each I, is smooth with respect to the standard diffeomorphism diffeologies
on Diff(R™) and Diff(R"*!), and hence we get an infinite tower of inclusions in DiffeolGrp:

GL(1;R) — GL(2;R) — GL(3;R) — GL(4;R) —— GL(5;R) —— ---
The infinite general linear group is defined, as a group, as the colimit of this diagram:

GL(o0;R) := colién GL(n; R).
ne

This colimit is the union over each GL(n;R) (which is the colimit of the underlying sets), where we
identify each group with its image under the inclusion I,,. One may think of this as the space of infinite
square invertible matrices with only finitely many non-zero entries, and only finitely many entries on
the diagonal not equal to 1. The plots in the colimit diffeology on GL(0c0;R) are all locally of the form
I o B, where § is a plot of some GL(n;R), and I2° : GL(n;R) «— GL(0o;R) is the smooth inclusion.
From this, and since each GL(n;R) is a diffeological group, it follows that GL(oo; R) with the colimit
diffeology is also a diffeological group.

The above example shows that a specific colimit of groups, when endowed with its corresponding
colimit diffeology, again forms a diffeological group. In general, we conjecture that all (co)limits of
groups, when endowed with the (co)limit diffeologies constructed in Section 2.2.6, form the (co)limits
in DiffeolGrp. We suspect that the argument could be made analogously to the proof that the category
of topological groups is (co)complete. We will not attempt a proof here, so we leave it as an exercise
for the reader.

3.1.2 Smooth group actions

The notion of a smooth action of a Lie groupoid G on a smooth manifold M is an important no-
tion throughout Lie theory, or indeed differential geometry as a whole. It extends to diffeology in a
straightforward fashion:

Definition 3.10. Given a set X, recall that an action G ~ X of G on X is a function G x X — X,
usually written as (g,z) — ¢g-x = gz, such that the identity element of G acts trivially: 1g -z = =z,
and the action is associative in the following sense: ¢ - (h-xz) = (gh) - z. If G is a diffeological group,
and X itself has a diffeological structure, we say that the action G ~ X is smooth if the action map
u:G x X — X is smooth.

Example 3.11. Let X be a diffeological space, and let Diff(X) be its diffeomorphism group, equipped
with the standard diffeomorphism diffeology as in Definition 3.7. The evaluation map

ev: Diff(X) x X — X; (p, ) — @(2)
then defines a smooth action on X, since it is smooth with respect to the standard functional diffeology.

Example 3.12. We have already seen in Example 2.67 that the quotient space X /G of any action
G ~ X (regardless of smoothness) inherits a natural diffeology. Of course, this still works when the
action is smooth, and this is in fact necessary to define action groupoids, see Example 3.28.
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3.2 Diffeological groupoids

Groupoids, as their name would suggest, generalise the notion of a group. Simultaneously, they generalise
the notions of a space, actions, and equivalence relations. If the theory of groups is the theory of
symmetry, groupoids provide a framework for Unifying Internal and External Symmetry [Wei96]. One
way to think about groupoids is as a collection of objects, each with its own group of symmetries, and
a way to determine how these symmetries vary along the objects. We recall Appendix A for our basics
on category theory. In the most formal sense:

Definition 3.13. A groupoid is a small category>® in which every arrow has an inverse.

If we unpack this definition, we will find a more convenient point of view. Concretely, a groupoid
consists of two sets: Gy and G, together with five structure maps. A groupoid will be denoted G = Gy,
or just G, which is meant to stand for ‘groupoid’. Here Gy is the set of objects of the category, and
G is the set of arrows. The two arrows in the notation G = Gy represent the source and target maps
sre, trg : G — Gy, sending each arrow g : © — y in G to its domain src(g) = « and codomain trg(g) = v,
respectively. Besides these two, the three other structure maps are as follows: first, since every arrow
in G has an inverse, we have the inversion map inv : G — G, mapping g — ¢~ '. We also have a map
u: Gy — G, sending each object in the groupoid to its identity arrow: x +— id,. The fifth and final
structure map is the composition. This function is defined on the pairs (g, h) of composable arrows in
G. Specifically, this set is the fibred product

G XSGYS’”g G ={(9,h) € G x G :src(g) = trg(h)}.
The composition map is then denoted m : G xSGrS’trg G — G, sending each pair (g,h) — goh. The
structure maps of a groupoid fully capture its properties as a category, and the entire situation can be
depicted as:

src,trg
G aye G src
m
P
\ a /trg\l Go.

U&u/

In particular, besides the defining properties of a category, these structure maps satisfy:
1. For any pair of composable arrows g, h € G, we have src(g o h) = sre(h), and trg(g o h) = trg(g).
2. We have srcou = trgou = idg,.
3. The inversion map is involutive: inv o inv = idg.
4. And we further have src o inv = trg and trg o inv = src.

Example 3.14. Something special happens when we look at groupoids G = G whose space of objects
is just the singleton set Go = {*}. First of all, every pair of arrows in G becomes composable, since
there is no room for differing sources and targets. In fact the base space Gy completely disappears
from the structure maps. What we are left with is simply a group. The arrows of the groupoid are the
group elements, composition of arrows is group multiplication, and inversion of arrows is inversion of
group elements. In this sense, a groupoid is a “many-object group.” From the symmetry point of view,
a group captures the automorphisms of a single object, and a groupoid captures the (possibly varying)
automorphisms of a family of objects.

As already mentioned in Chapter I, it was one of the insights of Charles Ehresmann that traditional
mathematical structures can be internalised into other categories [Ehr59] (see also [Pra07]). Examples
of this are natural numbers objects, monoids, groups, and even categories themselves. This is because
the structure of a category, for example, can be captured entirely by the commutativity of diagrams

33Recall that a small category is one where both the collection of objects and the collection of arrows are sets.
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of its structure maps. And so it is for groupoids. The internalisation of a groupoid into a category C
means that Gy and G are objects in C, and each of the structure maps are arrows in C whose relations
are captured by suitable commutative diagrams. Essentially, it means that the above diagram depicting
each of the structure maps takes place entirely in the category C. If we pick C = Mnfd, this leads us
to the definition of a Lie groupoid:

Definition 3.15. A Lie groupoid is a groupoid G = Gy, such that Gy and G have the structure of a
smooth manifold, making each of the five structure maps smooth, and making the source and target
maps into submersions.

For extensive developments on the theory of Lie groupoids we refer to [Lan98; MMO03; Mac05], and
the lecture notes [Meil7]. See also [Lan06] for a survey of how Lie groupoids are used in noncommut-
ative geometry. The requirements that the source and target maps are submersions merely ensures that
the fibred product G XSGFS’“g G, representing the space of composable arrows, is itself a manifold. If this
were not the case, it would not make much sense to speak about the smoothness of composition. This
means that Lie groupoids are not in the most precise sense internal to Mnfd. Diffeological groupoids,
on the other hand, are immune to this problem, since the space of composable arrows can always be
furnished with the pullback diffeology. Diffeological groupoids are therefore truly the internal groupoids
in Diffeol:

Definition 3.16. A diffeological groupoid is a groupoid internal to the category of diffeclogical spaces.

Concretely, this means that it is a groupoid G == G such that the object space Gy and arrow
space G are endowed with diffeologies that make all of the structure maps smooth. The theory of
diffeological groupoids started nearly simultaneously with diffeology itself [Igl85]. This was not only
because diffeology started as a theory of groups, but also because diffeological groupoids capture the
theory of diffeological fibre bundles. The textbook account of diffeological groupoids is in [Diffeology,
Chapter 8].

Despite not being submersions, as we had to assume in the case of Lie groupoids, the algebraic
relations between the structure morphisms of a groupoid will ensure that the source and target maps
are not just ordinary smooth maps:

Proposition 3.17. The source and target maps of a diffeological groupoid are subductions.

Proof. The smooth map Gy — G sending each object to its identity arrow is a global section of the
source map, and hence by Lemma 2.121 the source map must be a subduction. Since the inversion
map is a diffeomorphism, it follows that the target map is a subduction as well. O

The same argument (but with Lemma 2.39) also shows that the identity section u : Go — G
has to be an induction. In this way, the diffeologies of the object- and arrow spaces of a diffeological
groupoid G =% Gy are tightly linked: we have D¢, = src,(Dg) and D, = u*(Dg). We will use this in
Example 3.25.

Definition 3.18. The morphisms of diffeological groupoids are exactly the smooth functors ¢ : G — H.
Here, a functor ¢ is smooth if its two underlying maps ¢¢ : Go — Hp and ¢; : G — H are smooth.
To ease notation, we will denote the function between the arrow spaces just by ¢1 = ¢. To keep our
notation light on parentheses, we might also write ¢ox and ¢g to mean ¢g(z) and ¢(g), for x € Gy and
g € G, respectively.

A natural transformation T : ¢ — 1) between two smooth functors ¢, : G — H is called smooth if
the underlying map Go — H : « — T is smooth.

Together, we get a strict 2-category DiffeolGrpd consisting of diffeological groupoids, smooth func-
tors, and smooth natural transformations. (Cf. Appendix A.2 for the definition of a 2-category.)

As diffeology fully subsumes smooth manifolds, so do diffeological groupoids capture Lie group-
oids. We therefore get a breadth of examples that we can generalise to our setting. To get a grip on
Definition 3.16, let us discuss some of them here. The simplest possible groupoid is the following:
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Example 3.19 (Unit groupoids). Any diffeological space X can be seen as a diffeological groupoid
X = X, by setting all of the structure maps to be the identity function idx on X. The composition
in X = X is then defined on the diagonal Ax = {(x,z) : « € X}, and maps m : (z,z) — x. The
interpretation of this is that X = X represents the category whose space of objects is X, and whose
only arrows are the identity arrows id, at each point x € X. This groupoid is called the unit groupoid.

Example 3.20 (Pair groupoids). Again start with a diffeological space X. We define the pair groupoid
X x X = X as follows. The idea is in a sense opposite to that of the unit groupoid. There, we have
allowed the bare minimum of categorical structure on a base space X. Here, we choose to have every
two points X connected by a unique arrow. Between every two points z,y € X there exists exactly one
arrow, which we denote by the pair (y,z) € X x X. In the tradition of the usual categorical notation,
we define src(y, ) = © and trg(y, x) = y, so that we can write the composition as (z,y) o (y,z) := (z,x).
This clearly defines a diffeological groupoid X x X = X.

Example 3.21 (Diffeological groups). Following the idea of Example 3.14, we see that any diffeological
group G can be seen as a diffeological groupoid G = {x}, also denoted G = 1.

Example 3.22 (Subgroupoids). Consider a set-theoretic groupoid G = Go. A subgroupoid is a subset
H C G of arrows in G that is closed under the composition and inversion of G. If Hj is the set of sources
of arrows in H, this gives a groupoid H = Hy. If G =% Gy is a diffeological groupoid, then a subgroupoid
H = Hj gets a diffeological structure by putting the subset diffeologies on Hy C Gy and H C G. With
these diffeologies, it is an easy exercise to see that H =% Hy becomes a diffeological groupoid. We may
refer to this diffeology on H = Hj as the subgroupoid diffeology induced by G = Gj.

Example 3.23. A natural way to obtain subgroupoids of G = G is to take a subset A C Gg of the
base space. We then get a groupoid G|4 = A consisting exactly of the arrows in G whose sources and

targets are elements in A:
G|a :=src H(A) Ntrg 1 (A).

This type of subgroupoid is special, because the inclusion functor is fully faithful. With the subgroupoid
diffeology, we might call G|4 = A the restriction of G to A, or the full subgroupoid generated by A.

Every diffeological groupoid carries a natural family of diffeological groups within it:

Definition 3.24. Let G = Gy be a diffeological groupoid. The isotropy group (or automorphism group)
at © € Gy is the collection G, consisting of all arrows in G from and to x:

G, = Homg(z,z) = stc ' ({z}) Ntrg* ({z}).

Clearly the isotropy groups define subgroupoids of G = G, and with the subgroupoid diffeology from
Example 3.22 they become diffeological groups. An isotropy group G, can be thought of as the smooth
internal symmetry group of the object x € Gy.

Example 3.25 (Discrete- and course groupoids). Consider a set-theoretic groupoid G = Gg, without
any diffeological (or other) structure. What happens if we apply the distinguished coarse- and discrete
diffeologies (Definition 2.23) to this groupoid? There are several possibilities to explore.

A natural one is to put the discrete diffeology on the space of arrows G, since then the source, target,
inversion, and composition maps are already smooth. What happens to the diffeology on G3? We have
seen that this diffeology is completely determined as the pullback u*(Dg). Therefore, a parametrisation
a U, — Gy is a plot if and only if u o « is locally constant, meaning that we can find an open
neighbourhood V' C U, around each point such that uo |y (t) = id,, for some = € Go. But the identity
section is injective, as the source map provides a left inverse, so we obtain «|y () = src(id,) = z, for all
t € V. This proves that the diffeology on the object space has to be discrete, as well. More generally, it
can be shown that the pullback of the discrete diffeology along an injective function is also discrete. The
entire groupoid therefore carries the discrete diffeology, from which it follows that also the unit section
is smooth, so that we get the discrete diffeological groupoid** G° = G§.

34In the literature the term ‘discrete groupoid’ is also sometimes used to refer to the unit groupoids from Example 3.19.
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Another possibility is to put not the discrete, but the coarse diffeology on G. in that case, it is very
easy to see that the diffeology on the object space Gy also has to be coarse. Namely, u*(Dg) is the
coarsest diffeology on Gy such that u is smooth. But, with respect to the coarse diffeology on G, any
diffeology on G would make u smooth, and so we get D¢, = u*(Dg) = Dg, . It is clear that, also with
these diffeologies, each of the structure maps is smooth, and we get the coarse diffeological groupoid
G* = Gf.

Definition 3.26. Let G = G be a diffeological groupoid. We can define an equivalence relation on
the object space by saying that two points x,y € Gy are equivalent if and only if they are connected by
an arrow g : ¢ — y in G. The equivalence classes are called orbits:

Orbg(z) := {y € Gy : g € G : src(g) = z,trg(g) = y} = trg(sre™ ({z})).

The orbit space (also known as the coarse moduli space) of the groupoid is the space Go/G consisting
of these orbits. We furnish the orbit space with the quotient diffeology, so that Orbg : Gy — Go/G is a
subduction.

Example 3.27. Let X be a diffeological space, and let R be an equivalence relation on X. We define
the relation groupoid X xp X = X as follows. The space of arrows consists of exactly those pairs
(z,y) € X x X such that zRy:

X xp X :={(z,y) € X x X : zRy}.

This gets a diffeological groupoid structure, being a subgroupoid of the pair groupoid X x X = X.

The orbit space X/(X xg X) of X xgp X = X is just the quotient X/R. We see that the unit
groupoids and pair groupoids from Examples 3.19 and 3.20 are special cases of relation groupoids. In
particular, the orbit space of the unit groupoid is X/X = X, and the orbit space of the pair groupoid
is X/(X x X) = {x}.

Another special case is the equivalence relation induced by a smooth surjection 7 : X — B. Then
the fibred product X xp X gets the structure of a diffeological groupoid as a subgroupoid of the pair
groupoid X x X =% X. In this groupoid, every two points in the same 7-fibre are connected by a unique
arrow, but the points in different fibres are disjoint. Hence the orbit space is X /(X xp X) = X /7.
Hence, if 7 is a subduction, the orbit space is diffeomorphic to the base B.

Example 3.28 (Action groupoids). Any smooth group action (Section 3.1.2) has a corresponding
diffeological groupoid, denoted G x X == X, that captures its structure. The idea is that the arrows in
this groupoid represent the mappings (g, x) — gz. Specifically, the space of arrows in this groupoid is
G x X, and the source and target maps are determined by the action:

sre,trg: G x X — X sre(g, x) == x, trg(g, x) := gz.

The set of arrows in G X X between two points =,y € X therefore represents the group elements g € G
such that gr = y. The composition in G x X is just the multiplication of the group:

(h7 gm) © (971‘) = (hg,x),

and the inversion can be obtained as (¢g,z)~! = (g7 !, gz). Each of the structure maps of G x X is built
up out of the smooth action map, the smooth multiplication map, and the smooth inversion map of the
group (and some projections), so it follows that G x X = X defines a diffeological groupoid. Tt is called
the action groupoid. In the case of a right action X v« H, we define its action groupoid analogously,
and denote it by X x H = X.

The isotropy group (G x X), of a point z € X represents the group elements g € G that act trivially:
gx = x. It is in fact the stabilizer group of the point . This shows that the group action G ~ X is free
if and only if each isotropy group in G x X is trivial.

The orbits of an action groupoid G x X == X are simply just the orbits of the group action in X.
Hence, the orbit space X /(G x X) is just the quotient X /G of the underlying group action.
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Example 3.29. As a particular example of an action groupoid, consider a diffeological space X, and
its space of diffeomorphisms Diff(X), equipped with the standard diffeomorphism diffeology (Defini-
tion 3.7). By definition, its evaluation map is smooth, and therefore defines a smooth action Diff(X) ~ X
by

ev: Diff(X) x X — X; (p, 1) — @(z).

Hence we get a diffeological groupoid Diff(X) x X = X. The isotropy group of a point € X is just
the group of diffeomorphisms that have x as a fixed point.

Example 3.30. Let G = G| be a diffeological groupoid, and for any object x € Gy denote by G, its
isotropy group. We can then consider the subgroupoid of G that only consists of elements in isotropy
groups:
IG = U Gw Q G.
z€Go

With the subgroupoid diffeology, this becomes a diffeological groupoid I == Gy called the isotropy
groupoid. This has been studied in [Bos07, Example 2.1.9] in the context of Lie groupoids. Note that
if G = Gy is a Lie groupoid, then generally I is not a submanifold of G, so the isotropy groupoid may
no longer be a Lie groupoid.

Example 3.31. The thin fundamental groupoid (or path groupoid) II*""(M) of any smooth manifold
M is a diffeological groupoid [CLW16, Proposition A.25].

Example 3.32. The groupoid of ¥-evolutions is a diffeological groupoid [G119, Section 11.2.2].

3.3 Diffeological fibrations
3.3.1 The structure groupoid of a smooth surjection

The following describes a generalisation of the idea of a frame bundle (or general linear groupoid) of a
smooth vector bundle. This is a groupoid that describes the linear isomorphisms between the fibres of the
bundle. In the case that the vector bundle has finite-dimensional fibres, this is in fact a Lie groupoid. In
the case that the fibres are infinite-dimensional, the frame groupoid is no longer strictly a Lie groupoid.
Here we will generalise the idea of a frame groupoid to an arbitrary smooth surjection 7 : X — B. This
is the concept that lies at the heart of the theory of diffeological fibre bundles [Diffeology, Chapter 8].
The question of frame bundles in diffeology will be discussed briefly in Section 3.4.

Definition 3.33. Consider a smooth surjection 7 : X — B, which we think of as template for a bundle.
For any given base point b € B, we denote the m-fibre by X}, := m=1({b}). The structure groupoid
G(7) = B of 7 is defined as follows. The space G(w) of arrows is the collection of all diffeomorphisms
between the fibres of 7:
G(r):= [ J Diff(X,, X,),
a,beB

where each fibre X;, C X is furnished with the subset diffeology. We define the source and target maps
by projecting a diffeomorphism f : X, — X} to src(f) := a and trg(f) := b. Composition in G(7) is
just the composition of the diffeomorphisms between the fibres, as is the inversion.

Besides the groupoid structure maps, the structure groupoid G(n) = B also carries an evaluation
map. As in Section 2.4.1, we have the maximal domain of evaluable pairs, which here can be written
as a fibred product:

EXC=G(m) x5 X = [ dom(f).
feG(m)

The evaluation map is then defined as usual:
ev: &Y — X; (f,x) — f(x).

We want to construct a canonical groupoid diffeology on G(n) = B such that the evaluation map
becomes smooth. This is done in [Diffeology, Article 8.7], which we describe here below. Since the
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proofs of the results in this section are so similar to the ones we have encountered in Section 2.4, we
will skip over some of them here.

Construction 3.34. To define a diffeology on G(7) we mimic the construction of the standard func-
tional diffeology as described in Section 2.4. Given a parametrisation Q2 : Ug — G(7), we introduce the
following notation:

Q t trgo
&GS i=Uqn x5 X and &8 i=Uq x 5% X.

These spaces contain, respectively, the pairs (¢,z) € Ug x X such that « € dom(€(t)) and = € im(2(¢)).

. . . . t
On €3¢ it makes sense to define expressions such as ev o (Q x idy), while on £3* we can define
evo (27! xidy), where Q7! := inv o Q is the point-wise inverse. These domains fit into commut-

ative diagrams of the sorts

Q><idx

T2 T ~Ixi v
ey e —r s x gl D g e,
Prll lpfl JT" and prll lprl l‘rr
UQ Q G(ﬂ—) src B UQ ? G(Tr) Tg) B.

We define a collection D, of parametrisations on G() through the following two conditions. We say a
parametrisation Q : Uy — G(7) is in D, if and only if the following two conditions are satisfied:

1. The map (src,trg) o Q: Ug — B x B is smooth.
2. The maps evo (Q x idx) : E5° — X and evo (Q! x idy) : €58 — X are smooth.
Lemma 3.35. The collection D, defined in Construction 3.34 is a diffeology on G(m).

Proof. Note that we can treat both conditions separately, since D, is just the intersection of the para-
metrisations that satisfy either one. The first condition is just the defining characterisation of the
pullback diffeology along the map (src,trg) : G(m) — B x B, of which it is known that it defines a
diffeology. It hence suffices to show that the second condition defines a diffeology. This follows from an
argument that is closely analogous to Lemma 2.94. O

Lemma 3.36. The diffeology D, on G(w) makes the evaluation map smooth.

Proof. This follows immediately from the decomposition evo (2 x a) = evo (2 x idx) o (idy, X a) and
Lemmas 2.33 and 2.61. O

Lemma 3.37. The diffeology D is a groupoid diffeology for G(m) = B.

Proof. We need to show that each of the structure maps of G(7) = B become smooth when G(x) is
equipped with the diffeology D,. The first condition in Construction 3.34 directly ensures that the
source and target maps are smooth. That inversion is smooth follows immediately from the second
condition. We are therefore to show that the composition and unit maps are smooth.That composition
is smooth follows since it is just the composition of smooth maps, which we saw was smooth in Propos-
ition 2.88. Lastly, let « : U, — B be a plot of the base space. We need to show that uo« : U, — G(m)
is a plot in D,. First, note that srcouoa = a and trgouoa = «, so that the first condition is fulfilled.
For the second condition, it is easy to see that ev o ([uo «] x idx) = pry, which is also smooth. Every
structure map of G(mw) = B is thus smooth, which was to be shown. O

Definition 3.38. The diffeology D, on G(w) is called the structure groupoid diffeology. We always
assume that the structure groupoid of a smooth surjection 7 : X — B is equipped with this diffeology.
The structure groupoid diffeology is the coarsest groupoid diffeology on G(w) = B such that the
evaluation map is smooth.

This definition is the key ingredient of the theory of diffeological fibrations [Diffeology, Chapter 8.

73



Example 3.39. Suppose that 7 : X — B is a bijection. Then each fibre X, is just a singleton
7 1({b}) = {zp}, and Diff(X,, X}) contains the unique function f : z, + zp. There is then a diffeo-
morphism G(7) = B x B, and the structure groupoid reduces to the pair groupoid of B (Example 3.20).

Example 3.40. Consider a fixed diffeological space F', and set @ = pr; : B x ' — B. The fibres of
this surjection are just (diffeomorphic to) F, so the arrows in the structure groupoid G(pr;) = B are
just diffeomorphisms of F'.

3.3.2 Diffeological fibre bundles

The theory of diffeological fibre bundles was first developed in the thesis [Igl85], motivated by the
example of the irrational torus (Section 2.3). A review of the theory of diffeological fibre bundles is
[Diffeology, Chapter 8].

Definition 3.41. Let G = Gq be a diffeological groupoid. The map (src, trg) : G — Gy x Gy is called
the characteristic map. A diffeological groupoid G = Gy is called fibrating (or a fibration groupoid) if
its characteristic map is a subduction.

Even though the source and target maps themselves are subductions (Proposition 3.17), this does
not imply that the characteristic map is a subduction. In fact, the characteristic map of any fibrating
diffeological groupoid is necessarily surjective, so that the groupoid has only one orbit. It is not hard
to define a diffeological groupoid that has multiple orbits. The central definition of diffeological bundle
theory is then the following:

Definition 3.42. A smooth surjection 7 : X — B is called a diffeological fibre bundle (or diffeological
fibration) if its structure groupoid G(7) = B is fibrating.

It is remarkable that the whole notion of diffeological fibre bundles (and hence also of usual smooth
fibre bundles) is captured in such a succinct definition. It says nothing explicitly about local triviality
or the relation of the fibres. Remark to that extent that diffeological fibre bundles are indeed in general
not locally trivial. This is actually a welcome feature of the theory, because it means that we can
treat examples like the irrational torus Ty as nicely behaved bundles, even though their topology is
trivial so notions of local triviality are hopeless. On the point about fibres, we can still see that all
fibres of a diffeological fibration have to be diffeomorphic. If 7 : X — B is a diffeological fibre bundle,
then the characteristic map of its structure groupoid G(7) = B is subductive, and hence surjective.
In particular this means that there exists an arrow in G(w) between any two points a,b € B, which
exhibits the diffeomorphisms between each of the fibres.

Despite the fact that local triviality plays no explicit réle in the definition of a diffeological fibre
bundle, we can nevertheless characterise them by a weaker notion of local triviality. This is sometimes
more practical, and usually more intuitive. For that we introduce the following hierarchy of notions:

Definition 3.43. Let F be a fixed diffeological space, referred to as the fibre. The trivial diffeological
fibre bundle with fibre F' is the projection pr; : B x F' — B. It is clear from Example 3.40 that this is
a fibration. We say a smooth surjection 7 : X — B is trivial of type F if there exists a diffeomorphism
® : X — B x F such that the following triangle commutes:

X —* s BxF

xB. %

A smooth surjection 7w : X — B is called locally trivial of type F' if there exists a D-open cover
(Ui)ier of the base space B, such that each restriction 7|,-1y,) : @~ *(U;) — Uj is trivial of type F.

Finally, a smooth surjection 7 : X — B is called locally trivial of type F along the plots if for every
plot a : U, — B of the base space, the pullback projection a*X := U, x5" X — U, is locally trivial of
type F.
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Theorem 3.44 ([Diffeology, Article 8.9]). A smooth surjection m : X — B is a diffeological fibre
bundle if and only if there exists a diffeological space F such that 7 is locally trivial of type F' along the
plots.

Any locally trivial bundle is locally trivial along the plots, but the converse is not true. This shows
that diffeological fibre bundles are more general than locally trivial bundles. Even though diffeological
fibre bundles are not locally trivial, Theorem 3.44 allows us to prove that they are still stronger than
‘submersions’:

Proposition 3.45. Fvery diffeological fibration is a local subduction.

Proof. Suppose that 7 : E — B is a diffeological fibration, of fibre type F' € Diffeol. Pick an arbitrary
pointed plot « : (Uy,0) — (B, 7(x)) of the base space. The pullback a*E — U is then locally trivial, so
we can find an open neighbourhood 0 € V C U, and a diffeomorphism ® : «*E|y — V x F such that

pr; o ® = pry|yx, B, where we note that o*E|y =V ><aB‘V’Tr E. Clearly we have (0,z) € o*E|y, so we
get a special element ®2(0,z) =: £ € F in the fibre. If ¥ is the inverse for ®, we get a plot

(idy ,conste) pr2|v><BE
_—

B:V VxF—Y o*Bly X

of X. In the way that £ € F is chosen, we get that 5(0) = x € E. By definition of the pullback a*E|y
we see that 7o prylyx 5 = a|v o pry|vx s e, from which it follows that «|y = 7o 3. O

3.4 A definition of smooth linear representations for groupoids

In this section we propose a definition of smooth linear representations for diffeological groupoids. We do
not know if and how this theory can be applied. One possible use could be for the description of infinite-
dimensional representations of groupoids (cf. [Bos07]), since diffeology allows for frame groupoids of
infinite-dimensional vector bundles. Recall first the definition of a linear representation of a Lie group
G. If V is a (usually complex) finite-dimensional vector space, then its general linear group GL(V)
is a Lie group. A linear representation then associates to every element g € G a linear isomorphism
p(g) : V — V, forming the “linear representation” of the group element g on V. A linear representation
of the entire group G is then a smooth group homomorphism p: G — GL(V).

This definition has a natural extension for Lie groupoids, which can be explained as follows. Thinking
of a groupoid as an ‘interlinked’ family of groups, we see that a linear representation of a Lie groupoid
G = Gg should, for every object z € Gy in the base, determine a linear representation p of the isotropy
group G, on some vector space F, (). To preserve the smooth behaviour of the groupoid, these vector
spaces should be the fibres of some vector bundle £ — B, and pg : Gg — B should be some smooth
function that associates to each z € Gy such a vector space in a smooth way. For every arrow g € G
in the groupoid, p(g) should then define a linear diffeomorphism between E,(sc(g)) and E,(trg(g))- T
respect the ‘interlinkedness’ of the groupoid, this assignment p should be functorial, and the target
of this functor is the frame groupoid GL(E) = B. The arrows in this Lie groupoid are exactly the
linear isomorphisms between the fibres of E — B. With this, we can state the definition of a linear
representation of a Lie groupoid®®:

Definition 3.46. Let G = G be a Lie groupoid, and let 7 : E — B be a smooth finite-dimensional
vector bundle (in the usual sense of smooth manifolds). A smooth linear representation of G over E is
a smooth functor p : G — GL(E).

If m: E — B is no longer finite-dimensional, for example as is the case with some bundles of Hilbert
spaces, then GL(F) = B is no longer a Lie groupoid, and it is not straightforward what it means for p
to be smooth. Diffeology can provide answers to these problems.

To start, we need to clarify what we mean by a diffeological vector bundle. Given the discussion in
Section 3.3.2, it is possible to define such a notion by taking a diffeclogical fibre bundle 7 : E — B whose

35We use the notation E — B for a bundle with some form of linear structure, while we write X — B for subductions
or arbitrary diffeological fibre bundles.
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fibres have a linear structure, and whose local trivialisations along the plots are linear diffeomorphisms.
In this definition, if B is a smooth manifold and the fibre type F' is some R", it can be shown that this
definition returns the usual notion of smooth finite-dimensional vector bundles on manifolds. We might
call such objects diffeological vector bundles. More recently, an alternative and more general approach
to the definition of diffeological vector bundles has been proposed [Per16]. This alternative definition,
which we state below, can mainly be motivated from examples of diffeological tangent bundles. There
are examples of diffeological spaces X where the internal tangent bundle TX — X is not a diffeological
vector bundle in the above sense’®. One main obstruction is that the fibres of TX — X can vary
along the base. An example of this is the cross (Example 2.18), where the internal tangent space
at the origin is two-dimensional, but is one-dimensional everywhere else [CW14, Section 3.3]. This
contradicts the fact that the fibre type of a diffeological fibre bundle is unique, and also appears to
contradict Proposition 3.45.

The following is a definition for this more general class of pseudo-bundles, which is able to handle
vector bundles of varying dimension. We adopt the terminology proposed by [Per16]. The definition
below is equivalent to the one for regular vector bundles in [Vin08], and to the one for vector spaces
over difeological spaces in [CW14, Definition 4.5].

Definition 3.47. A diffeological vector pseudo-bundle is a smooth map 7 : E — B, where every n-fibre
has the structure of a vector space, such that:

1. The addition map E x5" E — E : (v,w) — v + w is smooth.
2. The scalar multiplication map R x E — E : (A, u) — Au is smooth.

3. The zero section O : B — E is smooth.

We note that the existence of a smooth zero section w o O = idg ensures through Lemma 2.121
that the projection 7 is a subduction, and hence that B = FE/x. If 7 : E — B is a vector pseudo-bundle,
each 7-fibre Ej, := 7~ 1({b}) gets the structure of a diffeological vector space (Example 2.19) from the
subset diffeology. It therefore makes sense to talk about smooth linear maps between the fibres of .
The motivating example is the following;:

Example 3.48. The internal tangent bundle TX — X of any diffeological space is a vector pseudo-
bundle. The diffeology on T'X is in fact tailored to guarantee this, see [CW14, Section 4].

We introduce the following interesting class of (generally infinite-dimensional) vector pseudo-bundles:

Construction 3.49. Let 7 : X — B be a smooth surjection, not necessarily carrying any linear
structure. We construct a vector pseudo-bundle wp : CF(X) — B, where each fibre is just the vector
space C*°(X,) of smooth real-valued functions on the 7-fibre X;. We have seen in Example 2.91 that,
with the standard functional diffeology, these are diffeological vector spaces.

For the construction of CF(X), we can use the terminology of parametrised mapping spaces in
Section 2.4. Namely, if we consider the smooth projection map R x B — B, then we get a parametrised
mapping space

O (X) = CF (X.R x B) = [[ C®(X,),
beB
where in the last equation we have identified R x {b} 2 R and hence C°(X,, R x {b}) = C*>°(X;). We
equip CF(X) with the standard parametrised functional diffeology from Definition 2.95, so that the
projection pry : C%(X) — B and the evaluation map evp are smooth. Note that, as a consequence, the
subset diffeology of each subspace C*°(X}) C CF(X) coincides with the standard functional diffeology,
turning them into diffeological vector spaces. We write mp := pry, and claim that

mp:CF(X) — B

36We refer to [CW14] for a detailed construction of the internal tangent bundle. Note that we use the notation ‘17,
with a hat pointing inwards, while [CW14] use the notation ‘T%s’,
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is a diffeological vector pseudo-bundle, where the addition and scalar multiplication are induced fibre-
wise by the maps

+p 1 C°(Xp) x CF(Xp) — C%°(Xy),
my : R x C®(Xp) — C(Xy),

respectively, and the zero section is composed of the zero functions 0, = constg : X — R. Concretely,
this means:

+5: O (X) x57" CF(X) — CF(X); (b, £),(b,g9)) — (b, +u(f,9))
mBRXC?(X)HC%O(X)v ()‘a(baf))}—)(bamb(Aaf))v
OB:B—>C%O(X); bl—>(b,0b).

We need to show that 7p : CF(X) — B satisfies all three conditions of Definition 3.47, which just
means that the addition, scalar multiplication, and the zero section should be smooth. We check these
in turn.

To show that the fibre-wise addition is smooth, take two plots Q and ¥ of the standard parametrised
functional diffeology, defined on the same Euclidean domain U. Recall that the plots of this diffeology
are characterised in Lemma 2.94. First, it is easy to check from the definition that

prio+po(Q,V)=pryoQ=pr oV,

and the right-hand side of this equation is smooth. This also shows that the domain on which the
function evp o ([+5 o (2, ¥)] x idx) is defined is U x2™ X. We can then calculate for an element
(t,z) in this domain:

evp o (H‘B o (Q, \I/)] X ldx) (t,(E) =e€evo (+w(x)(Q(t)7\I}(t))7‘T)
=Q(t)(z) +r ¥(t)(x)
=+go(evgo (Q xidx),evp o (¥ x idy)) (¢, z).

On the right hand side everything is smooth, since both {2 and ¥ are plots, and the addition +r on R
is smooth. This proves that the fibre-wise addition for C% (X)) is smooth.

Second, we prove that scalar multiplication is smooth, which follows from a similar calculation. Let
us take a plot @ : U — R, and the same plot Q : U — CF(X) from before. Then it follows from the
definition of mp that

pr; omp o (a, Q) = pry o

which is smooth because € is a plot. Next, for any (t,z) € U xrglﬂ’w X we find
evp o ([mp o (o, Q)] x idx) (t, ) = ev o (mr(z)(a(t), (1)), 2)
a(t) - Q(t)(z)

mg (a(t), Q(t)(z))
=mpg o (wo pry,evp o ( x idx)) (¢, x).

Again, the right hand side is smooth, and we can conclude that the scalar multiplication map mpg of
C¥(X) is smooth.

Lastly, we need to check that the zero section Op : B — C%(X) is smooth. It is clear that
pr; o 0p = idp, and for a plot « : U, — B we calculate for (t,z) € U, x3" X:

evp o ([0 o a] xidx) (t,2) = evp(0a), r) = 0 = consty(t, ),

which is evidently smooth as a function of (¢, x).

In conclusion, for any smooth surjection 7 : X — B we have a diffeological vector pseudo-bundle
mg : CF(X) — B, and the fibres are exactly the diffeological vector spaces C*°(X;) of real-valued
smooth functions on the 7-fibres (with the standard functional diffeology).
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Since the fibres of a diffeological vector pseudo-bundle are diffeological vector spaces, it makes sense
to consider linear diffeomorphisms between the fibres. This allows us to make the following definition,
generalising the traditional notion of a frame groupoid from the Lie groupoid theory:

Definition 3.50. Let 7 : E — B be a diffeological vector pseudo-bundle. We define the frame groupoid
(also known as a general linear groupoid) GL(E) = B of 7 as the subgroupoid of the structure groupoid
G(7) = B (Definition 3.33) containing the linear diffeomorphisms between the fibres of 7. With the
subgroupoid diffeology, this turns GL(E) = B into a diffeological groupoid such that the evaluation
map is smooth:

ev:GL(E) x3°" E — E; (p,e) — (e).

We can now extend Definition 3.46 to the diffeological world:

Definition 3.51. A smooth linear representation of a diffeological groupoid G = Gy over a vector
pseudo-bundle 7 : E — B is a smooth functor p : G — GL(E). Unpacking this definition, we see that
a representation induces a smooth groupoid action G E (Definition 4.1), where the action is defined
by the evaluation of the representation: g-e:= p(g)(e). In particular, the maps g- — = p(g) are linear.

Using the construction of the infinite-dimensional pseudo-bundle in Construction 3.49, we can con-
struct a smooth left regular representation:

Example 3.52 (Smooth left regular representation). For any diffeological groupoid G = G, we shall
define its left reqular representation pr, : G — GL(Cg (G)). To do this, we first need to exhibit the
vector pseudo-bundle I : Cg (G) — Go. This is just the vector pseudo-bundle of real-valued smooth
functions defined in Construction 3.49, defined for the map # = trg : G — Gy. The fibres of the
target map are denoted G® := trg~!({x}), for an object + € Gy. The fibres of the pseudo-bundle
IT: CF (G) — Gy are then the spaces C'°°(G”) of smooth real-valued functions on the space of arrows
whose target is x. To define the smooth functor

pL: (G = Go) — (GL(CG, (G)) = Go),

we set the base arrow as (pr)o := idg,. Then, for any arrow g € G, we are supposed to define a linear
diffeomorphism py,(g) : C=(G5¢9)) — C>°(G*2(9)). This is done as follows. A function f € C>(Gs"))
is defined on the space of all arrows in G whose target is src(g). We then see that f(g~!oh) is a function
that is defined for all arrows h € G such that trg(h) = src(g™!) = trg(g), as desired. We can therefore
define a linear map:

pulg) : C(G™0) — CF(GHD): fro flg™ o).

Using arguments similar to that in the proof of Construction 3.49, we find that py,(g) is smooth, since the
groupoid inversion and composition are smooth. An elementary calculation shows that this assignment
is functorial: pr(goh) = pr(g) o pr(h), pr(idz) = idgee(g=), Which also immediately gives that each
pr(g) is a linear diffeomorphism. Together, this proves that pr(g) is an arrow in the frame groupoid
GL(Cg (G)), and we have defined a genuine functor pz, : G — GL(Cg, (G)). We are therefore left to
show that py, itself is smooth. Recall from Construction 3.34 the two defining conditions for plots on a
structure groupoid. For an arbitrary plot « : U, — G of the arrow space, we then need to show that

1. The map (srcgr, trggr,) © pr o a: Uy, = Go x Gy is smooth.

2. The map
evo (lproa] xideg @) : Ua xgeell 0g (G) — C&.(G),

and a similar expression for the point-wise inverse pil o a, are smooth.

Here we use the notation srcg,trgg : G — Go and sregr, trggy, @ GL(CE (G)) — G to distinguish
between the source and target maps of the two groupoids.
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Proof. (1). We have already seen that py, is functorial, so that it intertwines the source and target maps
of the two groupoids. This gives:

sreqr © pr, o a = (pr)o o srcg o a = idg, o sreg o @ = sreg o

which is smooth since « is a plot. Together with a similar computation for the target map trgq;,, we
get that (srcqr, trgar,) © pr © a = (sreg, trg) o o, which is smooth.
(2). There are two steps in proving that ev o ([pr o a] x idgg (@) is smooth. First, we rewrite the
0

expression into a simpler form. Then, we need to show that it defines a smooth function on Cg (G),

which has yet a different functional diffeology. For this, we need to take a plot h: V' — U, and a plot {2 :

V — Cg; (G) such that stcgoaoh = IIof), and then we need to prove that evo([proa]xidce ())o(h, )
0

satisfies the conditions of the standard parametrised functional diffeology in Definition 2.95.
To start, take a pair (¢, (z, f)) € Ua X5 ¢ HC’E’;OO(G), meaning that srcg(a(t)) = z, and f € C*°(G*).
Let us abbreviate @, :=evo ([pr o a] X 1dc%c (¢))- We then calculate:
0

Dalt, (@, /) = evo (Jpr o a] xidog @) (& (@, f)

= ev(pr(a(t), (2, f)) (®)
(trgg (a(t)), pr(a(t))(f)) € Cg, (G),
where now pr,(a(t)) : C=(G*) — C®(G™8c(@(®)), Next, with the two plots h and © as above, we need

to show that ®, o (h,Q) satisfies the two conditions of a plot in the standard parametrised functional
diffeology. For that, looking at equation (#), we find

pry o @, 0 (R, Q) =trggoaoh,
which is evidently smooth. Second, we need to verify that
evo ([Pyo (h, Q)] xidg): V ngcah,trgG G_R

is smooth. For that, let (s,9) € V x G be an element in the domain of this map, meaning that
trgg(a(h(s))) = trga(g). If we write Q@ = (Q1, ), where Q1 : V — Go and Qo : V' = U, g, CF(G),
then we see that pr,(a(h(s))) : C=(G()) — C®(G*8c(9)), 50 that the expression pr,(a(h(s)))(Q2(s))
is a well-defined element in C*°(G*2¢(9)). Again using equation (#), we calculate:

Do (h(s),$2(s));
)

ev ( 9)
ev ((trgg (a(h(s))), pr(a(h(s)))(Q2(s))) , 9)
= pr (a(h ()))( 2(s))

“log

(9)
= Qs(s) (a(h(s)) " og)
=evo (X 1dg)(s,a(h(s))71 0g).

evo ([®, 0 (h, Q)] xidg) (s,9) =

On the right hand side we have the expression ev o (€ X idg), which is guaranteed to be smooth since Q
is a plot in the standard parametrised functional diffeology on Cg’ (G). The argument is clearly also a
smooth expression in terms of (s, g), since both o and h are smooth, and the groupoid operations of G are
smooth. This proves that ®,0(h, Q) is a plot for CZ’ (G). We can repeat these calculations for the point-
wise inverse @' = p;' o, since we already know that each map pr,(a(t)) is a linear diffeomorphism,
and moreover that the point-wise inverse Q! is also smooth. We can therefore conclude that ®, is a
plot for the structure groupoid diffeology on GL(Cg’ (G)), and since throughout our calculations o was
an arbitrary plot of G, we have proved that pr, : G — GL(Cg}) is a smooth functor. O
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3.4.1 A remark on ‘VpB-groupoids’
Recall the definition of a VB-groupoid for Lie groupoids from [Mac05], or [GA10, Section 3]:

Definition 3.53. Let G = Gy and ' = E be two Lie groupoids. A smooth functor 7 : I' = G is
called a VB-groupoid if the two smooth functions m; : I' = G and mp : E — G between arrow- and
base spaces are smooth vector bundles, and such that the source and target maps define smooth vector
bundle morphisms:

N 5 r -, g
I
G~ Go, G T Go.

Superimposing these two diagrams, a VB-groupoid is often depicted as:

I —=FE

m| |

G —= Go.

A VB-groupoid is a vector bundle object in the category of Lie groupoids, or equivalently, a groupoid
object in the category of smooth vector bundles. This explains the terminology. We can extend this
definition almost verbatim to the diffeological setting, using vector-pseudo bundles (Definition 3.47)
instead:

Definition 3.54. Let G = Gy and I' = E be two diffeological groupoids. A smooth functor 7 : I' = G
is called a VpB-groupoid if the two smooth functions 71 : I' = G and my : E — G are vector pseudo-
bundles, such that the source and target maps define smooth vector pseudo-bundle morphisms. We use
the term ‘VpB-groupoid’ to reflect the fact that we are using vector pseudo-bundles.

An important example of a VB-groupoid in the Lie groupoid case is the tangent groupoid, see e.g.
[Meil7, Section 4.4]:

Example 3.55. Let G = Gy be a Lie groupoid, and consider the tangent bundles ng : TG — G
and 7g, : TGy — Gp (in the usual sense). Differentiating the structure maps of G = Gy then gives
rise to a Lie groupoid TG = TGy, with source and target maps dsrc,dtrg : TG — TGy, unit map
du: TGy — TG, inverse dinv : TG — TG, and composition

dm : T(G x50 G) 2 TG x5 "8 TG — TG.

The groupoid TG = T'Gj is called the tangent groupoid associated to G = G{. The canonical projection
maps m¢ and 7g, induce a functor 7 : T'G' — G, which forms the tangent VB-groupoid:

TG —= TGy

ml |0

G —/—= Go.

A VB-groupoid over a Lie groupoid G =% Gy can be seen as a geometric model for a “representation
up to homotopy” [GA10], in which case the tangent groupoid TG = TGy corresponds to the adjoint
representation. Note that the adjoint representation of a groupoid is not canonically defined, since the
expression ghg~! only makes sense when src(g) = trg(h) = src(h). Under this correspondence, the
tangent groupoid is a canonical geometric model of the adjoint representation (up to homotopy). The
tangent VB-groupoid moreover encodes the Lie algebroid of G = G, which can be obtained as the
kernel of the source map srcr over the base G (cf. [dHo12, Example 3.3.4]).

By drawing an analogy to this situation to diffeology, we can try to define a notion of tangent VpB-
groupoid for a diffeological groupoid G = G, serving as a model for the adjoint representation, and
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hence for a “diffeological algebroid.” The most immediate problem that arises is that, in general, the
internal tangent bundle of the fibred product G xZZ’trg G does not seem to decompose into a fibred
product of internal tangent bundles, as in the case for smooth manifolds above. This relates to the fact
that internal tangent bundles exhibit pathological behaviour around certain subsets, where the tangent
space of a subset can have higher dimension than that of the ambient space. It is not clear if these
problems can be resolved, and so, if a general internal tangent groupoid can be constructed. If such a

thing exists, it should be an example of a VpB-groupoid.
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Chapter IV
Diffeological bibundles

In this chapter we aim to generalise the theory of Morita equivalence of Lie groupoids to the diffeological
setting. For this we need to define and study the diffeological analogues of: Lie groupoid actions,
principal groupoid bundles, and principal groupoid bibundles. The theory appears almost identical to
the Lie case, save for the fact that we need to replace the word ‘submersion’ by a suitable diffeological
concept. We choose here for subductions, motivated below. Having shown that subductions behave
sufficiently like submersions—and Section 2.6 served that purpose for us—all of the proofs for Lie
groupoids can be copied almost verbatim to the diffeological case. But due to the flexibility of diffeological
spaces many of these proofs can be dissected and pulled apart, which make our lemmas much shorter, and
some wouldn’t even make sense in the Lie case. An upside to this—besides generalising to diffeology—is
that we obtain a clearer view of which of the technical conditions are exactly necessary along each step
of the way, and it provides an account of the theory with proofs that contain almost every conceivably
relevant detail. We hope that, if not the generalisation to diffeology, this is something that will be a
nice complement to the existing literature.

The main results of this chapter can be summarised as follows. We define notions of groupoid
bundles and -bibundles for diffeological groupoids. This includes a generalisation of the notion of
a principal groupoid bundle. We generalise the Hilsum-Skandalis tensor product (what we call the
balanced tensor product) of two bibundles, which forms the basis of the composition of bibundles in a
bicategory DiffeolBiBund. This is a generalisation of the bicategory LieGrpd;p of Lie groupoids
and left principal bibundles (and biequivariant maps). The construction of LieGrpd; p is discussed in
detail in [Blo08]. Note that this Lie category is as general as it could get: there is no larger bicategory
of arbitrary bibundles, since the construction of the Hilsum-Skandalis tensor product rests crucially
on the left principality of the Lie bibundles. For diffeological bibundles the Hilsum-Skandalis tensor
product can be defined in a more general sense (fundamentally due to the fact that pullbacks and
quotients have natural diffeological structures), which is why we get a bicategory of all diffeological
bibundles (as opposed to just left principal ones). Next, we generalise the result that two Lie groupoids
are Morita equivalent if and only if they are equivalent (i.e. weakly isomorphic) in the bicategory
LieGrpd; p. This result holds verbatim for diffeological groupoids in the bicategory DiffeolBiBund;p
of left principal diffeological bibundles. Our main theorem (Theorem 4.69) generalises this further
to the larger bicategory: a diffeological bibundle is biprincipal if and only if it is weakly invertible in
DiffeolBiBund.

Lie groupoids provide geometric models for differentiable stacks, where two Lie groupoids that are
Morita equivalent represent the same stack. In this sense we could say a diffeological groupoid is a
model for a “diffeological stack,” which lives somewhere in between arbitrary stacks on manifolds and
differentiable stacks (represented by Lie groupoids). See also [WW19]. As far as we know, the theory
of diffeological groupoid bundles and bibundles has not appeared elsewhere. Diffeology is used in the
theory of Lie groupoid bibundles and differentiable stacks in [RV16; Wat17], but they do not treat the
general theory as we do here. The only place we could find that treats diffeological groupoid actions
is [KWW19]. Seth Wolbert (one of the authors of that paper) has told the present author through
private email that he is researching diffeological stacks, in which we suspect the theory of diffeological
bibundles might make an appearance.

We should also mention the work [MZ15], where the authors treat groupoid bibundles internal to
a category with a Grothendieck pretopology. We recommend this for a general discussion of groupoid
bibundles, of which the authors provide a most complete and self-contained account. We do not know
to what extent one of our intermediary results (Theorem 4.62) follows from their [MZ15, Theorem
7.23]. They do treat various types of manifolds in [MZ15, Section 9.3], where they use a Grothendieck
pretopology defined by submersions, and it takes some work to show that all constructions work in
that setting. However, their bibundles are all right principal. This means that one of our main results
(Theorem 4.69) lies genuinely outside of the scope of their paper. We suspect that some of the other
work in this thesis could partly be realised from their theory if we define a Grothendieck pretopology on
Diffeol by the subductions, cf. [Wal09, Proposition A.2.3] and [Car13]. We would have to show that
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this pretopology satisfies all of their assumptions. We also do not know if Theorem 4.69 is unique to
diffeology, or if the results of [MZ15] could be generalised to a bicategory of bibundles with no further
assumptions on principality. For groupoids on manifolds this will not work (for reasons mentioned
above), but we suspect it will work for a bicategory of topological groupoid and continuous bibundles.

More non-diffeological literature on groupoid bibundles can be found in: [HS87; Mrc96; Mr&99;
Lan01la; Moe02; MMO03; Lil15]. For Lie groupoids, [Blo08] provides a complete and succinct account.

4.1 Diffeological groupoid actions

The fundamental definition for the upcoming theory is that of a groupoid action. These generalise group
actions, and have already been studied extensively for the case of Lie groupoids. See e.g. [Moe02;
MMO03; MMO05; Mac05; Bos07]. Also in [Lil5, Section 1.4] for a 2-categorical context, and in
[Blo08; dHo12] and [Carl1, Section 1.2.5] in the context of differentiable stacks.

The idea of a groupoid action is a natural generalisation of a group action. To motivate the defin-
ition, consider a groupoid G =% Gy, and consider its left composition (or left multiplication) Ly by an
arrow g € G. This is supposed to be an action of the groupoid on itself, sending an arrow h € G to
Ly(h) := goh. However, this is only defined if src(g) = trg(h). If this holds, then the action ‘moves’
the target of h to the target of g:

trg(Ly(h)) = trg(g o h) = trg(g).

In this sense, we see that the action of the arrow g € G is a way to move objects that are ‘situated’
around its source to an object that is situated around its target. The action of a groupoid G = Gy on
an arbitrary space X should embody this idea. This can be accomplished by equipping the space X
with an arrow [x : X — Gy, so that it makes sense to talk about what it means to be ‘situated’ at a
source or target of an arrow g € G. To be precise, this means that the action ¢ - z is defined whenever
Ix(z) = src(g). The point g -« € X is subsequently situated around the target of g, as is represented
by the equation Ix (g - z) = trg(g). The formal definition of a groupoid action then reads as follows:

Definition 4.1. Fix a diffeological space X and a diffeological groupoid G = Gq. A smooth left G-action
on X along a smooth map lx : X — Gy is a smooth map

Gxgg’lXX—>X; (9,2) —> gz,
satisfying the following three conditions:
1. For any arrow g € G and point = € X satisfying lx (z) = src(g), we have Ix (g - z) = trg(g).
2. The identity arrows act trivially, meaning that id;, (,) - * = x for every x € X.
3. We have h- (g-x) = (hog) - x whenever defined, i.e., when lx(x) = src(g) and src(h) = trg(g).

The smooth map Ix : X — Gy is called the left moment map (or sometimes the anchor by other
authors). We denote such an action by GA* X or by (G = G)~* X if we want to emphasise that it
is a groupoid action. To avoid spacious notation, we shall almost always use the more compact notation
(g,x) — gx instead of g-x, except when it is absolutely necessary to distinguish between different types
of actions. The following is a simplified illustration of how one can visualise a groupoid action:

X

83



A smooth right G-action on X along a smooth map rx : X — G is a smooth map
Xxg'" G — X5 (v,9)— - g,

satisfying rx (x - g) = src(g), © -idy () = o, and (- g) - h = 2 - (g o h) whenever defined. The smooth
map rx : X — Gy is called the right moment map (of the given action). We denote such an action by
X "™XAG, and the same notational remarks from above apply.

Example 4.2. Let G = G| be a diffeological groupoid. Then G acts smoothly on itself from the left
along the moment map lg = trg : G — Gy by left translation: g - h := g o h. Smoothness of this action
is inherited from smoothness of composition in G.

Many notions from the actions of groups transfer to the actions of groupoids:

Definition 4.3. Consider a smooth left action GAX X. Fix a point # € X. The orbit of z is the set
Orba (x) = {gz + g € s (x (2))}.
The orbit space, or quotient, is the set
X /G :={Orbg(z) : z € X},

with the unique diffeology so that the map X — X /G : x — Orbg(z) is a subduction, i.e., just the
pushforward diffeology, or equivalently the quotient diffeology from Definition 2.64 with respect to the
equivalence relation defined by being elements of the same orbit.

Example 4.4. Not only does a groupoid G = Gy act on its own arrow space by composition, it also acts
on its own base space G. Here, the moment map is the identity map idg,, and the action Gi9%o Gy is
defined by moving the source of an arrow to its target: g-src(g) := trg(g). The quotient of this groupoid
action is exactly the orbit space Go/G from Definition 3.26.

Example 4.5. If G = G is a (diffeological) group, then we reobtain the definition of a (smooth) group

action, since there is no choice in the moment map, and G ng,lx X just becomes G x X.
Example 4.6. On the topic of group actions, we have seen that any group action defines an action
groupoid (Example 3.28). This construction can be generalised for groupoid actions GAX X. The

arrow space is defined as G x X := G xgﬁ’l’( X, on which we define the source and targets:

Gx X — X; sre(g,x) ==z, trg(g,z) = gx.
The composition (h,y) o (g,x) can only be defined when y = gz, and in that case we set
(h,gz) o (g,) := (hog,x).
The resulting groupoid G x X = X is also called the action groupoid.

Example 4.7. Any diffeological space A can be seen as a groupoid in two ways: as a unit groupoid
A = A or as a pair groupoid A x A = A. Any action A~* X of a unit groupoid has to be trivial, since
it only contains identity arrows, and hence X /A = X.

The action of a pair groupoid (A x A)~* X is defined on (a,b) - x only if b = Ix(z). Such an action
is therefore equivalent to a smooth map ® : A x X — X defined by the action (a,x) — (a,lx(z)) - z,
and which satisfies [x o ® = pr;.

From now on, all diffeclogical groupoid actions will be assumed to be smooth. It will also be
convenient to assume that whenever we encounter a term like gz, that it is actually well-defined, meaning
Ix(z) = src(g). We do this for example in Definition 4.13 below. We may get away with that most of
the time, but there will arise situations where it will be necessary to check that this assumption is valid.
In that case we will point it out and prove that everything is allowed.

The category of G-actions will be important for us later. We want to define a category Act(G = Gy)
whose objects are smooth left G-actions G ~ X on diffeological spaces. For that, we need to introduce
an appropriate notion of morphism between such objects.
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Definition 4.8. Consider two smooth groupoid actions GAX X and GAY Y. A smoothmapp: X — Y
is called G-equivariant if it intertwines the moment maps: {x = ly o ¢, and commutes with the actions
whenever defined: ¢(gx) = gp(z). To be precise, this means that the following two diagrams commute:

Ix'(ste(g)) — Iy (src(g))

X —7 vy
sz /y and g'fl L*
0

Iy (trg(g)) —— Iy (tre(9))-

Proposition 4.9. Suppose we have three smooth groupoid actions: GAX X, GAYY and GA% Z,
together with two G-equivariant smooth maps ¢ : X — Y and ¢ :' Y — Z. Then ¥ o ¢ is also
G-equivariant.

Proof. This follows from a simple diagram chase. Let us sketch the result. By associativity we have
Ix =Ilyop=(z0v%)op=1Iz0(hop). Moreover, if g € G and = € X are chosen appropriately, then
we get 1 o p(gz) = ¢(ge(x)) = g(p(x)) = g(¢ 0 p(x)). a

Definition 4.10. Let G = Gq be a diffeological groupoid. The (left) action category Act(G = Go)
of G = Gy consists of smooth groupoid actions GAX X as objects, and G-equivariant smooth maps as
morphisms. Note that all identity maps are equivariant under any groupoid action. From Proposition 4.9
and associativity of Diffeol itself, we infer that Act(G = Gy) is a category.

Example 4.11. A groupoid action of the form (G x A)~!X X is just an action of the groupoid G on
X, together with a G-equivariant map lx : X — A. The action on X is defined along the composition
oflyolx : X - A — Gy, and reads

GAlackx x. g-x:=(g,Ix(x)) =

On the right-hand side we have (g,lx(z)) € G x A, and the action is that of G x A on X. The fact that
lx is G-equivariant follows from the first defining condition in Definition 4.1.

The following is a construction that will become crucial to much of our later discussion. This is the
main point at which submersions play a crucial réle in the Lie groupoid category. There, it is necessary
to have a (left) principal bibundle between Lie groupoids, but here we can introduce the construction
even without knowing what a groupoid (bi)bundle is, and just work with smooth actions.

Construction 4.12 (Balanced tensor product). Consider a smooth right action X "~ H and a smooth

left action HAY' Y. The balanced tensor product of X and Y over H is the diffeological space X @y Y

rx,ly

constructed as follows. On the fibred product X x ;7" Y we define the following smooth right H-action
along the moment map R :=rx o pr1|XXHOy =lyo prZ‘XXHOY7 called the diagonal H-action:

(X by Y) )RS F L X Y () h) — (b ).
The balanced tensor product is defined as the quotient space of this smooth action:
X®QpY = (X X ool Y) JH.
We denote the orbit (recall Definition 4.3) of a pair (x,y) of points in the balanced tensor product by
z®y. Hence, whenever we write something of the form z ®y € X ® Y, we will assume that this is well
defined, i.e. rx(x) =ly(y). The fact that we quotient out by this H-action gives the useful identity
zh® h =1z hy,

from which the name ‘balanced tensor product’ derives. In the literature, this is sometimes referred to
as the Hilsum-Skandalis tensor product.
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4.2 Diffeological groupoid bundles

This section introduces the theory of diffeological groupoid bundles. It draws heavy inspiration from
the theory of diffeological principal (group) bundles as developed in [Diffeology, Chapter 8] and also
studied in [Wal09; CW17b]. But mostly it is an extension of the theory of Lie groupoid bundles, as
in e.g. [MMO5; Ler08; Blo08; dHo12]. As far as we know, diffeological groupoid bundles have not
appeared elsewhere. But our theory is not too novel, as the constructions are virtually copies of the ones
for Lie groupoid bundles. Nevertheless, some notions are different. Mainly, in a Lie groupoid bundle

(G=Gy) ~ X —— B,

the map 7 is always assumed to be a submersion. But the notion of submersiveness is not generally
defined on diffeological spaces. An important note is that in the Lie case this assumption is absolutely
necessary in all of the constructions, since they ensure the existence of certain fibred products: for
instance, to say that the bundle is principal, the fibred product X x7" X needs to exist. In the
diffeological category this assumption becomes redundant (at least for those purposes), and it appears
that the constructions can be carried out more generally. Still, it seems reasonable to ask for 7 to
have some nice properties, and the most obvious choice is to be made between subductiveness and local
subductiveness. One may opt for the choice of local subductions, since these are the direct diffeological
generalisation of submersions (Proposition 2.128). However, it turns out that subductions behave
sufficiently like submersions that they make the whole theory work, as will be demonstrated in the
rest of this section. And in fact, there is a good reason not to choose local subductions. Given the
theory of diffeological pseudo-bundles [Per16], which is now starting to look like a good contender for
general diffeological bundle theory, there are many interesting examples of “bundle-like” objects that
are not precisely local subductions®” (and in particular are not diffeological fibre bundles). To be able
to incorporate such objects into our theory of groupoid bundles, the appropriate choice seems to be
to use subductions. We remark more on this choice in Section 4.4.3. On the other hand, it seems
that we cannot get away with bundles that are weaker than subductions, since (through Lemma 2.122)
subductiveness is used crucially to ensure smoothness of certain constructions that underlie our main
theorems about Morita equivalence.
Our theory of diffeological groupoid bundles starts with the following simple definition:

Definition 4.13. Let f : X — Y be a smooth function between diffeological spaces, and suppose we
have a smooth groupoid action G ~ X on the domain of f. We say f is G-invariant if

flgz) = f(x)
for all g € G and x € X, whenever defined.

Definition 4.14. Fix a diffeological groupoid G = Gg. A left G-bundle is a smooth left G-action
(G = Go)X X together with a G-invariant smooth map 7 : X — B between diffeological spaces.
Diagrammatically such a bundle may be depicted as:

G ~ X

)

37If anything, a tangent bundle should be an archetypal example of a “bundle-like” object. However, the internal tangent
bundle is not generally a diffeological fibre bundle. This is most clearly demonstrated by various spaces that exhibit tangent
bundles whose fibres have varying dimension, such as the two-dimensional coordinate axes Example 2.18. This violates
the fact that diffeological fibre bundles have diffeomorphic fibres at each point. By an example that Dan Christensen has
communicated to the present author through email, it does not even generally hold that internal tangent bundles are local
subductions, contradicting Proposition 3.45. Pseudo-bundles seem to be a more natural concept if we want to incorporate
examples such as the internal tangent bundle.

86



In-line, we also use the notation (G = Go)~* X 5+ B, or G ~ X — B. Right G-bundles are defined
similarly, and written in the form B <+ X v G. The following illustrates a (left) G-bundle. Note that
the G-orbits in X are contained in the m-fibres, since 7 is G-invariant.

Ix(gx) Y Go m(z) - b= B

Given the discussion above, the word ‘bundle’ is meant loosely. Indeed, we do not even assume
that 7 is surjective, so that some 7-fibres may be empty. Despite this we can still treat them like fibre
bundles, and give the following definition:

Definition 4.15. Consider two diffeological groupoid bundles GA* X =5 A and GAYY 25 B. A
G-bundle morphism consists of a pair of smooth maps (¢, a), where ¢ : X — Y is G-equivariant and
the following square commutes:

X —* 5y

wxl lﬂy

A —— B.

For our purposes it will be useful to consider a restriction of Definition 4.15 to morphisms of bundles
over the same base space, where the map between the bases is the identity. Whenever we encounter a
G-bundle morphism of bundles over the same base, we assume the following definition:

Definition 4.16. Let GA* X =5 B and GAY Y =5 B be two left G-bundles over the same base
space B. A G-bundle morphism is a smooth G-equivariant map ¢ : X — Y that preserves the fibres:
mx = Ty o . We depict this situation as:

GAxX
| >
©

iy o

Recalling the remarks made at the beginning of this section, in the Lie groupoid case it is important
for subsequent constructions that the projection m of a bundle G ~ X = B is always a submersion.
Since it seems in the diffeological category this is unnecessary, at least to replicate the constructions,
we dissect the definition of a principal Lie groupoid bundle and separate it into its two underlying
components. These are the groupoid action being free and transitive on the w-fibres, and the map
7w being a submersion. By separating these two conditions it becomes clearer where exactly they are
necessary in our arguments, and it makes our proofs much neater by breaking them down into smaller
chunks. So, instead of defining diffeological principal bundles in one go, we instead have the following
two definitions. The first one speaks for itself as a substitute for the condition that the projection is a
submersion:

Definition 4.17. A diffeological groupoid bundle (G = Go) ~ X = B is called subductive if the map
m: X — B is a subduction. The definitions obviously extend to right bundles as well.

B.

The second definition involves freeness and transitivity of the groupoid action:

Definition 4.18. A diffeological groupoid bundle (G = Go)~x X 55 B is called pre-principal if the
action map G nglx X — X x5" X mapping (g, z) — (gz,z) is a diffeomorphism.
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Note that if the action map is a diffeomorphism, it follows that the action is free and transitive on
the m-fibres. This is in fact guaranteed simply by bijectivity. Suppose that gx = z, so that the action
mapping sends (g, z) — (z,x). However, (id;, ), ) also gets sent to (z, ), so by injectivity g = id; (x),
proving the action is free. Surjectivity of the action map means that there exists a group element g € G
for every pair of points z,y € X with n(z) = n(y), such that gr = y, which is just transitivity on
each 7-fibre. We do not know if freeness and transitivity on the fibres are sufficient conditions for
pre-principality. [Blo08, Page 13| and [dHo12, Section 3.6] claim that they are sufficient conditions
for the action map to be a diffeomorphism in the case of a Lie groupoid bundle where the projection
is a submersion. In their proofs they therefore use freeness and transitivity on the fibres as sufficient
conditions, which simplifies them in the sense that they don’t have to prove that the inverse of the action
map is smooth. Since we do not know if freeness and fibre transitivity is sufficient in the diffeological
setting, a small contribution of this thesis is therefore that we provide meticulous proofs that could
also be applied in the classical theory. This makes some of them cumbersome (e.g. Propositions 4.54
and 4.55), but fool-proof.

Definition 4.19. A diffeological groupoid bundle that is subductive and pre-principal is called principal.

This definition would serve as the most obvious analogue of principal Lie groupoid bundles, compare
for instance to [dHo12, Section 3.6] and [Blo08, Definition 2.10]. The principality of a groupoid bundle
GA* X T B ensures that there is a special relation between the base B, the orbits Orbg(z), and the
n-fibres. First, note that, even for non-principal groupoid bundles, since 7 is G-invariant, the orbits
Orbg(z) are always contained in the 7-fibre that 2 inhabits. The question is to what extent the orbit is
embedded into the m-fibre. When the bundle is pre-principal, the action map is a diffeomorphism, and
induces diffeomorphisms Orbg () 2 X, (4, where X, (,) := 7' ({m(2)}) is the 7-fibre in X containing
z € X, and both sets are endowed with the subset diffeology. Subsequently, we get a diffeomorphism
X /G = X /7 between quotient spaces. This generalises the concept of a principal (Lie) group bundle
in the sense that every fibre is now not diffeomorphic to the group, but to the orbits. Of course, in the
case of a free and transitive group action, the group may be identified with any given orbit. That the
bundle GAx X 5 B is subductive further gives a diffeomorphism:

B~ X/r~X/G.

Example 4.20. We have seen in Example 4.2 that any groupoid G = Gy acts on its own arrow space
along the target map by left translation. The source map is invariant under this action, so we get a
diffeological groupoid bundle: GG =% Gy. By Proposition 3.17 it follows immediately that this
bundle is subductive. It is actually principal, since the map (g, h) — (g o h, h) is a diffeomorphism.

Example 4.21. The orbit is a principal bundle with the isotropy group, cf. [CM18, Proposition 2.4].

To make the connection to diffeological principal group bundles [Diffeology, Article 8.11], we make
the following observation:

Proposition 4.22. A diffeological groupoid bundle GX X 55 B is pre-principal if and only if G acts
transitively on the w-fibres and the map G XSCEE’ZX X > X xX:(g,2)— (gz,x) is an induction.

Proof. This follows because surjective inductions are diffeomorphisms. O

We do not know to what extent the theory of principal diffeological group bundles [Diffeology| can
be meaningfully extended to groupoid bundles. Principal group bundles are special cases of diffeological
fibrations, whose fibre type is unique. That means that each of the fibres of a diffeological fibration have
to be diffeomorphic. If the projection 7 of a principal groupoid bundle G ~ X = B is a diffeological
fibration, then each orbit, and hence each isotropy group, has to be isomorphic. The proposition makes
the following example clear:

Example 4.23. Let G be a diffeological group. A principal groupoid bundle (G = {*}) ~» X — B is
the same as a principal fibre bundle in the sense of [Diffeology, Article 8.11]. In turn, this means that
if G is a Lie group, then such a groupoid bundle is nothing but an ordinary principal G-bundle in the
usual sense of the term.
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Example 4.24. We here demonstrate that not every pre-principal bundle has to be principal. This is
because the pre-principality poses no restrictions on the behaviour of the base space of the projection
7 : X — B, but only on its fibres. Take GAX X 5 B to be a principal G-bundle. Then 7 is a
subduction, so in particular a surjection. We can destroy the subductiveness by enlarging the base
space in a pathological manner. Define a new diffeological space By, := Bl {0}, and a smooth map
Too : X = Boo by Too(x) := m(z). Then 7o is clearly still G-invariant, but no subduction. We have
X x52™ X = X xg" X, so that the bundle GAx X I B has the exact same action map as the
original bundle, and is therefore pre-principal, but not principal.

This pathological counterexample merely aims to illustrate the independence of the Definitions 4.17
and 4.18. We do this with the purpose of distinguishing pre-principal groupoid bundles from diffeological
fibrations and principal group bundles as defined in [Diffeology, Article 8.11]. In particular, this shows
that pre-principality is not a sufficient condition to ensure the projection 7 is a diffeological fibration.

4.2.1 The division map of a pre-principal bundle

In this section we construct the division map of any pre-principal groupoid bundle. This material is
similar to [Blo08, Section 3.1]. For the duration of this section, fix a pre-principal diffeological groupoid
bundle (G = Go)~x X 5 B. If we denote the smooth action by ug : G ng,lx X — X, then the action
map can be written as

src,l T,
Ag = (HG7 prz\GXGOX) : G xgz’ *X — X x5 X,

where the second component is just the projection map pry, : G x X — X restricted to the correct
domain®®. We will now describe a smooth map (-,-)¢ : X x5" X — G such that

Aél = (<> '>G7 pr2|X><BX) :

Definition 4.25. Let GA** X 5 B be a pre-principal G-bundle. Then the division map associated to
this bundle is the smooth map®’

—1 pry|
A GXGOX

(e X xFTX —S 5 G X G.

Note that, as we have remarked above, if the action map Ag is a bijection, then the action G ~ X is
free and transitive on the w-fibres. These two (set-theoretic) conditions already ensure that for any two
points z,y € X in the same 7w-fibre there exists a unique arrow g € G such that gy = x. We denote this
arrow by (x,y)q. The fact that the bundle is pre-principal ensures that the association (z,y) — (x,y)q
is actually smooth. In other words, (x,y) is the unique arrow in G that sends y to (z,y)qy = x. For
this reason it is called the division map, because we may think of (z,y) as a fraction of x and y. We
summarise some algebraic properties of the division map that will be used in our proofs throughout
later sections.

Proposition 4.26. Let GAX X 55 B be a pre-principal G-bundle. Its division map (-,-)g satisfies the
following properties:

1. The source and targets are src({x1,22)c) = Ix(x2) and trg({x1, 22)g) = Ix(x1).
2. The inverses are given by (x1,22)g" = (22,71)G.
3. For every x € X we have (x,x)g = idj ().

4. Whenever well-defined, we have (gx1,x2)c = go (x1,22)qG.

38We are purposefully stringent in this regard, because whereas pry is always a subduction, this is not true for the
restriction. For this we need Lemma 2.124. Keeping this in mind, in some places we may write f : A — Y instead of
fla: A=Y, to lighten up the notation. Lemma 2.124 will become especially important in this chapter.

39The notational resemblance to an inner-product is not accidental. The division map plays a very similar réle to the
inner product of a Hilbert C*-module. For more on this analogy, see [Blo08, Section 3].
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The division map plays a crucial role in several of the upcoming constructions. To demonstrate its
usefulness, we will use it in the next section to prove that G-bundle morphisms on principal G-bundles
are invertible. They also respect the division maps on two pre-principal bundles:

Proposition 4.27. Let p: X — Y be a bundle morphism between two pre-principal G-bundles
GAXX B and GAYY ™5 B

Denoting the division maps of these bundles respectively by (-, )é and (-, >g, we have for all 1,29 € X
in the same mx-fibre that:

(961, $2>g;( = (p(z1), ‘P($2)>g

Proof. Note that (p(x1),¢(22))% is the unique arrow in G such that (p(z1), p(z2))&p(z2) = @(z1).
However, by G-equivariance we get ¢(z1) = ¢ ({1, 2)3®2) = (w1, 22)F ¢(22), from which the claim
immediately follows. O

4.2.2 Invertibility of G-bundle morphisms

We now prove a result that generalises the fact that morphisms between principal Lie group bundles
are always diffeomorphisms. In our case we shall do the proof in two separate lemmas. Note that if a
G-bundle map is a diffeomorphism, then a simple calculation shows that its inverse is automatically a
G-bundle morphism, too.

Lemma 4.28. Consider a G-bundle morphism ¢ : X — Y between a pre-principal bundle GR* X =5 B
and a bundle GAY'Y =5 B whose underlying action G ~Y is free. Then ¢ is injective.

Proof. Since G ~ X — B is pre-principal, we get a smooth division map (-,-)& : X x5°™ X — G. To
start the proof, suppose that we have two points x1, z2 € X such that ¢(z1) = ¢(x2). Since ¢ preserves
the fibres, we get that
mx(x1) = Ty 0 p(x1) = Ty 0 (x2) = wx (22).

Hence the pair (z1,72) defines an element in X xp X, so we get an arrow (z1,z2)a € G, satisfy-
ing (z1,72)57z2 = z1. If we apply ¢ to this equation and use its G-equivariance, we get ¢(z1) =
(z1,12)&p(x2). However, by assumption, p(z1) = ¢(x2) and the action G ~ Y is free, so we must have
that (1, 22)a is the identity arrow at ly o p(z2) = Ix(z2). Hence we get the desired result:

X N
w1 = (21, T2) 5 T2 = idjy (2g)T2 = T2, 0

Lemma 4.29. Let ¢ : X — Y be a G-bundle morphism from a subductive bundle GNX X 5% B to a
pre-principal bundle GAY'Y 25 B. Then ¢ is a subduction.

Proof. Denote the smooth division map of G ~ Y — B by (-,-)§. Then ¢ and (-, )% combine into a
smooth map
VX XFTY = X (2,y) = (v, 0(2) e
Note that this is well-defined because if 7x (z) = 7y (y), then 7wy o p(z) = my (y) as well, and moreover
ly o p(z) = Ix(z), showing that the action on the right hand side is allowed. The G-equivariance of ¢
then gives
poyp= pr2|X><BY'

Since 7x is a subduction, so is pry|xx,y by Lemma 2.124, and by Lemma 2.121 it follows ¢ is a
subduction. 0

Proposition 4.30. Any bundle morphism from a principal groupoid bundle to a pre-principal groupoid
bundle is a diffeomorphism. In particular, both must then be principal.

Proof. By Lemma 4.29 any such bundle morphism is a subduction, and since in particular the underlying
action of a pre-principal bundle is free, it must also be injective by Lemma 4.28. The result follows
by Proposition 2.123. That the second bundle is principal too follows from the fact that a bundle
map preserves the fibres, so the projection of the second bundle can be written as the composition of a
diffeomorphism and a subduction. O
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For principal Lie group(oid) bundles, every bundle morphism is a diffeomorphism, and hence the
category of principal G-bundles with bundle morphisms is a groupoid (cf. [Hus66, Theorem 3.2]).
By Proposition 4.30 we know that the same result holds for principal diffeological groupoid bundles,
where the notion of subduction replaces that of submersion. In the Lie groupoid case, submersiveness
of the projection of the bundle is necessary to even define the codomain of the action map as a smooth
manifold. We may ask, then, if the category of pre-principal groupoid bundles and bundle morphisms
form a groupoid. It appears that pre-principality is not enough, and merely for set-theoretic reasons: it
can be proven that a bundle morphism ¢ : X — Y is surjective if and only if im(my) C im(7x). This
suggests that the category of pre-principal groupoid bundles is no longer a groupoid.

4.3 Diffeological groupoid bibundles

In this section we will introduce the notion of a type of generalised smooth morphism between diffeolo-
gical groupoids. These will be called diffeological bibundles. These will become the morphisms in a
new bicategory DiffeolBiBund of diffeological groupoids. Off the bat, we point out some differences
with the Lie groupoid case. There, the constructions can only be carried out for principal bundles,
because it rests crucially on the existence of fibred products in the category of smooth manifolds. In
the diffeological category, these assumptions become redundant, and we can obtain a bicategory of all
bibundles.

Definition 4.31. Let G = Gy and H = Hy be two diffeological groupoids. A (diffeological) (G, H)-
bibundle consists of a smooth left action GA*X X and a smooth right action X "X~ H such that the left
moment map [y is H-invariant and the right moment map rx is G-invariant, and moreover that the
actions commute: (g-x)-h=g- (x-h), whenever defined. We draw:

G~ X ~ H

[N

HO)

and we denote them by GAX X "X~ H in-line. Underlying each bibundle are two groupoid bundles: one

left G-bundle GA* X =X Hy, and one right H-bundle G & X "X~H. We call these the left- and
right underlying bundles, respectively. It is the properties of these underlying bundles that will determine
the behaviour of the bibundle itself. We can picture this as a single space that is simultaneously a bundle
over both bases of the groupoids. Since lx is H-invariant and rx is G-invariant, the different types of
fibres intersect ‘transversally’:

G x H
zh
15 gzh
gz
9] 9]
@ e 7 ‘ &0 g
x \)j
Gy : Hy
Ix(z) H p rx (zh)
Ix(gz) rx(z)
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Definition 4.32. Consider a diffeological bibundle GA* X "™X~H. We say this bibundle is left pre-
principal if the left underlying bundle GAX X =5 Hy is pre-principal. We say it is right pre-principal if
the right underlying bundle Gg & X TxAH s pre-principal. We make similar definitions for subduct-
iveness and principality. Notice that, in this convention, if a bibundle GAX X "™X~H is left subductive,
then its right moment map ry is a subduction (and vice versa)?.

Definition 4.33. A diffeological bibundle is called:
1. pre-biprincipal if it is both left- and right pre-principal®!;
2. bisubductive if it is both left- and right subductive;

3. biprincipal if it is both left- and right principal.

Two diffeological groupoids G and H are called Morita equivalent if there exists a biprincipal bibundle
between them, and in that case we write G ~yg H*2.

Compare this to the original definition [MRW&7, Definition 2.1] of equivalence for locally com-
pact Hausdorff groupoids. We will prove in Corollary 4.57 that Morita equivalence forms a genuine
equivalence relation. Let us consider some elementary examples of Morita equivalences:

Example 4.34 (Identity bibundle). Consider a diffeological groupoid G = Gg. There exists a canonical
(G, G)-bibundle structure on the space of arrows G, which is called the identity bibundle. This is just
the left- and right multiplication of G on itself:

GA"G; g1 g2 7= g1 0 go,
G Srcf\G; g2 g1 ‘= 3g29043g1.

Note that the identity bibundle is always biprincipal, because the action map has a smooth inverse
(91,92) — (91095 1,g2). This proves that any diffeological groupoid is Morita equivalent to itself,
through the identity bibundle GAY8 G 57A\G.

Example 4.35. Consider two diffeological spaces A, B € Diffeol, and their unit groupoids A = A and
B = B (Example 3.19). A left action (A = A)~!X X consists merely of a smooth function Ix : X — A,
since the groupoid contains only identity arrows, so the action has to be trivial. For a groupoid bundle
(A= Ag)~ix X I B to be pre-principal, its m-fibres should be the orbits of this trivial action, which
are merely the points 7=*({m(z)}) = {x}. That just means that 7 is injective, so if the bundle is
moreover principal, then 7 is an injective subduction, which induces a diffeomorphism X = B. Hence,
whenever A = A and B = B are Morita equivalent, it follows that there is a diffeomorphism A & B.
If the spaces are diffeomorphic to begin with, it is easy to see that their unit groupoids are Morita
equivalent (with overkill, this can be proved formally with a later result in Proposition 5.5). We could
write something of the form: A = B if and only if A ~yg B**.

Example 4.36. Consider again two diffeological spaces A, B € Diffeol, but now take their pair group-
oids A x A = A and B x B = B (Example 3.20). We will show that, irrespective of the underlying
spaces, the pair groupoids are always Morita equivalent. We can prove this by borrowing the transitivity
of Morita equivalence from Corollary 4.57 below. The third groupoid we introduce is the unit groupoid
induced by the one-point space 1 := {*} with its unique diffeology (Example 2.13). Let us denote the
unique smooth map by ! : A — 1. We will define a biprincipal bibundle:

AxA A 1

AN

4ONote: [dHo12, Section 4.6] defines this differently, where “[a] bundle is left (resp. right) principal if only the right
(resp. left) underlying bundle is so” We suspect this may be a typo, since it apparently conflicts with their use of
terminology in the proof of [dHo12, Theorem 4.6.3], cf. Lemma 5.11. We stick to the terminology defined above, where
left principality pertains to the left underlying bundle.

“1The prefixes bi- and pre- commute: “bi-(pre-principal) = pre-(biprincipal)”.

42The preferred symbol is ‘>~ instead of ‘~’ to keep in line with the bicategorical terminology introduced in Appendix A.2.

431t could have been possible that somehow the flexibility of diffeology would completely trivialise the theory of Morita
equivalence between Lie groupoids, by making all of them equivalent. Luckily, this example shows this not to be the case.
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The left action is given by the canonical action of the pair groupoid on its base space (Example 4.4),
meaning that (aj,as)-as := a1. The unit groupoid 1 = 1, containing only identity arrows, can only act
trivially on A. It is therefore clear that this does form a bibundle. Now, it is easy to see that the left
underlying bundle (A x A)~id4 A L1is principal, since the unique !-fibre is just A. Similarly, the right
underlying bundle A dA AT s also trivially principal. This proves that, for all diffeological spaces
A, B € Diffeol:

(AXAjA)ZME (1:{1)21\/[]5; (BXB:ZB)

Example 4.37. Morita equivalence of diffeological groups reduces to isomorphism. In other words, if
G and H are diffeological groups, then

(G=1)~ve (H=1) if and only if G=>~H.

Example 4.38. Of course, since submersions between manifolds are subductions with respect to the
manifold diffeologies, we see that if two Lie groupoids G = Gy and H = H; are Morita equivalent in
the Lie sense (e.g. [CM18, Definition 2.15]), then they are Morita equivalent in the diffeological sense.
We remark on the converse question in Section 4.4.3.

Example 4.39 (Gauge groupoids). Let G be a diffeological group (or a Lie group), and consider a
principal G-bundle G ~ P = B in the sense of [Diffeology, Article 8.11] (or in the usual sense).
The action of G on P extends to the diagonal action G ~ P x P, defined by ¢(p,q) := (g9p,9q). We
denote the quotient space of this action by P x¢ P := (P x P)/G, whose elements we shall denote by
[p,q] € P x¢ P. In this quotient space we have the identity [gp,q] = [p,g 'q]. By transferring the
groupoid structure of the pair groupoid P x P == P to this quotient, we obtain the gauge groupoid
P x% P = B. The source and target maps are

sre, trg @ P x% P — B; sre([p, q]) == w(q), trg([p,q]) := 7 (p).

The composition of two pairs [p, q] and [r, s] can be defined whenever ¢ and r are in the same fibre:
m(q) = w(r). In that case, since G acts principally on P, there is a unique group element (g, r) € G such
that (g,r)r = g. This allows us to transfer the pair groupoid structure to this quotient:
[p,g] o [r,s| = [p,q] o [g,(q,7)s] == [p, (g, 7)s].
It is straightforward to check that this is well-defined, and that we obtain a diffeological groupoid
P x% P = B. We further get a canonical action
PXGPmﬂ—P; [paQ]'r:: (7“,q>p

Similarly, seen as a groupoid G =2 1, the action G ~ P can be reinterpreted as a right groupoid action
P'~G, where ! : P — 1 is the unique map into the point. Since 7 is G-invariant, these two actions
determine a diffeological bibundle:

Px¢P AP~ G

2

That the right underlying bundle B <~ P !"\G is principal is just to say that the original bundle P = B

is principal. The left underlying bundle P x P~F P Ltis trivially subductive. Moreover, it is easy
to check that the action map ([p, ¢],7) — ((r, ¢)p, r) has smooth inverse (p,q) — ([p, q], q), showing that
it is also principal. Hence the above bibundle is biprincipal, and we get a Morita equivalence:

(P x% P = B) ~yg (G =1).

The Example 4.39 can be generalised to the class of all fibration groupoids:
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Example 4.40. Recall that a diffeological groupoid G = G| is called fibrating if the characteristic map
(sre, trg) : G — Go x Gy is a subduction (Definition 3.41). In particular, this means that the groupoid
is transitive: Go/G = 1, meaning that every two points in the groupoid are connected by an arrow. We
claim that, if G if fibrating, then for any point x € G there is a Morita equivalence to the isotropy
group:

(G = Go) ~mEe (G = 1),

Proof. If we identify 1 = {z} C Gg, which we may do, then the groupoid G, = 1 is nothing but a
subgroupoid of G = Go. We then know that there are canonical left- and right composition actions on
the space of arrows. However, the left composition of G, is only defined for arrows g € G whose target
is . We can therefore restrict the right composition action G "G to the subset trg=!({z}) C G,
equipped with its subset diffeology, to get a diffeological bibundle:

G, ~ trg~'({z}) ~ G

e \M

It is an easy exercise to show that this bibundle is always right principal, and left pre-principal. We
are therefore left to show that the restricted source map src : trg=!({z}) — Gy is a subduction. For
that, take a plot o : U, — Gg. Given the fixed point x € Gy, we can also define the constant plot
const, : U, — Go, which together with « gives a plot (a, const, ) : U, — GoxGg. Since the characteristic
map is a subduction, for every t € U, there exists a plot §: V — G defined on an open neighbourhood
t € V C U, such that srco3 = aly and trgo3 = const,|y. This shows that 3 takes values in trg=! ({z}),
and proves that the plot « locally lifts along the restriction src : trg™ ({z}) — Go.

The above example motivates the important viewpoint in [Diffeology, Article 8.16], where every
diffeological fibre bundle can equivalently be described by its associated principal bundle.

In the following we demonstrate that bibundles really do form a generalised type of morphism between
groupoids. We do this by constructing a functorial assignment of groupoid morphisms to bibundles.
That is, for every smooth functor ¢ : (G = Gy) — (H = Hy), we construct a diffeological bibundle
G ~ B(p) v H, as follows. This construction also appears in [Blo08].

Construction 4.41 (Bundlisation). Let G = Gy and H = Hy be two diffeological groupoids, with a
smooth functor ¢ : G — H between them. We define the bundlisation of ¢ as the following bibundle
G~ B(¢) "e~H. As a diffeological space, we set

B(¢) = Go x5 H.

On the right we can implement the obvious H-action by pre-composition. That means we have a right
action B(¢) ~ H along the moment map 7 := src o pry|p(g) : B(¢) — Ho, given by

(x,hl) . hg = (x,hl o hg),

whenever defined. The left G-action is defined along the first projection Iy := pry|py) : B(¢) — Go,
and is given by

g (x,h) = (trg(g), ¢(g) o h).

It is easy to see this forms a diffeological bibundle.

In fact, the left moment map l4 is already subduction by Lemma 2.124 and Proposition 3.17.
Moreover, given two pairs (x1, k1), (x2, ha) € B(¢) such that i4(x1, k1) = lp(x2, he), i.e. 1 = x2, then
we can define a division map by

((x1,h1), (z1,h2)) B = hfl o hs.

!
It is easy to check that this makes the right underlying bundle Gy <> B (¢) "*H principal. Therefore:
the bundlisation of any smooth functor is always a right principal bibundle.
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Another construction that will be crucial is the following. Namely, for any bibundle we can obtain
another bibundle going in the other direction. This is not to be confused with its inverse!

Construction 4.42 (Opposite bibundle). Let GAX X "™X~H be a diffeological bibundle. The opposite
bibundle HAX X "<~\G is defined as follows. As a diffeological space, we set X := X, and the moment
maps are lx := rx and r := lx. The actions are defined by their opposites:

HAX X, h-x:=axh
X XAG; r-g:=g ‘x
Note that the opposite of the opposite bibundle returns the original bibundle.
To end this section, we collect a lemma for further use:

Lemma 4.43. Consider a left pre-principal bibundle GAX X "™X~H, and also the opposite G-action
X XAG. Then, whenever defined, we have:

<$1, 3329>G = <$1, 332>G ©g.

Proof. This follows directly from Proposition 4.26 and the definition of the opposite action:

(r1,229)c = (v1,9 "w2)a = (97" o (w2, 1)e) = (z1,22)g 09 O

4.3.1 Invariance of orbit spaces

As we have mentioned in Chapter I, it is a well known result that if two Lie groupoids G = G¢ and
H = H, are Morita equivalent (in the Lie groupoid sense), then there is a homeomorphism between
their orbit spaces Go/G and Ho/H [CM18, Lemma 2.19]. In general, this is the best we can get,
since the orbit space may very well be singular, and may therefore have no canonical smooth structure.
For diffeological groupoids this is different, since we can just endow the orbit space with the quotient
diffeology. In this section we will generalise the claim for Lie groupoids to diffeology, and prove that we
get a genuine diffeomorphism. The construction of the underlying function is inspired by the proof in
[CM18, Lemma 2.19].

Theorem 4.44. If G = Gg and H = Hy are two Morita equivalent diffeological groupoids, then there
is a diffeomorphism Go/G = Hy/H between their orbit spaces.

Proof. Let GAX X "X~ H be the bibundle instantiating the Morita equivalence. Our first task will be
to construct a function ® : Go/G — Hy/H between the orbit spaces. The idea is to lift a point a € Gy
of the base of the groupoid to its [ x-fibre, which by right principality is just an H-orbit in X, and then
to project this orbit down to the other base Hy along the right moment map rx. The fact that the
bundle is biprincipal ensures that this can be done in a consistent fashion.

We are dealing with four actions here, so we need to slightly modify our notation to avoid confusion.
If a € Gy is an object in the groupoid G, we shall denote its orbit by Orbg,(a), which, as usual, is just
the set of all points a’ € Gy such that there exists an arrow g : @ — o’ in G. Similarly, for b € Hy we
write Orbp, (b). On the other hand, we have two actions on X, for whose orbits we use the standard
notations Orbg(z) and Orby(z), where z € X.

Now, start with a point a € Gy, and consider its fibre l}l(a) in X. Since the bibundle is right
subductive, the map lx is surjective, so this fibre is non-empty and we can find a point z, € l;(l (a).
We claim that the expression Orbpy, o rx(z,) is independent on the choice of the point z, in the fibre.
For that, take another point @/, € I5'(a). This gives the equation lx(2,) = lx(z}), and since bibundle
is right pre-principal, we get a unique arrow h € H such that 2/, = z,h. From the definition of a right
groupoid action, this in turn gives the equations rx(z/) = src(h) and rx(z,) = trg(h), which proves
the claim. To summarise, whenever x,, z, € l}l(a) are two points in the same [x-fibre, then we have:

Orby, orx(x,) = Orby, o rx(z)). ()
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Next we want to show that neither is this expression dependent on the point a € Gy, but rather on its
orbit Orbg, (a). For this, take another point b € Orbg, (a), so there exists some arrow g : @ — b in G.
Pick then x € [ (a) and y € I (b). This means that src(g) = lx(2) and trg(g) = Ix (y), which means
that if we let g act on the point x we get a point gx € l;(l (b), in the same [x-fibre as y. Then using
equation (&) applied to gz and y, and the G-invariance of the right moment map rx, we immediately
get:

Orbg, orx(xz) = Orbg, orx(gz) = Orby, o rx(y).

Using this, we can now conclude that there is a well-defined function
®:Gy/G — Hy/H, Orbg, (a) — Orbpy, o rx(z.),

that is neither dependent on the point @ in the orbit Orbg, (a), nor on the choice of the point z,, € I (a)
in the fibre. Note that this function exists by virtue of right subductivity (and the Axiom of Choice),
which ensures that the left moment map lx is a surjection (and for each a there exists an x,).

Either by replacing GA* X "X~H by its opposite bibundle, or by switching the words ‘left’ and
‘right’, the above argument analogously gives a function going the other way:

U: Hy/H — Gy/G; Orbpg, (b) — Orbg, o lx(ys),

where now y, € 7“)_(1 (b) is some point in the fibre of the right moment map rx. We claim that ® and ¥
are mutual inverses. To see this, pick a point a € Gg, a point z, € l}l(a), a point Y, (z,) € r;(l (rx(zq))-
Then we can write

U o ® (Orbg,(a)) = ¥ (Orbpy, (rx(z4))) = Orbg, (ZX(er(za))) )

We also have, by choice, the equation rx(z4) = rx(Yry (2,)), S0 by left pre-principality there exists an
arrow g € G such that gz, = Y, (4,). By definition of a left groupoid action, this then further gives

sre(g) =lx(zq) = a and trg(9) = Ix (Yrx (za))-

This proves that the right-hand side of the previous equation is equal to

Orng (lX(yrx(wa))) = OrbGo (a)7

which gives ¥ o ® = idg,/q. Through a similar argument, using right pre-principality, we obtain that
(P o \I/ = idHO/H'

To finish the proof, it suffices to prove that both ® and ¥ are smooth. Again, due to the symmetry
of the situation, and since the bibundle GAX X "™X~H is biprincipal, we shall only prove that & is
smooth. The proof for ¥ will follow analogously. Since Orbg, is a subduction, to prove that @ is
smooth it suffices by Lemma 2.122 to prove that ® o Orbg, is smooth. Since the left moment map Ix
is a surjection, using the Axiom of Choice we pick a section o : Gg — X, which replaces our earlier
notation of o(a) =: x,. From the way ® is defined, we see that we get a commutative diagram:

Go —2— X ——= 5 H,

Orb(;ol lOTbHO

Go/G ————5—— Hy/H.

We are therefore to show that Orbg, o rx o o is smooth. For this, pick a plot a : U, — G of the base
space. By right subductivity, the left moment map lx is a subduction, so locally a|y = lx o 8, where
is some plot of X. Now, note that, for all ¢ € V| both the points 5(t) and o o lx o 3(t) are elements of
the fibre I (Ix o 3(t)). Therefore, by equation (&) we get:

Orby, orx oooaly = Orby,orxooolx of =Orby, orx o .

The right-hand side of this equation is clearly smooth (and no longer dependent on the choice of section
o). By the Axiom of Locality for Gy, it follows that Orbg, o rx o 0 o « is globally smooth, and since
the plot a was arbitrary, this proves that ® o Orbg, is smooth. Hence, ® is smooth. After an analogous
argument that shows W is smooth, the desired diffeomorphism between the orbit spaces follows. O
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We will give an alternative proof of this result (Theorem 5.18) in Section 5.2 of the next chapter.
The corresponding theorem for Lie groupoids justifies the viewpoint that Morita equivalence classes of
Lie groupoids describe a smooth geometric model for possibly singular quotient spaces. For example, in
[Moe02], this philosophy is used to study orbifolds as special types of Lie groupoids. Our Theorem 4.44
shows that this viewpoint extends to diffeology. More generally, a Morita equivalence class of a Lie
groupoid serves as a model for a differentiable stack [BX11]. We could then define a “diffeological stack”
to be a Morita equivalence class of diffeological groupoids, cf. [WW19]. The question is how much more
information a diffeological stack is able to capture than a bare diffeological space. The advantage of Lie
groupoids over ordinary manifolds is that they provide models for quotients that would not otherwise
be manifolds. However, the quotient of a diffeological space always gets the quotient diffeology, so this
advantage disappears. On the other hand, it is clear that by projecting from a diffeological groupoid to
its quotient space we lose some of its structure, namely the information of the isotropy groups. In this
way it is clear that a groupoid contains more information than its quotient space. The relation between
diffeology, Lie groupoids and stacks has only recently begun to be explored, but (besides [WW19]) we
are not aware of any publications on this topic.

4.3.2 Induced actions

A bibundle GAX X "X~ H contains enough structure to transfer a groupoid action H ~ Y to a group-
oid action G ~ X ®p Y. This is called the induced action, and uses the balanced tensor product
(Construction 4.12):

Construction 4.45 (Induced actions). Consider a diffeological bibundle G X "X~ H and a smooth
action HAY' Y. We will construct a smooth left G-action on the balanced tensor product X @y Y. As
the left moment map, take

Lx: XQ®ygY — Go; xQy+— lx(x).

This is well defined because [y is H-invariant, and smooth by Lemma 2.122. For an arrow g € G with
sre(g) = Lx(x ®@ y) = Ix(x), define the action as:

GA"*XepY; g - (20y) = (92)®y.

Note that the right hand side is well defined because rx is G-invariant, so rx(gz) = rx(z) = ly (y).
Since there can be no confusion, we will drop all parentheses and write gz ® y instead. That the action
is smooth follows because (g, (z,y)) — (gz,y) is smooth (on the appropriate domains) and by another
application of Lemma 2.122. Hence we obtain the induced action GAFX X @y Y.

Now suppose that we are given a smooth H-equivariant map ¢ : Y7 — Y5 between two smooth
actions H~'Y; and H~?Y,. We define a map

dx ®e: XY — X ®py Ya; TRy @ e(y).

The underlying map X x g, Y1 — X x5, Ya : (2,y) — (x,9(y)) is clearly smooth. Then by composition of
the projection onto X ® Y5 and Lemma 2.122, we find id x ® is smooth. Moreover, it is G-equivariant:

idx @ p(gr @y) = gz @ ¢(y) = g (ldx @ p(z @ y)).
Definition 4.46. Let GA'* X "X~ H be a diffeological bibundle. It defines the induced action functor:

X ®y—: ACt(H = HQ) — ACt(G = Go),
(HAYY) — (G X @p Y),
pr—idx ® .

sending each smooth left H-action (Hf\vly Y) — (GmLX X Y) and each H-invariant map ¢ — idx ® ¢.
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4.3.3 The bicategory of diffeological groupoids and -bibundles

Definition 4.47. Let GAX X "X~ H and GAY Y "™V~ H be two bibundles between the same two dif-
feological groupoids. A smooth map ¢ : X — Y is called a bibundle morphism if it is a bundle morphism
between both underlying bundles. We also say that ¢ is biequivariant. Concretely, this means that the
following diagram commutes:

X X5 H,

Ix =lyo
lxl X TTY that is: X=wew
rx =Ty o (p,
Go «—— Y,

ly
and that ¢ is equivariant with respect to both actions. It is clear from Proposition 4.9 that the

composition of biequivariant maps is again biequivariant. Since the inverse of a biequivariant map is
also biequivariant, the isomorphisms of bibundles are exactly the diffeomorphic biequivariant maps.

We will now use the Construction 4.12 of the balanced tensor product to define a notion of compos-
ition for bibundles. Again, note that we perform this construction more generally for any diffeological
bibundle, while in the classical case it only works for bibundles that are left- or right principal.

Construction 4.48 (Bibundle composition). Consider two diffeological bibundles, GA* X "™X~H and
HAYY "YAK. We shall define on X @ Y a (G, K)-bibundle structure using the induced actions from
Section 4.3.2. On the left we take the induced G-action along Lx : X ®g Y — Gg, which we recall
maps ¢ ® y — lx(x), defined by

G XenY; glz®y) = (92) ®v.

This action is well-defined because the G- and H-actions commute. Similarly, we get an induced K-
action on the right along Ry : X ® g Y — Ky, which maps z ® y — ry (y), given by

XopgY™aK;,  (2@yk:=z® (yk).

It is easy to see that these two actions form a bibundle GA'X X @y Y B¥ K, which we also call the
balanced tensor product. Note that the moment maps are smooth by Lemma 2.122.

We have seen that a diffeological groupoid G = Gy gives rise to a (G, G)-bibundle by acting on itself
by left- and right translation (Example 4.34). These behave like identity arrows respect to the balanced
tensor product:

Proposition 4.49. Let GA'X X "XAH be a diffeological bibundle. Then there are biequivariant diffeo-
morphisms

GRFe G @a X BxnH G X @y H BioH
ﬂw and ﬂ
GAx X "X~H. GAx X "x~H.

Proof. The idea of the proof is briefly sketched on [Blo08, Page 8. The map ¢ : G ®¢ X — X is
defined by the action: g ® x — ga. This map is clearly well defined, and by an easy application of
Lemma 2.122 also smooth. Further note that ¢ intertwines the left moment maps:

Ixop(g®a) =lx(9z) = trg(g) = La(g ® @),

and similarly we find it intertwines the right moment maps. Associativity of the G-action and the fact
that it commutes with the H-action directly ensure that ¢ is biequivariant. Moreover, we claim that
the smooth map ¢ : X — G ®¢ X defined by z + id;, (,) ® x is the inverse of ¢. It follows easily that
p o1 =idx, and the other side follows from the defining property of the balanced tensor product:

Yop(g@x)=1(gr) =idi (g2) ® gT = (idtrgg) 09) T = g @ .

It follows from an analogous argument that the identity bibundle of H acts like a weak right inverse. [
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Proposition 4.50. Let GAX X "X~H, H~AY Y "™Y~H', and H' A% Z "2~K be diffeological bibundles.
Then there exists a biequivariant diffeomorphism

GALxeny (X R Y) Ry L Rz K
HA A: (2QyY)Q®z—Q (Y 2).

G X @y (Y @ Z) BowZnK,

Proof. That the map A is smooth follows by Lemma 2.122, because the corresponding underlying map
((z,9), 2) — (z,(y, 2)) is a diffeomorphism. The inverse of this diffeomorphism on the underlying fibred
product induces exactly the smooth inverse of A, showing that A is a diffeomorphism. Furthermore, it
is easy to check that A is biequivariant. O

Combining Propositions 4.49 and 4.50 gives that the balanced tensor product of bibundles behaves
like the composition in a bicategory. We recall in Appendix A.2 the notion of a bicategory. Given what
we know about diffeological bibundles and their analogues in the Lie category, the proof of this theorem
is the same as the one in [Blo08].

Theorem 4.51. There is a bicategory DiffeolBiBund consisting of diffeological groupoids as objects,
diffeological bibundles as morphisms with balanced tensor product as composition, and biequivariant
smooth maps as 2-morphisms.

Given that there is a bicategory of diffeological groupoids, we get an intrinsic notion of equival-
ence for free. This is the equivalence induced by the weak isomorphisms in DiffeolBiBund. We say
that two diffeological groupoids are equivalent if and only if there exists a weakly invertible bibundle
between them. Let us spell out what that means. In this bicategory, a weak inverse for a diffeological
bibundle GAX X "X~ H is yet another diffeological bibundle HAY Y "™vAG, such that there exists two
biequivariant diffeomorphisms:

G X @Y BvaG HA"YY @a X Bx~H
ﬂ and ﬂ
Ge G sen@G HA"8 Hs~H.

In other words, the compositions X @z Y and Y ®g X are 2-isomorphic to the respective identity
bibundles: they are each other’s weak inverses. However, nothing is mentioned here about principality
of the underlying bundles, and it is not entirely obvious that this implies biprincipality of GAX X "™X~H.
The point of the rest of this chapter is to prove that these two notions of equivalence do indeed coincide.
This will show that Morita equivalence can be defined either externally as equivalence in a bicategory,
or internally as through the existence of biprincipal bibundles. To prepare the proof of this theorem,
in the section below we study how subductiveness and pre-principality of bibundles is preserved under
balanced tensor products and biequivariant diffeomorphisms.

For later reference, we describe some algebraic properties of the division map in relation to bibundles:

Lemma 4.52. Let GA* X "XAH be a left pre-principal bibundle, and denote its division map by (-,-)q.
Then, in addition to the properties in Proposition 4.26 with respect to the G-action, we have:

(x1,m2h)g = (x1h ™1 22, or equivalently: (x1h, 22h) ¢ = (21, 22) G5
whenever defined.

Proof. The arrow (z1h,x9h)g € G is the unique one so that (z1h,xoh)g(x2h) = x1h. Now, since
the actions commute, we can multiply both sides of this equation from the right by h~!, which gives
(x1h,2h) x T2 = 21, and this immediately gives our result. O
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4.3.4 Properties of bibundles under composition and isomorphism

Looking at Definitions 4.17 and 4.18, we get three different subcollections of diffeological bibundles: the
(left) subductive, (left) pre-principal, and (left) principal ones. We denote these by DiffeolBiBundg,
DiffeolBiBundy,p, and DiffeolBiBund;p, respectively. The latter one is the direct analogue of the
bicategory of Lie groupoids and left principal bibundles: LieGrpd;p. In all, they collect in the following
hierarchy of generality:

LieGrpd;p —— DiffeolBiBund;p —— DiffeolBiBund; p

| |

DiffeolBiBund;s ——— DiffeolBiBund.

In this section we prove four results that will show that each of these subcollections are closed under
the balanced tensor product, as well as under biequivariant diffeomorphism. This will be crucial in
characterising the weakly invertible principal bibundles.

Proposition 4.53. The balanced tensor product of two left subductive bibundles is again left subductive.

Proof. Consider the balanced tensor product GAF*X X @y Y B¥AK of two left subductive bibundles
GAX X "™x~H and HAYY "™~ K. We need to show that the smooth map Ry : X @y Y — K is a
subduction. But, note that it fits into the following commutative diagram:

XXXy T Xep v

Pra| X x gy, YJ{ J{Ry

Y ————— K.

Here 7 is the canonical projection. The restricted projection pry|x x 4, Y 1s asubduction by Lemma 2.124,
noting that rx is a subduction. Moreover, ry is a subduction, so the bottom part of the diagram is a
subduction. It follows by Lemma 2.122 that Ry is a subduction. O

Note that, even though Ry implicitly only depends on ry, as our notation would suggest, it is
crucial that we also assume 7y to be a subduction. Otherwise we cannot guarantee that the restricted
projection in the above diagram is a subduction, and our argument fails.

Proposition 4.54. The balanced tensor product of two left pre-principal bibundles is left pre-principal.

Proof. To start the proof, take two left pre-principal bibundles, with our usual notation: GA* X "™X~H
and HAY Y "~ K. Denote their division maps by (-,-)& and (-, )%, respectively. Using these, we will
construct a smooth inverse of the action map of the balanced tensor product. Let us denote the action
map of the balanced tensor product by

OGP (X opY) — (XogY) <2 ™ (XeyY),

mapping (g, ® y) — (gz @ y,z ® y). After some calculations (which we describe below), we propose
the following map as an inverse for ®:

U (X @y V)@ (XepY) — Gxgo™ (X onY);
X
(11 @Y1, 22 @ Yo) — <<$1<y17y2>§7332>g ;T2 @ y2) .

It is straightforward to check that every action and division occurring in this expression is well defined.
We need to check that ¥ is independent on the representations of 1 ® y; and z2 ® yo. Only the first
component Wy of ¥ could be dependent on the representations, so we focus there. Suppose we have two
arrows hy, ho € H satisfying trg(h;) = rx (x;) = ly (y;), so that z;h; ® h;lyi = x; ®y;. For the division
of yo and y; we then use Proposition 4.26 to get:

(hiyr hy M)y = hit o (yi hy Mye)r = byt o (ho ' o (Y2 p1) 1)

'
=hi" o (y1,y2) ) o ho.
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Then, using this and Lemma 4.52, we get:

Uy (217 @ By Myn, wahs © hy yo) = (wih(hy Yyr, hy Yye) i, waho )y
= {(z1h1) (hy" o (y1,y2)} © h) ,$2h2>g
= <(x1<y1,y2>)h27xzhz>§
= <x1<y17y2>2,x2>g.

Since the second component of ¥ is by construction independent on the representation, it follows that
¥ is a well-defined function. We now need to show that ¥ is smooth. The second component is clearly
smooth, because it is just the projection onto the second component of the fibred product. That the
other component is smooth follows from Lemmas 2.122 and 2.125. Writing

¥ ((1,01), (@2, 92)) — (@1 (Y1, Y2) b T2) &

and 7 : X x;};’ly Y - X ®y Y for the canonical projection, we get a commutative diagram

(Tr X 7T) |dom(w)

(X Xt Y) <" (X X Y) (X @ Y)xi& "™ (X @nY)

Here we temporarily use the notation 7y := ry o pry|x x Y s which satisfies Ry o7 = Ty . Therefore by
Lemma 2.125 the top arrow in this diagram is a subduction. Since the map 1 is evidently smooth, it
follows by Lemma 2.122 that the first component ¥y, and hence ¥ itself, must be smooth.

Thus, we are left to show that W is an inverse for ®. That ¥ is a right inverse for ® now follows by
simple calculation using Proposition 4.26 and Lemma 4.52:

Vod(g,20y) =V(gzRy,2®y) = ((92(y, 1)}, 2)&,2®y) = (9o (z,2)5,2®y) = (9,2 ®Y).

For the other direction, we calculate:

QoV(z, @Y1, 22 @Y2) = (<$1<y1,y2>H,$2>G T ® y2>

d
Y
(<551 Y1,Y2 H7I2>G T2 @ Y2, T2 @ yz)

(CU Y1, Y201 @ Y2, 2 ®y2)
(1

(Y1, y2) Y2, T2 @ y2)
= (551 ®y1,T2 @ Y2) .

Here in the second to last step we use the properties of the balanced tensor product to move the arrow
(y1,92)Y; over the tensor symbol. Hence we conclude that ® is a diffeomorphism, which proves that
GAFX X @y Y BYAK is a left pre-principal bibundle. O

We further note that both of these properties are also preserved by biequivariant diffeomorphism.
Proposition 4.55. Left pre-principality is preserved by biequivariant diffeomorphism.

Proof. Suppose that ¢ : X — Y is a biequivariant diffeomorphism from a left pre-principal bibundle
GAX X "X~ H to another diffeological bibundle GAY Y "™~ H. Denote their left action maps by Ax
and Ay, respectively. The following square commutes because of biequivariance:

G ><src Ux X X X""XJ"X X
Go Hy
(idGX<P)|G><G0Xl l(@XW)IXXHOX

src,ly TY,TY
G xg, V = Y xg 7Y
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It is easy to see that both vertical maps are diffeomorphisms. (This also follows by Lemma 2.125
and Proposition 2.123.) Hence it follows Ay must be a diffeomorphism as well. O

Proposition 4.56. Left subductiveness is preserved by biequivariant diffeomorphism.

Proof. Suppose that ¢ : X — Y is a biequivariant diffeomorphism from a left subductive bibundle
GAX X "™X~H to GAY'Y "™v~H. That the first bundle is left subductive means that rx is a subduction,
but since ¢ intertwines the moment maps, it follows immediately that 7y = rx o ¢! is a subduction
as well. O

Of course, Propositions 4.53 to 4.56 all hold for their respective ‘right’ versions as well. This can
be proved formally, without repeating the work, by using opposite bibundles.

Corollary 4.57. Morita equivalence defines an equivalence relation between diffeological groupoids.

Proof. Morita equivalence is reflexive by the existence of identity bibundles, which are always biprincipal
(Example 4.34). It is also easy to check that the opposite bibundle (Construction 4.42) of a biprincipal
bibundle is again biprincipal, showing that Morita equivalence is symmetric. Transitivity follows directly
from Propositions 4.53 and 4.54 and their opposite versions. O

4.3.5 Weak invertibility of diffeological bibundles

We have now stated and proved all preliminary definitions and results to start our characterisation of
weakly invertible bibundles. Ultimately, this is to justify that the bicategory DiffeolBiBund is the
correct setting for Morita equivalence (as defined in Definition 4.33). We start by giving a direct ana-
logue of the corresponding result for Lie groupoids. The theorem that characterises Morita equivalence
between Lie groupoids is the following;:

Theorem 4.58. A bibundle in LieGrpd;p is weakly invertible if and only if it is biprincipal.

This can be found in the literature in multiple places, such as [LanO1c, Proposition 4.21] and [Blo08,
Section 3]. In this section we will prove that the same result holds in the setting of left principal bibundles
between diffeological groupoids. Most of the groundwork has been laid in the previous Section 4.3.4.
The proof consists in, first, proving that any biprincipal bibundle is weakly invertible (Proposition 4.59
directly below), and second, proving that any weakly invertible left principal bibundle is biprincipal
(Proposition 4.61).

The weak inverse of a biprincipal bibundle GAX X "™~ H should be a bibundle going the other way
around. A natural candidate for such a bibundle is the opposite bibundle that X induces (Construc-
tion 4.42), and the following proves that this does indeed form a weak inverse.

Proposition 4.59. Let GAX X "™X~H be a biprincipal bibundle. Then its opposite bundle H~N'X X XAG
is a weak inverse.

Proof. We construct biequivariant diffeomorphisms

GA'>* X @y X BxAG HAA'YX @¢ X Bx~H
LPGH and SOHH
Gf\yrg G srcf\(;7 ertrg H s~ H.

Since the original bundle is pre-biprincipal, we have a smooth division map (-,-)¢ : X x50 X — G.
We define the map o
g : X®yg X — G, 1 @ x9 — (X1, T2)G

This is independent on the representation of the tensor product by Lemma 4.52, and smooth by
Lemma 2.122 since pg o1 = (-,-)g, where 7 is the canonical projection onto the balanced tensor
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product. We check that g is biequivariant. It is easy to check that ¢ intertwines the moment maps,
for example:
src 0 (1 ® T2) = sre ((x1,22)¢) = Ix(22) = Ry (21 ® x2).

The left G-equivariance of pg follows directly out of Proposition 4.26, and the right G-equivariance
follows from Lemma 4.43. Hence ¢¢ is a genuine bibundle morphism.

Since the original bundle is biprincipal, so is its opposite, and therefore by Propositions 4.53 and 4.54
it follows that both balanced tensor products are also biprincipal. Therefore ¢ is in particular a left G-

equivariant bundle morphism from a principal bundle GA'X X @ X R—7> Gy to a pre-principal bundle
GG X5 @y, and hence a diffeomorphism by Proposition 4.30. This proves that the opposite
bibundle is a weak right inverse. Note that we already need full biprincipality of the original bibundle
for this. To prove that it is also a weak left inverse we make an analogous construction for ¢y, which
we leave to the reader. O

The converse of Proposition 4.59 is given by Proposition 4.61 below, for which we need the following
lemma.

Lemma 4.60. Let GAX X "X~H be a left pre-principal bibundle, and consider a right action Y "™VAG.
Then there is a diffeomorphism

0: X X3 (Y 00 X) — Y XN X (21, @ ) — (y(on,o1)a, )

Proof. The map 6 is smooth because of a similar argument that is used in the proof of Proposition 4.54.
It is easily seen that (y,z) — (z,y ® x) is a smooth inverse. O

Proposition 4.61. If a left principal bibundle GA* X "™X~H between diffeological groupoids is weakly
invertible in DiffeolBiBundyp, then it is biprincipal.

Proof. We follow the idea of the proof of [MMO5, Proposition 2.9]. If the bibundle is weakly invert-
ible in DiffeolBiBundy p, there exists a left principal bibundle H~Y Y "™V AG and two biequivariant
diffeomorphisms ¢ : X ® g Y = G and ¢y : Y ®g X = H. The idea of the proof is to show that Y is
biequivariantly diffeomorphic to the opposite bibundle X.

By Lemma 4.60 we get two diffeomorphisms:

0: X XX (Y g X) — ¥V x@!X X,
0:Y xZ ™ (XopY) — X x5y

We use these to construct the following smooth maps:

X Y (@) = pryly s, x 00 (2,05 (g () |
oY — X; o(y) = Pr1|XXH0Y09(y79051(id7“1'(y)))'

Using the fact that ¢ and g intertwine the moment maps, it is easy to see that each term in these
formulas are well defined. A simple calculation using the G-invariance of rx and Proposition 4.26 shows
that 7(zg) = 7(x)g. Similarly, we find 7(hx) = h7(z), o(yg) = o(y)g, and o(hy) = ho(y). It further
follows that 7 and o intertwine the moment maps, because of the codomains of # and 0. Therefore T and
o both form bibundle morphisms. Sadly, we cannot rely on Proposition 4.30, since Y is left principal,
whereas X is right principal. However, the compositions Too : Y — Y and 0 o7 : X — X do form
bundle maps between principal bundles, and hence by Proposition 4.30 they are both diffeomorphisms.
It has to be the case, then, that the individual maps 7 and o are diffeomorphisms as well. Therefore, the
right principal bibundle H~'X X XAG is biequivariantly diffeomorphic to the left principal bibundle
HAYY "™AG, so by Propositions 4.55 and 4.56 it follows that H~'* X ~'X G is biprincipal. But that
is just to say that GAX X "XAH is biprincipal. 0O

The following is the analogue of Theorem 4.58 in the diffeological setting, and follows directly from
Propositions 4.59 and 4.61.
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Theorem 4.62. In DiffeolBiBundy p, bibundles are weakly invertible if and only if they are biprincipal.
In other words, two diffeological groupoids are Morita equivalent if and only if they are bicategorically
equivalent in DiffeolBiBund;p.

Note the crucial assumption in the proof of Proposition 4.61 that the bibundle is weakly invertible
in DiffeolBiBundy p, to ensure that the weak inverse is also left principal. This begs the question:

Question 4.63. What are the necessary and sufficient conditions for an arbitrary bibundle to be weakly
invertible in DiffeolBiBund ?

Biprincipality clearly remains sufficient, as Proposition 4.59 states. But the proof of Proposition 4.61
does not answer the question, because we already assume left principality there. Question 4.63 therefore
boils down to: is this assumption essential? Here we will prove that: no, it is not. We do this in steps,
by showing first that weak invertibility implies bisubductiveness:

Proposition 4.64. A weakly invertible bibundle between diffeological groupoids is bisubductive.

Proof. Suppose we have a bibundle GAX X "X~ H that admits a weak inverse H~Y Y "™AG. Let us
denote the included biequivariant diffeomorphisms by g : X @y Y = G and ¢y : Y ®¢ X = H, as
usual. Since the identity bibundles of G and H are both biprincipal, it follows by Proposition 4.56 that
the moment maps Lx, Rx, Ly and Ry are all subductions. Together with the original moment maps,
we get four commutative squares, each of the form:

Xx;};’l”Y%X@HY

prl‘XxHOYJ/ J{Lx

X —— G

Here m : X X?j;’ly Y - X ®py Y is the quotient map of the diagonal H-action. By Lemma 2.122 it
follows that, since Lx is a subduction, so is [x o pI‘1|X><H0y, and in turn by Lemma 2.121 it follows [ x
is a subduction. In a similar fashion we find that rx, ly and ry are all subductions as well. O

This proposition gets us halfway to proving that weakly invertible bibundles are biprincipal. To
prove that they are pre-biprincipal, it is enough to construct smooth division maps. We will give this
construction below (Construction 4.67), which follows from a careful reverse engineering of the division
map of a pre-principal bundle. Recall from Proposition 4.54 that the smooth inverse of the action
map contains the information of both the G-division map and the H-division map. Specifically, the
first component of the inverse is of the form (z1(y1,y2)}, ¥2)¢ , in which if we set y; = y2, we simply
reobtain the G-division map (1, xg)é( . The question is if this “reobtaining” can be done in a smooth
way. This is not so obvious at first. Namely, if we vary (z1, z2) smoothly within X xﬁz’rx X, can we
guarantee that y; and yo vary smoothly with it, while still retaining the equalities rx (x;) = ly (y;) and
y1 = y27 The elaborate Construction 4.67 proves that this can indeed be done. An essential part of
our argument will be supplied by the following lemma.

Lemma 4.65. If GAX X "™X~H is a weakly invertible bibundle, with weak inverse HAY Y ™G, then
all four actions are free.

Proof. This follows from an argument that is used in the proof of [Blo08, Proposition 3.23]. Suppose
we have an arrow h € H and a point y € Y such that hy = y. By Proposition 4.64 it follows that in
particular [y is surjective, so we can find x € X such that y® z € Y ®¢ X. Then

Myez)=(hy) @z =y ® x.

But by Proposition 4.55 the bundle HA*YY ®¢ X LBx, Gy, which is equivariantly diffeomorphic
to the identity bundle on H, is pre-principal. So, the left action H ~ Y ®¢g X is free, and hence
h =idpy (yoz) = idiy (y), proving that H ~ Y is also free. That the three other actions are free follows
analogously. O
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Lemma 4.66. Let X "X~H and HAY'Y be smooth actions, so that we can form the balanced tensor
product X ®pg Y. Suppose that H Y is free. Then x1 @ y = x2 @y if and only if x1 = xo. Similarly,
if X ™ H s free, then x @ y1 = x @ y2 if and only if y1 = ya.

Proof. If x1 = x5 to begin with, the implication is trivial. Suppose therefore that 1 ® y = o ® y, which
means that there exists an arrow h € H such that (x1h™1, hy) = (z2,y). In particular hy = y, which,
because the action on Y is free, implies h = id;, (), and it follows that z; = xlidl_yl(y) = 5. O

We shall now describe how the division map arises from local data:

Construction 4.67. For this construction to work, we start with a diffeological bibundle G X "™X~H,
admitting a weak inverse HAY Y "™ AG. Consider a pointed plot « : (Uy,0) = (X X" X, (21, w2)).
We split «v into the components (a, ), which in turn are pointed plots a; : (Uy, 0) — (X, z;) satisfying
rx oa; = rx oas : Uy, — Hy. This equation gives a plot of Hy, and since by Proposition 4.64 the
moment map ly : Y — Hj is a subduction, for every ¢t € U, we can find a plot 8 :V — Y, defined on
an open neighbourhood t € V' C U,, such that rx o ;|y = ly o 8. From this equation it follows that
the smooth maps (a;|v,8) : V = X x;}‘o’ly Y define two plots of the underlying space of the balanced
tensor product. Applying the quotient map 7« : X xﬁg’ly Y - X ®y Y, we thus get two full-fledged
plots s — a;|v(s) ® 5(s) of the balanced tensor product. We combine these two plots to define yet
another smooth map:

Q°ly = (ro (oulv,B),mo (azlv,8)) : V — (X @ V) xgr ™ (X @y V).

Note that Q| lands in the right codomain because Ry omwo (a;|yv, ) = ry o, irrespective of i € {1,2}.
We also note that the codomain of Q%|y is exactly the domain of the inverse ¥ = (¥, ¥5) of the action

map of the balanced tensor product GAX X @y Y By, Hj (given explicitly in Proposition 4.54). In
particular we then get a smooth map

Qv

U100y V (X onY) X2 (X oy Y) —2— G.

We now extend this map to the entire domain U,, and show that it is independent on the choice of plot
B. For that, pick two points t,t € U,, so that by subductiveness of the left moment map ly we can find
two plots, 3:V — Y and 3 : V — Y, defined on open neighbourhoods of ¢ and %, respectively, such
that rx o |y =ly o and rx o ai|7 =lyo B Following the above construction, we get two smooth
maps:

Q%y s — (ai1lv(s) ® B(s), azlv(s) @ B(s)) ,
Q%+ s (aalg(s) ® B(s), aali(s) @ B(s)) -
We now remark an important characterisation of W, as a consequence of it being a diffeomorphism and

inverse to the action map. Namely, Uy(z1 ® y1,22 ® y2) € G is the unique arrow g € G satistying
gTa ® ya = 21 ® y1. Therefore, ¥1 0 Q% (s) € G is the unique arrow such that

(W1 0 Q%v(s)] - (2lv(s) © B(s)) = arlv(s) @ B(s).

By Lemma 4.65 all of the four actions of the original bibundles are free. Consequently, applying
Lemma 4.66, since the second component in each term is just 3(s), this means that ¥; 0 Q| (s) is the
unique arrow in G such that

\USS) Qa|v(s) . a2|v(8) = a1|V(5)7

where the tensor with 3(s) can be removed. But, for exactly the same reasons, if we take s € VNV,
—
then ¥y 0 Q" |7(s) € G is also the unique arrow such that

¥y o ﬁahmv(s) caslyap(s) = anlyap(s),

proving that
b=~}
\Ill o Qa|VﬂV = \Ifl ¢} Q ‘va.
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This shows that on the overlaps V NV the map ¥, o Q%4 does not depend on the plots § and A.
This allows us to extend ¥y o Q%|y, in a well-defined way, to the entire domain of U,. We do this as
follows. For every t € U, there exists a plot 8; : V; — Y, defined on an open neighbourhood V; 3 ¢,
such that rx o a;|y, = ly o 8. Clearly, this gives an open cover (V;)icp,, of U,. For t € U, we then set
Uy 0Q(t) := Uy 0 Q%y, (). Hence we get a well-defined function ¥ o Q% : U, — G, which is smooth
by the Axiom of Locality.

The main observation now is that, as the plot « is centred at (z1,22), we get that ¥; 0 2%(0) is the
unique arrow in G such that ¥y o Q¥(0) - 25 = x;. This is exactly the property that characterises the
division (1, x2)¢g!

Proposition 4.68. A weakly invertible bibundle between diffeological groupoids is pre-biprincipal.

Proof. The bulk of the work has been done in Construction 4.67. Start with a diffeological bibundle
G X "™~ H and a weak inverse HAY Y "G, We shall define a smooth division map (-, -)¢ for the
left G-action. For (x1,x2) € X x;j;’rx X, we know by the Axiom of Covering that the constant map

const (g, z,) : R = X x5 """ X is a plot centred at (x1,22). We use the shorthand ¥, 0 Q@12) 6 denote
the map ¥y o Q¢ defined by the plot o = const(,, .,), and then write:

(r1,22)q 1= W10 Q(ml’xz)(o).

That just leaves us to show that this map is smooth. So take an arbitrary plot o : U, — X xrfj;’rx X
of the fibred product. We need to show that (-,-)g o « is a plot of G. For any ¢ € U,, we have that

(a1(t),aa(t))e =Ty 0 Qo‘(t)(O)
is the unique arrow in G such that
Wy 0 Q0 (0) - consti(t)(O) = const}l(t) (0),

where const? denotes the ith component of the constant plot. But then constfl( 1 (0) = a;(t), and we

already know that ¥; o Q%(¢) € G is the unique arrow that sends as(t) to ay(t), so we have:
T 0QD(0) = Ty 00Q%(t),  which means  (-,-)goa = ¥; 0 Q.

But the right hand side ¥; 0o Q% : U, — G is a plot of G as per Construction 4.67, proving that the
map (-, -)g is smooth. It is quite evident from its construction that it satisfies exactly the properties of
a division map, and it is now easy to verify that

(<'a '>G,PT2|XxHox) : X x’;j;””x X —G XSCES’ZX X

is a smooth inverse of the action map (see Section 4.2.1). The fact that it lands in the right codomain,
i.e., src((z1,22)g) = lx(x2), follows from the properties of ¥ as the inverse of the action map of the
balanced tensor product. Therefore GAX X %5 Hy is a pre-principal bundle. An analogous argument

will show that Gy & X rxAH s also pre-principal, and hence we have proved the claim. O
The answer to Question 4.63 is then:

Theorem 4.69. A bibundle is weakly invertible in DiffeolBiBund if and only if it is biprincipal.
That means: two diffeological groupoids are Morita equivalent if and only if they are equivalent in
DiffeolBiBund.

Proof. One of the implications is just Proposition 4.59. The other now follows from a combination of
Propositions 4.64 and 4.68. O

This significantly generalises the Lie version of this result in Theorem 4.58, and shows that left prin-
cipality of the Lie bibundles was more like a technical necessity as opposed to a meaningful assumption
about the smooth structure of the bibundles.
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4.4 Some applications

Now that we have constructed the bicategory DiffeolBiBund and have established Theorem 4.69, we
give some applications of this framework.

4.4.1 Equivalence of action categories

In the Morita theory of rings, it holds that two rings are Morita equivalent if and only if their categories
of modules are equivalent. For groupoids, even discrete ones, this is no longer an “if and only if”
proposition, but merely an “only if”. Nevertheless, it is known that the result transfers to Lie groupoids
as well [LanOla, Theorem 6.6], and here we shall prove that it transfers also to diffeology.

Theorem 4.70. Suppose G = Gy and H = Hy are Morita equivalent diffeological groupoids. Then
Act(G = Gy) and Act(H = Hy) are categorically equivalent.

Proof. If G = G and H = H, are Morita equivalent, there exists a biprincipal bibundle GAX X "X~ H.
Recall from Definition 4.10 the notion of the action categories and from Definition 4.46 that of induced
action functors. We claim that

X ®y—: ACt(H = Ho) — ACt(G = Go),
X ®@g — : Act(G = Go) — Act(H = Hy)

are mutually inverse functors up to natural isomorphism. To see this, take a left H action HAY Y.
Then

(X®g—)o(X®y—)[HYY]=(X®¢—) [GA* X ey Y] =H~A'* (X@¢ (X ®rY)).
Therefore, we need to construct a natural biequivariant diffeomorphism
ny :Y@G (X®HY) —Y.

For this, we collect the biequivariant diffeomorphisms from Propositions 4.49, 4.50 and 4.59. Let us
denote them by

AY:Y®G (X@HY)—>(Y®GX) ®HK
(pHZY(X)GX—)H,
MylH®HY—>Y7

describing the association up to isomorphism, the division map of the bibundle, and the left action
H ~ Y, respectively. We then define

py = My o ((pH (2] idy) oAy.
Note that (pg ® idy) is still a biequivariant diffeomorphism. The naturality square of the natural

transformation p : (Y Ra —) o (X ®p —) = idact(m) then becomes:

X@¢(XopY) oY

id%®(idx ogo)l Lﬂ

where ¢ : Y — Z is an H-equivariant smooth map. It follows from the structure of these maps that the
naturality square commutes. The top right corner of the diagram becomes:
pouy (11 ® (22 @y)) =poMyo(pn ®idy) o Ay (21 @ (x2 ® y))
= oMy o (pg ®idy) ((z1 ® z2) ®Y)
=y oMy (pu(r1®22) @Y)
= ¢ (pu(r1 © 22)Y)
= ¢ (z1 @ z2)0(y),
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where the very last step follows from H-equivariance of ¢. Following a similar calculation, the bottom
left corner evaluates as

= Mz o (pg ®idz) o ((idgx ®idx) @ )
= Mz o (pn ®p),

which, when evaluated, gives exactly the same as the above expression for the top right corner. This
proves that p is natural, and since every of its components is an H-equivariant diffeomorphism, it
follows that u is a natural isomorphism. The fact that (X @y —)o (Y ®c —) is naturally isomorphic to
idact(q) follows from an analogous argument. Hence the categories Act(G = Go) and Act(H = Hy)
are equivalent, as was to be shown. O

The category Act(G = Gy) is itself a functional space, as we see that the space of objects can be
described as a (very big) union over diffeological spaces of the form C*(G x¢, X, X). Each of these
carries the standard functional diffeology, and using the colimit diffeclogy, we could try to equip the
union of these spaces with a diffeology as well. We therefore pose the question:

Question 4.71. Is there a natural diffeology on Act(G = Gy), and if so, does the categorical equivalence
above become smooth?

4.4.2 Morita equivalence of fibration groupoids

In Section 3.3.2 we saw that diffeological fibre bundles can be studied through fibration groupoids. It
is natural to ask whether this property is invariant under Morita equivalence:

Theorem 4.72. Let G = Gy and H = Hy be two Morita equivalent diffeological groupoids. Then
G = Gq is fibrating if and only if H = Hy is fibrating.

Proof. Because Morita equivalence is an equivalence relation, it suffices to prove that if G = Gq is
fibrating, then so is H = Hy. Denoting the characteristic maps of these groupoids by xg = (trgq, srcg)
and xg = (trgy,srcy), assume that G is fibrating, so that x¢ is a subduction. Our goal is to show x g
is also a subduction.

To begin with, take an arbitrary plot & = (a1, a2) : Uy, — Hy X Hp, and fix an element ¢ € U,.
We thus need to find a plot ® : W — H, defined on an open neighbourhood t € W C U,, such that
alw = xg o ®. Morita equivalence yields a biprincipal bibundle GAX X "™~ H. To construct the plot
®, we use almost all of the structure of this bibundle.

The right moment map rx : X — Hj is a subduction, so for each of the components «; of o we get
a plot 3; : U; = X, defined on an open neighbourhood ¢ € U; C U, such that a;|y, = rx o 8;. Define
U := Uy N Us, which is another open neighbourhood of ¢ € U, and introduce the notation

B :=(Bilv,B2lv) : U — X x X.

Composing with the left moment map lx : X — Gg, we get another plot (Ix xIx)o 8:U — Gy x Gp.
It is here that we use that G = G| is fibrating. Because of that, we can find an open neighbourhood
teV CUCU, and a plot Q:V — G such that

Xg o= (Ix xIx)o By . (v)

This means that trg; o Q@ = Ix o Bi|v and srcg 0 Q = Ix o Boly. Let oo : X @y X = G be the
biequivariant diffeomorphism from Proposition 4.59. Thus we get a plot @51 0Q:V = X®yX. The
canonical projection my : X XZE’TX X — X ®y X of the diagonal H-action is a subduction, so we can

find an open neighbourhood t € W C V and a plot w : W — X x7°"* X such that

T 0w =gt o Q. (%)
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Note that the plot w decomposes into its components wy,ws : W — X, which satisfy rx ow; = rx ows.
Using the biequivariance of ¢ and the defining relation Lx omy = lx o pr1|XXHOY we find:

-1
Ix ofilw =trggoQw =Lxops oQlw =Lxomgow=lx opr1|XXH0yow:lX owi,

where the first equality follows from the equation (¥), and the third one from (&). Similarly, we find
Ix o fo|lw = lx ows. These two equalities give two well-defined plots, one for each i € {1,2}, given by
(Bilw,wi)

Bilw ®@ w; = 7g o (Bilw,wi) : W X xg X —"¢ X @c X,

where mq 1 X xg‘o’lx X — X ®g X is the canonical projection of the diagonal G-action. We can now

apply the biequivariant diffeomorphism ¢ : X ®¢ X = H from Proposition 4.59 to get two plots in H.
It is from these two plots that we will create ®. Here it is absolutely essential that we have constructed
the plot w such that rx ow; = rx o ws, because that means that the sources of these two plots in H
will be equal, and hence they can be composed if we first invert one of them component-wise. To see
this, use the biequivariance of g to calculate

srer o i o (Bilw @ wi) = Rx o (Bilw ® wi) = rx o prafx,, x © (Bilw,wi) = rx owi,
and similarly:
trgy 0w o (Bilw ®wi) = Lg o (Bilw @ wi) = rx oprilx,, x o (Bilw,wi) = rx o filw = cufw-

Of course, if we switch §;|lw ® w; to w; ® B;|w, which is defined in the obvious way, then the right-hand
sides of the above two equations will switch. So, for every s € W, the expression ¢ (w2(s) ® B2(s))
is an arrow in H from rx o f53(s) = aa(s) to rx o wa(s), and ¢p (B1(s) @ wi(s)) is an arrow from
rx owi(s) =rxwa(s) to rx o B1(s) = ai(s), which can hence be composed to give an arrow from aa(s)
to aq(s). This is exactly the kind of arrow we want. Therefore, for every s € W, we get a commutative
triangle in the groupoid H, which defines for us the plot & : W — H:

p(s) ----- ey an(s)
on (w2 (8)®[32(m /4’11 (B1(5)®@w1(s))
rx 0wy (S)

The map @ is clearly smooth, because inversion and multiplication in H are smooth. Hence we have
defined the plot ®, and by the above diagram it is clear that it satisfies

xH o P = (trgy o D,srcy o ) = afw.

Thus we may at last conclude that x g is a subduction, and hence that H = Hj is also fibrating. O

4.4.3 Diffeological bibundles between Lie groupoids

If G = Gy and H = Hy are two Lie groupoids, such that there exists a diffeological biprincipal bibundle
GAX X "X~ H between them, what does that say about Morita equivalence of G and H in the Lie
category? Does the inclusion pseudofunctor LieGrpd;p — DiffeolBiBund reflect equivalences®*?
Does X have to be a manifold? In attempting to answer these questions we will study a special class of
diffeological groupoids:

Definition 4.73. We say a diffeological groupoid G = Gy is locally subductive if its source and target
maps are local subductions®”. Clearly, every Lie groupoid is a locally subductive diffeological groupoid.

44Recall that a functor F' : C — D is said to reflect some property of an object (or arrow), if whenever FC has that
property in D, then C has that same property in C. The functor F' is said to reflect isomorphism if whenever FC = F' D
are isomorphic in D, then C' 2 D in C. The definition extends to the reflection fo weak isomorphisms by pseudofunctors.

45Given the fact that local subductions on smooth manifolds are the same as submersions (Proposition 2.128), it
would be tempting to call such groupoids “diffeological Lie groupoids”. Sadly, this would conflict with earlier established
terminology of so-called diffeological Lie groups in [Diffeology, Article 7.1] and [Les03; Mag18].
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Looking at the structure of the proofs in the preceding parts of this Chapter IV, it appears that
everything seems to work just as well if we strengthen our fundamental definitions of groupoids and
bundles from being subductive to being locally subductive. In doing so, we would get a theory of locally
subductive groupoids, locally subductive groupoid bundles, and the corresponding notions for bibundles
and Morita equivalence, which, as it appears, would follow the same story as we have so far presented.
In this subtheory, since local subductions are the submersions on smooth manifolds (Proposition 2.128),
the restriction from diffeological spaces to smooth manifolds would then precisely return the Lie groupoid
theory as it is known in the literature.

But it is not evident that reducing to Lie groupoids within the general diffeological framework (where
the bibundles are not necessarily locally subductive) also returns the Lie groupoid theory. This is mainly
because it is not clear that the condition of subductiveness of bundles should reduce to submersiveness
automatically. The results below prove that this does have to be the case. In this way we will prove
that for locally subductive groupoids, our choice of starting with subductive bundles faithfully returns
what we would have found if we decided to use the notion of local subductivness (Proposition 4.79). In
hindsight, this provides more justification for our choice of starting with subductions instead of local
subductions. One consequence of this choice is that it allows for groupoid bundles that are truly pseudo-
bundles, in the sense of [Per16]. The notion of pseudo-bundles seems to be the correct notion in the
setting of diffeology to truly generalise all bundle constructions on manifolds, at least if we want to
treat (internal) tangent bundles as such. For instance, the canonical projection of the internal tangent
bundle on the cross (Example 2.18) is not a local subduction, and can therefore not be a diffeological
fibration. If we had defined principality of a groupoid bundle to include local subductiveness, these
examples would not be treatable by our theory of Morita equivalence.

Lemma 4.74. Let GAX X "X~H be a diffeological bibundle, where H = Hy is a locally subductive
groupoid. Then the canonical projection map wg : X XE;’TX X - X ®yg X is a local subduction.

Proof. Let a : (Uy,0) — (X @y X, 21 ® 13) be a pointed plot of the balanced tensor product. Since
7y is already a subduction, we can find a plot 3: V — X xg, X, defined on an open neighbourhood
0 € V C U, of the origin, such that a|y = 7y o 8. This plot decomposes into two plots 51,02 € Dx
on X, satisfying ry o 81 = rx o 2. We use the notation a|y = 1 ® B2. In particular, we get an
equality z1 ® z2 = (1(0) ® B2(0) inside the balanced tensor product, which means that we can find
an arrow h € H such that 8;(0) = x;h. The target must be trg(h) = rx(z1) = rx(x2). This arrow
allows us to write a pointed plot 7x o 3; : (V,0) — (Ho,trg(h™1)), so that now we can use that H = Hy
is locally subductive. Since the target map of H is a local subduction, we can find a pointed plot
Q: (W,0) — (H,h™1) such that rx o B;|w = trgy o Q. This relation means that, for every t € W, we
have a well-defined action §;(t) - (t) € X. Hence we get a pointed plot

U (W,0) — (X xi ™ X, (21,22)); t— (Bi(t)QU2), B2(1)2(1)) -
It then follows by the definition of the balanced tensor product that

w0 W(t) = Bilw (£)QE) @ Bolw (1)Qt) = Pilw (t) © Balw (t) = alw (D),
proving that 7wy is a local subduction. O

Lemma 4.75. If GAX X "™X~H is a biprincipal bibundle between locally subductive groupoids, then the
moment maps lx and rx are local subductions as well.

Proof. If GAX X "™X~H is biprincipal, we get two biequivariant diffeomorphisms pg : X ® g X — G and
o+ X ®g X — H (Proposition 4.59). It follows that the local subductivity of the source and target
maps of G and H transfer to the four moment maps of the balanced tensor products. For example, the
left moment map Lx : X @y X — G can be written as Lx = trgs o @, where the right hand side is
clearly a local subduction. We know as well that Lx fits into a commutative square with the original
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moment map [x:
9 Y 7rH Y
X x;};”‘ X —— XopX

pr1|xxH0Yl J/LX

X — G,
Ix

Since local subductions compose, and since by Lemma 4.74 the projection 7y is a local subduction,

we find that the upper right corner Lx o mg must be a local subduction. Hence the composition

Ix opry] X x . % 18 alocal subduction, which by Lemma 2.131 gives the local subductiveness of [x. That
0

rx is a local subduction follows from a similar argument. O

This lemma provides evidence that the diffeological bibundle theory reduces to the Lie groupoid
theory in the correct way. We see that the underlying groupoid bundles of any diffeological biprincipal
bibundle between Lie groupoids have to be locally subductive. Therefore locally subductive Lie groupoid
principal bundles defined on smooth manifolds return the traditional definition of principal Lie groupoid
bundles (see e.g. [dHo012, Section 3.6]).

The lemma also suggests that, if we refine our notion of principality something we might call pure-
principality, by passing from subductions to local subductions, then biprincipality between locally sub-
ductive groupoids means the same thing as this new notion of pure-principality. Let us make this
precise.

Definition 4.76. A diffeological groupoid bundle (G = Go)~* X = B is called locally subductive
if 7 is a local subduction. We say the bundle is purely-principal if it is both locally subductive and
pre-principal.

Pure-principality can then be defined for bibundles, naturally refining Definitions 4.32 and 4.33.

Definition 4.77. A diffeological bibundle GAX X "™X~H is called left locally subductive if the left
underlying bundle GAX X %5 Hy is locally subductive. This just means that rx is a local subduction.
Let the definition extend naturally to its opposite version as well, which we call right local subductiveness.

The bibundle is called left purely-principal if the left underlying bundle is purely-principal. Again,
a similar definition holds for right pure-principality.

If we denote the bicategory of locally subductive groupoids and bibundles by DiffeolBiBundl'S”b,
we get the following hierarchy of types of bibundles:

DiffeolBiBund;,g DiffeolBiBund
— T
DiffeolBiBundyp J DiffeolBiBundj,,p
DiffeolBiBundjj,c DiffeolBiBund*"".
o
DiffeolBiBundyy..p DiffeolBiBund}

_—

LieGrpd; p

Definition 4.78. A diffeological bibundle GAX X "™X~H is called locally bisubductive if it is both
left- and right locally subductive*®. We call the bibundle purely-biprincipal if it is both left- and right
purely-principal*”. Two diffeological groupoids are called purely-Morita equivalent if there exists a
purely-biprincipal bibundle between them.

46 As with pre-biprincipality, we have a commutativity relation: “bi-(locally subductive) = locally (bisubductive)”.
47 Also here we have commutativity: “bi-(purely-principal) = purely-(biprincipal)”.
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Clearly, pure-Morita equivalence implies ordinary Morita equivalence, since local subductions are, in
particular, subductions. The question is if the other implication holds as well. We suspect that it does
not. For locally subductive groupoids they are the same, however, because with this new terminology,
Lemma 4.75 can be restated as follows:

Proposition 4.79. Two locally subductive groupoids are Morita equivalent if and only if they are
purely-Morita equivalent.

Especially in light of the existence of subductions that are not local subductions (Example 2.129),
and the fact that the proof of Lemma 4.75 relies so heavily on the assumption that the groupoids
are locally subductive, it seems that the ordinary diffeological Morita equivalence of Definition 4.33 is
not equivalent to pure-Morita equivalence in general. We do not know to what extent the theory of
pure-groupoid bundles between arbitrary diffeological groupoids differs from the one we have presented
here.

Given this discussion, we leave this section with an open question:

Question 4.80. Does the inclusion pseudofunctor LieGrpd;p — DiffeolBiBund reflect weak iso-
morphism? That is: does diffeological Morita equivalence reduce to Lie Morita equivalence on Lie
groupoids?

Since G and H are both manifolds, it follows that X @z X and X ®¢ X are also manifolds. We
suspect that this may somehow imply that X itself must be a smooth manifold. As mentioned before,
[Diffeology, Article 4.6] gives a characterisation for when a quotient of a diffeological space by an equi-
valence relation is a smooth manifold. Since the balanced tensor products are quotients of diffeological
spaces, one may try to use this result to obtain a special family of plots for their underlying fibred
products. This could potentially be used to define an atlas on X. Intuitively, X should look locally like
a product of the orbits of G and H. That is, if x € X then there should be a D-open neighbourhood that
looks like Orbg(z) x Orbg(x). Since the orbits of a Lie groupoid are immersed submanifolds [CM18,
Proposition 2.4], can we prove a similar result for X?

112



Chapter V
The calculus of fractions approach to
Morita equivalence

Chapter IV has so far been devoted to constructing and studying the bicategory DiffeolBiBund of
diffeological groupoids and bibundles. There is another, equivalent way of constructing this bicategory
(for Lie groupoids) that occurs in the literature, and gives the same notion of Morita equivalence. This
alternative approach uses the idea of a localised category (see e.g. [Rob12] for the general theory).
Intuitively, a localisation supplements a category with additional arrows that ensure the existence of
additional inverses. The motivation for this is similar to that for the introduction of C*-correspondences,
in order to generalise the ordinary %-homomorphisms between C*-algebras. This motivation originates
from a noncommutative geometric viewpoint: there are non-isomorphic C*-algebras (in the sense of
k-isomorphisms) that describe an ‘equivalent’ noncommutative space (see e.g. [vSulb, Chapter 2]
for an explanation of this). This means that the category of C*-algebras and *-homomorphism does
not have enough structure to reflect certain desired isomorphisms. By generalising the notion of a
x-homomorphism to a C*-correspondence, this glitch is remedied to some extent.

The situation is similar for groupoids. There are many non-isomorphic diffeological groupoids (or Lie
groupoids for that matter) whose orbits paces are isomorphic. We have seen, for example, that the orbit
space of a pair groupoid A x A = A (Example 3.20) of an arbitrary diffeological space A € Diffeol is
always just a single-point space. However, the pair groupoids A x A = A and B x B = B are isomorphic
in the category DiffeolGrpd (i.e., in the sense that there exists an invertible smooth functor between
them) if and only if A and B are diffeomorphic. By the existence of non-diffeomorphic diffeological
spaces, this shows there are non-isomorphic diffeological groupoids that nevertheless describe the same
underlying orbit space. On the other hand, we have seen in Example 4.36 that any two pair groupoids,
while not isomorphic, are Morita equivalent. This shows that the notion of a biprincipal bibundle is a
more appropriate notion than that of an invertible smooth functor to describe the geometry of the orbit
spaces.

The localisation of categories is an abstract way to obtain this result. The general idea of a category
of fractions is the following. Instead of arrows C' — D in a category C, the morphisms from C to D
are described by so-called spans C' < E — D, where FE is a third object in C (this is also related to
the notion of an anafunctor). We call these generalised morphisms. Generally, one of the arrows in a
such a span is often taken to be part of a special class of arrows W, called the weak equivalences. The
calculus of fractions C[W ~1] is then the category whose objects are just those of C, but whose arrows
are the generalised morphisms C <~ E — D (and whose 2-morphisms fit into an obvious commutative
diagram). The motivating example is when C = Cat, the category of all (small) categories, and W
is the class of all categorical equivalences. The notion of a calculus of fractions is also important in
homotopy theory [GZ67].

The main goal of this section is to provide the technical details of an appropriate notion of weak
equivalence for diffeological groupoids, but will not focus on the categorical aspects of the calculus of
fractions specifically. Our discussion therefore merely aims to provide a foundation for further work of
a rigorous construction and study of the calculus of fractions for diffeological groupoids. We suspect
that, just as the biprincipality of bibundles between diffeological groupoids behaves differently than
in the case of Lie groupoids, here the notion of weak equivalence has a slightly different role than for
Lie groupoids. We show that the diffeological bibundles are just geometric models for the resulting
generalised arrows (Section 5.1.3). Here we follow mostly [dHo12; Lil5; MMO03; MMO5], where the
construction of this bicategory of generalised morphisms is constructed for Lie groupoids. This also
appears in e.g. [ALRO7]. See also [Pro96] for a rigorous treatment and comparison of the calculus of
fractions for topological groupoids. This relation appears already early on in [Pra89].
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5.1 Weak equivalences and generalised morphisms

Just as in the generalisation of the bibundle theory from Lie groupoids to diffeological groupoids, we
generalise here by replacing submersions by subductions. The first crucial definition then becomes:

Definition 5.1. A smooth functor ¢ : G — H between diffeological groupoids is called a weak equival-
ence (also called Morita maps in [dHo12], or a essential equivalence) if the following two conditions are
satisfied:

1. (Essential surjectivity) The following map is a subduction®®:
trgopry : H XS}E’% Go — Ho; (h,z) — trg(h).

2. (Full faithfulness) The following square is a pullback diagram in Diffeol:

a— > H

J
(srcc,trgc)l J{(srcH,trgH)

GOXGOWHOXHO.

Unpacking these definitions, we see immediately that these two definitions are indeed adaptations of
the classical notions of essential surjectivity and full faithfulness from ordinary category to the smooth
setting. First of all, let us deal with the apparent ambiguity in the essential surjectivity condition, and
show that it does not matter if we swap the source and target maps.

Proposition 5.2. Let ¢ : G — H be a smooth functor. Then
. SIC, )
trgopry : H X, * Gy — Hp

s a subduction if and only if
srcopry : H ng’d)" Go — Hp

18 a subduction.

Proof. Tt suffices to prove only one of the implications, since the other one will be completely analogous
due to the symmetry between the source and target maps. Suppose first that src o pry|mx 1o Go 18
a subduction, and consider a plot a : U, — Hp, and fix a point ¢ € U, in the domain. Using
subductiveness, we can find two plots 81 : V. — H and 2 : V — G, related by trgo 8, = ¢g o fo,
and satisfying a|y = src o 8;. The inversion map inv : H — H is smooth, and it helps us give a plot
(invoBy,B2): V> H Xi}ﬁ"b“ Go, which now satisfies

trgopry o (invo B, 82) = trgoinvo 8y =srco B = aly.
This shows that (invo 1, B2) is the desired lift, and proves that trgopr;| s« G, is also a subduction. [

With that out of the way, we can now define the arrows in a localised category of diffeological
groupoids.

Definition 5.3. Consider two diffeological groupoids G = Gy and H = Hy. A generalised smooth

morphism from G to H is a span of smooth functors G kY H , where K is a third diffeological
groupoid. (In category theory, such spans are also sometimes called anafunctors.) Note that the
groupoid K is part of the data. In the case of Lie groupoids it is typical to assume that ¢ (or v) is
a weak equivalence. This is to ensure that the composition of these general morphisms can be defined
(cf. Construction 5.8). For diffeological groupoids the existence of this construction is ensured without
any assumptions on ¢ and . The analogy is to the principality of our bibundles, which in the Lie

48Note that, even though pri : H x Go — H and trg are both subductions, we must heed our earlier precautions, and
remark that we are dealing here with the restriction trg o pry ‘Hxsm’d’OG , which is not automatically subductive.
Hg 0
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case is necessary, but in the diffeological case is not. This analogy will be spelled out more explicitly in
Section 5.1.3.
Two diffeological groupoids G = Gy and H == Hy are called Morita equivalent if there exists a span

G & K Y H where both ¢ and v are weak equivalences.

In Theorem 5.14 we will prove that this notion of Morita equivalence is the same as the definition
of Morita equivalence in terms of biprincipal bibundles. Note in particular that weak equivalences
themselves induce Morita equivalences:

Proposition 5.4. If there exists a weak equivalence ¢ : G — H between diffeological groupoids, then G
and H are Morita equivalent.

Proof. Since the identity functor idy : H — H is a weak equivalence, if there exists a weak equivalence
¢: G — H, then G and H are already Morita equivalent through the span G &g Mg O

5.1.1 Technical properties of weak equivalences

Recall from Definition 3.18 that if ¢ and 1 are two smooth functors G — H between diffeological
groupoids, then a natural transformation T : ¢ — v is smooth if the underlying map Gy — H is
smooth. In particular, every natural transformation between functors whose codomain is a groupoid
is automatically a natural isomorphism. In the 2-category DiffeolGrpd of diffeological groupoids and
smooth functors, all smooth natural transformations are hence natural isomorphisms. This 2-category
then gives us a notion of equivalence as follows: a smooth functor ¢ : G — H is called a smooth categorical
equivalence (strong equivalence in [MMO3]) if there exists another smooth functor ¢ : H — G and two
smooth natural isomorphisms 7" : ¢ o) — idyg and S : ¥ o ¢ — idg. In the smooth context, this notion
of equivalence is no longer the same as a functor being essentially surjective and fully faithful, yet we
still have:

Proposition 5.5. Let ¢ : G — H be a smooth categorical equivalence. Then ¢ is a weak equivalence.

Proof. In that case, we know there exists a smooth functor ¥ : H — G and a smooth natural isomorphism
T :¢oy — idy. We prove first that ¢ is essentially surjective, so pick a plot a : U, — Hy. Each
t € U, thus gives an arrow Ty : ¢otboa(t) — a(t) in H, and it is easy to see that we get a smooth plot

t = (To(t), Yoa(t)) of H XZE’% Gy that lifts « (globally) along trg o pr;.
For full faithfulness, it suffices to construct a diffeomorphism G — Gy xﬁfﬂ’src H xtlf,f’% Gy that fits

into a commutative diagram:
¢o,s1C trg, bo pry
Go X" H x 57" Go ﬁ

(pry,pr3) G — s H

This is because Gy x%’o’src H ng’% Gy is exactly the pullback of the square in Definition 5.1. This
diffeomorphism is given by g — (src(g), ¢g, trgg), and has smooth inverse

(@, h,y) — Ty o ph o T, Y,
which clearly makes the diagram commute. O

Proposition 5.6. Let ¢,v : G — H be two smooth functors between diffeological groupoids, admitting
a smooth natural transformation T : ¢ — . Then ¢ is a weak equivalence if and only if Y is a weak
equivalence.
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Proof. Since T is a natural isomorphism, it suffices to prove one of the implications. Let us therefore
start with a weak equivalence ¢. We begin by proving that v is essentially surjective. For that,
take a plot o : U, — Hjy of the object space. Since ¢ is essentially surjective, we can find a plot
(61,82): V—-H xsl_ﬁz’d)" G, defined on some open neighbourhood t € V' C U, of an arbitrary point in
the domain of «, and satisfying trg o 1 = «|y. From this data, using the smooth natural map 7', we
can construct a lift of trgopr; : H xi;g’wo Gy — Hy. Abusing notation, let us denote the underlying
smooth function of the natural transformation just by T : Gy — H. The plot 32 then gives a plot
Topy:V — H. We want a smooth family of arrows in H whose targets are given by a|y (t), and whose
source is controlled by B5. For this, we define:

wy:V — H; tHBl(t)oTl;Qtt).
This is clearly a smooth map, since T" and the composition and inverse in H are smooth. An easy
calculation then shows that src o wy = 9 o B2(t), since T, sy : poB2(t) — 1oB2(t), and similarly we get

trgow; = trgo 81 = ay. This shows that we get a plot (wy,82): V — H xf{,ﬁ’wo Go that defines a local

lift of « along trgo pry : H xzﬁ’wo Go — Hy. Therefore v is essentially surjective.
We now prove that 1 is fully faithful. The naturality of 7" means that for every arrow g € G we can
decompose ¢(g) =T, t;gl(g) 01h(g) © Tsre(g)- We will use this trick to prove that the following inner square

is a pullback:
X w
ISR TS 1

(a1,a2)
src,trg)l J{(src,trg)

GOXGOWHOXHO.

We start here with two smooth maps w : X — H and (a1, a2) : X = Gy x Gy making the outer square
commute. This means that w(z) is an arrow in H with source 1ga;(x) and target ¢gaz(z). Therefore,
using the above decomposition, we define

1

w: X — H; xHT(;(w)ow(a:)oTal(m),

which satisfies src o w = ¢pa1(z) and trg o w = ¢pas(x), or in other words:

(sre, trg) ow = (g X ¢p) o (a1, as),

and since ¢ is fully faithful, there exists a unique smooth map Q : X — G such that (src, trg)of) = (a1, as)
and ¢oQ = &. Transforming back using the natural map 7', using ¥ (g) = Tirg(g) © 9(g) © TS;Cl(g), we find:

V) = Tay(@) © $U@) 0 T, ) = Tay(w) 0W(2) 0 T, () = w(@),
which proves that 2 is also the unique map completing the pullback square of ¥. Hence we conclude
that 1 is also a weak equivalence. O

Proposition 5.7. The composition of weak equivalences is again a weak equivalence.

Proof. Let ¢ : G — H and ¢ : H — K be two weak equivalences between diffeological groupoids. We
prove that ¥ o ¢ is also a weak equivalence. We start with essential surjectivity, for which we need to
show that
. src, Yo P
trgopr; : K XK, P Gy — Ky

is a subduction. Let a : U, — K{ be a plot of the object space of the third groupoid, and fix some point
t € U,. Since 9 is essentially surjective, there exists a plot (81,02) : V — K XSI;C)’% Hy defined on some
open neighbourhood t € V' C U, which lifts |y, = trg o 81. In particular we have a plot 82 : V' — Hy,
so by the essential surjectivity of the first functor ¢ we get another plot w: W — H xir,g’% Gy defined
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on an open neighbourhood t € W C V, and satisfying trg o wy = B2]w. We now have all the data we
need to define a lift for the essential surjectivity of 1) o ¢. Namely, we define a plot

Q: W — K; s+ B1(t) o Ywi(t).
Note that this composition is well-defined in K, because
stc o B1lw = 1o o Ba|lw = 1o o trg o wy.

It is now easy to verify that (Q,wq) : W — szlzc,wmbo G defines the appropriate lift, since trgoQ = a|yy .
0
For the proof of full faithfulness, we note that we get a concatenation of two pullback squares:

¥

G— —H K
J |
(src,trg)l (src,trg)l l(src,trg)
GOXGOWHOXHOWKOXKOv

which proves through elementary category theory that the outer square, exactly the one we need, is also
a pullback. This shows that 1 o ¢ is fully faithful, and hence we are done. O

5.1.2 Weak pullbacks

One of the crucial ingredients in the calculus of fractions approach is that of the weak pullback. This
is, for every pair of smooth functors ¢ : G — K and v : H — K, another diffeological groupoid
G xfgw H, that satisfies a certain universal pullback condition up to natural isomorphism. We adapt
the construction and notation as in [MMO03, Section 5.3], and generalise to the diffeological setting.

Construction 5.8. Consider two smooth functors ¢ : G — K and ¢ : H — K between diffeological
groupoids. We construct the weak pullback (also called weak fibred product in [MMO3], or homotopy
pullback in [dHo12]). The space of objects of this diffeological groupoid is

<G xfgw H>o = Go xfgo’src K xtlgi’wo H.

This is the space of triples (z, k, y), which we think of as arrows in K of the form & : ¢ox — gy, where
x € Gy and y € Hy. Given two such arrows, k1 : ¢gx1 — Yoy1 and ko : ¢oro — Yoy2, an arrow in
G x(f(’w H is a pair (g,h) € G x H fitting into a commutative square:

k
por1 —— Yoy

o

PoT2 > P1y2.

Note that the arrow ko is completely determined by this commuting square, as it is equal to the com-
position ky = 1h o ky o ¢pg~!. Explicitly, the space of arrows can then be written as triples (g, k, h) in
the following fibred product:

G x?}d’ H:=G xiﬁ?’sm K xtlgf’sr“" H.
The structure maps are then defined in the following way:
sre(g, k, h) == (sre(g), k,sre(h))  and  trg(g, k, h) = (trg(g), vho ko dg™', trg(h)).

Note the way the arrow in K changes according to the decomposition of k3 by the commutative square
above. The composition in G xfgw H is then defined as the component-wise composition in G and H:

(92, k2, h1) o (g1, k1, h1) := (g2 0 g1, k1, ha 0 hy).
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It is clear that this defines a diffeological groupoid G x‘?(’w H.

Associated to the weak pullback G xf(’w H we get two projection functors, defined as follows. The
projection onto G is a smooth functor pry : G xf(’w H — G, whose underlying maps are both just the
projection onto the first component of the fibred products. Similarly, we get a smooth projection functor

rs G xf(’d’ H — H. We then get a 2-commutative square in the 2-category DiffeolGrpd:

GxPYH 25 H
Prll T/7 P
GTK,

where the natural transformation 7" : ¢ o pry — 1 o pr3 is given by T(, 1 ) := k.
Proposition 5.9. Weak equivalences are preserved under weak pullbacks.

Proof. Let ¢ : G — K and ¢ : H — K be two smooth functors between diffeological groupoids such
that ¢ is a weak equivalence. The claim is that the projection functor pr; : G x Kw H — G is also a
weak equivalence. First, let us show that it is essentially surjective, for which we need to prove that the
map

trgopry : G xg (G x g H)O — Go; (g, (x, k,y)) — trg(yg)

is a subduction. As always, let us start with a plot « : U, — Gq, which induces a plot ¢pgoa : U, — K.
Since v is a weak equivalence (and using Proposition 5.2), for any point ¢t € U, in the domain of this
plot we can find a plot §: V — K xt[zf’wo Hy such that srco 81 = ¢g o a|y, where t € V C U, is some
open neighbourhood. The codomain of 5 ensures moreover that trg o 51 = g o B2, so that for every
t € V we have an arrow £1(¢) : ¢poa(t) — 9of2(t). These are exactly the types of arrows that form the
object space of G x%w H, and so we can define a plot

Q:V = GxE™ (G H) 0t (g (@lv (), 51(0), A1)

It is easy to check that trgopr; o = «y, as desired. This proves that pry : G wa H — G is essentially
surjective. We are left to show that the commuting diagram

GxPY H s G

(sm,mg)l l(src,trg)

(G xfyw H)y x (G x?}w H)y ———— Gy x Gy

pry Xpry

is a pullback in the category of diffeological spaces. For this, consider the following commutative diagram:

i a N

Gx%V H 2 G
B K
(src,trg)l l(src,trg)
(G x%w H), x (G x%w H), ORI Go x Gp.

In other words, we have smooth functions
a:M—G and  B,y: M — (G <%V H).
The latter two are of the form g = (3%, 8%, ) and v = (v“, 7%, 7). Commutativity of the outside

(%
square then gives src o a(m) = 8% (m) and trg o a(m) = v“(m) for all m € M.
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We construct a unique smooth map Q : M — G x%w H completing the diagram. This map is
necessarily of the form Q = (Q%, QK Q) for some smooth functions Q¢ : M — G, QX : M — K
and Qf : M — H. In order for the diagram to commute, we need to have src o Q(m) = B(m) and
trgo Q(m) = v(m), and pry o Q(m) = Q%(m) = a(m). From the latter it is clear we should set Q¢ = a.
Expanding on the first equation, we can also see that we need to set QF = 3%. We are thus left to
construct the smooth function 2 in such a way that

686 (m) 22 656 (m)

ﬁK(m)J( J{vH(m)

H H
VB () e 91 ()

commutes for all m € M. Since every arrow is invertible in a groupoid, the bottom arrow in this square
(were it to commute) could be expressed in terms of the other three. With this observation in mind,
define the function

w: M — K; m — % (m) o pa(m) o f5 (m) 71,

which gives to each m € M an arrow ¥3 (m) — 7 (m) in K. It is evident that w is smooth, as it is
a composition of the structure maps of K and the smooth maps ¢, o, 3% and 4%. At this point we use
the fact that 1 is a weak equivalence. Namely, we have a commutative diagram:

H()XH()WKQXKO,

The resulting smooth map Q = (Q¢, QX Q) = (a, 3%, Q) therefore provides the unique smooth
map M — G xf(’d’ H completing the diagram, and proving that the original square is a pullback in the
category of diffeological spaces. We conclude that the smooth projection functor pr, : G x‘fgw H—Gis
a weak equivalence, as was to be proved. O

5.1.3 A dictionary between bibundles and generalised morphisms

We now give two constructions that allow us to translate between bibundles and generalised morph-
isms. These constructions can be used to prove that there is a bicategorical equivalence between
DiffeolBiBund and the bicategory of generalised morphisms between diffeological groupoids (with
an appropriately defined notion of 2-morphism). We do not prove this here, but we suspect that their
proofs are similar to the corresponding claim for Lie groupoids (cf. [Lil5, Section 1.5] and references
therein).

The idea is that a generalised morphism, through bundlisation (Construction 4.41), will give rise to
a bibundle, and that a bibundle, through a simultaneous action groupoid, will give rise to a generalised
morphism. Before we describe the general case, let us give a demonstration with a simple example. For
every diffeological groupoid G = Gy we have the distinguished smooth identity functor idg : G — G,

which gives the generalised identity morphism G Mo g e, G, and from Example 4.34 we know there
is also an identity bibundle GA"8 G s"~G. Now, note that the bundlisation B(idg) of the identity
functor is just the space of pairs (trg(g), g), where g € G. The corresponding left G-action is given by:

G~ B(idg); g - (trg(h), h) := (trg(g),g o h),
which is just a left multiplication that keeps track of the target of the arrow. Similarly, we have

B(idg) *P2nG; (trg(g), g) - h:= (trg(g), g o h),
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which is just right multiplication. It is easy to see that the second projection pr, : B(idg) — G defines
a biequivariant diffeomorphism:

G B(idg) AG

PQ\U

GAE G SA\G.

This shows that the generalised morphism G de ¢ Moy s ‘equivalent’ to the identity bibundle
GAP8 G 5@, On the other hand, if we start out with the identity bibundle GAY8 G S'AG, we get
two groupoid actions. Both define an action groupoid: the left multiplication gives G x G = G, and the
right multiplication gives G x G = G. But since the left- and right multiplication commute, we in fact
get a simultaneous action groupoid G X G x G = G, whose morphisms are triples (g, k, h) such that the
composition g o k o h is well-defined. We then define

sre(g, k,h) =k and trg(g, k,h) :==gokoh,
generalising the definition of an action groupoid. With the obvious composition
(9',gokoh,h)o g,k h):= (g 0g.k hoh),

this again becomes a diffeological groupoid. By projecting to the components of this simultaneous action
groupoid through the functors

pr; :Gx GxG— G pri(g,k,h) =g, (pry)o(k) := trg(g),

and
prs : G X Gx G — G prs(g, k,h) :=h™",  (pr3)o(k) := src(k),

we get a generalised morphism:
G GxGxG 22 a.

we can then define a functor
I:G—Gx GNGv I(g) = (g7idsrc(g)7gil)7 IO('I) = ldac7
that fits into a commutative diagram of the following sort:

GxGxG
pry pr3
idg

This establishes the ‘equivalence’ between the identity bibundle GG S%AG and the generalised

idg

G

morphism G & 99y G in the other direction. We will not define in general what a morphism of
generalised morphisms is, but it should look something like the commutative diagram above. Let us
now treat the general constructions.

We start by constructing a bibundle from a generalised morphism. Recall the notion of bundlisation
from Construction 4.41, where for every smooth functor ¢ : G — H we get a right principal bibundle
G~ B(¢) "e~H, where B(¢) := Gy x%’o’trg H, the moment maps are defined as

lg == pry|B(g) and T¢ i= SIC O Ply|B(e),
and the actions are given by

GA*B(o); g (x,h) = (trg(g), ¢g o h),
B(¢) rd)ﬂH; (m,hl) . hg = ((E,hl o hg)

The following lemma tells us exactly when this bibundle is left-, and hence biprincipal. For Lie groupoids,
this is proven in e.g. [Mrc96, Proposition I1.1.6].
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Lemma 5.10. Consider a smooth functor ¢ : G — H and its bundlisation Gl¢ B(¢) "e~H. Then:

1. The bundlisation G~ B(¢) "e~H is left subductive if and only if ¢ is essentially surjective.
2. The bundlisation Gle B(¢) "e~H is left pre-principal if and only if ¢ is fully faithful.
3. Together: Grls B(¢) "e~H is biprincipal if and only if ¢ is a weak equivalence.

Proof. (1). To prove that the bundlisation is left subductive, we need to show that the right moment
map 7y : B(¢) — Hp is a subduction. However, we note that r, is, up to a canonical diffeomorphism,
exactly the function srcopr; : H ng’% Gy — Hy appearing in the characterisation Proposition 5.2
of essentially surjective functors. From that it is easy to see that 74 is subductive if and only if ¢ is
essentially surjective.

(2). To begin, let us start with the assumption that ¢ is fully faithful. We need to construct a
smooth inverse for the action map

A:GxEOY B(g) — B(9) X" B(¢): (g, (x,h)) — ((trg(g), dg o h), (w, ).

To do that, note that the space B(¢) X;}’O’r"’ B(¢) contains elements of the form ((x1, h1), (x2, he)), sat-
isfying src(hi) = src(hg) and trg(h;) = ¢ox;. Such a quadruple therefore defines hy o hy* : ¢pozy — Por2
in H. Constructing an inverse for the action map A then amounts to finding (in a smooth way) a unique
arrow g € G such that ¢g = hy o hl_l. We therefore define the following two smooth maps:

w: B(¢) X3 B(g) — H; ((z1,h1), (22, ha)) — ha o b,
p:B(¢) X137 B(¢) — Go x Go; ((z1, h1), (22, ha)) = (21, 22).

It is easy to see that (src,trg) ow = (¢Pg X ¢g) o p, so since ¢ is fully faithful we get the following
completion of a pullback diagram:

B(¢) x5, B(¢) = 1

e —2 s H

(src,trg)J{ J{(src,trg)

GOXGOWHOXHO.

p=(p1,pP2)

The smooth map €2 resembles an division map, and we can therefore use it construct an inverse for the
action map. Before we do that, we must describe some of its properties. For that, we define another
smooth map

= 1 _

Q:Gxg" B(¢) — G (g,(x,h) — g~ "

It is easy to check that 2 is a smooth map satisfying ¢ 0 Q = w o A and (src, trg) o Q = po A. However,
again using that ¢ is fully faithful, we can see that 2 o A is supposed to be that unique such map. We
therefore get Q2 o A = ), which gives the following important equation:

Q((trg(g), dg 0 h). (w,h)) = Qo A(g, (z,h)) = Qg (x,h)) = g~ (%)
We are now ready to construct a smooth inverse for the action map A. We define:
_ T, src,l
i (7 D1l 5@ ) BO) XG0 B(6) — G x5 B(o),

where we denote by Q7! := inv o Q the point-wise inverse of Q. All that is left to prove is that ¥ forms
an inverse for A. On the one hand, for (g, (z,h)) € G xsar?ld’ B(¢) we get:

o A(g, (2, h) = (21 0 A(g, (x, ), (2, 1)) ¥ (g, (2, 1)),
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as desired. And on the other hand, for ((21,h1), (z2,h2)) € B(¢) xp3."* B(¢) we get:

Ao W ((x1,h1),(x2,ha)) = A (Qfl((xl, hi1), (z2, ha)), (22, h2))
= ((src o Q((w1, h1), (w2, h2)), $((w1, h1), (w2, h2)) © ha) , (22, he))
= ((p1((z1, h1), (w2, ha)), f((1,h1), (w2, h2)) " 0 ha) , (22, ha))
((z1, (h2 0 hi') ™! o hy), (22, ha))
((z1, h1), (22, h2)) .
We may conclude that if ¢ is fully faithful, then the bundlisation is left pre-principal.

To finish the proof of claim (2), we need to prove that if GAl* B(¢) "~ H is left pre-principal, then
¢ is fully faithful. To show this, consider a commuting diagram of diffeological spaces:

(src,trg)J{ J{(src,trg)

G()XG()WH()XHQ.

Given the data of the two smooth maps p and w, for each x € X we get an arrow w(z) : ¢pop1(x) — dop2(x)
in H. We use this data to define the following smooth map:

[:X — B(g) x5 B(g); x> ((pa(a),w(®)), (p1(2),1dgp, 2))) -

It is easy to verify that I' lands in the right space, since src o w = ¢y o p; and trgow = ¢g o p2. Since
the bundlisation is left pre-principal, the action map has a smooth inverse, and we get a division map
(-, )&, which we use to construct a smooth map

Q: X —— B(g) x}%" B(g) — 25 6.
We claim that 2 completes the above commutative diagram. For that, we may first observe that from
the definition of I', we get the following equation:

6.0 Q = 5160 (-, )6 0 T = Iy 0 DIl 5g) iy (o) © T = 1.

A similar reasoning will show that trg o Q = ps. Moreover, for any « € X, the division map sends I'(xz)
to the unique arrow g(x) € G such that

9(x) - (p1(2), 1dgop, (2)) = (trg(g(2)), dg(x)) = (p2(2), w(x)).

Looking at the second component of this equation, we see that we must have ¢ o 2 = w, as required.
This proves that Q completes the diagram, and from its construction it is evident that it is the unique
smooth map doing so. This proves that ¢ is fully faithful, and together with the previous paragraph,
this completes the proof of claim (2).

(3). The third claim is a direct corollary of the first two. O

Starting with a generalised smooth morphism G CrYH , we get two right principal bibundles
through bundlisation. If we take the opposite bundle of the bundlisation B(¢) of ¢, we get a left
principal bibundle GA'¢ B(¢) !4~ K, which we can compose through the balanced tensor product with
the bundlisation of :

G~ B(¢) @k B(y) FnH.
The following lemma then tells us something about the principality of this bibundle:

Lemma 5.11. Let G <& K % H be a smooth generalised morphism between diffeological groupoids. If
¢ is a weak equivalence, then G B(¢) @k B(y) B~H is right principal.

122



Proof. We know that bundlisations are always right principal. If ¢ is a weak equivalence, Lemma 5.10
shows that the bundlisation K¢ B(¢) "¢~\G is moreover biprincipal. It follows by Proposition 4.54
that the balanced tensor product G~ B(¢) ®x B(v) B~H is right principal. O

In the other direction, we want to associate a generalised smooth morphism G LK Y Hto any
diffeological bibundle GAX X "™~ H. We can do this with the following construction:

Construction 5.12. Consider a diffeological bibundle GAX X "X~ H. We construct the simultaneous
action groupoid (or biaction groupoid in [Lil5]) G x X x H = X as follows. The space of morphisms
contains exactly those triples (g, z, h) such that both the actions gx and zh are simultaneously defined:

Gx XxH:=G xgg’l" X x%’“g H.
We then define the source and target maps in an obvious way:
sre,trg: G x X x H — X sre(g, x, h) =z, trg(g, «, h) := gxh.

With component-wise composition, which it gets from G and H, this clearly defines a diffeological
groupoid over X.
The simultaneous action groupoid comes with two canonical projection functors. The first is

'/TG:G[XXX]H*)X; WG(Q,I‘,h) =9, (WG)O(m) = ZX(:L')

Similarly, we get a projection functor 7y : G x X x H — H, which projects the third component to
the inverse in H, and whose underlying map on objects is the right moment map. Therefore, to any
diffeological bibundle GAX X ™A~ H we can associate a generalised smooth morphism

G+ Gx XxH-sH

Lemma 5.13. Let GAX X "™X~H be a diffeological bibundle. Then the canonical projection functor
g GX X x H— G is a weak equivalence if and only if the bibundle is right principal.

Proof. We start the proof by assuming that the bibundle GAX X "™XA~H is right principal, and prove

that the projection functor g : G x X x H — G is a weak equivalence. The essential surjectivity of mg

actually follows quite immediately, because (7g)o = lx is then a subduction, so the restricted projection

pry| GxIOIX X is still a subduction by Lemma 2.124. Since the target of a diffeological groupoid is always
0

a subduction, it follows that trgopr; : G xség’lx X — @ is a subduction as well.
That 7¢ is fully faithful is also straightforward. For this is suffices to construct a diffeomorphism
d: (X xX) leXOXXlgO’(STC’trg) G — G x X x H fitting into the following diagram:

(X x X) XgoxG, G bre

— h

pry Gx XxH "% G
(src,trg)l
X x X.

We claim that @ : ((z,y),9) — (9,2, (9z,y)r) defines this diffeomorphism. This map, first of all exists
because the bibundle is right principal, is obviously smooth, clearly makes the above diagram commute,
and we claim that U : (g,2,h) — ((x,gzh),g) defines its inverse. ¥ is also smooth, and it lands in
the right codomain because x(gzh) = Ix(gx) = trg(g). It is easy to check from the properties of the
division map (-, )y that ® and ¥ are mutual inverses. This shows that m¢ defines a weak equivalence
between G x X x H and G.

For the other implication, we start with the assumption that 7¢ : G X X x H — G is a weak
equivalence, and show that the bibundle GAX X "X~ H is right principal. For that we show that the
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left moment map lx : X — Gy is a subduction. Take a plot o : U, — Gp and t € U,. Since 7g
is essentially surjective, we can find a plot 8 : V — G Xség’lx X, defined on an open neighbourhood
t € V CU,, such that trgo 51 = a|y and srco 1 = x o 2. The latter relation implies that each
arrow (1(t) € G is allowed to act on f2(t) € X, and hence we get a plot Q : V — X defined by

Q(t) := B1(t) - f2(t). This defines exactly the lift we are looking for:

Ix 0 Q(t) = L(B1(1) B2(t)) = trg(Br(t)) = v (),

showing that [x is a subduction.
To show that the bibundle is right pre-principal, and hence to finish the proof, we use the full

faithfulness of 7 to construct a division map for the right underlying bundle Gy & X "xAH. For
G X X x H to be a pullback as in the diagram of Definition 5.1, there is a diffeomorphism

D: (X X X)Xgyxg, @ — Gx X x H,

like the one we constructed in the previous part of the proof. The division map should be of the form
(e X leXO’lX X — H, so we start with a pair (z,y) € X ch;;o,lx X. Then the triple ((z,y),id; ()
defines an element of the fibred product (X x X)g,xa, G, so we get an arrow ®((z,y),id;, (2)) € GX X xH
in the simultaneous action groupoid. In general, this arrow will be of the form (g, z, k), for z € X. But
since (src, trg) o ® = pry; we find that z = x and gah = y. Moreover, we have that g o ® = pr,, so that
g = id; (z), which in turn implies zh = y. It is this unique arrow h € H that we define to be (z,y)q.
In general, this procedure gives a smooth map

X xlgo’lx X — X x50 H; (x,y) > (z,pry 0 ®((2,9),id1x () »

where the second component is just prz o ®((z,y),id; (2)) = (7,y)r. Given the above discussion, it
is straightforward to verify that this defines an inverse of the action map of the underlying bundle

Go & X rxAH , which proves that it must the pre-principal. We may therefore conclude that the
bibundle GAX X "X~ H is right principal. O

A direct consequence of Lemmas 5.11 and 5.13 is that the notion of Morita equivalence in terms of
generalised morphisms is the same as that in terms of bibundles:

Theorem 5.14. Two diffeological groupoids are Morita equivalent in the sense of Definition 5.3 if and
only if they are Morita equivalent in the sense of Definition 4.383.

5.2 Invariance of isotropy groups and orbit spaces

One advantage of the calculus of fractions is that the following results are more natural to prove. This
is because some properties of groupoids are already invariant under weak equivalences, and it follows
that they then also have to be invariant under Morita equivalence. In this way we discuss the invariance
of isotropy groups and orbit spaces.

Proposition 5.15. Let ¢ : G — H be a fully faithful smooth functor (in the sense of Definition 5.1).
Then for every two objects x,y € Gy there is a diffeomorphism

Homg(z,y) = Hompy (¢oz, doy).
In particular, there are diffeomorphisms G, = Hgy,, between the isotropy groups of G and H.
Proof. If ¢ : G — H is fully faithful, then there is a pullback of diffeological spaces:

a— >\

|
(srcg,trgG)J{ J{(srcH,trgH)

GOXGOWHOXHO.
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This manifests itself in a diffeomorphism

@ : G — (Go x Go) XHoxn, Hy g ((srea(9), treq(9)), #(9))

which in turn induces a diffeomorphism between the subset Homg (z,y) C G and the image ®(Homg(z,y)).
But the latter contains exactly the triples of the form ((z,v),®(g)), where g € Homg(x,y). It follows
easily that the projection pry : (Go X Go) X g, xm, H — H of the fibred product then maps this image
further into pry o ®(Home(z,y)) € Homp (doz, doy). The desired diffeomorphism is then given by

pry o (I>|Homc;(z,y) : HOmg(:L‘, y) — HomH(¢0x’ ¢Oy>' o

A corollary of this result is that the orbit spaces of Morita equivalent groupoids are diffeomorphic,
providing an alternative proof for Theorem 4.44. To see this, we first demonstrate how a smooth functor
¢ : G — H gives rise to an underlying map of the orbit spaces.

Construction 5.16. Fix a smooth functor ¢ : G — H between diffeological groupoids. We will
define a smooth map ¢. : Go/G — Hy/H of orbit spaces. Denote the orbit projection maps by
Orbg : Gg = Go/G and Orby : Hy — Ho/H. We then define ¢, (Orbg(z)) := Orbg(¢ox). This is well
defined by functoriality, since if there exists an arrow g : © — y in G, then ¢g gives the corresponding
arrow ¢oxr — ¢oy in H. Moreover, ¢, fits into the following commutative diagram:

Go 202, Gy/G

o e

H() m Ho/H

Since both of the orbit projection maps are (by definition) subductions, it follows by Lemma 2.122 that
¢4 is smooth if and only if ¢, o Orbg = Orby o ¢¢ is smooth, which is clearly the case. Let us call
¢« : Go/G — Hy/H the orbit map induced by ¢.

The following proposition generalises a result about the orbit maps between Lie groupoids. Note
first that, for a general Lie groupoid G = Gy, the orbit space G/G has no canonical smooth structure.
The projection down to the orbits still exists, but it is merely a continuous function. The following then
generalises [CM18, Lemma 2.19] to the diffeological setting.

Proposition 5.17. The orbit map ¢, : Go/G — Ho/H of a weak equivalence ¢ is a diffeomorphism.

Proof. We know that any smooth functor gives rise to a smooth orbit map, so all we are left to show is
that ¢. has a smooth inverse. For that, we will first show that it is bijective.

Suppose that z,y € Go are two objects such that ¢,(Orbg(z)) = ¢.(Orbg(y)). That means there
exists an arrow h : ¢gx — ¢py in H. But, since Proposition 5.15 gives a diffeomorphism between
Homx (z,y) and Hompg (¢oz, doy), we get also get an arrow g : ¢ — y in G. Hence Orbg(z) = Orbg(y),
which shows that ¢, is injective.

The surjectivity of ¢, will follow from the essential surjectivity of ¢. Namely, take some orbit
Orby(z) € Hy/H, represented by an object z € Hy. Then essential surjectivity tells us we can find a
pair (h,z) € H x%ﬁ’% Go such that h : ¢ox — z. In particular we then find

Orbg (2) = Orbg(¢or) = ¢+ (Orbg (7)),

showing that the orbit map is surjective.

Together, this means that there is a set-theoretic inverse function f : Hy/H — Go/G. We need
to show that this is smooth. For that, note that by Lemma 2.122 it suffices to prove that f o Orbgy
is smooth, so we pick a plot o : U, — Hp. Then since ¢ is essentially surjective, we can find a plot
g:V—>H XEZ’% G, defined on some open neighbourhood t € V' C U,, such that srco 51 = ¢g o P2
and trgo 1 = a|y. Since Orby o trg = Orby o src, we then find:

foOrbgoaly = foOrbgosrcof; = foOrbyoggofs=fod,o0rbgo Py =0rbgo B,

which is clearly smooth. It follows by the Axiom of Locality for the diffeology on Go/G that this is
smooth on U,. This proves that the inverse f is smooth, and hence that ¢, is a diffeomorphism. O
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Theorem 5.18. Let G = Gy and H = Hy be two Morita equivalent diffeological groupoids. Then there
is a diffeomorphism Go/G = Hy/H between orbit spaces.

Proof. If G and H are Morita equivalent, there exists two weak equivalences G kS H , whose orbit
maps by Proposition 5.17 induce diffeomorphisms Go/G = Ky/K = Hy/H. O

As we discussed in Section 4.3.1, this theorem motivates the point of view that a Morita equivalence
class of groupoids G = G forms a geometric model for the quotient Go/G. In diffeology this viewpoint
loses some power, because, unlike in the Lie case, the quotient is already a diffeological space. We will
use this theorem in our study of the local structure of diffeological spaces in Section 6.1.

For Lie groupoids there is a characterisation of weak equivalences in terms of the orbit spaces and
so-called normal representations. Each orbit in a Lie groupoid has a well-defined linear representation
over the normal bundle of the orbit. If ¢ : G — H is a smooth functor between Lie groupoids whose orbit
map induces a homeomorphism between orbit spaces, and isomorphisms (of representations) between the
normal representations, then ¢ is a weak equivalence (see for example [dHo12, Theorem 4.3.1]). This
proof cannot be simply generalised to the diffeological setting, because it relies explicitly on the theory
of tangent bundles on smooth manifolds. Sadly, we do not as yet have a mature theory of tangency
on diffeoclogical spaces, so we have no direct analogue of the normal representation of a diffeological
groupoid. We therefore have an open question:

Question 5.19. Is there a natural additional condition that together with a diffeomorphism Go/G = Hy/H
implies G ~yg H?

5.2.1 A remark on the elementary structure of groupoids and Morita equivalence

Using the Axiom of Choice, a set-theoretic groupoid can be decomposed into a disjoint union of isotropy
groups. The idea is to use the Axiom of Choice to pick a point z; € Gy for each orbit i € Gy/G, and to
consider the disjoint union of the isotropy groups of the family (z;)ieq,/q- If we denote the resulting

reduced isotropy groupoid by Ie = Gy /G, then there is a genuine categorical equivalence
(Ig = Go/G) ~ (G = Gy)

between set-theoretic groupoids. This result does not extend to the smooth setting, since, for one, the
Axiom of Choice does not guarantee that the section Go/G — Gy : i — z; has to be smooth. It is
unknown if this result generalises to diffeological groupoids with respect to Morita equivalence. It is still
possible to define a notion of reduced isotropy groupoid. Using the construction from Example 3.23,
where each subset A C G of a diffeological groupoid G = Gy defines the restricted groupoid G|4 = A,
the reduced isotropy groupoid could be defined as the restriction

(iG = Og) = (G‘Oc = Og)

with respect to the set Og := (¥i)icq,/a- Note that this is in general not even possible in the context
of Lie groupoids, since the subset diffeology on Og, even if Gy is a manifold, may be highly singular.
We do not know what the necessary and sufficient conditions on O¢ are to realise a Morita equivalence
(fg = O¢) ~mE (G = Gp). Note that such a Morita equivalence will also depend on the choice Og,
and we expect that different choices may lead to non-equivalent reduced isotropy groupoid.

In the following, we discuss some weaker results related to Morita equivalence of subgroupoids.
We observe first that if the inclusion functor of a groupoid induces a Morita equivalence, then the
subgroupoid has to be full:

Proposition 5.20. If the inclusion H — G of a subgroupoid is a weak equivalence, then H = G|y, .

This shows that there is an interesting class of cases of Morita equivalences to full subgroupoids. In
particular, we may ask when the inclusion functor G|4 — G induces a Morita equivalence. We were
unable to find general necessary and sufficient conditions, but we mention the following two results:

Proposition 5.21. If the inclusion functor G|a — G is a weak equivalence, then the set A intersects
every orbit of G.
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Proof. If ¢ is a weak equivalence, its essential surjectivity gives a surjection trgopr; : G xség’i/“‘ A — Gy.
Hence, for every x € Gy we can find an arrow g : a — x, for some a € A. This shows that a € Orbg(x),
proving that A intersects every orbit. O

The following proposition proves and generalises a claim made (without proof) in [Wan18, Example
1.1.9] for Lie groupoids:

Proposition 5.22. Let G = Gq be a locally subductive groupoid (Definition 4.73), and consider a D-
open subset A C G. If A intersects every orbit of G, then there is a Morita equivalence to the restriction
groupoid:

(Gla = A) ~uE (G = Go).

Proof. In the language of bibundles, the subgroupoid G|4 = A induces a bibundle
Glan8trg ™1 (A) G

as a restriction of the usual left- and right multiplication actions (cf. Example 4.40). It is easy to
check that this bibundle is always left principal, as well as right pre-principal (even when G = Gy is not
locally subductive, and when A is not D-open). To show that this bibundle is biprincipal, it therefore
suffices to show that src : trg=!(A) — Gy is a subduction. For that, take an arbitrary plot a : U, — Go
mapping the origin 0 € U, to, say, a(0) = . Since the source map is surjective, we can find g € G such
that x = src(g). Moreover, since A intersects every orbit in G, there exists an arrow h : trg(g) — a in
G, for some a € A. We can now view « as a pointed pot (Uy,,0) — (Gg,src(h o g)). Since we assume
the source map is a local subduction, this allows us to find another pointed plot 5 : (V,0) — (G, ho g)
such that aly = srco 8. But now, we note that by construction hog € trg=!(A), so that the image of 3
intersects trg~!(A). But we assumed that A was D-open, so trg=!(A) is D-open in G, and subsequently
W = 3~ 1(trg=1(A)) is a non-empty open subset of V. Hence we have found a plot S|y : W — trg=1(A)
such that src o 8|y = a|w, showing the desired result. O

The problem for arbitrary diffeological groupoids G = G and arbitrary subsets A lies in the fact
that there seems to be no canonical smooth way to lift plots along the map src : trg=*(A4) — Go. If A
intersects every orbit in G, it is certainly possible to do this set-theoretically. We do not know if there
are more general conditions on A that induce a Morita equivalence in the above sense. It does not seem
true in general that the reduced isotropy groupoid I = O¢ should enjoy such a Morita equivalence.
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Chapter VI
Germ groupoids

6.1 Germ groupoids and atlases

In this chapter we will study an interesting class of groupoids that lie beyond the realm of Lie groupoids:
the groupoid of germs of a diffeological space X. This groupoid is constructed from the space Diffjo.(X)
of local diffeomorphisms on X, defined below. This is no longer a diffeological group, because not every
pair of local diffeomorphisms can be composed, since their domains and images might not intersect.
But we will prove that it defines a diffeological groupoid. This material is based on [IZL18, Section 2],
which we already partly discussed in Section 2.4.1, where the groundwork of this section was laid.

Definition 6.1. A local diffeomorphism is an injective locally smooth function f € C2.(X,Y) (Defini-
tion 2.98), such that the inverse f~! :im(f) — X is also locally smooth. In particular this means that
im(f) has to be D-open in Y, and we get a genuine diffeomorphism dom(f) — im(f). The space of
local diffeomorphisms from X to Y is denoted Diffj,.(X,Y"), and the space of local diffeomorphisms on

X is denoted Diffjo.(X).

So the local diffeomorphisms are just the functions defined on D-open subsets that form diffeomorph-
isms onto their D-open images. Our terminology is slightly non-standard, because a local diffeomorph-
ism usually means a function f : M — N such that every point x € M has an open neighbourhood
x € U C M such that f|y is a diffeomorphism onto f(U). What we call local diffeomorphisms, on the
other hand, are the maps that define diffeomorphisms on D-open subsets of a space onto their image,
and are not defined on the entire space. We call functions of the former sort étale maps. That is, we call
a function f: X — Y between diffeological spaces an étale map if for every z € X there exists a D-open
neighbourhood « € A C X such that f(A) is D-open and f|4 : A — f(A) is a diffeomorphism. Recall as
well from Section 2.4.1 that the same remarks apply to our definition of locally smooth functions, which
are only defined partially on D-open subsets. A function f : X — Y that allows smooth restrictions f|y
on a D-open cover might be called locally smooth everywhere.

Naturally, Diffjo.(X) lies in C22.(X, X)), from which it inherits some structure, but there are several

loc

things to be checked. First, we note that the local composition map is well-defined on Diffjo.(X):

Proposition 6.2. If f,g € Diffio.(X) are two local diffeomorphisms such that f~'(dom(g)) is non-
empty, then comp,.(g, f) € Diffloe(X).

Subsequently, we need to put a good diffeology on Diff},.(X). Recall Definition 3.7 and the preceding
discussion. There we saw that the subset diffeology on Diff(X), which it inherits from the standard
functional diffeology on C*°(X, X), does not make the inversion map smooth. We had to alter the
diffeology on Diff(X) to accomplish this. The same problems arise here: the subset diffeology that
Diffjoc(X) inherits from the standard local functional diffeology on CP2(X, X) is unsatisfactory. We
therefore need to define a refinement so that the local inversion map

inviee : Diffioe(X) — Diffioe(X); f— e
becomes smooth. The following is then a generalisation of the standard diffeomorphism diffeology
(Definition 3.7):

Definition 6.3. Let X be a diffeological space, and denote by D the subset diffeology on Diff},.(X)
inherited by the standard local functional diffeology on C2 (X, X). The standard local diffeomorphism
diffeology on Diff},.(X) is the coarsest diffeology such that the evaluation map is locally smooth on
Ex,x N (Diffjo.(X) x X), and such that the local inversion map invy,. is smooth. This diffeology can be
expressed as the intersection invj, (D) N D. Therefore, a parametrisation Q : Ug — Diffjo.(X) is a plot
in the standard local diffeomorphism diffeology if and only if  and Q=1 := invj,. o Q are both plots in
the standard local functional diffeology. Note that the local composition map

compy,,. : Diffjoc (X) — Diffjoc(X)

is also smooth with respect to this diffeology.
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Now we will set out to construct a diffeological groupoid over X, whose arrows are the germs of

local diffeomorphisms on X. A germ captures the local behaviour of a locally smooth function around
a point, and they are defined as follows:
Definition 6.4. Given two locally smooth functions f : A - Y and g : B - Y in C2(X,Y) and a
point x € AN B, we say that f and g have the same germ at z if there exists a D-open neighbourhood
x € V. C AN B such that f|]y = g|y. In that case we write f ~, g. This clearly defines an equivalence
relation on all locally smooth functions whose domain contains z, and we define the germ of f at x as
the equivalence class

[ﬂx = {g € CI%%(X, Y):f o~ g}'
Note that the value f(x) is already determined by the germ [f],. Namely, if ¢ € C2(X,Y) is

loc
another representation for this germ, i.e., [g], = [f]., then there exists a D-open neighbourhood z € V/
in the domains of f and g, so that f(z) = f|v(z) = glv(z) = g(x). But the germ [f], contains more
information than just the value f(x), since it encodes the smooth behaviour of f around z. Using this

fact, we can define a notion of composition for germs:
Lemma 6.5. The composition of germs [g]f(5) © [f]z := [compy..(g, f)] is well-defined.

Proof. We just need to show that the right-hand side does not depend on the representatives of [f],
and [g]f(). So, take two other representatives: [f]. = [f']. and [g]fz) = [¢']f). Note that by
the above discussion, the point f(x) = f'(x) is already well defined. We can then find a D-open
neighbourhood x € U C dom(f) N dom(f’) such that f|y = f'|u, and another D-open neighbourhood
f(z) € V C dom(g)Ndom(g’') such that g|yy = ¢’|v. Then define a third D-open set, W := f=3(V)NU.
This contains z, because x € U and f(z) € V. Further, it is contained in the intersection of f~!(dom(g))
and f'~!(dom(g’)), and we easily verify that comp,,.(g, f)|w = comp,..(g’, f')|w. Hence the germ on
the right hand side in the lemma is completely determined by the germs of f and g, and the composition
is thus well-defined. O

Construction 6.6 (Germ groupoid). We will now describe in detail the diffeological groupoid structure
of the germs of local diffeomorphisms on a diffeological space [IZL18]. Note that, in general, we can take
the germ of any element in €x y, which contains pairs (f,z) € C%.(X,Y) x X such that z € dom(f).
But, since we just want the local diffeomorphisms on X, we only want germs of pairs in the following
domain:

eRMi=ex x N(Diffic(X) x X) =[]  dom(f) = {(f,2) € Diffioc(X) x X : & € dom(f)}.
FEDIff14.(X)

This is the domain on which the germs of local diffeomorphisms exist, and we define the germ map as:
germ : EDFf — Germ(X); (f,2) — [fla)

where Germ(X) is defined as the space of all germs of local diffeomorphisms on X, which is precisely
the image of this map. Note that €)D<iff inherits a diffeology D gDifr as a subset of Diffj,.(X) x X, where
Diffjoc(X) is endowed with the standard local diffeomorphism diffeology (Definition 6.3). Then we
define a diffeology of Germ(X) as the pushforward along the germ map:

DGerm(X) ‘= germ,, (Dg?(iff).

This turns the germ map into a subduction. We shall now define the structure maps of a diffeological
groupoid Germ(X) = X, called the groupoid of germs (or germ groupoid). The idea is that they are
all, in some way or another, projections along the germ map of the operations on Diffjo.(X) and S)D(iff.

e The source and target maps are defined as

src, trg : Germ(X) — X; sre([flz) ===, trg([flz) = f(2).
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These are well-defined, because the germ [f], defines uniquely the points z and f(z), independently
of the representative. Note that these two maps fit into commutative diagrams:

germ germ
gQitt — 5", Germ(X) EDitt — 5, Germ(X)

\ and \
przlngff CVlngff

Since the germ map is a subduction, it follows by Lemma 2.122 that the source and target maps
are smooth.

e The unit map u: X — Germ(X) just sends a point z € X to the germ [idx], of the identity map
on X. It can be realised as the composition of the inclusion function ¢ : X — ER¥; x s (idx, 7)
with the germ function, and is hence smooth.

+ The inversion map inv : Germ(X) — Germ(X) sends a germ [f], to [inviec(f)] f(z) = [f ™ im()] f(a)-
At the level of local diffeomorphisms we can realise this function as

(invige © pry, ev)| g : enitt __, ghitf, (f,2) — (f M imep)s f(2)) -

This map is smooth since the evaluation map, projection, and local inversion maps are smooth on
EDIE Tt fits into the following commutative diagram:

piff _(I8ViecoPry,ev) oy
%
€x &X

germl J{germ

Germ(X) ——— Germ(X).

Again using Lemma 2.122, the inversion map on Germ(X) is smooth if and only if

inv o germ : EY — Germ(X)

is smooth, but the latter is the composition in the top right corner of the diagram, and hence is
smooth.

 Lastly, we need to define the composition in Germ(X). This is just the composition of germs:
m : Germ(X) x%""® Germ(X) — Germ(X);  ([g]f(x), [f]z) — [compioc(g, £)]a-

In terms of local diffeomorphisms, this can be written as:

C o EQI B gDt eIt ((g, f()), (f,2)) — (compiec(g, f), ).

It is clear that C' is just the composition of some projection maps and the local composition map.
Since the germ map satisfies src o germ = pr| enirr and trgogerm = ev| ghirr, we get a commutative
diagram:

5 s ; germ X germ 't
8D1ff XPTQ ev ngff =TT L Germ(X XSYC rg Germ(X
X X X X

‘| Jn

gDitt Germ(X).

germ

Moreover, the product germ x germ, when restricted to the appropriate domain, is guaranteed to
still be a subduction by Lemma 2.125. Using Lemma 2.122 for a third time, it follows that the
multiplication map is smooth if and only if germ o C' is smooth, which is plainly the case.

From this discussion we finally conclude:
Proposition 6.7. The germ groupoid Germ(X) = X is a diffeological groupoid.
In [MMO03, Exercise 5.18] we find the following example:
Example 6.8. Let M be a smooth m-dimensional manifold. Then Germ(M) ~yg Germ(R™).
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6.1.1 Atlases on diffeological spaces

Consider a smooth m-dimensional manifold M. An atlas @/ on M consists of charts, which are local
homeomorphisms ¢ : U — R™, defined on open subsets U C M, and subject to the condition that the
transition functions between charts have to be smooth. Now, when M is endowed with its differentiable
structure, the charts become local diffeomorphisms. Therefore a smooth m-dimensional manifold is a
type of space that is locally diffeomorphic (“locally looks like”) R™. Here R™ could be called the model
space of the manifold. But what happens if we change the model space, or even allow for a wide range
of model spaces? In this section we sketch a simple theory of atlases on diffeological spaces, and use
the technology of germ groupoids to study their equivalence. These ideas are based in part on the
discussion of diffeological manifolds in [Diffeology, Chapter 4], the description of orbifolds and their
corresponding groupoids in [MIMO03], and the more general framework of atlases and their groupoids
in [Los94; Los15]*. The idea is that if we have a family of charts (i.e. local diffeomorphisms) that
covers the space X, then X is completely determined by the groupoid of germs of transition functions
between the charts. That is, the space is globally determined by its local behaviour. We develop these
ideas here for diffeological spaces, extending on [Diffeology, Article 4.19).

Definition 6.9. For this section, we fix a diffeological space X, whose local structure we want to study.
A family M C Diffeol of diffeological spaces is called a modelling family. Elements A € M are called
models, which ‘M’ is meant to stand for. An M-chart on X is a local diffeomorphism ¢ € Diffj,.(A, X),
where A € M is a modelling space. An M-atlas on X is a family &7 of M-charts on X whose images cover
X. If there exists an M-atlas on X, this means that every point x € X has a D-open neighbourhood
that is locally diffeomorphic to some model space A € M. In some cases we may just refer to < as
an atlas, leaving the model family implicit. If the modelling family M contains just one element A, we
may denote atlases of that type also by A-atlases. Every diffeological space X therefore has a canonical
X-atlas, containing just the identity map idx.

Our philosophy is different from that of [Los15] and the traditional purpose of atlases of smooth
manifolds. There, the point of an atlas is usually to define the smooth structure of a space. Here we
consider a given diffeological space X, and study atlases on it. The question of what types of atlases are
allowed for any given diffeological space of course still tells us something about its local behaviour. But
if we want to study diffeological spaces from the ground up using atlases, we would suggest taking a more
general definition, as in [Los15, Definition 2.2]. In particular, we assume that the elements of an atlas
are already local diffeomorphisms, while we would rather want it to define a structure on a space that
makes the charts into local diffeomorphisms. The fact that all of our charts are local diffeomorphisms
also ensures that transition maps exist between each chart and are smooth. An approach that is closer
to [Los15, Definition 2.2] would be to have an atlas that contains merely locally smooth charts, together
having some universal property. In any case, we continue here with the definition of an atlas as given
above.

Given an M-atlas o/ on X, we denote the disjoint union of charts by

Eet = H dom(yp),

endowed with the coproduct diffeology. An element in & is a pair (¢, t), where ¢ € o is a chart and
t € dom(yp) is a point in the domain. We call such pairs pointed charts. The diffeological space X is
recovered completely from the pointed charts by the following proposition:

Proposition 6.10. Let &/ be an M-atlas on X. Then the evaluation map ev : &y — X is a subduction,

and we get a diffeomorphism:
& /ev = H dom(g@)/ev ~ X.

ped

49n [Los94] Losik introduces a general notion of C-atlas, where C is a category endowed with a particular type of
functor C — Set. This framework actually subsumes diffeology when C is chosen to be Eucl or Mnfd.
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Proof. This argument is similar to the proof in Proposition 2.58. That the evaluation map is smooth
follows immediately from the definition of the coproduct diffeology on &, and the fact that charts are
smooth. For subductiveness, take a plot a : U, — X, together with a point ¢ € U,. Since the atlas <
covers X, there exists a local diffeomorphism ¢ : dom(p) — X such that «(t) € im(¢). Now the image
im(y) is D-open in X, so we get an open subset V := a~!(im(p)) C U,, on which « takes values in
im(¢). Since @ is a local diffeomorphism, we get a smooth map cp_1|im(¢) :im(¢) — dom(p), and if we
denote the canonical inclusion as ¢, : dom(¢) — &y, then we get a plot

o Hm@oalv:V—&; s (g, (a9))).
It is easy to see that this plot then defines a local lift along the evaluation map:
evo i, 0 <p_1|im(¢,) oaly = aly,
which proves the claim. O

The disjoint union of the domains of charts & is, in particular, itself a diffeological space. Hence we
can consider local diffeomorphisms ® € Diff},. (€ ), and even the germ groupoid Germ(&y) = &y. A
local diffeomorphism such as ® does two things: its first component ®; : &y — &/ maps charts ¢ € & to
other charts 1) € &7, and its second component maps points in the domain dom(¢p) to points in dom(v)).
For the purposes of illustration, take a local diffeomorphism of the form

@ : {p} x dom(p) — {¢} x dom(v),

for two charts ¢,1 € /. Then the first component is just the constant function ®;(p,t) = 1, but
the second component can be interpreted as a local diffeomorphism between the domains of the charts:
f:dom(p) — dom());t — Pa(p,t). This is something like a transition function, which we depict as:

dom(yp) % dom(v))

R

If we write out ¢» = ®1(p,t), the commutativity of this diagram, which states that f is actually a
transition function between the charts, is then equivalent to the equation

D1 (p,1)(D2(p, 1)) = (1)

But this in turn is equivalent to the simple equation evo® = ev|qom(a). All transition functions between
the charts of an atlas 7 are therefore captured by exactly those local diffeomorphisms ® € Diffj,.(Ey)
that satisfy evo® = ev|qom(a). It is easy to see that local diffeomorphisms of & satisfying that property
are closed under local inversion and local composition. We can therefore define:

Definition 6.11. Let o be an M-atlas on X. The groupoid of transition functions Trans(&/) = &y
is the subgroupoid of the germ groupoid Germ(&y) = &, whose germs are represented by the local
diffeomorphisms ® € Diffio () satisfying ev o @ = ev|qom(e). As such, Trans(«/) = &, becomes a
diffeological groupoid with the subset diffeology on Trans(«) C Germ(&y ).

The arrows in the groupoid of transition functions are germs [®](,, ;), with src([®](,,¢)) = (@,t) and
trg([®](,,)) = (¥, ). Since ev o ® = ev|qom(s) we then find that

P(s) = evotrg([®](p,h)) = evo B(p,t) = ©(t),
so that the value of s € dom()) is already completely determined as s = ¢ ~! o (t).

Lemma 6.12. For any atlas &7 of X, we have a diffeomorphism &y /Trans(</) = &y /ev.
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Proof. The orbits in Trans(«/) are the families of pointed charts that are connected by transition
functions. Let us denote the orbit of a pointed chart (¢,t) € & in Trans(«/) by Orb(g,t), and let us
denote its equivalence class in &y /ev by [p, t]ev. We shall describe why the orbits in Trans(«/) and the
ev-fibres are the same.

First, suppose that there is a germ [®](,, ;) € Trans(</), meaning that the pointed charts (p,t) and
(1, 8) :== ®(ip, t) are in the same orbit. By the remarks preceding this lemma, it follows that ¢(t) = ¥ (s),
which shows that [@, t]ey = [1, $]ev-

On the other hand, if we have two pointed charts (p,t) and (¢, s) in the same ev-fibre, we need
to construct a germ [®], ;) in Trans(</) such that trg([®],.) = (¥,s). Since p(t) = 1(s), the
intersection of the images im(y) N im(¢)) is a non-empty D-open subset of X. We therefore get a
commutative triangle:

—1
Y70l 1Gm(y))

dom(p) 2 =" (im(¥)) ¢ (im()) € dom(eh)

T

im(p) Nim(y),

where 71 0@],-1 (im(y)) € Diffioc(dom(e), dom(v))). We then get a local diffeomorphism ® € Diffiyc(Eq)
defined by

©: {p} x dom(p) — {¥} x dom(v); (¢, 7) > (Y, 7" 0 Pl-1m(py) (7))-

Note that @ is indeed a local diffeomorphism: first, the subset {¢} x dom(yp) is D-open in &, because
the canonical inclusion ¢, : dom(p) < &y is an induction and dom(y) itself is D-open in its ambient
space. Furthermore, we have dom(®) = {¢} x =1 (im(z))), which itself is open in {(} x dom(¢) because
@ 1(im(¢)) is open in dom(y). That @ is a diffeomorphism on this domain is clear, since the charts ¢
and 1 themselves are local diffeomorphisms. We also clearly have ev o ® = ev|qom(a), and so we get an
arrow [®], 1) in Trans(«/) whose source is (¢, t), and whose target is ®(p,t) = (1,1~ Lop(t)) = (¥, ).

This proves that the orbits in Trans(%/) are the same as the ev-fibres in &, and hence we have a
well-defined function f : &y /Trans(«) — &y /ev, mapping Orb(p,t) — [p,t]ey. This function fits into
a commutative square

ide
&y ——2 5 &y

OI‘bJ J[H']ev

& /Trans(/) — & Jev.

In this diagram, both vertical maps are subductions, so by Lemma 2.122 it follows that both f and its
inverse are smooth. This provides the diffeomorphism we were looking for. O

In particular, together with Proposition 6.10, if &7 is an atlas for X, then the orbit space of the
groupoid of transition functions Trans(&/) = & just exactly gives X back: &y/Trans(&/) = X. It
also implies the following:

Corollary 6.13. Consider X,Y € Diffeol, and let o/x be an atlas on X, and o an atlas on Y. If
there is a Morita equivalence Trans(</x) ~yg Trans(«y ), then X 2 Y.

Proof. If there is a Morita equivalence Trans(«x) ~yg Trans(# ), it follows by Theorem 5.18 that
there is a diffeomorphism &, /Trans(«/x) = &, /Trans(gf ) between the orbit spaces, which together
with Proposition 6.10 and Lemma 6.12 gives the desired diffeomorphism between X and Y. O

We will now work towards the claim that the converse holds as well. For that it becomes important
what type of modelling family we allow. First we shall prove a converse where we have one fixed
modelling family M.
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Definition 6.14. Each modelling family M C Diffeol defines a mazimal M-atlas on X, containing any
other M-atlas:
it = | Diffioe(4, X).
Aenm

We denote the corresponding space of domains by Sﬁ = H«pedﬁ dom(yp), which is the disjoint union
of all domains of local diffeomorphisms defined on model spaces in M into X.

Lemma 6.15. If &7 in an M-atlas on X, and dﬁ[{ is the maximal M-atlas on X, then there is a Morita
equivalence Trans(«/) ~\p Trans(2;) ).

Proof. We claim that the canonical induction ¢ : &, < &3 induces a weak equivalence functor
I : Trans(«/) — Trans(a/) ). If successful, this is sufficient by Proposition 5.4. On objects, we let
I act as the inclusion ¢ : &y — 83)\(,[. Because it is an induction, the inclusion map defines a local
diffeomorphism ¢ € Diffioc (&, €3) with domain dom() = &;. We therefore get a germ [¢](, ;) for any
pointed chart (p,t) € &y, which has an inverse germ [t !f;in(,)],(p,1)- Using the composition of germs,
we can thus define

I: Trans(o/) — Trans(dj\,}f); [(b](%t) — [L]@(%t) o [<I>](%t) o [fl]b(%t) =[odo fl]L(%t).

(We are being sloppy with our notation here, but since we are dealing with germs it does not matter
to which domain we restrict the maps.) This map is smooth because it is just a combination of the
structure maps of the germ groupoid, which are all smooth (Construction 6.6). Functoriality is also
clear, since [ is just a conjugation.

To show that I is a weak equivalence, we start with a demonstration of essential surjectivity, for
which we take a plot Q : Ug — €5;. For the rest of this argument, fix a point ¢ € Ug. By definition of
the coproduct diffeology on €5, we can find an open neighbourhood ¢ € U C Ug, such that Q| = ¢y 0q,
where ¢ € JZZJ‘% is a chart and a : U — dom(¢) a plot of the domain. We also get a plot evoQ2 : Ug — X,
and since the map ev : &, — X is a subduction (Proposition 6.10), this means we can find another open
neighbourhood t € V' C Uy and a plot w : V' — & such that ev o Q]y = evow. The plot w now takes
values in the pointed charts of 7, whereas €2 takes values in the pointed charts of the maximal M-atlas
on X. Again using the defining property of the coproduct diffeology, this time of &, we can find an
open neighbourhood t € W C V such that w|w = ¢, o 5, where ¢ € &/ is a chart and §: W — dom(yp)
a plot of the domain. Combining this with the equation ev o Q|y = ev o w, we get:

o Blunw = evow|lunw = ev o Qluaw =¥ o alyaw.

We shall use this equation to define a local diffeomorphism ¥ (t) € Diffio.(€5), for any t € UNW =: Uy,
that defines an arrow in Trans(275Y ) from w(t) = (¢, 8(t)) to Q(t) = (1, a(t)). The local diffeomorphism
U(t) is defined by the transition function of the charts ¢ and :

U(t): {o} x o H(im(¥)) — {¢} x pH(im(p)); (@, 8) —> (¥, o p(s)).

It is clear this is a local diffeomorphism, as we have already discussed previously. In this way, we get a
(constant) parametrisation ¥ : Uy — Diffio.(€5;). This is a plot because Uy = Uy X ({¢} x o~ (im(1)))),
which is clearly D-open in Uy x €3, and then evo (¥ x idgﬁ)m\y is smooth because it is just the map

evo (¥ x idgx )y : (1 (,5)) — (1,67 0 ().

For the same reasons, we can see that the pointwise inverse parametrisation U~! is also smooth. It is now
clear that, since for every ¢t € Uy we have o 3(t) = 1 o a(t), we have an inclusion im(3) C ¢! (im(¢)),
and hence w(t) = (¢, B(t)) € dom(¥(t)). This means that for every ¢ € Uy the pair (¥(¢),¢ 0 w(t)) has
a germ, and we get a well-defined plot:

[:=germo (¥, 0w) : Uy — Trans(5;); L(t) = V()]
To conclude this step, we now have a plot (I',w|y,,) : Uy — Trans(o/y ) X35 €y such that
M

trgo I(t) = @(t)(cow(t)) = 2(t)(w, (1) = (¥, ¥~ 0o B(t)) = (¥, ™" oo a(t)) = A, (B).
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This proves that the functor I is essentially surjective. What this means, essentially, is that every
(smoothly parametrised) chart in the maximal M-atlas on X can be connected by a transition function
to a chart in o7

Next, and lastly, we need to prove that I is fully faithful. For that, we construct a unique smooth
map {2 : P — Trans(&) completing the following diagram:

T
P
RN 1
\)

(c1,c2) Trans(;zf) 4I> Trans(djig)

(src,trg)J{ J{(src,trg)

X X
&y X &y ———s EX X EX.

For each point p € P we get a germ I'(p) on €3, with source to ¢ (p) and target ¢ocy(p). Recalling the
remarks around the construction of I, we can similarly define

Q: P — Trans(«); Q(p) = [L_l]LCQ(p) ol'(p) o [L]Cl(p).

From its definition it easy to see that I o 2 = T', and in fact this equation determines ) uniquely. We
clearly also have src o 2 = ¢; and trg o Q = ¢, so that it completes the entire diagram in a unique
way. The inner square is therefore a pullback in the category of diffeological spaces, and this is what we
needed to show that I is fully faithful. Concluding: the functor I is a weak equivalence, and the Morita
equivalence Trans(«/) ~\g Trans(<y ) follows by Proposition 5.4. O

Corollary 6.16. For any two M-atlases <y and o/ on X we have Trans(«;) ~yg Trans(oh).

Proof. By Lemma 6.15 it follows that the transition groupoid of any M-atlas on X is Morita equivalent
to the transition groupoid of the maximal M-atlas, so the corollary follows by transitivity. O

We now know that every M-atlas on a space X defines a unique Morita equivalence class of transition
groupoids, namely just the one defined by the maximal M-atlas Trans(nyX ). But what can we say if
we have two M-atlases on two diffeological spaces X and Y7 The following lemma proves that if X and
Y are diffeomorphic, then the atlases still induce Morita equivalent transition groupoids®”.

Lemma 6.17. Let X,Y € Diffeol be two diffeological spaces, both admitting mazimal M-atlases <5
and o/, If X 2 Y, then there is a Morita equivalence Trans(y ) ~yg Trans(<y)).

Proof. If X and Y are diffeomorphic, we can find a diffeomorphism f : X — Y. This diffeomorphism
allows us to translate between charts on X and charts on Y. Specifically, given a pointed chart (p,t) €
8)35[ on X, we get a pointed chart (fop,t) € EX[ on Y. Since the composition of local diffeomorphisms
is smooth, we get a smooth map Fy : X — &)X, given by (p,t) — (f o p,t). In fact, this map is a
diffeomorphism, whose inverse is just £ Ly (¢,8) = (f~' o, s). This diffeomorphism further induces

F: Trans(;szf) — Trans(,;zfj\%); [(ID](%t) — [Fhpodo Fo_l]FO(%t).
To see that F' is well defined, note first that this expression is clearly independent on the germ of @,
since we can rewrite the expression as a composition of germs (which is well-defined by Lemma 6.5).

50Here our framework is less rich than that in [Los15]. In Theorem 4.2 Losik defines for each smooth f : X — Y a right
principal bibundle from Trans(«/x) to Trans(<4 ). This is allowed, because Losik’s atlases do not merely contain local
diffeomorphisms, so the function f can be used to push charts ¢ € o/x forward to f o p € 44 . We have tried to replicate
this proof in the diffeological setting, but found no solid argument why this bibundle should be right principal. Here we
therefore present only the simpler result in which case f is a diffeomorphism.
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We further need to check that Fyo® o F071 defines a transition function. For that, let (¢, s) € 8}& be a
pointed chart on Y, and calculate:

evoFyo®oFyl(y,s)=evoFyod(ftoy,s)
=evo (fotl)l(ffl o1, s), Po(f! ow,s))
=fo®@i(f on,s) (2f 0ty 9))
— foevod(f ™ ou,s)
= foev(ft o1, s) = 1(s).

The map F is clearly smooth on the level of local diffeomorphisms, since it is just a composition, and
hence it must also be smooth on the level of germs. Its functoriality is also easy to check. We therefore
have a smooth functor from Trans(</;}) to Trans(«);). But, if we repeat this construction for the
function !, we just get a smooth functor F~! which is the inverse of F. Therefore F is a smooth
categorical isomorphism, and by Proposition 5.5 it follows that I’ induces a weak-, and hence Morita-
equivalence between Trans(#; ) and Trans(<y) ). O

Combining Corollary 6.16 and Lemma 6.17 we find that the Morita equivalence classes of M-atlases
on diffeological spaces can distinguish between diffeological spaces:

Proposition 6.18. Let X, Y € Diffeol be two diffeological spaces with M-atlases o/x and <ty , respect-
ively. Then Trans(«x) ~ug Trans(ey ) if and only if X 2 Y.

See also [MMO03, Proposition 5.29], which is an analogous claim for orbifold atlases. Proposition 6.18
shows that Morita equivalence classes of transition groupoids of M-atlases correspond exactly to the
diffeological spaces that are modelled on M. The next simple trick shows that we also have Morita
equivalences between atlases based on different model families:

Lemma 6.19. Suppose that X is a diffeological space that simultaneously admits a maximal M-atlas
a5, and a mazimal N-atlas o755 . Then there is a Morita equivalence Trans(5y ) ~yg Trans(2yy ).

Proof. Both atlases /5 and <Y are M U N-atlases on X, so their transition groupoids are Morita
equivalent to Trans(ﬂj\),fuN) by Lemma 6.15. The results then follows by transitivity. O

This result can also be obtained from the viewpoint of bibundles by looking at the proof of the
theorem in [IZL18, Section 8]. Indeed, since X admits an M-atlas, it also admits a maximal M U N-
atlas, denoted @¥ . We then have two canonical inclusions g @ €3¢ < EXn and i 1 Ex — Expun
The claim is that there exists a biprincipal bibundle through a diffeological space I' C Trans(szfmxuN).
This space I' is exactly the set of germs represented by transition functions ® € Diffio. (€5 ) such
that dom(®) C 13 (E2;) and im(®) C 1 (EX). That is, they are the germs of transition functions from
the M-charts to the N-charts. The left- and right actions are then just the composition of germs of
transition functions between the right types of charts. Hence I' translates between the M- and N-charts.

The fact that the type of the atlas does not matter (Lemma 6.19), we can slightly generalise Pro-
position 6.18 to the following theorem:

Theorem 6.20. Let X,Y € Diffeol be two diffeological spaces with atlases o/x and <y, respectively.
Then Trans(oy) ~ug Trans(«y ) if and only if X =Y.

Proof. If the transition groupoids are Morita equivalent, the claim follows by Corollary 6.13. For the
converse, suppose that o7y is an Mx-atlas and @7 is an My-atlas. Both atlases can then be seen as
Mx UMy -atlases, so the result follows by Lemma 6.17. O

This result may become particularly interesting if we can extend the (pseudo)functor that assigns to
each Lie groupoid G = Gy its groupoid C*-algebra C*(G) to the (bi)category of diffeological groupoids
(and bibundles). This functor preserves Morita equivalence [Lan01b, Theorem 2], i.e., the groupoid
C*-algebras of two Morita equivalent Lie groupoids are themselves Morita equivalent (in the sense of
Rieffel [Rie74]). Theorem 6.20 could then become a tool to study the relation between diffeology and
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noncommutative geometry, extending on the relation between the two theories as discussed in [IZL18;
IZP20]. There is work in progress on defining the groupoid C*-algebra of a diffeological groupoid
[ASZ19]. It might be interesting to also compare the diffeological groupoid appraoch to orbifolds in
[IZL18] to the theory of spectral triples of orbifolds in [Har14].

Another application of this framework of atlases could be to transfer the structure of model spaces
to a global diffeological space. The main example of this is the notion of a diffeological manifold, as
we have already discussed in Example 2.21. The model spaces for a diffeological manifold all have a
(diffeological) vector space structure. Another example could be to consider a model family of measure
spaces, and to somehow transfer these measures to the global space. In order to develop these ideas,
we should also study what a Morita equivalence Trans(</) ~ugr Trans(&/y) implies in terms of a
relation between the M-model spaces and N-model spaces.
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A Categories and groupoids

The author learned category theory from Jaap van Oosten, whose lecture notes [vO016] we recommend.
The golden standard is [Mac71] for pure category theory, and [MM94] for a focus on sheaves. We also
recommend [Leil4] for a more modern and introductory text. We establish our definitions and notation
in this appendix. We will not concern ourselves with set-theoretic foundational issues.

Definition A.1. A category C consists of: a collection ob(C) of objects, and for each pair C, D € ob(C)
of such objects, a collection Homg(C, D) of arrows (or morphisms) from C to D. Together with these
arrows and objects, for every three objects B, C, D € ob(C) there is a function

Hom¢c(C, D) x Home (B, C) — Home(B, D); (f,9) — foug,

called the composition in C, and for every object C' € ob(C) there is a distinguished identity arrow
ide € Home(C, C), satisfying the following two axioms:

1. (Associativity) For every f € Homg(A, B), g € Homg(B,C), and h € Homg(C, D), we have that
ho(gof)=(hog)of.

2. (Identity Law) For every f € Homc(C, D) we have idp o f = f, and foide = f.

We shall usually think of a category C as the union of all arrows between its objects. But beware: it
is common that the notation C € C is taken to mean C' € ob(C). Furthermore, we adopt the standard

functional notation by writing f: C — D or C L D for an arrow f € Homg(C, D). Given f: C — D,
the object C' will be called the source or domain of f, and D will be called the target or codomain.

Definition A.2. Let C and D be two categories. A functor F : C — D comprises a function
Fy : ob(C) — ob(D), sometimes written as C — FyC without the parentheses, and for each pair of
objects C, D € ob(C) a function F : Homc(C, D) — Homp (FyC, FyD) such that:

1. (Compositionality) For every pair of composable arrows f: C' — D and g : B — C in C, we have

F(fog)=F(f)oFlg).
2. (Unitality) For every object C' € ob(C) we have F(id¢) = idg, x.

If we denote the collection of all arrows in a category C by ar(C), then we get two functions
sre, trg : ar(C) — ob(C), sending each arrow in C to its source and target, respectively. Then, a functor
F : C — D counsists of a function Fy : ob(C) — ob(D) and another function F : ar(C) — ar(D),
satisfying src o F' = Fj o src and trg o F' = Fj o trg, in addition to the compositionality and unitality
axioms in Definition A.2.

Definition A.3. Consider two functors F,G : C — D. A natural transformation p : F' — G is a family
of arrows (¢ : FoC — GOC)Ceob(C)’ such that for every arrow f : C — D in C we have a commuting
naturality square:

FoC <5 GoC

F(f)l lG(f)

FoD W GoD
Definition A.4. A groupoid is a category in which every arrow has an inverse.

The working definition of a groupoid in terms of structure maps is explained in Section 3.2.

A.1 Cartesian closedness

Definition A.5. A category C is called Cartesian closed if it has finite products, and for every object
D € C the product functor — x D : C — C has a right adjoint. This right adjoint is denoted
C(D,—) : C — C, and is called the internal hom-functor. The adjunction manifests itself as a natural
family of bijections

Hom¢(C x D, E) 2 Homg(C, C(D, E)).
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Internal hom-funtors are also sometimes denoted (—)? : C — C, in which the above natural bijec-
tions become Homg(C x D, E) = Homc(C, EP). This originates from set theory, where the notation
XY means the set of all functions Y — X. The adjunction — x Y 4 (=)¥ then means that there is a
natural bijection between functions X x Y — Z and functions X — ZY.

Definition A.6. Consider an object B in some category C. The slice category C/B is a category which
is constituted as follows. Its objects are the arrows in C with codomain B. An arrow in C/B, between
two such objects p: E — B and q : F — B, is a third arrow f : E — F in C making a commutative
triangle: qo f = p.

Definition A.7. A category C is called locally Cartesian closed if for every object B € C the slice
category C/B is Cartesian closed.

Proposition A.8. If C has all pullbacks, then each slice category of C has all finite products.

A.2 The idea of a bicategory

For the precise definition of a bicategory we refer to [Mac71] or the recent book [JY20], and for an
informal introduction we refer to [Lac07]. The notion of a 2-category arises in this thesis simply because
diffeological groupoids are, in particular, categories. It is an elementary fact that the category Cat of
all (small) categories with functors and natural transformations is a 2-category®!. This structure carries
over to diffeological groupoids: it is clear that the identity functor is smooth, and that composition of
smooth functors is smooth. Smoothness of the structure maps moreover ensures that composition and
inversion of smooth natural transformations are smooth.

A 2-category contains, besides objects and morphisms as in an ordinary category, an additional level
of structure: morphisms between morphisms. These are called 2-morphisms, or 2-arrows. They behave
nicely with respect to their composition in the sense that for any two objects x and y in a 2-category
C, their class of 1-morphisms Homg(x,y) form a genuine category when taking the 2-morphisms of C
as their arrows. In this way a 2-category can also be seen as a family of categories. Composition in
Homc(z,y) of 2-morphisms is called vertical composition. This may be depicted diagrammatically as

H, vertical composition

T > Y b T Boa Y.

N g

There is also a horizontal composition, commuting with vertical composition, in the guise of a functor

Homc(x,y) x Homc(y, 2) — Home(z, 2) :

f20f1
/H'\/ /H_\ . horizontal composition QS/H'B'\CX{Z
U \/ \gag/

2091

The additional structure allows us to think of isomorphism between arrows, called 2-isomorphism,
instead of strict equality. This leads to, among other things, the notion of a 2-commutative (or weakly
commutative) diagram, which is a diagram that commutes only up to 2-isomorphism. For example, we
would say the square

Sy

_r

VIS
%
Q

Q
!

k

51 «Cat is the mother of all 2-categories, just as Set is the mother of all categories,” [Lac07].
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2-commutes if there exists a 2-isomorphism « : g o f = ko h, in which case we also write go f = ko h.
The notion of commuting only up to 2-isomorphism occurs already when studying the equivalence of
categories. Recall that a functor F': C — D is called an equivalence of categories if there exists another
functor G : D — C such that there are natural isomorphisms F' o G & idp and G o F' 2 id¢. In other
words, F' is invertible up to 2-isomorphism.

For our (and many other) purposes, the notion of 2-category is too restrictive. The 2-categories we
describe are often called strict 2-categories. What we need instead are weak 2-categories, also known
as bicategories. Intuitively we may think of a bicategory as a category where every axiom holds merely
up to 2-isomorphism. In particular, a bicategory is a 2-category where composition is neither strictly
associative, nor unital. Therefore, in a bicategory, whenever we have three composable arrows f : x — v,
g:y — zand h: 2z — w, say, we can only hope to have 2-isomorphisms

(fog)oh= fo(goh), foid, = f, and idyof=f,

instead of full-fledged equalities. These canonical 2-isomorphisms are subject to various coherence ax-
ioms. We omit them here. For the precise definition of a bicategory and more details, we refer to
[Mac71]. Also see [Lac07]. It should be noted that a strict 2-category is a special case of a bicategory,
where the three 2-isomorphisms in the previous equation are always just the identity maps.

In a bicategory there are three degrees of sameness for objects. The strictest form is simply equality:
x = y. Then there is the familiar notion of isomorphism: x = y, which means there are two arrows
f:x—yand f7! 1y — z satisfying fo f~! =id, and f~! o f = id,. The map f is then known
as a strict 1-isomorphism, or just as an isomorphism. These two concepts make sense in any category,
but in a bicategory we have an additional notion: the objects x and y are called weakly isomorphic, or
equivalent, sometimes denoted z ~ y, if there are arrows f : x — y and ¢ : y — x satisfying f o g =id,
and go f =2 id,. That is to say, when f is invertible up to 2-isomorphism. In that case f is called a
weak 1-isomorphism, or just an equivalence, and g is called its weak inverse. Note that this generalises
the notion of equivalence between categories to the objects of an arbitrary bicategory. It is the notions
of equivalence and weak inverse that we use in our study of diffeological groupoids and bibundles.

There are several notions of strictness one may employ to define morphisms between bicategories
(cf. [Lac07, Section 3]). The weakest one is a laxz functor F, which is not even functorial or unital up
to 2-isomorphism, but only has canonical 2-morphisms F(g) o F'(f) = F(go f) and idp(,) = F(id.),
called comparison maps. Whenever these comparison maps are invertible, we speak of a pseudofunc-
tor. Intuitively we think of pseudofunctors as functors that preserve composition and units up to
2-isomorphism. (Stricter still, but not important for us, a pseudofunctor whose comparison maps are
identities is called a strict 2-functor.) Both lax- and pseudofunctors do act strictly functorially with
respect to the compositions of 2-arrows.

Proposition A.9. Pseudofunctors preserve equivalences.

Proof. Let F : C — D be a pseudofunctor between bicategories. Suppose that x and y are equivalent
objects in C, so that there exist arrows f : x — y and g : y — x with 2-isomorphisms u, : f o g = id,
and u; : go f = id,. Suppose we denote the canonical 2-isomorphisms F'(g) o F(f) = F(go f) and
idp(y) = F(idz) by Fy ; and Fy, respectively. Then the horizontal composition

xT

Fyt o Fug) o Fyp: Flg) o F(f) = idp()

is a 2-isomorphism; similarly we have a 2-isomorphism F(f)oF(g) = idp(,). Hence F(f): F(z) — F(y)
is an equivalence in D. O

This proposition confirms (or ensures, depending on the method of proof) that Morita equivalence in
Lie groupoids is preserved for their C*-algebras, because C* : LieGrpd;p — C*Corr, the assignment
that sends each Lie groupoid to its groupoid C*-algebra, and each Lie groupoid left principal bibundle
to its C*-correspondence, is a pseudofunctor. See also the remarks made at the very end of Chapter VI,
or [Lan01b, Theorem 2].
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