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Abstract

In this article it is shown that the Makar-Limanov invariant of a ring (or variety) can be

trivial while the Derksen invariant is not, and vice versa.

1 Introduction

The Makar-Limanov invariant was introduced by Makar-Limanov in [5] to prove that
the variety in C4 given by the equation X2Y + X + Z2 + T 3 is not isomorphic to C3.
Later on, Derksen gave an alternative proof in [3] by introducing a different invariant.
The general idea was that both invariants are kind of dual, in the sense that they
can distinguish the same set of rings from the polynomial rings. However, this article
gives examples in which this is not the case, thus stating that the invariants are clearly
different.

2 Definitions and notations

In this section, R denotes a commutative finitely generated C-algebra and N the non-
negative integers.

Definition 2.1. (i). A map D : R −→ R is called a derivation if it satisfies the
Leibniz rule: D(ab) = aD(b) + D(a)b for all a, b ∈ R.

(ii). A derivation is called locally nilpotent if for each a ∈ R there exists n ∈ N such
that Dn(a) = 0.

(iii). When D is a locally nilpotent derivation, we denote by RD the kernel of the map
D, i.e. RD := {a ∈ R | D(a) = 0}.

(iv). LND(R) is the set of all locally nilpotent derivations on R.

(v). LND∗(R) := LND(R)\{0} (notice the zero map “0” is actually a derivation).

(vi). ML(R) := ∩D∈LND(R)R
D, the Makar-Limanov invariant of R. 1

1The original notation introduced by Makar-Limanov himself was AK(R), “absolute kernel” and this notation

is sometimes used too.
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(vii). HD(R) is the C-algebra generated by ∪D∈LND∗(R)R
D. 2

Example 2.2. If R = C[X1, . . . , Xn] then ML(R) = C, and in case n ≥ 2 HD(R) = R.
In case n = 1, HD(R) = C (a small exception).

Corollary 2.3. If ML(R) 6= C (i.e. ML(R) is larger than C) then R is not a polyno-
mial ring. If dim(R) ≥ 2 and HD(R) 6= R then R is not a polynomial ring.

3 Specific rings and its invariants

3.1 Makar-Limanov invariant trivial, Derksen invariant not

In this section we will give a ring whose Makar-Limanov invariant is trivial but its
Derksen invariant is not.

Definition 3.1. Define the ideal I := (X, Y ) ⊂ C[X, Y ], and let

R := C[X2, X3, Y 3, Y 4, Y 5, X1+iY 1+j | i, j ∈ N]
= C[X2, X3, Y 3, Y 4, Y 5, XY, X2Y, XY 2, XY 3]

(i.e. R = C⊕ CX2 ⊕ CXY ⊕ I3).

Notice that R is finitely generated, noetherian, and a domain.

Lemma 3.2. ML(R) = C.

Proof. Let D1 := Y 3∂X and D2 := X2∂Y . These are locally nilpotent derivations on
R, as can be easily checked. Then RD1 = R ∩ C[X, Y ]D1 ⊆ C[X, Y ]D1 = C[Y ]. Also
RD2 = R ∩ C[X, Y ]D2 ⊆ C[X, Y ]D2 = C[X]. Thus C ⊆ ML(C) ⊆ RD1 ∩ RD2 ⊆
C[X, Y ]D1 ∩ C[X, Y ]D2 = C[Y ] ∩ C[X] = C.

In order to calculate HD(R) we first show that every locally nilpotent derivation
on R actually comes from a locally nilpotent derivation on C[X, Y ].

Lemma 3.3. (i). The integral closure of R in C[X, Y ] is C[X, Y ].

(ii). The integral closure of R in Q(R) (the fraction field of R) is C[X, Y ].

Proof. (i) is easy, since the integral closure of the smaller ring C[X2, Y 3] in C[X, Y ]
already is C[X, Y ]. (ii) Q(R) = C(X, Y ). Let a ∈ Q(R) be integral over R. Then
surely a is integral over C[X, Y ]. But C[X, Y ] is a UFD and thus integrally closed in
its fraction field i.e. a ∈ C[X, Y ] already. Thus the integral closure of R in Q(R) is a
subset of C[X, Y ]. Finally, since Q(R) = C(X, Y ) we are done by part (i).

Notice that if D is a derivation (not necessarily locally nilpotent) on a domain A,
then it extends uniquely to a derivation on the fraction field Q(A) of A, by just forcing
D(a−1b) = a−2(aD(b)−D(a)b) for all a ∈ A, b ∈ A\{0}.

Theorem 3.4. (Seidenberg) Let A be a noetherian domain containing Q, K its quotient
field and Ã the integral closure of A in K. Let D be a derivation on A and D̃ its unique
extension to K. Then D̃(Ã) ⊆ Ã.

2This invariant is often denoted by “D(R)” but since D is a very common notation for a derivation, the notation

“HD” (for Harm Derksen) got into fashion.
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This is quoted literally from [4] prop. 1.2.15 page 17, but it is originally from [10].

Theorem 3.5. (Vasconcelos) Let A ⊆ B be an integral extension where B is a domain
and Q ⊂ A. If D is a derivation on B such that DA ⊆ A and the restriction D|A of D

to A is locally nilpotent, then D is locally nilpotent.

This is quoted literally from [4] prop. 1.3.37 page 29, but it is originally from [11].

Lemma 3.6. If D is a locally nilpotent derivation on R then it extends uniquely to a
locally nilpotent derivation on C[X, Y ] −→ C[X, Y ].

Proof. The integral closure of R in Q(R) is C[X, Y ] (by 3.3). So by the above theorem
of Seidenberg D extends uniquely to C[X, Y ]. By the above theorem of Vasconcelos we
see that D is locally nilpotent.

Lemma 3.7. If f ∈ C[X, Y ] is a coordinate, p(T ) ∈ C[T ] and p(f) ∈ R then XY does
not appear as a monomial in p(f).

Proof. f = f0 + f1 = f0 + aX + bY + cX2 + dXY + eY 2 + g for some g ∈ I3 and a 6= 0
or b 6= 0. Now p(f) = q(f1) for some q(T ) ∈ C[T ].

q(f1) = λ0 + λ1f1 + λ2f
2
1 + . . . + λnfn

1

= λ0 + λ1(aX + bY + cX2 + dXY + eY 2)+
λ2(aX + bY + cX2 + dXY + eY 2)2 + g′ g′ ∈ I3

and since a 6= 0 or b 6= 0 and q(f) ∈ R we must have λ1 = 0. Thus

q(f) = λ0 + λ2(aX + bY + cX2 + dXY + eY 2)2 + g′ g′ ∈ I3

= λ0 + λ2(a2X2 + 2abXY + b2Y 2) + g′′ g′′ ∈ I3

but since in no element of R appears the monomial Y 2 and q(f) ∈ R we must have
λ2b

2 = 0 which implies 2λ2ab = 0, which is the coefficient of XY .

Lemma 3.8. Let D ∈ LND(R). Suppose there exists g ∈ RD such that the coefficient
of XY of g is nonzero (XY appears in g). Then D = 0.

Proof. We know by 3.6 that D can be extended as a locally nilpotent derivation to
C[X, Y ]. Suppose D 6= 0. Thus C[X, Y ]D = C[f ] for some coordinate f by Rentschler’s
theorem. [9] Hence g = p(f) ∈ RD. But now by lemma 3.7, the coefficent of XY must
be zero, a contradiction. Hence our assumption that D was nonzero was wrong, thus
D = 0.

Lemma 3.9. HD(R) 6= R.

Proof. If we show that XY 6∈ HD(R) then we are done. Suppose g1, . . . , gn ∈ R are el-
ements of kernels of nonzero locally nilpotent derivations such that XY = p(g1, . . . , gn)
for some p ∈ C[T1, . . . , Tn]. Then since gi ∈ R we have that gi = ci +aiX

2 + biXY +hi

for some ai, bi, ci ∈ C, hi ∈ (X3, X2Y, XY 2, Y 3). We may assume that ci = 0.
Furthermore by lemma 3.8 bi = 0. Let p′ be the part of p which is linear. Now
XY = p′(a1X

2, . . . , anX2) + h′ for some h′ ∈ (X3, X2Y,XY 2, Y 3). This gives a con-
tradiction.
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3.2 Derksen invariant trivial, Makar-Limanov invariant not

In this section we will give a class of rings with trivial Derksen invariant but non-trivial
Makar-Limanov invariant. Let A be a commutative domain over C with transcendence
degree 1 such that A is not isomorphic to C[X]. For example, take A to be the
coordinate ring of a curve which is not isomorphic to the line. We will examine the
ring R := A[X1, . . . , Xn] for n ≥ 2.

Lemma 3.10. HD(R) = R.

Proof. The kernels of the partial derivatives generate R.

Of course, the same observation shows that a polynomial ring with at least two vari-
ables over any algebra always has trivial Derksen invariant. Lemma 3.10 and Example
2.2 are special cases. To show that ML(R) 6= C, we will use the following

Theorem 3.11. (Makar-Limanov) Suppose A is a commutative domain over C with
transcendence degree 1. Then ML(A[X1, . . . , Xn]) = ML(A) for each n ≥ 1.

This theorem provides an alternate proof of the Abhyankar-Eakin-Heinzer cancella-
tion theorem for curves [1], in the characteristic zero case. For a proof of Theorem 3.11,
see [6] or [7]. We also need the following standard facts. If S is a commutative domain
over C and D ∈ LND(S), then SD is algebraically closed. Moreover, if D(s) = 1 for
some s ∈ S, then S = SD[s]. See, for example, [4] for proofs.

Lemma 3.12. ML(R) = A.

Proof. By Theorem 3.11, ML(R) = ML(A). Suppose ML(A) 6= A, so that there exists
a non-zero locally nilpotent derivation D on A. Suppose AD 6= C. Then trdegC(AD) =
1 = trdegC(A), and so every element of A is algebraically dependent over AD. Since
AD is algebraically closed, AD = A, contradicting the choice of D. Hence AD = C.
Let a ∈ A such that D(a) ∈ AD (always possible with a locally nilpotent derivation),
say D(a) = λ. Let s = λ−1a, so that D(s) = 1. Then A = C[s]. This contradicts our
original assumption on A.

Notice that trdegC(R) > 2 for the class of rings R in this section. This is a necessary
condition for an example of our type. Using the fact that the kernel of a locally
nilpotent derivation is algebraically closed, one can show that if trdegC(R) = 1 or 2
and HD(R) = R, then ML(R) = C.

3.3 Derksen and Makar-Limanov invariants both non-trivial

Finally, in this section we will give a class of rings whose Derksen and Makar-Limanov
invariants are both non-trivial and are moreover the same. Let R be the ring over C
given by the equation xny = P (z), where n > 1 and deg(P ) > 1. Danielewski used
surfaces of this type to give a negative answer to the generalized Zariski cancellation
question [2]. We make use of the following

Theorem 3.13. LND(R) = xnC[x] ∂
∂z , where R is viewed as a subring of C[x, x−1, z].
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For the proof, see [8]. In particular, the kernel of every locally nilpotent derivation
on R is C[x]. As a result, we have

Lemma 3.14. HD(R) = ML(R) = C[x].
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