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What is Affine Algebraic Geometry?
It is a subfield of Algebraic Geometry! (Duh!)
Typical objects:

k" o KX, X
V o O(V) = kX4, ..., X]/I(V)

Geometrically sometimes “more difficult” than projective
geometry (affine spaces are rarely compact).

Algebraically, more simple! (There's always a ring.)
Subtopic - but of fundamental importance to the whole of

Algebraic geometry.
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k" < k(X X
V o OV):=k[Xy,...,X,]/I(V)

Objects, hence morphisms!

Fok® — k"

polynomial map if F = (Fy,..., F,), Fi € k[X1,..., X,].
Example: F = (X + Y?,Y) is polynomial map C> — C2,

Any linear map is a polynomial map.
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Understanding polynomial automorphisms
A map F : k" — k" given by n polynomials:
F=(F(Xt,.... %), ..., Fa( X1, ..., Xi)).

Example: F = (X + Y2 Y).

Various ways of looking at polynomial maps:
» A map k" — k".
» A list of n polynomials: F € (k[Xi,...,X;])".

» A ring automorphism of k[Xi, ..., X,] sending
g(Xy,..., X,) to g(Fu,...,Fn).
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(X+Y2Y)o(X=Y2Y)= ([X-Y+[Y]]Y])
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Understanding polynomial automorphisms

Remark: If k is algebraically closed, char(k) = 0, then a
polynomial endomorphism k" — k" which is a bijection, is an

invertible polynomial map.

(XP,Y):F2 — F3 is not a polynomial automorphism, even
though it induces a bijection of [, !

(X3,Y) : R? — R? is not a polynomial automorphism, even
though it induces a bijection of R!



Understanding polynomial automorphisms

Group of polynomial automorphisms with coefficients in a ring
R is denoted by GA,(R) (similarly to GL,(R)).



A topic is defined by its problems.

Many problems in AAG: inspired by linear algebra!
(In some sense: AAG most “natural generalization of linear

algebra”. . .)
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char(k) =0

L linear map;
L € GL,(k) invertible <= det(L) = det(Jac(L)) € k*
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Problems in AAG: Jacobian Conjecture

char(k) =0

L linear map;
L € GL,(k) invertible <= det(L) = det(Jac(L)) € k*
F € GA,(k) invertible — det(Jac(F)) € k*

Jacobian Conjecture:

F € GA,(k)invertible < det(Jac(F)) € k*
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History of the Jacobian Conjecture

Formulated in 1939 By O. H. Keller.

W. Engel proved n = 2 in 1955.

B. Segre proved the general case in 1956. And again in 1956.

And again in 1960.

All wrong! - but it took about till 1970 that it was clear that

the problem was open. By the way, many, no-MANY, wrong

proofs followed. ..



History of the Jacobian Conjecture

J.C. was advertised by Abhyankar, Bass, and others




“Visual” version of Jacobian Conjecture

Volume-preserving polynomial maps are invertible.
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Figure: Image of raster under (X + 2Y2, Y + (X + 3 Y?)?).



Jacobian Conjecture very particular for polynomials:

F:(x,y)— (e ye7)

x 0
Jac(F) = ( € B )
—ye X a=X

det(Jac(F)) =1
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Jacobian Conjecture in char(k) = p:

L linear map;
L € GL,(k) invertible <= det(L) = det(Jac(L)) € k*
F € GA,(k) invertible = det(Jac(F)) € k*

Frok'— K
X — X — X

Jac(F) =1 but F(0) = F(1) = 0.
Jacobian Conjecture in char(k) = p: Suppose
det(Jac(F)) =1 and p f[k(X1,..., X,) : k(F1,...,F,)]. Then

F is an automorphism.



Jacobian Conjecture in char(k) = p:

char(k) =0:
F= (X + 31X2 + 32XY + 33Y2, Y + b1X2 + bQXY -+ b3Y2)

1 = det(Jac(F))
— 1+
2a1 + b)) X+
ay+2b3)Y+
2a1by + 2ayby ) X3+
2byay + 4a1bs + 4ash )XY+
(2a2b3 + 2a3b,) Y?

(
(
(
(

In char(k)=2 : (parts of) equations vanish. Question: What
are the right equations in char(k) =27 (or p?)
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V, W vector spaces, if V x k= W x k then V = W.

V vector space, then V x k = k"1 implies V = k".

V., W varieties, if V x k= W x k then V = W?
Cancellation problem: V variety. V x k = k™1 is V = k"?
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Cancellation V x k= W x k

counterexamples

1972(?): Hoechster: over R

1986(?): Danielewski: V :xz+y?+1=0, W:x’z+y?+1
(over C)

(Not a UFD)

2008: Finston & M. : "Best” counterexamples so far (UFD,

over C, lowest possible dimension):

Vom = {(x,y,z,u,v) | *+y*+2z" =0,x"u—y"v—1=0}

2010: better examples by Dubouloz/Moser/Poloni. . .



Cancellation V x k= W x k

counterexamples

Still looking for an example where V = k" |
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Denote C[Xy, ..., X,] as CI"l. f € Cl"l is called a coordinate if

there exist fp, ..., f, such that
C[f,fo, f5,..., ] = C[Xq, ..., X;]

Or equivalently: (f,f,,...,f,) is a polynomial automorphism.
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Abhyankar-Sataye conjecture/ coordinates

C[Xi,...,X,] = Cll. f Coordinate means (f,f,...,f,)

automorphism.
If f is a coordinate, then CI"l /(f) = Cl"=1 (just take f = X;).

Abhyankar-Sathaye conjecture (AS(n)): If
Cln/(f) = Cl=1 then f is a coordinate.
Unnamed problem: How to recognise if f € CI"l is a

coordinate? Is x + xz? + zy? a coordinate?
AS(2) is true.



Linearization problem

Let F € GA,(k).



Linearization problem

Let F € GA,(k). Important to know if there exists
© € GA,(k) such that ¢ 1Fp € GL,(k).



Linearization problem

Let F € GA,(k). Important to know if there exists
¢ € GA,(k) such that ¢ 1Fp € GL,(k).
Needed: F has a fixed point p. (i.e. (X +1,Y) is not

linearizable.)



Linearization problem

Let F € GA,(k). Important to know if there exists

¢ € GA,(k) such that ¢ 1Fp € GL,(k).

Needed: F has a fixed point p. (i.e. (X +1,Y) is not
linearizable.)

Main question here:

Linearization Problem: Let F* =/ some s. Is F

linearizable?



Linearization problem

Let F € GA,(k). Important to know if there exists

¢ € GA,(k) such that ¢ 1Fp € GL,(k).

Needed: F has a fixed point p. (i.e. (X +1,Y) is not
linearizable.)

Main question here:

Linearization Problem: Let F* =/ some s. Is F

linearizable?

Proven for n = 2.
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The Automorphism Group

(This whole talk: n > 2)
GL,(k) is generated by

» Permutations X; +— X;
» Map (aX; + bX;, Xa,..., X,) (a € k*,b € k)

GA, (k) is generated by 777
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Elementary map: (X; + f(Xa, ..., X,), Xo, ..., X»),

invertible with inverse

(Xo = F(Xoy o Xo)s Xos oo, Xo).
Triangular map: (X +f(Y,Z),Y +g(Z),Z+ ¢)

= (X, Y, Z+ )X, Y +g(2), 2)(X+£(X,Y),Y,2)
Jn(k):= set of triangular maps.
Aff,(k):= set of compositions of invertible linear maps and

translations.
TA, (k) =< J,(k), Aff,(k) >



In dimension 1: we understand the automorphism group.

(They are linear.)



In dimension 1: we understand the automorphism group.
(They are linear.)
In dimension 2: famous Jung-van der Kulk-theorem:

GAL(K) = TAy(K) = Affo(K)x Jo(K)

Jung-van der Kulk is the reason that we can do a lot in

dimension 2 |
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What about dimension 37 Stupid idea: everything will be
tame?

1972: Nagata: “l cannot tame the following map:”
N:=(X—-2YA—-ZA% Y +ZA,Z) where A = XZ + Y2,
Nagata's map is the historically most important map for
polynomial automorphisms. It is a very elegant but
complicated map.

AMAZING result: Umirbaev-Shestakov (2004)

N is not tamel!! ... in characteristic ZERO. ..

(Difficult and technical proof. ) (2007 AMS Moore paper

award.)



AMS E.H. Moore Research Article Prize

lvan Shestakov
(center) and Ualbai Umirbaev (right) with Jim Arthur.
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How did Nagata make Nagata's map?

Study maps over k[z,z71]:

(X =z Y2 X)X, Y + 22X)(X +z71Y2Y)
=X —-2(Xz+ Y)Y — (Xz+ Y?)2z, Y + (Xz + Y?)z2)

Thus: N is tame over k[z,z7], i.e. N in TAx(k[z,z71]).
Nagata proved: N is NOT tame over k[z], i.e. N not in
TAx(k[z]).
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Stably tameness

N tame in one dimension higher:
N:=(X-2YA—-ZA2 Y +ZA,Z, W) where A = XZ + Y?.

X +2YW — ZW? Y — ZW,Z, W)o
X,Y,Z,W —1A)o

X —2YW — ZW? Y + ZW,Z, W)o
X, Y, Z,W+1n)

=N

(
(
(
(
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Linearizing Nagata?

(Bass, '847) N is not linearizable.

However: 2N (= 2/ o N) is linearizable. —N is not linearizable.
iN is linearizable.

Theorem: (Maubach, Poloni, '09) sN is linearizable unless
s=1-1.

(Part of a deeper theorem - on a Lie algebra. . .)
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Over finite fields

What about TA,(k) € GA,(k) if k =F, is a finite field?
Denote Bij,(IF,) as set of bijections on F7. We have a natural
map

GAA(Fq) = Bij,(IFy).

What is 74(GA,(IF4))? Can we make every bijection on F7 as

an invertible polynomial map?
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What about TA,(k) C GA,(k) if k =T, is a finite field?
Denote Bij,(IF,) as set of bijections on Fy. We have a natural
map

GAL(Fq) = Bij,(Fy).

What is 74(GA,(FF4))? Can we make every bijection on F7 as
an invertible polynomial map?

Simpler question: what is 74(TA,(F,))?

Why simpler? Because we have a set of generators!
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Question: what is 7,(TA,(F))?
See Bij,(FF,) as Sym(q").

TA,(Fy) =< GL,(FFy), o > where f runs over F [X;, ...

and o7 = (X1 + £, X5,..., Xp).
We make finite subset S C Fy[Xz, ..., X,] and define

G =< GL,(F,),0¢; fES>

such that
71'q(T'A‘n(IFq)) = 71'q(g)'

, Xo]



. — Y .
e - - g
—— — — 0
- - - -
. —~—
- -
FL= (x+y™~2)y) Fs =(x+1,y)
- —~— - -
< < —%.
- — Y .
\ -~ C -
- —~
T -
f= (yx) Fs = (2xy) Fo = (x+yy)
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Question: what is 7,( T,(Fy))?

(1) mg(TH(F,)) = m4(G) is 2-transitive, hence primitive.

You might know: if H < Sym(m) is primitive + a 2-cycle then
H = Sym(m).

If g =2 or g odd, then indeed we find a 2-cycle!

Hence if g =2 or ¢ = odd, then 74(T,(F,)) = Sym(q").
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Question: what is 7,( T,(Fy))?

Answer: if g =2 or g = odd, then 7m,(TA,(F4)) = Sym(q").

If g =4,8,16,... we don't succeed to find a 2-cycle. In fact-
all generators of TA,(FF,) turn out to be even, i.e.
ro(TAA(E,)) € Alt(q")!

But: there's another theorem:

Theorem: H < Sym(m) Primitive + 3-cycle — H = Alt(m)
or H = Sym(m).

We find a 3-cycle!

Hence, if g = 4,8,16,... then my( T,(Fq)) = Alt(m)!



Question: what is m4( T,(FF,))?

Answer: if g =2 or g = odd, then 7,(TA,(F4)) = Sym(q").
Answer: if g =4,8,16,32,... then m4(TA,(F,)) = Alt(q").
Suppose F € GA,(FF4) such that 7(F) odd permutation, then
m(F) & m(TAn(FF4)), so GA,(IF4) # TA,(F4) !



Question: what is m4( T,(FF,))?

Answer: if g =2 or g = odd, then 7,(TA,(F4)) = Sym(q").
Answer: if g =4,8,16,32,... then m4(TA,(F,)) = Alt(q").
Suppose F € GA,(FF4) such that 7(F) odd permutation, then
m(F) & m(TAn(FF4)), so GA,(IF4) # TA,(F4) !

So: Start looking for an odd automorphism!!! (Or prove they

don't exist)



Question: what is mq( T,(F,))?
Answer: if g =2 or g = odd, then 74(T,(IF;)) = Sym(q").
Answer: if g =4,8,16,32,... then m4( T,(Fq)) = Alt(g").



Question: what is mq( T,(F,))?

Answer: if g =2 or g = odd, then 74(T,(IF;)) = Sym(q").
Answer: if g =4,8,16,32,... then m4( T,(Fq)) = Alt(g").
Problem: Do there exist “odd” polynomial automorphisms

over [F,?



Question: what is mq( T,(F,))?

Answer: if g =2 or g = odd, then 74(T,(IF;)) = Sym(q").
Answer: if g =4,8,16,32,... then m4( T,(Fq)) = Alt(g").
Problem: Do there exist “odd” polynomial automorphisms

over [F,7 Exciting! Let's try Nagata!



Question: what is mq( T,(F,))?

Answer: if g =2 or g = odd, then 74(T,(IF;)) = Sym(q").
Answer: if g =4,8,16,32,... then m4( T,(Fq)) = Alt(g").
Problem: Do there exist “odd” polynomial automorphisms

over [F,7 Exciting! Let's try Nagata!

X =2(XZ+ Y)Y —(XZ+ Y?)?Z,
N = Y +(XZ+ Y?)Z,
Z



Question: what is mq( T,(F,))?

Answer: if g =2 or g = odd, then 74(T,(IF;)) = Sym(q").
Answer: if g =4,8,16,32,... then m4( T,(Fq)) = Alt(g").
Problem: Do there exist “odd” polynomial automorphisms

over [F,7 Exciting! Let's try Nagata!

X =2(XZ+ Y)Y —(XZ+ Y?)?Z,
N = Y +(XZ+ Y?)Z,
Z

...drumroll. ..



Question: what is mq( T,(F,))?

Answer: if g =2 or g = odd, then 74(T,(IF;)) = Sym(q").
Answer: if g =4,8,16,32,... then m4( T,(Fq)) = Alt(g").
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Question: what is mq( T,(F,))?

Answer: if g =2 or g = odd, then 74(T,(IF;)) = Sym(q").
Answer: if g =4,8,16,32,... then m4( T,(Fq)) = Alt(g").
Problem: Do there exist “odd” polynomial automorphisms

over [F,7 Exciting! Let's try Nagata!

X =2(XZ+ Y)Y —(XZ+ Y?)?Z,
N = Y +(XZ+ Y?)Z,
Z

...drumroll... Nagata is EVEN if and only if ¢ = 4,8, 16, ...

and ODD otherwise. .. so far: no odd example found!



Different approach?

Is there perhaps a combinatorial reason why 7(GA,(F4) has

only even permutations??
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Losing less information: embedding I,

Into qu.

GAA(Fy) C GA,(Fgn) =5 sym(g™).
GA,(Fq) — mgn(GAs(Fg)) C sym(q™)
Ul Ul
TAN(Fq)  — 7gn(TA(Fq)) < sym(q™)
(1) Compute mgm(TAL(F)),
(2) check if mgn(N) & Tgn(TAN(E,)),
and hop, (3) TA,(F,) # GA,(F,) and immortal fame!

However:



Mimicking Nagata's map:

Theorem: (M) [ - general stuff - |

Corollary: For every extension [Fym of Fg, there exists
Tm € TA3(F4m) such that T,, “mimicks” N, i.e.



Mimicking Nagata's map:

Theorem: (M) [ - general stuff - |

Corollary: For every extension [Fym of Fg, there exists
T € TA3(F4m) such that T, "mimicks” N, i.e.

gn(Tm) = mqn(N).

Theorem states: for practical purposes, tame is almost always

enough!
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Nagata can be mimicked by a tame map for every g = p™ -

i.e. exists F € TA;3(F,) such that m,N = 7,F. Proof is easy
once you realize where to look. .. Remember Nagata's way of

making Nagata map?

(X —272Y2 Y)(X, Y + 22X), (X + 2972Y2Y)
= (X —2AY — A2z, Y + Az)

Do the Big Trick, since for z € F, we have z9 = z:



Nagata can be mimicked by a tame map for every g = p™ -

i.e. exists F € TA;3(F,) such that m,N = 7,F. Proof is easy
once you realize where to look. .. Remember Nagata's way of

making Nagata map?

(X —z972Y2 Y)(X, Y + 22X), (X + z972Y2Y)
= (X —2AY — A%z, Y + Az)
Do the Big Trick, since for z € F, we have z9 = z:
This almost works - a bit more wiggling necessary (And for the

general case, even more work.)
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Another topic: additive group actions

G group, acting on C" means:

g € GAL(C) such that ¢ 0 = @i (in @ “continuous
way").

Special example: G =< C,+ >. Denoted by G,.

Example: t € G, — o, = (X1 + £, X5, ..., X,).

Define D : C[Xy, ..., X,] — C[Xi,..., X,] as the ‘log’ of the
action:

D(P) = - oP)co

Example:

%P(Xl —f— t,XQ, e ,Xn)|t:0
= 06K X)
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Define D : C[Xy, ..., Xs] — C[X1,..., X,] as the ‘log’ of the

action: 5
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Example:
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Additive group actions
Define D : C[Xy, ..., Xs] — C[X1,..., X,] as the ‘log’ of the

action: 5
D('D) = E@r(P)h:o

Example:

ZP(Xi+t, X, ..., Xn)| =0
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Additive group actions
Define D : C[Xy, ..., Xs] — C[X1,..., X,] as the ‘log’ of the

action: 5
D('D) = E@r(P)h:o
Example:
ZP(Xi+t, X, ..., Xn)| =0
= g—)’Z(Xl,XQ, ooy Xn)
0
D:=—
00Xy
and indeed:

eXp(tD)(P) = P(Xl + t, X27 s 7Xn)



Additive group actions
D is a locally nilpotent derivation:
D(fg) = fD(g) + D(f)g, D(f + g) = D(f) + D(g)
(derivation)
For all f, there exists an my¢ such that D™ (f) = 0. (locally

nilpotent)
Example:
ZP(Xi+t, X0, ..., Xn)| =0
= g—)’;(Xl,XQ, ooy Xn)
)
D:=—
0X1
and indeed:

exp(tD)(P) = P(X1 + t, X5,..., X,)
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Another example:

0 0
0= _2Y8_X + ZW
is locally nilpotent derivation.
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Another example:

0 0
0= _2Y8_X + ZW
is locally nilpotent derivation.
I(XZ)= 6(X)Z+ Xo(Z)=-2Y-Z.

5(Y?) = 2Y5§(Y)=2Y.Z

S(XZ+Y?) = 0



Another example:

0 0
0= _2Y8_X + ZW
is locally nilpotent derivation.
5(XZ) = 8(X)Z +X8(Z) = —2Y - Z.
5(Y?) = 2Y§(Y)=2Y-Z Hence,
S(XZ+Y?)= 0
§(A) = 0 where A = XZ + Y2




Another example:

0 0
0= _2Y8_X+ZW

is locally nilpotent derivation.

I(XZ)= 6(X)Z+ Xo(Z)=-2Y-Z.

5(Y?) = 2Y§(Y)=2Y-Z Hence,

S(XZ+Y?)= 0

§(A) = 0 where A = XZ + Y2
Hence: D := AJ is also an LND:
D3(X)=D*(A--2Y)=A--2-D*(Y)=A--2-D(Z)=0
etc.
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o) o)
§ = —2YW + Za_y’
D:=NA5, A:=XZ+Y?

Now compute:
pr = exp(tD) := (exp(tD)(X), exp(tD)(Y), exp(tD)(Z))
exp(tD)(X) = X + tD(X) + %t2D2(X)

exp(tD)(Y) =Y + tD(Y)
exp(tD)(Z2) =Z
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0 0
6= =2 o + 7o
D:=A5, A:=XZ+Y?

Now compute:

e 1= exp(tD) := (exp(tD)(X), exp(tD)(Y), exp(tD)(Z))

exp(tD)(X) = X + t(—2YA) + %tzD(—2YA)
exp(tD)(Y) =Y + tAZ
exp(tD)(Z2) =Z



0 0
6= =2 o + 7o
D:=A5, A:=XZ+Y?

Now compute:

e 1= exp(tD) := (exp(tD)(X), exp(tD)(Y), exp(tD)(Z))

exp(tD)(X) = X + t(—2YA) + %tz(—2ZA2)
exp(tD)(Y) =Y + tAZ
exp(tD)(Z2) =Z



0 0
6= =2 o + 7o
D:=As, A:=XZ+Y?

Now compute:

e 1= exp(tD) := (exp(tD)(X), exp(tD)(Y), exp(tD)(Z))
exp(tD)(X) = X — 2tAY — t?A?2)
exp(tD)(Y) = Y + tAZ
exp(tD)(Z) = Z



exp(tD)(X) = X — 2tAY — t?A?Z
exp(tD)(Y) =Y + tAZ
exp(tD)(Z2) =Z



exp(tD)(X) = X — 2tAY — t?A?Z
exp(tD)(Y) =Y + tAZ
exp(tD)(Z2) =Z

Examine t = 1:



exp(D)(X) = X —2AY — A?Z)
exp(D)(Y)=Y + AZ
exp(D)(2) = Z

Examine t = 1;



exp(D)(X) = X —2AY — A?Z)
exp(D)(Y)=Y + AZ
exp(D)(2) = Z

Examine t = 1: Nagata's automorphism!
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Just one more slide:

| hope you got an impression of the beauty of

Affine Algebraic Geometry!

THANK YOU

(for enduring 177 slides. . .)



