The mysteries of Affine Algebraic Geometry

Stefan Maubach

September 2010

Geometry

Geometry

What is Affine Algebraic Geometry?

Geometry

What is Affine Algebraic Geometry?

It is a subfield of Algebraic Geometry! (Duh!)

# Geometry

What is Affine Algebraic Geometry? It is a subfield of Algebraic Geometry! (Duh!) Typical objects:

$$k^n \leftrightarrow k[X_1, \ldots, X_n]$$
  
 $V \leftrightarrow \mathcal{O}(V) := k[X_1, \ldots, X_n]/I(V)$ 

# Geometry

What is Affine Algebraic Geometry? It is a subfield of Algebraic Geometry! (Duh!) Typical objects:

$$\begin{array}{rcl} k^n & \leftrightarrow & k[X_1,\ldots,X_n] \\ V & \leftrightarrow & \mathcal{O}(V) := k[X_1,\ldots,X_n]/I(V) \end{array}$$

Geometrically sometimes "more difficult" than projective geometry (affine spaces are rarely compact). Algebraically, more simple! (There's always a *ring*.)

# Geometry

What is Affine Algebraic Geometry? It is a subfield of Algebraic Geometry! (Duh!) Typical objects:

$$\begin{array}{rcl} k^n & \leftrightarrow & k[X_1,\ldots,X_n] \\ V & \leftrightarrow & \mathcal{O}(V) := k[X_1,\ldots,X_n]/I(V) \end{array}$$

Geometrically sometimes "more difficult" than projective geometry (affine spaces are rarely compact). Algebraically, more simple! (There's always a *ring*.) Subtopic - but of *fundamental importance* to the whole of Algebraic geometry.

$$k^n \leftrightarrow k[X_1, \dots, X_n]$$
  
 $V \leftrightarrow \mathcal{O}(V) := k[X_1, \dots, X_n]/I(V)$ 

Objects, hence morphisms!

$$k^n \leftrightarrow k[X_1, \dots, X_n]$$
  
 $V \leftrightarrow \mathcal{O}(V) := k[X_1, \dots, X_n]/I(V)$ 

Objects, hence morphisms!

$$F: k^n \longrightarrow k^n$$
  
polynomial map if  $F = (F_1, \dots, F_n)$ ,  $F_i \in k[X_1, \dots, X_n]$ .  
Example:  $F = (X + Y^2, Y)$  is polynomial map  $\mathbb{C}^2 \longrightarrow \mathbb{C}^2$ .

$$k^n \leftrightarrow k[X_1, \dots, X_n]$$
  
 $V \leftrightarrow \mathcal{O}(V) := k[X_1, \dots, X_n]/I(V)$ 

Objects, hence morphisms!

$$F: k^n \longrightarrow k^n$$

polynomial map if  $F = (F_1, ..., F_n)$ ,  $F_i \in k[X_1, ..., X_n]$ . Example:  $F = (X + Y^2, Y)$  is polynomial map  $\mathbb{C}^2 \longrightarrow \mathbb{C}^2$ . Any linear map is a polynomial map.

A map  $F : k^n \longrightarrow k^n$  given by *n* polynomials:

$$F = (F_1(X_1,\ldots,X_n),\ldots,F_n(X_1,\ldots,X_n)).$$

A map  $F : k^n \longrightarrow k^n$  given by *n* polynomials:

$$F = (F_1(X_1,\ldots,X_n),\ldots,F_n(X_1,\ldots,X_n)).$$

Example:  $F = (X + Y^2, Y)$ .

A map  $F : k^n \longrightarrow k^n$  given by *n* polynomials:

$$F = (F_1(X_1,\ldots,X_n),\ldots,F_n(X_1,\ldots,X_n)).$$

Example:  $F = (X + Y^2, Y)$ .

Various ways of looking at polynomial maps:

A map  $F : k^n \longrightarrow k^n$  given by *n* polynomials:

$$F = (F_1(X_1,\ldots,X_n),\ldots,F_n(X_1,\ldots,X_n)).$$

Example:  $F = (X + Y^2, Y)$ .

Various ways of looking at polynomial maps:

• A map  $k^n \longrightarrow k^n$ .

A map  $F : k^n \longrightarrow k^n$  given by *n* polynomials:

$$F = (F_1(X_1,\ldots,X_n),\ldots,F_n(X_1,\ldots,X_n)).$$

Example:  $F = (X + Y^2, Y)$ .

Various ways of looking at polynomial maps:

• A map 
$$k^n \longrightarrow k^n$$
.

• A list of *n* polynomials:  $F \in (k[X_1, \ldots, X_n])^n$ .

A map  $F : k^n \longrightarrow k^n$  given by *n* polynomials:

$$F = (F_1(X_1,\ldots,X_n),\ldots,F_n(X_1,\ldots,X_n)).$$

Example:  $F = (X + Y^2, Y)$ .

Various ways of looking at polynomial maps:

- A map  $k^n \longrightarrow k^n$ .
- A list of *n* polynomials:  $F \in (k[X_1, \ldots, X_n])^n$ .
- A ring automorphism of k[X<sub>1</sub>,...,X<sub>n</sub>] sending g(X<sub>1</sub>,...,X<sub>n</sub>) to g(F<sub>1</sub>,...,F<sub>n</sub>).

A polynomial map F is a polynomial automorphism if there is a polynomial map G such that  $F(G) = (X_1, \ldots, X_n)$ .

A polynomial map F is a polynomial automorphism if there is a polynomial map G such that  $F(G) = (X_1, \ldots, X_n)$ . Example:  $(X + Y^2, Y)$  has inverse  $(X - Y^2, Y)$ .

A polynomial map F is a polynomial automorphism if there is a polynomial map G such that  $F(G) = (X_1, \ldots, X_n)$ . Example:  $(X + Y^2, Y)$  has inverse  $(X - Y^2, Y)$ .

$$(X + Y^2, Y) \circ (X - Y^2, Y) = ([X - Y^2] + [Y]^2, [Y])$$
  
=  $(X - Y^2 + Y^2, Y)$   
=  $(X, Y).$ 

A polynomial map F is a polynomial automorphism if there is a polynomial map G such that  $F(G) = (X_1, \ldots, X_n)$ . Example:  $(X + Y^2, Y)$  has inverse  $(X - Y^2, Y)$ .

$$(X + Y^2, Y) \circ (X - Y^2, Y) = ([X - Y^2] + [Y]^2, [Y])$$
  
=  $(X - Y^2 + Y^2, Y)$   
=  $(X, Y).$ 

 $(X^{p}, Y) : \mathbb{F}_{p}^{2} \longrightarrow \mathbb{F}_{p}^{2}$  is not a polynomial automorphism, even though it induces a bijection of  $\mathbb{F}_{p}$  !

A polynomial map F is a polynomial automorphism if there is a polynomial map G such that  $F(G) = (X_1, \ldots, X_n)$ . Example:  $(X + Y^2, Y)$  has inverse  $(X - Y^2, Y)$ .

$$(X + Y^2, Y) \circ (X - Y^2, Y) = ([X - Y^2] + [Y]^2, [Y])$$
  
=  $(X - Y^2 + Y^2, Y)$   
=  $(X, Y).$ 

 $(X^p, Y) : \mathbb{F}_p^2 \longrightarrow \mathbb{F}_p^2$  is not a polynomial automorphism, even though it induces a bijection of  $\mathbb{F}_p$  !  $(X^3, Y) : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$  is not a polynomial automorphism, even though it induces a bijection of  $\mathbb{R}$ !

**Remark:** If k is algebraically closed, char(k) = 0, then a polynomial endomorphism  $k^n \longrightarrow k^n$  which is a bijection, is an invertible polynomial map.

 $(X^{p}, Y) : \mathbb{F}_{p}^{2} \longrightarrow \mathbb{F}_{p}^{2}$  is not a polynomial automorphism, even though it induces a bijection of  $\mathbb{F}_{p}$  !  $(X^{3}, Y) : \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$  is not a polynomial automorphism, even though it induces a bijection of  $\mathbb{R}$ !

Group of polynomial automorphisms with coefficients in a ring R is denoted by  $GA_n(R)$  (similarly to  $GL_n(R)$ ).

A topic is defined by its problems.

Many problems in AAG: inspired by linear algebra! (In some sense: AAG most "natural generalization of linear algebra"...)

char(k) = 0

L linear map;

 $L \in \operatorname{GL}_n(k)$  invertible  $\iff \det(L) = \det(\operatorname{Jac}(L)) \in k^*$ 

 $\operatorname{char}(k) = 0$ 

L linear map;

 $L \in \operatorname{GL}_n(k)$  invertible  $\iff \operatorname{det}(L) = \operatorname{det}(\operatorname{Jac}(L)) \in k^*$  $F \in \operatorname{GA}_n(k)$  invertible ??  $\operatorname{det}(\operatorname{Jac}(F)) \in k^*$ 

 $\begin{array}{ll} \operatorname{char}(k) = 0 \\ L \text{ linear map;} \\ L \in \operatorname{GL}_n(k) \text{ invertible } \iff \operatorname{det}(L) = \operatorname{det}(\operatorname{Jac}(L)) \in k^* \\ F \in \operatorname{GA}_n(k) \text{ invertible } ?? & \operatorname{det}(\operatorname{Jac}(F)) \in k^* \end{array}$ 

F invertible, i.e.

$$G \circ F = (X_1, \ldots, X_n).$$

 $\begin{array}{ll} \operatorname{char}(k) = 0\\ L \text{ linear map;}\\ L \in \operatorname{GL}_n(k) \text{ invertible } \iff \operatorname{det}(L) = \operatorname{det}(\operatorname{Jac}(L)) \in k^*\\ F \in \operatorname{GA}_n(k) \text{ invertible } ?? \qquad \operatorname{det}(\operatorname{Jac}(F)) \in k^* \end{array}$ 

F invertible, i.e.

$$\operatorname{Jac}(G \circ F) = \operatorname{Jac}(X_1, \ldots, X_n).$$

 $\begin{array}{ll} \mathsf{char}(k) = 0\\ L \text{ linear map;}\\ L \in \mathsf{GL}_n(k) \text{ invertible } \iff \mathsf{det}(L) = \mathsf{det}(\mathsf{Jac}(L)) \in k^*\\ F \in \mathsf{GA}_n(k) \text{ invertible } ?? \qquad \mathsf{det}(\mathsf{Jac}(F)) \in k^* \end{array}$ 

F invertible, i.e.

 $\operatorname{Jac}(G \circ F) = I.$ 

 $\begin{array}{ll} \operatorname{char}(k) = 0\\ L \text{ linear map;}\\ L \in \operatorname{GL}_n(k) \text{ invertible } \iff \operatorname{det}(L) = \operatorname{det}(\operatorname{Jac}(L)) \in k^*\\ F \in \operatorname{GA}_n(k) \text{ invertible } ?? \qquad \operatorname{det}(\operatorname{Jac}(F)) \in k^* \end{array}$ 

F invertible, i.e.

 $\operatorname{Jac}(F) \cdot (\operatorname{Jac}(G) \circ F) = I.$ 

 $\begin{array}{ll} \operatorname{char}(k) = 0\\ L \text{ linear map;}\\ L \in \operatorname{GL}_n(k) \text{ invertible } \iff \operatorname{det}(L) = \operatorname{det}(\operatorname{Jac}(L)) \in k^*\\ F \in \operatorname{GA}_n(k) \text{ invertible } ?? \qquad \operatorname{det}(\operatorname{Jac}(F)) \in k^* \end{array}$ 

F invertible, i.e.

 $\det(\operatorname{Jac}(F)) \cdot \det(\operatorname{Jac}(G) \circ F) = \det I = 1.$ 

 $\begin{array}{ll} \operatorname{char}(k) = 0\\ L \text{ linear map;}\\ L \in \operatorname{GL}_n(k) \text{ invertible } \iff \operatorname{det}(L) = \operatorname{det}(\operatorname{Jac}(L)) \in k^*\\ F \in \operatorname{GA}_n(k) \text{ invertible } ?? \qquad \operatorname{det}(\operatorname{Jac}(F)) \in k^* \end{array}$ 

F invertible, i.e.

 $det(Jac(F)) \cdot det(blabla) = det I = 1.$ 

 $\begin{array}{ll} \operatorname{char}(k) = 0\\ L \text{ linear map;}\\ L \in \operatorname{GL}_n(k) \text{ invertible } \iff \operatorname{det}(L) = \operatorname{det}(\operatorname{Jac}(L)) \in k^*\\ F \in \operatorname{GA}_n(k) \text{ invertible } ?? \qquad \operatorname{det}(\operatorname{Jac}(F)) \in k^* \end{array}$ 

F invertible, i.e.

$$\det(\operatorname{Jac}(F)) \in k[X_1, \ldots, X_n]^* = k^*.$$

 $\begin{array}{ll} \operatorname{char}(k) = 0\\ L \text{ linear map;}\\ L \in \operatorname{GL}_n(k) \text{ invertible } \iff \operatorname{det}(L) = \operatorname{det}(\operatorname{Jac}(L)) \in k^*\\ F \in \operatorname{GA}_n(k) \text{ invertible } \implies \operatorname{det}(\operatorname{Jac}(F)) \in k^* \end{array}$ 

F invertible, i.e.

$$\det(\operatorname{Jac}(F)) \in k[X_1, \ldots, X_n]^* = k^*.$$

$$\operatorname{char}(k) = 0$$
  
 $L \text{ linear map;}$   
 $L \in \operatorname{GL}_n(k) \text{ invertible } \iff \operatorname{det}(L) = \operatorname{det}(\operatorname{Jac}(L)) \in k^*$   
 $F \in \operatorname{GA}_n(k) \text{ invertible } \Longrightarrow \operatorname{det}(\operatorname{Jac}(F)) \in k^*$ 

#### Jacobian Conjecture:

$$F \in GA_n(k)$$
 invertible  $\longleftarrow \det(Jac(F)) \in k^*$ 

Formulated in 1939 By O. H. Keller.

Formulated in 1939 By O. H. Keller. W. Engel proved n = 2 in 1955.

Formulated in 1939 By O. H. Keller.

- W. Engel proved n = 2 in 1955.
- B. Segre proved the general case in 1956.

Formulated in 1939 By O. H. Keller.

- W. Engel proved n = 2 in 1955.
- B. Segre proved the general case in 1956. And again in 1956.

Formulated in 1939 By O. H. Keller.

W. Engel proved n = 2 in 1955.

B. Segre proved the general case in 1956. And again in 1956. And again in 1960.

Formulated in 1939 By O. H. Keller.

- W. Engel proved n = 2 in 1955.
- B. Segre proved the general case in 1956. And again in 1956. And again in 1960.

All wrong! - but it took about till 1970 that it was clear that the problem was open.

Formulated in 1939 By O. H. Keller.

- W. Engel proved n = 2 in 1955.
- B. Segre proved the general case in 1956. And again in 1956. And again in 1960.

All wrong! - but it took about till 1970 that it was clear that the problem was open. By the way, many,

Formulated in 1939 By O. H. Keller.

- W. Engel proved n = 2 in 1955.
- B. Segre proved the general case in 1956. And again in 1956. And again in 1960.

All wrong! - but it took about till 1970 that it was clear that the problem was open. By the way, many, no-**MANY**,

Formulated in 1939 By O. H. Keller.

W. Engel proved n = 2 in 1955.

B. Segre proved the general case in 1956. And again in 1956. And again in 1960.

All wrong! - but it took about till 1970 that it was clear that the problem was open. By the way, many, no-**MANY**, wrong proofs followed...

J.C. was advertised by Abhyankar, Bass, and others





### "Visual" version of Jacobian Conjecture

#### Volume-preserving polynomial maps are invertible.

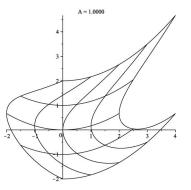


Figure: Image of raster under  $(X + \frac{1}{2}Y^2, Y + \frac{1}{6}(X + \frac{1}{2}Y^2)^2)$ .

Jacobian Conjecture very particular for polynomials:

$$F: (x, y) \longrightarrow (e^{x}, ye^{-x})$$
$$Jac(F) = \begin{pmatrix} e^{x} & 0 \\ -ye^{-x} & e^{-x} \end{pmatrix}$$
$$det(Jac(F)) = 1$$

L linear map;

- $L \in \operatorname{GL}_n(k)$  invertible  $\iff \operatorname{det}(L) = \operatorname{det}(\operatorname{Jac}(L)) \in k^*$
- $F \in GA_n(k)$  invertible  $\Rightarrow$   $det(Jac(F)) \in k^*$

L linear map;

 $L \in \operatorname{GL}_n(k) \text{ invertible } \iff \operatorname{det}(L) = \operatorname{det}(\operatorname{Jac}(L)) \in k^*$  $F \in \operatorname{GA}_n(k) \text{ invertible } \Rightarrow \operatorname{det}(\operatorname{Jac}(F)) \in k^*$ 

$$\begin{array}{rcl} F: & k^1 \longrightarrow k^1 \\ & X \longrightarrow X - X^p \end{array}$$

Jac(F) = 1 but F(0) = F(1) = 0.

L linear map;

 $L \in \operatorname{GL}_n(k) \text{ invertible } \iff \operatorname{det}(L) = \operatorname{det}(\operatorname{Jac}(L)) \in k^*$  $F \in \operatorname{GA}_n(k) \text{ invertible } \Rightarrow \operatorname{det}(\operatorname{Jac}(F)) \in k^*$ 

$$\begin{array}{rcl} F: & k^1 \longrightarrow k^1 \\ & X \longrightarrow X - X^p \end{array}$$

Jac(F) = 1 but F(0) = F(1) = 0. **Jacobian Conjecture in char**(k) = p: Suppose det(Jac(F)) = 1 and  $p \not| [k(X_1, ..., X_n) : k(F_1, ..., F_n)]$ . Then F is an automorphism.

char(k) = 0:  

$$F = (X + a_1X^2 + a_2XY + a_3Y^2, Y + b_1X^2 + b_2XY + b_3Y^2)$$

$$1 = \det(Jac(F))$$
  
= 1+  
(2a<sub>1</sub> + b<sub>2</sub>)X+  
(a<sub>2</sub> + 2b<sub>3</sub>)Y+  
(2a<sub>1</sub>b<sub>2</sub> + 2a<sub>2</sub>b<sub>1</sub>)X<sup>2</sup>+  
(2b<sub>2</sub>a<sub>2</sub> + 4a<sub>1</sub>b<sub>3</sub> + 4a<sub>3</sub>b<sub>1</sub>)XY+  
(2a<sub>2</sub>b<sub>3</sub> + 2a<sub>3</sub>b<sub>2</sub>)Y<sup>2</sup>

In char(k)=2 : (parts of) equations vanish. Question: What are the right equations in char(k) = 2? (or p?)

Enough about the Jacobian Problem! Another problem:

**Cancellation problem** 

### Cancellation problem: introduction

V, W vector spaces, if  $V \times k \cong W \times k$  then  $V \cong W$ . V vector space, then  $V \times k \cong k^{n+1}$  implies  $V \cong k^n$ .

### Cancellation problem: introduction

V, W vector spaces, if  $V \times k \cong W \times k$  then  $V \cong W$ . V vector space, then  $V \times k \cong k^{n+1}$  implies  $V \cong k^n$ .

V, W varieties, if  $V \times k \cong W \times k$  then  $V \cong W$ ?

### Cancellation problem: introduction

- V, W vector spaces, if  $V \times k \cong W \times k$  then  $V \cong W$ . V vector space, then  $V \times k \cong k^{n+1}$  implies  $V \cong k^n$ .
- V, W varieties, if  $V \times k \cong W \times k$  then  $V \cong W$ ? Cancellation problem: V variety.  $V \times k \cong k^{n+1}$ , is  $V \cong k^n$ ?

### counterexamples

1972(?): Hoechster: over  $\mathbb{R}$ 

### counterexamples

1972(?): Hoechster: over  $\mathbb{R}$ 1986(?): Danielewski:  $V : xz + y^2 + 1 = 0$ ,  $W : x^2z + y^2 + 1$ (over  $\mathbb{C}$ ) (Not a UFD)

#### counterexamples

1972(?): Hoechster: over  $\mathbb{R}$ 1986(?): Danielewski:  $V : xz + y^2 + 1 = 0$ ,  $W : x^2z + y^2 + 1$ (over  $\mathbb{C}$ ) (Not a UFD) 2008: Finston & M. : "Best" counterexamples so far (UFD, over  $\mathbb{C}$ , lowest possible dimension):

$$V_{n,m} := \{ (x, y, z, u, v) \mid x^2 + y^3 + z^7 = 0, x^m u - y^n v - 1 = 0 \}$$

### counterexamples

1972(?): Hoechster: over  $\mathbb{R}$ 1986(?): Danielewski:  $V : xz + y^2 + 1 = 0$ ,  $W : x^2z + y^2 + 1$ (over  $\mathbb{C}$ ) (Not a UFD) 2008: Finston & M. : "Best" counterexamples so far (UFD, over  $\mathbb{C}$ , lowest possible dimension):

$$V_{n,m} := \{ (x, y, z, u, v) \mid x^2 + y^3 + z^7 = 0, x^m u - y^n v - 1 = 0 \}$$

2010: better examples by Dubouloz/Moser/Poloni...

counterexamples

Still looking for an example where  $V = k^n$  !

Denote  $\mathbb{C}[X_1, \ldots, X_n]$  as  $\mathbb{C}^{[n]}$ .

Denote  $\mathbb{C}[X_1, \ldots, X_n]$  as  $\mathbb{C}^{[n]}$ .  $f \in \mathbb{C}^{[n]}$  is called a *coordinate* if there exist  $f_2, \ldots, f_n$  such that

$$\mathbb{C}[f, f_2, f_3, \ldots, f_n] = \mathbb{C}[X_1, \ldots, X_n]$$

Denote  $\mathbb{C}[X_1, \ldots, X_n]$  as  $\mathbb{C}^{[n]}$ .  $f \in \mathbb{C}^{[n]}$  is called a *coordinate* if there exist  $f_2, \ldots, f_n$  such that

$$\mathbb{C}[f, f_2, f_3, \ldots, f_n] = \mathbb{C}[X_1, \ldots, X_n]$$

Or equivalently:  $(f, f_2, \ldots, f_n)$  is a polynomial automorphism.

 $\mathbb{C}[X_1, \ldots, X_n] =: \mathbb{C}^{[n]}$ . *f* **Coordinate** means  $(f, f_2, \ldots, f_n)$  automorphism.

 $\mathbb{C}[X_1, \ldots, X_n] =: \mathbb{C}^{[n]}$ . *f* **Coordinate** means  $(f, f_2, \ldots, f_n)$  automorphism.

If f is a coordinate, then  $\mathbb{C}^{[n]}/(f) \cong \mathbb{C}^{[n-1]}$  (just take  $f = X_1$ ).

 $\mathbb{C}[X_1, \ldots, X_n] =: \mathbb{C}^{[n]}$ . *f* **Coordinate** means  $(f, f_2, \ldots, f_n)$  automorphism.

If f is a coordinate, then  $\mathbb{C}^{[n]}/(f) \cong \mathbb{C}^{[n-1]}$  (just take  $f = X_1$ ).

**Abhyankar-Sathaye conjecture** (AS(n)): If  $\mathbb{C}^{[n]}/(f) \cong \mathbb{C}^{[n-1]}$  then f is a coordinate.

 $\mathbb{C}[X_1, \ldots, X_n] =: \mathbb{C}^{[n]}$ . *f* **Coordinate** means  $(f, f_2, \ldots, f_n)$  automorphism.

If f is a coordinate, then  $\mathbb{C}^{[n]}/(f) \cong \mathbb{C}^{[n-1]}$  (just take  $f = X_1$ ).

Abhyankar-Sathaye conjecture (AS(n)): If  $\mathbb{C}^{[n]}/(f) \cong \mathbb{C}^{[n-1]}$  then f is a coordinate. Unnamed problem: How to recognise if  $f \in \mathbb{C}^{[n]}$  is a coordinate? Is  $x + xz^2 + zy^2$  a coordinate?

 $\mathbb{C}[X_1, \ldots, X_n] =: \mathbb{C}^{[n]}$ . *f* **Coordinate** means  $(f, f_2, \ldots, f_n)$  automorphism.

If f is a coordinate, then  $\mathbb{C}^{[n]}/(f) \cong \mathbb{C}^{[n-1]}$  (just take  $f = X_1$ ).

Abhyankar-Sathaye conjecture (AS(n)): If  $\mathbb{C}^{[n]}/(f) \cong \mathbb{C}^{[n-1]}$  then f is a coordinate. Unnamed problem: How to recognise if  $f \in \mathbb{C}^{[n]}$  is a coordinate? Is  $x + xz^2 + zy^2$  a coordinate? AS(2) is true.

### Linearization problem

Let  $F \in GA_n(k)$ .

### Linearization problem

Let  $F \in GA_n(k)$ . Important to know if there exists  $\varphi \in GA_n(k)$  such that  $\varphi^{-1}F\varphi \in GL_n(k)$ .

#### Linearization problem

Let  $F \in GA_n(k)$ . Important to know if there exists  $\varphi \in GA_n(k)$  such that  $\varphi^{-1}F\varphi \in GL_n(k)$ . Needed: F has a fixed point p. (i.e. (X + 1, Y) is not linearizable.)

#### Linearization problem

Let  $F \in GA_n(k)$ . Important to know if there exists  $\varphi \in GA_n(k)$  such that  $\varphi^{-1}F\varphi \in GL_n(k)$ . Needed: F has a fixed point p. (i.e. (X + 1, Y) is not linearizable.)

Main question here:

**Linearization Problem:** Let  $F^s = I$  some *s*. Is *F* linearizable?

#### Linearization problem

Let  $F \in GA_n(k)$ . Important to know if there exists  $\varphi \in GA_n(k)$  such that  $\varphi^{-1}F\varphi \in GL_n(k)$ . Needed: F has a fixed point p. (i.e. (X + 1, Y) is not linearizable.)

Main question here:

**Linearization Problem:** Let  $F^s = I$  some *s*. Is *F* linearizable?

Proven for n = 2.

(This whole talk:  $n \ge 2$ )  $GL_n(k)$  is generated by

(This whole talk:  $n \ge 2$ )  $GL_n(k)$  is generated by

• Permutations  $X_1 \longleftrightarrow X_i$ 

- (This whole talk:  $n \ge 2$ )  $GL_n(k)$  is generated by
  - Permutations  $X_1 \longleftrightarrow X_i$
  - Map  $(aX_1 + bX_j, X_2, ..., X_n)$   $(a \in k^*, b \in k)$

- (This whole talk:  $n \ge 2$ )  $GL_n(k)$  is generated by
  - Permutations  $X_1 \longleftrightarrow X_i$
  - Map  $(aX_1 + bX_j, X_2, ..., X_n)$   $(a \in k^*, b \in k)$

 $GA_n(k)$  is generated by ???

$$(X_1-f(X_2,\ldots,X_n),X_2,\ldots,X_n).$$

 $(X_1 - f(X_2, ..., X_n), X_2, ..., X_n).$ Triangular map: (X + f(Y, Z), Y + g(Z), Z + c)

$$= (X, Y, Z + c)(X, Y + g(Z), Z)(X + f(X, Y), Y, Z)$$

 $(X_1 - f(X_2, ..., X_n), X_2, ..., X_n).$ Triangular map: (X + f(Y, Z), Y + g(Z), Z + c)

= (X, Y, Z + c)(X, Y + g(Z), Z)(X + f(X, Y), Y, Z) $J_n(k) := \text{set of triangular maps.}$ 

 $(X_1 - f(X_2, ..., X_n), X_2, ..., X_n).$ Triangular map: (X + f(Y, Z), Y + g(Z), Z + c)

= (X, Y, Z + c)(X, Y + g(Z), Z)(X + f(X, Y), Y, Z)  $J_n(k) := \text{ set of triangular maps.}$  $Aff_n(k) := \text{ set of compositions of invertible linear maps and translations.}$ 

 $(X_1 - f(X_2, ..., X_n), X_2, ..., X_n).$ Triangular map: (X + f(Y, Z), Y + g(Z), Z + c)

= (X, Y, Z + c)(X, Y + g(Z), Z)(X + f(X, Y), Y, Z)  $J_n(k) := \text{ set of triangular maps.}$  $Aff_n(k) := \text{ set of compositions of invertible linear maps and translations.}$ 

$$TA_n(k) := \langle J_n(k), Aff_n(k) \rangle$$

In dimension 1: we understand the automorphism group. (They are linear.)

In dimension 1: we understand the automorphism group. (They are linear.) In dimension 2: famous Jung-van der Kulk-theorem:

$$\mathsf{GA}_2(\mathbb{K}) = \mathsf{TA}_2(\mathbb{K}) = Aff_2(\mathbb{K}) \models \mathsf{J}_2(\mathbb{K})$$

Jung-van der Kulk is the reason that we can do a lot in dimension 2 !

What about dimension 3?

1972: Nagata: "I cannot tame the following map:"

 $N := (X - 2Y\Delta - Z\Delta^2, Y + Z\Delta, Z)$  where  $\Delta = XZ + Y^2$ .

1972: Nagata: "I cannot tame the following map:"  $N := (X - 2Y\Delta - Z\Delta^2, Y + Z\Delta, Z)$  where  $\Delta = XZ + Y^2$ . Nagata's map is the historically most important map for polynomial automorphisms. It is a very elegant but complicated map.

1972: Nagata: "I cannot tame the following map:"  $N := (X - 2Y\Delta - Z\Delta^2, Y + Z\Delta, Z)$  where  $\Delta = XZ + Y^2$ . Nagata's map is the historically most important map for polynomial automorphisms. It is a very elegant but complicated map. AMAZING result: Umirbaev-Shestakov (2004)

*N* is not tame!!

1972: Nagata: "I cannot tame the following map:"  $N := (X - 2Y\Delta - Z\Delta^2, Y + Z\Delta, Z)$  where  $\Delta = XZ + Y^2$ . Nagata's map is the historically most important map for polynomial automorphisms. It is a very elegant but complicated map.

AMAZING result: Umirbaev-Shestakov (2004)

*N* is not tame!!

(Difficult and technical proof. ) (2007 AMS Moore paper award.)

1972: Nagata: "I cannot tame the following map:"  $N := (X - 2Y\Delta - Z\Delta^2, Y + Z\Delta, Z)$  where  $\Delta = XZ + Y^2$ . Nagata's map is the historically most important map for polynomial automorphisms. It is a very elegant but complicated map. AMAZING result: Umirbaev-Shestakov (2004) *N* is not tame!! ... in characteristic ZERO... (Difficult and technical proof.) (2007 AMS Moore paper

award.)

# AMS E.H. Moore Research Article Prize



Ivan Shestakov

(center) and Ualbai Umirbaev (right) with Jim Arthur.

How did Nagata make Nagata's map?

$$(X, Y + z^2 X)$$

$$(X - z^{-1}Y^2, Y)(X, Y + z^2X)(X + z^{-1}Y^2, Y)$$

$$(X - z^{-1}Y^2, Y)(X, Y + z^2X)(X + z^{-1}Y^2, Y)$$
  
=  $(X - 2(Xz + Y^2)Y - (Xz + Y^2)^2z, Y + (Xz + Y^2)z)$ 

$$(X - z^{-1}Y^2, Y)(X, Y + z^2X)(X + z^{-1}Y^2, Y)$$
  
=  $(X - 2(Xz + Y^2)Y - (Xz + Y^2)^2z, Y + (Xz + Y^2)z)$ 

Thus: N is tame over  $k[z, z^{-1}]$ , i.e. N in TA<sub>2</sub>( $k[z, z^{-1}]$ ).

$$(X - z^{-1}Y^2, Y)(X, Y + z^2X)(X + z^{-1}Y^2, Y)$$
  
=  $(X - 2(Xz + Y^2)Y - (Xz + Y^2)^2z, Y + (Xz + Y^2)z)$ 

Thus: *N* is tame over  $k[z, z^{-1}]$ , i.e. *N* in TA<sub>2</sub>( $k[z, z^{-1}]$ ). Nagata proved: *N* is NOT tame over k[z], i.e. *N* not in TA<sub>2</sub>(k[z]).

# Stably tameness

N tame in one dimension higher:

 $N := (X - 2Y\Delta - Z\Delta^2, Y + Z\Delta, Z, W)$  where  $\Delta = XZ + Y^2$ .

## Stably tameness

N tame in one dimension higher:

 $N := (X - 2Y\Delta - Z\Delta^2, Y + Z\Delta, Z, W)$  where  $\Delta = XZ + Y^2$ .

$$(X + 2YW - ZW^2, Y - ZW, Z, W) \circ$$
  

$$(X, Y, Z, W - \frac{1}{2}\Delta) \circ$$
  

$$(X - 2YW - ZW^2, Y + ZW, Z, W) \circ$$
  

$$(X, Y, Z, W + \frac{1}{2}\Delta)$$
  

$$= N$$

(Bass, '84?) N is not linearizable.

(Bass, '84?) N is not linearizable. However:  $2N (= 2I \circ N)$  is linearizable.

(Bass, '84?) N is not linearizable. However:  $2N \ (= 2I \circ N)$  is linearizable. -N is not linearizable.

(Bass, '84?) N is not linearizable. However:  $2N \ (= 2I \circ N)$  is linearizable. -N is not linearizable. iN is linearizable.

(Bass, '84?) N is not linearizable.

However:  $2N \ (= 2I \circ N)$  is linearizable. -N is not linearizable. *iN* is linearizable.

**Theorem:** (Maubach, Poloni, '09) sN is linearizable unless s = 1, -1.

(Part of a deeper theorem - on a Lie algebra...)

## Over finite fields

#### What about $TA_n(k) \subseteq GA_n(k)$ if $k = \mathbb{F}_q$ is a finite field?

## Over finite fields

What about  $TA_n(k) \subseteq GA_n(k)$  if  $k = \mathbb{F}_q$  is a finite field? Denote  $\text{Bij}_n(\mathbb{F}_q)$  as set of bijections on  $\mathbb{F}_q^n$ . We have a natural map

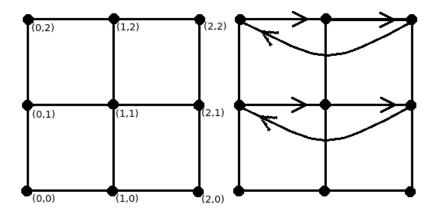
 $\mathsf{GA}_n(\mathbb{F}_q) \xrightarrow{\pi_q} \mathsf{Bij}_n(\mathbb{F}_q).$ 

# Over finite fields

What about  $TA_n(k) \subseteq GA_n(k)$  if  $k = \mathbb{F}_q$  is a finite field? Denote  $\text{Bij}_n(\mathbb{F}_q)$  as set of bijections on  $\mathbb{F}_q^n$ . We have a natural map

 $\mathsf{GA}_n(\mathbb{F}_q) \xrightarrow{\pi_q} \mathsf{Bij}_n(\mathbb{F}_q).$ 

What is  $\pi_q(GA_n(\mathbb{F}_q))$ ? Can we make every bijection on  $\mathbb{F}_q^n$  as an *invertible* polynomial map?



 $F_1 = (x+y^2,y)$ 

What about  $\operatorname{TA}_n(k) \subseteq \operatorname{GA}_n(k)$  if  $k = \mathbb{F}_q$  is a finite field? Denote  $\operatorname{Bij}_n(\mathbb{F}_q)$  as set of bijections on  $\mathbb{F}_q^n$ . We have a natural map  $\operatorname{GA}_n(\mathbb{F}_q) \xrightarrow{\pi_q} \operatorname{Bij}_n(\mathbb{F}_q)$ . What is  $\pi_q(\operatorname{GA}_n(\mathbb{F}_q))$ ? Can we make every bijection on  $\mathbb{F}_q^n$  as

an *invertible* polynomial map?

What about  $TA_n(k) \subseteq GA_n(k)$  if  $k = \mathbb{F}_q$  is a finite field? Denote  $\text{Bij}_n(\mathbb{F}_q)$  as set of bijections on  $\mathbb{F}_q^n$ . We have a natural map

$$\mathsf{GA}_n(\mathbb{F}_q) \xrightarrow{\pi_q} \mathsf{Bij}_n(\mathbb{F}_q).$$

What is  $\pi_q(GA_n(\mathbb{F}_q))$ ? Can we make every bijection on  $\mathbb{F}_q^n$  as an *invertible* polynomial map?

Simpler question: what is  $\pi_q(TA_n(\mathbb{F}_q))$ ?

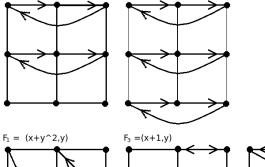
Why simpler? Because we have a set of generators!

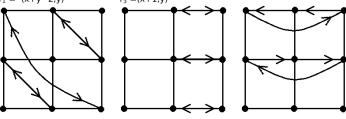
Question: what is  $\pi_q(TA_n(\mathbb{F}_q))$ ? See Bij<sub>n</sub>( $\mathbb{F}_q$ ) as Sym( $q^n$ ). Question: what is  $\pi_q(\mathsf{TA}_n(\mathbb{F}_q))$ ? See  $\operatorname{Bij}_n(\mathbb{F}_q)$  as  $\operatorname{Sym}(q^n)$ .  $\operatorname{TA}_n(\mathbb{F}_q) = \langle \operatorname{GL}_n(\mathbb{F}_q), \sigma_f \rangle$  where f runs over  $\mathbb{F}_q[X_2, \ldots, X_n]$ and  $\sigma_f := (X_1 + f, X_2, \ldots, X_n)$ . Question: what is  $\pi_q(TA_n(\mathbb{F}_q))$ ? See Bij<sub>n</sub>( $\mathbb{F}_q$ ) as Sym( $q^n$ ). TA<sub>n</sub>( $\mathbb{F}_q$ ) =< GL<sub>n</sub>( $\mathbb{F}_q$ ),  $\sigma_f$  > where f runs over  $\mathbb{F}_q[X_2, \ldots, X_n]$ and  $\sigma_f := (X_1 + f, X_2, \ldots, X_n)$ . We make finite subset  $S \subset \mathbb{F}_q[X_2, \ldots, X_n]$  and define

$$\mathcal{G} := <\operatorname{GL}_n(\mathbb{F}_q), \sigma_f \ ; \ f \in \mathcal{S} >$$

such that

$$\pi_q(\mathsf{TA}_n(\mathbb{F}_q)) = \pi_q(\mathcal{G}).$$





 $F_4 = (y,x)$   $F_5 = (2x,y)$   $F_2 = (x+y,y)$ 

Question: what is  $\pi_q(T_n(\mathbb{F}_q))$ ?

Question: what is  $\pi_q(T_n(\mathbb{F}_q))$ ? (1)  $\pi_q(T_n(\mathbb{F}_q)) = \pi_q(\mathcal{G})$  is 2-transitive, hence primitive. Question: what is  $\pi_q(T_n(\mathbb{F}_q))$ ? (1)  $\pi_q(T_n(\mathbb{F}_q)) = \pi_q(\mathcal{G})$  is 2-transitive, hence primitive. You might know: if H < Sym(m) is primitive + a 2-cycle then H = Sym(m). Question: what is  $\pi_q(T_n(\mathbb{F}_q))$ ? (1)  $\pi_q(T_n(\mathbb{F}_q)) = \pi_q(\mathcal{G})$  is 2-transitive, hence primitive. You might know: if H < Sym(m) is primitive + a 2-cycle then H = Sym(m).

If q = 2 or q odd, then indeed we find a 2-cycle!

Question: what is  $\pi_q(T_n(\mathbb{F}_q))$ ? (1)  $\pi_q(T_n(\mathbb{F}_q)) = \pi_q(\mathcal{G})$  is 2-transitive, hence primitive. You might know: if H < Sym(m) is primitive + a 2-cycle then H = Sym(m). If q = 2 or q odd, then indeed we find a 2-cycle! Hence if q = 2 or q = odd, then  $\pi_q(T_n(\mathbb{F}_q)) = \text{Sym}(q^n)$ . Question: what is  $\pi_q(T_n(\mathbb{F}_q))$ ? Answer: if q = 2 or q = odd, then  $\pi_q(\text{TA}_n(\mathbb{F}_q)) = \text{Sym}(q^n)$ . Question: what is  $\pi_q(T_n(\mathbb{F}_q))$ ? Answer: if q = 2 or q = odd, then  $\pi_q(\text{TA}_n(\mathbb{F}_q)) = \text{Sym}(q^n)$ . If  $q = 4, 8, 16, \ldots$  we don't succeed to find a 2-cycle. Question: what is  $\pi_q(T_n(\mathbb{F}_q))$ ? Answer: if q = 2 or q = odd, then  $\pi_q(\text{TA}_n(\mathbb{F}_q)) = \text{Sym}(q^n)$ . If  $q = 4, 8, 16, \ldots$  we don't succeed to find a 2-cycle. In factall generators of  $\text{TA}_n(\mathbb{F}_q)$  turn out to be even, i.e.  $\pi_q(\text{TA}_n(\mathbb{F}_q)) \subseteq \text{Alt}(q^n)$ ! But: there's another theorem:

**Theorem:** H < Sym(m) Primitive + 3-cycle  $\longrightarrow H = \text{Alt}(m)$  or H = Sym(m).

Question: what is  $\pi_q(T_n(\mathbb{F}_q))$ ? Answer: if q = 2 or q = odd, then  $\pi_q(\text{TA}_n(\mathbb{F}_q)) = \text{Sym}(q^n)$ . If  $q = 4, 8, 16, \ldots$  we don't succeed to find a 2-cycle. In factall generators of  $\text{TA}_n(\mathbb{F}_q)$  turn out to be even, i.e.  $\pi_q(\text{TA}_n(\mathbb{F}_q)) \subseteq \text{Alt}(q^n)$ ! But: there's another theorem:

**Theorem:** H < Sym(m) Primitive + 3-cycle  $\longrightarrow H = \text{Alt}(m)$ or H = Sym(m). We find a 3-cycle! Question: what is  $\pi_q(T_n(\mathbb{F}_q))$ ? Answer: if q = 2 or q = odd, then  $\pi_q(\text{TA}_n(\mathbb{F}_q)) = \text{Sym}(q^n)$ . If  $q = 4, 8, 16, \ldots$  we don't succeed to find a 2-cycle. In factall generators of  $\text{TA}_n(\mathbb{F}_q)$  turn out to be even, i.e.  $\pi_q(\text{TA}_n(\mathbb{F}_q)) \subseteq \text{Alt}(q^n)$ ! But: there's another theorem:

**Theorem:** H < Sym(m) Primitive + 3-cycle  $\longrightarrow H = Alt(m)$ or H = Sym(m). We find a 3-cycle!

Hence, if  $q = 4, 8, 16, \ldots$  then  $\pi_q(T_n(\mathbb{F}_q)) = \operatorname{Alt}(m)!$ 

Question: what is  $\pi_q(T_n(\mathbb{F}_q))$ ? Answer: if q = 2 or q = odd, then  $\pi_q(\text{TA}_n(\mathbb{F}_q)) = \text{Sym}(q^n)$ . Answer: if q = 4, 8, 16, 32, ... then  $\pi_q(\text{TA}_n(\mathbb{F}_q)) = \text{Alt}(q^n)$ . Suppose  $F \in \text{GA}_n(\mathbb{F}_4)$  such that  $\pi(F)$  odd permutation, then  $\pi(F) \notin \pi(\text{TA}_n(\mathbb{F}_4))$ , so  $\text{GA}_n(\mathbb{F}_4) \neq \text{TA}_n(\mathbb{F}_4)$  ! Question: what is  $\pi_q(T_n(\mathbb{F}_q))$ ? Answer: if q = 2 or q = odd, then  $\pi_q(\text{TA}_n(\mathbb{F}_q)) = \text{Sym}(q^n)$ . Answer: if q = 4, 8, 16, 32, ... then  $\pi_q(\text{TA}_n(\mathbb{F}_q)) = \text{Alt}(q^n)$ . Suppose  $F \in \text{GA}_n(\mathbb{F}_4)$  such that  $\pi(F)$  odd permutation, then  $\pi(F) \notin \pi(\text{TA}_n(\mathbb{F}_4))$ , so  $\text{GA}_n(\mathbb{F}_4) \neq \text{TA}_n(\mathbb{F}_4)$  ! So: Start looking for an odd automorphism!!! (Or prove they don't exist) Question: what is  $\pi_q(T_n(\mathbb{F}_q))$ ? Answer: if q = 2 or q = odd, then  $\pi_q(T_n(\mathbb{F}_q)) = \text{Sym}(q^n)$ . Answer: if q = 4, 8, 16, 32, ... then  $\pi_q(T_n(\mathbb{F}_q)) = \text{Alt}(q^n)$ .

$$N = \begin{pmatrix} X - 2(XZ + Y^{2})Y - (XZ + Y^{2})^{2}Z, \\ Y + (XZ + Y^{2})Z, \\ Z \end{pmatrix}$$

$$N = \begin{pmatrix} X - 2(XZ + Y^{2})Y - (XZ + Y^{2})^{2}Z, \\ Y + (XZ + Y^{2})Z, \\ Z \end{pmatrix}$$

...drumroll...

$$N = \begin{pmatrix} X - 2(XZ + Y^{2})Y - (XZ + Y^{2})^{2}Z, \\ Y + (XZ + Y^{2})Z, \\ Z \end{pmatrix}$$

... drumroll... Nagata is EVEN if and only if q = 4, 8, 16, ...and ODD otherwise...

$$N = \begin{pmatrix} X - 2(XZ + Y^{2})Y - (XZ + Y^{2})^{2}Z, \\ Y + (XZ + Y^{2})Z, \\ Z \end{pmatrix}$$

... drumroll... Nagata is EVEN if and only if q = 4, 8, 16, ...and ODD otherwise... so far: no odd example found!

# Different approach?

Is there perhaps a combinatorial reason why  $\pi(GA_n(\mathbb{F}_4))$  has only even permutations??

$$\mathsf{GA}_n(\mathbb{F}_q) \subset \mathsf{GA}_n(\mathbb{F}_{q^m}) \xrightarrow{\pi_{q^m}} \mathsf{sym}(q^{mn}).$$

$$\mathsf{GA}_n(\mathbb{F}_q) \subset \mathsf{GA}_n(\mathbb{F}_{q^m}) \stackrel{\pi_{q^m}}{\longrightarrow} \mathsf{sym}(q^{mn}).$$
 $\mathsf{GA}_n(\mathbb{F}_q)$ 
 $\bigcup \mid$ 
 $\mathsf{TA}_n(\mathbb{F}_q)$ 

$$\begin{array}{rcl} \mathsf{GA}_{n}(\mathbb{F}_{q}) \subset \mathsf{GA}_{n}(\mathbb{F}_{q^{m}}) \xrightarrow{\pi_{q^{m}}} \mathsf{sym}(q^{mn}).\\\\ \mathsf{GA}_{n}(\mathbb{F}_{q}) & \longrightarrow & \pi_{q^{m}}(\mathsf{GA}_{n}(\mathbb{F}_{q})) & \subset \mathsf{sym}(q^{mn})\\\\ \bigcup | & & \bigcup |\\\\ \mathsf{TA}_{n}(\mathbb{F}_{q}) & \longrightarrow & \pi_{q^{m}}(\mathsf{TA}_{n}(\mathbb{F}_{q})) & \subset \mathsf{sym}(q^{mn}) \end{array}$$

$$\begin{aligned} \mathsf{GA}_n(\mathbb{F}_q) \subset \mathsf{GA}_n(\mathbb{F}_{q^m}) & \stackrel{\pi_{q^m}}{\longrightarrow} \mathsf{sym}(q^{mn}). \\ \mathsf{GA}_n(\mathbb{F}_q) & \longrightarrow & \pi_{q^m}(\mathsf{GA}_n(\mathbb{F}_q)) & \subset \mathsf{sym}(q^{mn}) \\ & \bigcup | & & \bigcup | \\ & \mathsf{TA}_n(\mathbb{F}_q) & \longrightarrow & \pi_{q^m}(\mathsf{TA}_n(\mathbb{F}_q)) & \subset \mathsf{sym}(q^{mn}) \\ (1) \text{ Compute } \pi_{q^m}(\mathsf{TA}_n(\mathbb{F}_q)), \end{aligned}$$

$$\begin{aligned} \mathsf{GA}_n(\mathbb{F}_q) \subset \mathsf{GA}_n(\mathbb{F}_{q^m}) &\xrightarrow{\pi_{q^m}} \mathsf{sym}(q^{mn}). \\ \mathsf{GA}_n(\mathbb{F}_q) &\longrightarrow \pi_{q^m}(\mathsf{GA}_n(\mathbb{F}_q)) &\subset \mathsf{sym}(q^{mn}) \\ & \bigcup | & \bigcup | \\ & \mathsf{TA}_n(\mathbb{F}_q) &\longrightarrow \pi_{q^m}(\mathsf{TA}_n(\mathbb{F}_q)) &\subset \mathsf{sym}(q^{mn}) \\ \end{aligned}$$
(1) Compute  $\pi_{q^m}(\mathsf{TA}_n(\mathbb{F}_q)),$   
(2) check if  $\pi_{q^m}(N) \notin \pi_{q^m}(\mathsf{TA}_n(\mathbb{F}_q)),$ 

(1

$$\begin{aligned} \mathsf{GA}_{n}(\mathbb{F}_{q}) \subset \mathsf{GA}_{n}(\mathbb{F}_{q^{m}}) &\xrightarrow{\pi_{q^{m}}} \operatorname{sym}(q^{mn}). \\ \mathsf{GA}_{n}(\mathbb{F}_{q}) &\longrightarrow \pi_{q^{m}}(\mathsf{GA}_{n}(\mathbb{F}_{q})) &\subset \operatorname{sym}(q^{mn}) \\ & \bigcup | & \bigcup | \\ & \mathsf{TA}_{n}(\mathbb{F}_{q}) &\longrightarrow \pi_{q^{m}}(\mathsf{TA}_{n}(\mathbb{F}_{q})) &\subset \operatorname{sym}(q^{mn}) \\ (1) \operatorname{Compute} \pi_{q^{m}}(\mathsf{TA}_{n}(\mathbb{F}_{q})), \\ (2) \operatorname{check} \operatorname{if} \pi_{q^{m}}(N) \notin \pi_{q^{m}}(\mathsf{TA}_{n}(\mathbb{F}_{q})), \end{aligned}$$

and hop, (3)  $\mathsf{TA}_n(\mathbb{F}_q) \neq \mathsf{GA}_n(\mathbb{F}_q)$  and immortal fame!

Losing less information: embedding  $\mathbb{F}_q$ into  $\mathbb{F}_{q^m}$ .

$$\begin{array}{ccc} \mathsf{GA}_n(\mathbb{F}_q) \subset \mathsf{GA}_n(\mathbb{F}_{q^m}) \xrightarrow{\pi_{q^m}} \mathsf{sym}(q^{mn}). \\ & \mathsf{GA}_n(\mathbb{F}_q) \longrightarrow \pi_{q^m}(\mathsf{GA}_n(\mathbb{F}_q)) \subset \mathsf{sym}(q^{mn}) \\ & \bigcup | & \bigcup | \\ & \mathsf{TA}_n(\mathbb{F}_q) \longrightarrow \pi_{q^m}(\mathsf{TA}_n(\mathbb{F}_q)) \subset \mathsf{sym}(q^{mn}) \end{array} \\ (1) \text{ Compute } \pi_{q^m}(\mathsf{TA}_n(\mathbb{F}_q)), \\ (2) \text{ check if } \pi_{q^m}(N) \notin \pi_{q^m}(\mathsf{TA}_n(\mathbb{F}_q)), \\ \mathsf{and hop, (3) } \mathsf{TA}_n(\mathbb{F}_q) \neq \mathsf{GA}_n(\mathbb{F}_q) \text{ and immortal fame!} \\ \mathsf{However:} \end{array}$$

#### Mimicking Nagata's map:

**Theorem:** (M) [ - general stuff - ] **Corollary:** For every extension  $\mathbb{F}_{q^m}$  of  $\mathbb{F}_q$ , there exists  $T_m \in TA_3(\mathbb{F}_{q^m})$  such that  $T_m$  "mimicks" N, i.e.

$$\pi_{q^m}(T_m) = \pi_{q^m}(N).$$

### Mimicking Nagata's map:

**Theorem:** (M) [ - general stuff - ] **Corollary:** For every extension  $\mathbb{F}_{q^m}$  of  $\mathbb{F}_q$ , there exists  $T_m \in TA_3(\mathbb{F}_{q^m})$  such that  $T_m$  "mimicks" N, i.e.

$$\pi_{q^m}(T_m)=\pi_{q^m}(N).$$

Theorem states: for *practical* purposes, tame is almost always enough!

Nagata can be mimicked by a tame map for every  $q = p^m$  i.e. exists  $F \in TA_3(\mathbb{F}_p)$  such that  $\pi_q N = \pi_q F$ . Nagata can be mimicked by a tame map for every  $q = p^m$  i.e. exists  $F \in TA_3(\mathbb{F}_p)$  such that  $\pi_q N = \pi_q F$ . Proof is easy once you realize where to look...Remember Nagata's way of making Nagata map? Nagata can be mimicked by a tame map for every  $q = p^m$  i.e. exists  $F \in TA_3(\mathbb{F}_p)$  such that  $\pi_q N = \pi_q F$ . Proof is easy once you realize where to look...Remember Nagata's way of making Nagata map?

$$(X - z^{-1}Y^2, Y)(X, Y + z^2X), (X + z^{-1}Y^2, Y)$$
  
=  $(X - 2\Delta Y - \Delta^2 z, Y + \Delta z)$ 

Nagata can be mimicked by a tame map for every  $q = p^m$  i.e. exists  $F \in TA_3(\mathbb{F}_p)$  such that  $\pi_q N = \pi_q F$ . Proof is easy once you realize where to look...Remember Nagata's way of making Nagata map?

$$(X - z^{-1}Y^2, Y)(X, Y + z^2X), (X + z^{-1}Y^2, Y)$$
  
=  $(X - 2\Delta Y - \Delta^2 z, Y + \Delta z)$ 

Do the Big Trick, since for  $z \in \mathbb{F}_q$  we have  $z^q = z$ :

Nagata can be mimicked by a tame map for every  $q = p^m$  i.e. exists  $F \in TA_3(\mathbb{F}_q)$  such that  $\pi_q N = \pi_q F$ . Proof is easy once you realize where to look...Remember Nagata's way of making Nagata map?

$$(X - z^{q-2}Y^2, Y)(X, Y + z^2X), (X + z^{q-2}Y^2, Y)$$
  
=  $(X - 2\Delta Y - \Delta^2 z, Y + \Delta z)$ 

Do the Big Trick, since for  $z \in \mathbb{F}_q$  we have  $z^q = z$ :

Nagata can be mimicked by a tame map for every  $q = p^m$  i.e. exists  $F \in TA_3(\mathbb{F}_q)$  such that  $\pi_q N = \pi_q F$ . Proof is easy once you realize where to look...Remember Nagata's way of making Nagata map?

$$(X - z^{q-2}Y^2, Y)(X, Y + z^2X), (X + z^{q-2}Y^2, Y)$$
  
=  $(X - 2\Delta Y - \Delta^2 z, Y + \Delta z)$ 

Do the Big Trick, since for  $z \in \mathbb{F}_q$  we have  $z^q = z$ : This almost works - a bit more wiggling necessary (And for the general case, even more work.)

 $\mathcal{G}$  group, acting on  $\mathbb{C}^n$  means:

 $\mathcal G$  group, acting on  $\mathbb C^n$  means:

 $\varphi_g \in GA_n(\mathbb{C})$  such that  $\varphi_g \varphi_h = \varphi_{g+h}$  (in a "continuous way").

 ${\mathcal G}$  group, acting on  ${\mathbb C}^n$  means:

 $\varphi_g \in GA_n(\mathbb{C})$  such that  $\varphi_g \varphi_h = \varphi_{g+h}$  (in a "continuous way").

Special example:  $\mathcal{G} = < \mathbb{C}, + >$ . Denoted by  $\mathcal{G}_a$ .

 ${\mathcal G}$  group, acting on  ${\mathbb C}^n$  means:

 $\varphi_g \in GA_n(\mathbb{C})$  such that  $\varphi_g \varphi_h = \varphi_{g+h}$  (in a "continuous way").

Special example:  $\mathcal{G} = <\mathbb{C}, +>$ . Denoted by  $\mathcal{G}_a$ .

**Example:**  $t \in \mathcal{G}_a \longrightarrow \varphi_t := (X_1 + t, X_2, \dots, X_n).$ 

 ${\mathcal G}$  group, acting on  ${\mathbb C}^n$  means:

 $\varphi_g \in GA_n(\mathbb{C})$  such that  $\varphi_g \varphi_h = \varphi_{g+h}$  (in a "continuous way").

Special example:  $\mathcal{G}=<\mathbb{C},+>.$  Denoted by  $\mathcal{G}_{a}.$ 

**Example:**  $t \in \mathcal{G}_a \longrightarrow \varphi_t := (X_1 + t, X_2, \dots, X_n).$ 

Define  $D : \mathbb{C}[X_1, \dots, X_n] \longrightarrow \mathbb{C}[X_1, \dots, X_n]$  as the 'log' of the action:

$$D(P) := \frac{\partial}{\partial t} \varphi_t(P)|_{t=0}$$

 ${\mathcal G}$  group, acting on  ${\mathbb C}^n$  means:

 $\varphi_g \in GA_n(\mathbb{C})$  such that  $\varphi_g \varphi_h = \varphi_{g+h}$  (in a "continuous way").

Special example:  $\mathcal{G}=<\mathbb{C},+>.$  Denoted by  $\mathcal{G}_{a}.$ 

**Example:**  $t \in \mathcal{G}_a \longrightarrow \varphi_t := (X_1 + t, X_2, \dots, X_n).$ 

Define  $D : \mathbb{C}[X_1, \dots, X_n] \longrightarrow \mathbb{C}[X_1, \dots, X_n]$  as the 'log' of the action:

$$D(P) := \frac{\partial}{\partial t} \varphi_t(P)|_{t=0}$$

Example:

$$\frac{\frac{\partial}{\partial t}P(X_1+t,X_2,\ldots,X_n)|_{t=0}}{\frac{\partial P}{\partial X_1}(X_1,X_2,\ldots,X_n)}$$

Define  $D : \mathbb{C}[X_1, \dots, X_n] \longrightarrow \mathbb{C}[X_1, \dots, X_n]$  as the 'log' of the action:

$$D(P) := rac{\partial}{\partial t} arphi_t(P)|_{t=0}$$

Example:

$$\frac{\partial}{\partial t} P(X_1 + t, X_2, \dots, X_n)|_{t=0}$$

$$= \frac{\partial P}{\partial X_1}(X_1, X_2, \dots, X_n)$$

Define  $D : \mathbb{C}[X_1, \dots, X_n] \longrightarrow \mathbb{C}[X_1, \dots, X_n]$  as the 'log' of the action:

$$D(P) := \frac{\partial}{\partial t} \varphi_t(P)|_{t=0}$$

**Example:** 

$$= \frac{\frac{\partial}{\partial t} P(X_1 + t, X_2, \dots, X_n)|_{t=0}}{\frac{\partial P}{\partial X_1}(X_1, X_2, \dots, X_n)}$$
$$D := \frac{\partial}{\partial X_1}$$

Define  $D : \mathbb{C}[X_1, \dots, X_n] \longrightarrow \mathbb{C}[X_1, \dots, X_n]$  as the 'log' of the action:

$$D(P) := rac{\partial}{\partial t} arphi_t(P)|_{t=0}$$

Example:

$$= \frac{\frac{\partial}{\partial t} P(X_1 + t, X_2, \dots, X_n)|_{t=0}}{\frac{\partial P}{\partial X_1}(X_1, X_2, \dots, X_n)}$$
$$D := \frac{\partial}{\partial X_1}$$

and indeed:

$$\exp(tD)(P) = P(X_1 + t, X_2, \dots, X_n)$$

D is a locally nilpotent derivation: D(fg) = fD(g) + D(f)g, D(f + g) = D(f) + D(g)(derivation)

For all f, there exists an  $m_f$  such that  $D^{m_f}(f) = 0$ . (locally nilpotent)

Example:

$$= \frac{\frac{\partial}{\partial t} P(X_1 + t, X_2, \dots, X_n)|_{t=0}}{\frac{\partial P}{\partial X_1}(X_1, X_2, \dots, X_n)}$$
$$D := \frac{\partial}{\partial X_1}$$

and indeed:

$$\exp(tD)(P) = P(X_1 + t, X_2, \dots, X_n)$$

$$\delta := -2Y \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y}$$

$$\delta := -2Y \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y}$$

$$\delta(XZ) = \delta(X)Z + X\delta(Z) = -2Y \cdot Z.$$

$$\delta := -2Y \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y}$$

$$\delta(XZ) = \delta(X)Z + X\delta(Z) = -2Y \cdot Z.$$
  
$$\delta(Y^2) = 2Y\delta(Y) = 2Y \cdot Z.$$

$$\delta := -2Y \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y}$$

$$\delta(XZ) = \delta(X)Z + X\delta(Z) = -2Y \cdot Z.$$
  
$$\delta(Y^2) = 2Y\delta(Y) = 2Y \cdot Z.$$
  
$$\delta(XZ + Y^2) = 0$$

$$\delta := -2Y \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y}$$

$$\delta(XZ) = \delta(X)Z + X\delta(Z) = -2Y \cdot Z.$$
  

$$\delta(Y^2) = 2Y\delta(Y) = 2Y \cdot Z.$$
 Hence,  

$$\delta(XZ + Y^2) = 0$$
  

$$\delta(\Delta) = 0 \text{ where } \Delta = XZ + Y^2.$$

$$\delta := -2Y \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y}$$

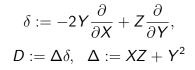
$$\delta(XZ) = \delta(X)Z + X\delta(Z) = -2Y \cdot Z.$$
  

$$\delta(Y^2) = 2Y\delta(Y) = 2Y \cdot Z.$$
 Hence,  

$$\delta(XZ + Y^2) = 0$$
  

$$\delta(\Delta) = 0 \text{ where } \Delta = XZ + Y^2.$$
  
Hence:  $D := \Delta\delta$  is also an LND:  

$$D^3(X) = D^2(\Delta \cdot -2Y) = \Delta \cdot -2 \cdot D^2(Y) = \Delta \cdot -2 \cdot D(Z) = 0$$
  
etc.



$$\delta := -2Y \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y},$$
$$D := \Delta \delta, \quad \Delta := XZ + Y^2$$

$$\varphi_t := \exp(tD) := (\exp(tD)(X), \exp(tD)(Y), \exp(tD)(Z))$$

$$\delta := -2Y \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y},$$
$$D := \Delta \delta, \quad \Delta := XZ + Y^2$$

$$\varphi_t := \exp(tD) := (\exp(tD)(X), \exp(tD)(Y), \exp(tD)(Z))$$

$$\exp(tD)(X) = X + tD(X) + \frac{1}{2}t^2D^2(X)$$
$$\exp(tD)(Y) = Y + tD(Y)$$
$$\exp(tD)(Z) = Z$$

$$\delta := -2Y \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y},$$
$$D := \Delta \delta, \quad \Delta := XZ + Y^2$$

$$\varphi_t := \exp(tD) := (\exp(tD)(X), \exp(tD)(Y), \exp(tD)(Z))$$
$$\exp(tD)(X) = X + tD(X) + \frac{1}{2}t^2D^2(X)$$
$$\exp(tD)(Y) = Y + t\Delta Z$$
$$\exp(tD)(Z) = Z$$

$$\delta := -2Y \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y},$$
$$D := \Delta \delta, \quad \Delta := XZ + Y^2$$

$$\varphi_t := \exp(tD) := (\exp(tD)(X), \exp(tD)(Y), \exp(tD)(Z))$$
$$\exp(tD)(X) = X + t(-2Y\Delta) + \frac{1}{2}t^2D(-2Y\Delta)$$
$$\exp(tD)(Y) = Y + t\Delta Z$$
$$\exp(tD)(Z) = Z$$

$$\delta := -2Y \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y},$$
$$D := \Delta \delta, \quad \Delta := XZ + Y^2$$

$$\varphi_t := \exp(tD) := (\exp(tD)(X), \exp(tD)(Y), \exp(tD)(Z))$$
$$\exp(tD)(X) = X + t(-2Y\Delta) + \frac{1}{2}t^2(-2Z\Delta^2)$$
$$\exp(tD)(Y) = Y + t\Delta Z$$
$$\exp(tD)(Z) = Z$$

$$\delta := -2Y \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y},$$
$$D := \Delta \delta, \quad \Delta := XZ + Y^2$$

$$\varphi_t := \exp(tD) := (\exp(tD)(X), \exp(tD)(Y), \exp(tD)(Z))$$
$$\exp(tD)(X) = X - 2t\Delta Y - t^2\Delta^2 Z)$$
$$\exp(tD)(Y) = Y + t\Delta Z$$
$$\exp(tD)(Z) = Z$$

# $\exp(tD)(X) = X - 2t\Delta Y - t^2\Delta^2 Z$ $\exp(tD)(Y) = Y + t\Delta Z$ $\exp(tD)(Z) = Z$

$$\exp(tD)(X) = X - 2t\Delta Y - t^2\Delta^2 Z$$
$$\exp(tD)(Y) = Y + t\Delta Z$$
$$\exp(tD)(Z) = Z$$

Examine t = 1:

$$\exp(D)(X) = X - 2\Delta Y - \Delta^2 Z)$$
$$\exp(D)(Y) = Y + \Delta Z$$
$$\exp(D)(Z) = Z$$

Examine t = 1:

$$\exp(D)(X) = X - 2\Delta Y - \Delta^2 Z)$$
  
 $\exp(D)(Y) = Y + \Delta Z$   
 $\exp(D)(Z) = Z$ 

Examine t = 1: Nagata's automorphism!

## Just one more slide:

#### Just one more slide:

#### I hope you got an impression of the beauty of Affine Algebraic Geometry!

#### Just one more slide:

#### I hope you got an impression of the beauty of Affine Algebraic Geometry!

# THANK YOU

(for enduring 177 slides...)