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The mysteries of Affine Algebraic

Geometry

What is Affine Algebraic Geometry?

It is a subfield of Algebraic Geometry! (Duh!)

Typical objects:

kn ↔ k[X1, . . . ,Xn]

V ↔ O(V ) := k[X1, . . . ,Xn]/I (V )

Geometrically sometimes “more difficult” than projective

geometry (affine spaces are rarely compact).

Algebraically, more simple! (There’s always a ring.)

Subtopic - but of fundamental importance to the whole of

Algebraic geometry.
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kn ↔ k[X1, . . . ,Xn]

V ↔ O(V ) := k[X1, . . . ,Xn]/I (V )

Objects, hence morphisms!

F : kn −→ kn

polynomial map if F = (F1, . . . ,Fn), Fi ∈ k[X1, . . . ,Xn].

Example: F = (X + Y 2,Y ) is polynomial map C2 −→ C2.

Any linear map is a polynomial map.
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Understanding polynomial automorphisms

A map F : kn −→ kn given by n polynomials:

F = (F1(X1, . . . ,Xn), . . . ,Fn(X1, . . . ,Xn)).

Example: F = (X + Y 2,Y ).

Various ways of looking at polynomial maps:

I A map kn −→ kn.

I A list of n polynomials: F ∈ (k[X1, . . . ,Xn])n.

I A ring automorphism of k[X1, . . . ,Xn] sending

g(X1, . . . ,Xn) to g(F1, . . . ,Fn).
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Understanding polynomial automorphisms

A polynomial map F is a polynomial automorphism if there is

a polynomial map G such that F (G ) = (X1, . . . ,Xn).

Example: (X + Y 2,Y ) has inverse (X − Y 2,Y ).

(X + Y 2,Y ) ◦ (X − Y 2,Y ) = ([X − Y 2] + [Y ]2, [Y ])

= (X − Y 2 + Y 2,Y )

= (X ,Y ).

(X p,Y ) : F2
p −→ F2

p is not a polynomial automorphism, even

though it induces a bijection of Fp !

(X 3,Y ) : R2 −→ R2 is not a polynomial automorphism, even

though it induces a bijection of R!
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Understanding polynomial automorphisms

Remark: If k is algebraically closed, char(k) = 0, then a

polynomial endomorphism kn −→ kn which is a bijection, is an

invertible polynomial map.

(X p,Y ) : F2
p −→ F2

p is not a polynomial automorphism, even

though it induces a bijection of Fp !

(X 3,Y ) : R2 −→ R2 is not a polynomial automorphism, even

though it induces a bijection of R!



Understanding polynomial automorphisms

Group of polynomial automorphisms with coefficients in a ring

R is denoted by GAn(R) (similarly to GLn(R)).



A topic is defined by its problems.

Many problems in AAG: inspired by linear algebra!

(In some sense: AAG most “natural generalization of linear

algebra”. . . )



Problems in AAG: Jacobian Conjecture

char(k) = 0

L linear map;

L ∈ GLn(k) invertible ⇐⇒ det(L) = det(Jac(L)) ∈ k∗

F ∈ GAn(k) invertible ?? det(Jac(F )) ∈ k∗

F invertible, i.e.

G ◦ F = (X1, . . . ,Xn).
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Problems in AAG: Jacobian Conjecture

char(k) = 0

L linear map;

L ∈ GLn(k) invertible ⇐⇒ det(L) = det(Jac(L)) ∈ k∗

F ∈ GAn(k) invertible =⇒ det(Jac(F )) ∈ k∗

Jacobian Conjecture:

F ∈ GAn(k)invertible ⇐= det(Jac(F )) ∈ k∗



History of the Jacobian Conjecture

Formulated in 1939 By O. H. Keller.

W. Engel proved n = 2 in 1955.

B. Segre proved the general case in 1956. And again in 1956.

And again in 1960.

All wrong! - but it took about till 1970 that it was clear that

the problem was open. By the way, many, no-MANY, wrong

proofs followed. . .
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History of the Jacobian Conjecture

J.C. was advertised by Abhyankar, Bass, and others



“Visual” version of Jacobian Conjecture
Volume-preserving polynomial maps are invertible.

Figure: Image of raster under (X + 1
2
Y 2,Y + 1

6
(X + 1

2
Y 2)2).



Jacobian Conjecture very particular for polynomials:

F : (x , y) −→ (ex , ye−x)

Jac(F ) =

(
ex 0

−ye−x e−x

)
det(Jac(F )) = 1



Jacobian Conjecture in char(k) = p:

L linear map;

L ∈ GLn(k) invertible ⇐⇒ det(L) = det(Jac(L)) ∈ k∗

F ∈ GAn(k) invertible ⇒ det(Jac(F )) ∈ k∗

F : k1 −→ k1

X −→ X − X p

Jac(F ) = 1 but F (0) = F (1) = 0.

Jacobian Conjecture in char(k) = p: Suppose

det(Jac(F )) = 1 and p 6 |[k(X1, . . . ,Xn) : k(F1, . . . ,Fn)]. Then

F is an automorphism.
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Jacobian Conjecture in char(k) = p:

char(k) = 0 :

F = (X + a1X 2 + a2XY + a3Y 2,Y + b1X 2 + b2XY + b3Y 2)

1 = det(Jac(F ))

= 1+

(2a1 + b2)X +

(a2 + 2b3)Y +

(2a1b2 + 2a2b1)X 2+

(2b2a2 + 4a1b3 + 4a3b1)XY +

(2a2b3 + 2a3b2)Y 2

In char(k)=2 : (parts of) equations vanish. Question: What

are the right equations in char(k) = 2? (or p?)



Enough about the Jacobian Problem! Another problem:

Cancellation problem



Cancellation problem: introduction

V ,W vector spaces, if V × k ∼= W × k then V ∼= W .

V vector space, then V × k ∼= kn+1 implies V ∼= kn.

V ,W varieties, if V × k ∼= W × k then V ∼= W ?

Cancellation problem: V variety. V × k ∼= kn+1, is V ∼= kn?
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Cancellation V × k ∼= W × k

counterexamples
1972(?): Hoechster: over R

1986(?): Danielewski: V : xz + y 2 + 1 = 0, W : x2z + y 2 + 1

(over C)

(Not a UFD)

2008: Finston & M. : “Best” counterexamples so far (UFD,

over C, lowest possible dimension):

Vn,m := {(x , y , z , u, v) | x2 + y 3 + z7 = 0, xmu− ynv − 1 = 0}

2010: better examples by Dubouloz/Moser/Poloni. . .
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Cancellation V × k ∼= W × k

counterexamples

Still looking for an example where V = kn !



Abhyankar-Sataye conjecture/ coordinates

Denote C[X1, . . . ,Xn] as C[n].

f ∈ C[n] is called a coordinate if

there exist f2, . . . , fn such that

C[f , f2, f3, . . . , fn] = C[X1, . . . ,Xn]

Or equivalently: (f , f2, . . . , fn) is a polynomial automorphism.
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Important to know if there exists
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Needed: F has a fixed point p. (i.e. (X + 1,Y ) is not

linearizable.)

Main question here:

Linearization Problem: Let F s = I some s. Is F

linearizable?

Proven for n = 2.
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Elementary map: (X1 + f (X2, . . . ,Xn),X2, . . . ,Xn),

invertible with inverse

(X1 − f (X2, . . . ,Xn),X2, . . . ,Xn).

Triangular map: (X + f (Y ,Z ),Y + g(Z ),Z + c)

= (X ,Y ,Z + c)(X ,Y + g(Z ),Z )(X + f (X ,Y ),Y ,Z )

Jn(k):= set of triangular maps.

Affn(k):= set of compositions of invertible linear maps and

translations.

TAn(k) :=< Jn(k),Affn(k) >
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In dimension 1: we understand the automorphism group.

(They are linear.)

In dimension 2: famous Jung-van der Kulk-theorem:

GA2(K) = TA2(K) = Aff 2(K)|× J2(K)

Jung-van der Kulk is the reason that we can do a lot in

dimension 2 !
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What about dimension 3?

Stupid idea: everything will be

tame?

1972: Nagata: “I cannot tame the following map:”

N := (X − 2Y ∆− Z ∆2,Y + Z ∆,Z ) where ∆ = XZ + Y 2.

Nagata’s map is the historically most important map for

polynomial automorphisms. It is a very elegant but

complicated map.

AMAZING result: Umirbaev-Shestakov (2004)

N is not tame!! . . . in characteristic ZERO. . .

(Difficult and technical proof. ) (2007 AMS Moore paper

award.)
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How did Nagata make Nagata’s map?

Study maps over k[z , z−1]:

(X − z−1Y 2,Y )(X ,Y + z2X )(X + z−1Y 2,Y )

= (X − 2(Xz + Y 2)Y − (Xz + Y 2)2z ,Y + (Xz + Y 2)z)

Thus: N is tame over k[z , z−1], i.e. N in TA2(k[z , z−1]).

Nagata proved: N is NOT tame over k[z ], i.e. N not in

TA2(k[z ]).
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Stably tameness

N tame in one dimension higher:

N := (X −2Y ∆−Z ∆2,Y + Z ∆,Z ,W ) where ∆ = XZ + Y 2.

(X + 2YW − ZW 2,Y − ZW ,Z ,W )◦
(X ,Y ,Z ,W − 1

2
∆)◦

(X − 2YW − ZW 2,Y + ZW ,Z ,W )◦
(X ,Y ,Z ,W + 1

2
∆)

= N
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Linearizing Nagata?

(Bass, ’84?) N is not linearizable.

However: 2N (= 2I ◦N) is linearizable. −N is not linearizable.

iN is linearizable.

Theorem: (Maubach, Poloni, ’09) sN is linearizable unless

s = 1,−1.

(Part of a deeper theorem - on a Lie algebra. . . )
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Over finite fields

What about TAn(k) ⊆ GAn(k) if k = Fq is a finite field?

Denote Bijn(Fq) as set of bijections on Fn
q. We have a natural

map

GAn(Fq)
πq−→ Bijn(Fq).

What is πq(GAn(Fq))? Can we make every bijection on Fn
q as

an invertible polynomial map?
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Question: what is πq(TAn(Fq))?

See Bijn(Fq) as Sym(qn).

TAn(Fq) =< GLn(Fq), σf > where f runs over Fq[X2, . . . ,Xn]

and σf := (X1 + f ,X2, . . . ,Xn).

We make finite subset S ⊂ Fq[X2, . . . ,Xn] and define

G :=< GLn(Fq), σf ; f ∈ S >

such that

πq(TAn(Fq)) = πq(G).
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Question: what is πq(Tn(Fq))?

(1) πq(Tn(Fq)) = πq(G) is 2-transitive, hence primitive.

You might know: if H < Sym(m) is primitive + a 2-cycle then

H = Sym(m).

If q = 2 or q odd, then indeed we find a 2-cycle!

Hence if q = 2 or q = odd, then πq(Tn(Fq)) = Sym(qn).
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Question: what is πq(Tn(Fq))?

Answer: if q = 2 or q = odd, then πq(TAn(Fq)) = Sym(qn).

If q = 4, 8, 16, . . . we don’t succeed to find a 2-cycle. In fact-

all generators of TAn(Fq) turn out to be even, i.e.

πq(TAn(Fq)) ⊆ Alt(qn)!

But: there’s another theorem:

Theorem: H < Sym(m) Primitive + 3-cycle −→ H = Alt(m)

or H = Sym(m).

We find a 3-cycle!

Hence, if q = 4, 8, 16, . . . then πq(Tn(Fq)) = Alt(m)!
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Different approach?

Is there perhaps a combinatorial reason why π(GAn(F4) has

only even permutations??



Losing less information: embedding Fq

into Fqm.

GAn(Fq) ⊂ GAn(Fqm)
πqm−→ sym(qmn).

GAn(Fq) −→ πqm(GAn(Fq)) ⊂ sym(qmn)⋃
|

⋃
|

TAn(Fq) −→ πqm(TAn(Fq)) ⊂ sym(qmn)

(1) Compute πqm(TAn(Fq)),

(2) check if πqm(N) 6∈ πqm(TAn(Fq)),

and hop, (3) TAn(Fq) 6= GAn(Fq) and immortal fame!

However:
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Mimicking Nagata’s map:

Theorem: (M) [ - general stuff - ]

Corollary: For every extension Fqm of Fq, there exists

Tm ∈ TA3(Fqm) such that Tm “mimicks” N , i.e.

πqm(Tm) = πqm(N).

Theorem states: for practical purposes, tame is almost always

enough!
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Nagata can be mimicked by a tame map for every q = pm -

i.e. exists F ∈ TA3(Fp) such that πqN = πqF .

Proof is easy

once you realize where to look. . . Remember Nagata’s way of

making Nagata map?

(X − z−1Y 2,Y )(X ,Y + z2X ), (X + z−1Y 2,Y )

= (X − 2∆Y −∆2z ,Y + ∆z)

Do the Big Trick, since for z ∈ Fq we have zq = z :



Nagata can be mimicked by a tame map for every q = pm -

i.e. exists F ∈ TA3(Fp) such that πqN = πqF . Proof is easy

once you realize where to look. . . Remember Nagata’s way of

making Nagata map?

(X − z−1Y 2,Y )(X ,Y + z2X ), (X + z−1Y 2,Y )

= (X − 2∆Y −∆2z ,Y + ∆z)

Do the Big Trick, since for z ∈ Fq we have zq = z :



Nagata can be mimicked by a tame map for every q = pm -

i.e. exists F ∈ TA3(Fp) such that πqN = πqF . Proof is easy

once you realize where to look. . . Remember Nagata’s way of

making Nagata map?

(X − z−1Y 2,Y )(X ,Y + z2X ), (X + z−1Y 2,Y )

= (X − 2∆Y −∆2z ,Y + ∆z)

Do the Big Trick, since for z ∈ Fq we have zq = z :



Nagata can be mimicked by a tame map for every q = pm -

i.e. exists F ∈ TA3(Fp) such that πqN = πqF . Proof is easy

once you realize where to look. . . Remember Nagata’s way of

making Nagata map?

(X − z−1Y 2,Y )(X ,Y + z2X ), (X + z−1Y 2,Y )

= (X − 2∆Y −∆2z ,Y + ∆z)

Do the Big Trick, since for z ∈ Fq we have zq = z :



Nagata can be mimicked by a tame map for every q = pm -

i.e. exists F ∈ TA3(Fq) such that πqN = πqF . Proof is easy

once you realize where to look. . . Remember Nagata’s way of

making Nagata map?

(X − zq−2Y 2,Y )(X ,Y + z2X ), (X + zq−2Y 2,Y )

= (X − 2∆Y −∆2z ,Y + ∆z)

Do the Big Trick, since for z ∈ Fq we have zq = z :

This almost works - a bit more wiggling necessary (And for the

general case, even more work.)



Nagata can be mimicked by a tame map for every q = pm -

i.e. exists F ∈ TA3(Fq) such that πqN = πqF . Proof is easy

once you realize where to look. . . Remember Nagata’s way of

making Nagata map?

(X − zq−2Y 2,Y )(X ,Y + z2X ), (X + zq−2Y 2,Y )

= (X − 2∆Y −∆2z ,Y + ∆z)

Do the Big Trick, since for z ∈ Fq we have zq = z :

This almost works - a bit more wiggling necessary (And for the

general case, even more work.)



Another topic: additive group actions
G group, acting on Cn means:

ϕg ∈ GAn(C) such that ϕgϕh = ϕg+h (in a “continuous

way”).

Special example: G =< C,+ >. Denoted by Ga.

Example: t ∈ Ga −→ ϕt := (X1 + t,X2, . . . ,Xn).

Define D : C[X1, . . . ,Xn] −→ C[X1, . . . ,Xn] as the ‘log’ of the

action:

D(P) :=
∂

∂t
ϕt(P)|t=0

Example:

∂
∂t

P(X1 + t,X2, . . . ,Xn)|t=0

= ∂P
∂X1

(X1,X2, . . . ,Xn)
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Additive group actions
D is a locally nilpotent derivation:
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Another example:

δ := −2Y
∂

∂X
+ Z

∂

∂Y

is locally nilpotent derivation.

δ(XZ ) = δ(X )Z + X δ(Z ) = −2Y · Z .
δ(Y 2) = 2Y δ(Y ) = 2Y · Z .

δ(XZ + Y 2) = 0

Hence,

δ(∆) = 0 where ∆ = XZ + Y 2.

Hence: D := ∆δ is also an LND:

D3(X ) = D2(∆ · −2Y ) = ∆ · −2 ·D2(Y ) = ∆ · −2 ·D(Z ) = 0

etc.
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D3(X ) = D2(∆ · −2Y ) = ∆ · −2 ·D2(Y ) = ∆ · −2 ·D(Z ) = 0

etc.



Another example:

δ := −2Y
∂

∂X
+ Z

∂

∂Y

is locally nilpotent derivation.

δ(XZ ) = δ(X )Z + X δ(Z ) = −2Y · Z .
δ(Y 2) = 2Y δ(Y ) = 2Y · Z .

δ(XZ + Y 2) = 0

Hence,
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δ := −2Y
∂

∂X
+ Z

∂

∂Y
,

D := ∆δ, ∆ := XZ + Y 2

Now compute:

ϕt := exp(tD) := (exp(tD)(X ), exp(tD)(Y ), exp(tD)(Z ))

exp(tD)(X ) = X + tD(X ) +
1

2
t2D2(X )

exp(tD)(Y ) = Y + tD(Y )

exp(tD)(Z ) = Z



δ := −2Y
∂

∂X
+ Z

∂

∂Y
,

D := ∆δ, ∆ := XZ + Y 2

Now compute:

ϕt := exp(tD) := (exp(tD)(X ), exp(tD)(Y ), exp(tD)(Z ))

exp(tD)(X ) = X + tD(X ) +
1

2
t2D2(X )

exp(tD)(Y ) = Y + tD(Y )

exp(tD)(Z ) = Z



δ := −2Y
∂

∂X
+ Z

∂

∂Y
,

D := ∆δ, ∆ := XZ + Y 2

Now compute:

ϕt := exp(tD) := (exp(tD)(X ), exp(tD)(Y ), exp(tD)(Z ))

exp(tD)(X ) = X + tD(X ) +
1

2
t2D2(X )

exp(tD)(Y ) = Y + tD(Y )

exp(tD)(Z ) = Z



δ := −2Y
∂

∂X
+ Z

∂

∂Y
,

D := ∆δ, ∆ := XZ + Y 2

Now compute:

ϕt := exp(tD) := (exp(tD)(X ), exp(tD)(Y ), exp(tD)(Z ))

exp(tD)(X ) = X + tD(X ) +
1

2
t2D2(X )

exp(tD)(Y ) = Y + t∆Z

exp(tD)(Z ) = Z



δ := −2Y
∂

∂X
+ Z

∂

∂Y
,

D := ∆δ, ∆ := XZ + Y 2

Now compute:

ϕt := exp(tD) := (exp(tD)(X ), exp(tD)(Y ), exp(tD)(Z ))

exp(tD)(X ) = X + t(−2Y ∆) +
1

2
t2D(−2Y ∆)

exp(tD)(Y ) = Y + t∆Z

exp(tD)(Z ) = Z



δ := −2Y
∂

∂X
+ Z

∂

∂Y
,

D := ∆δ, ∆ := XZ + Y 2

Now compute:

ϕt := exp(tD) := (exp(tD)(X ), exp(tD)(Y ), exp(tD)(Z ))

exp(tD)(X ) = X + t(−2Y ∆) +
1

2
t2(−2Z ∆2)

exp(tD)(Y ) = Y + t∆Z

exp(tD)(Z ) = Z



δ := −2Y
∂

∂X
+ Z

∂

∂Y
,

D := ∆δ, ∆ := XZ + Y 2

Now compute:

ϕt := exp(tD) := (exp(tD)(X ), exp(tD)(Y ), exp(tD)(Z ))

exp(tD)(X ) = X − 2t∆Y − t2∆2Z )

exp(tD)(Y ) = Y + t∆Z

exp(tD)(Z ) = Z



exp(tD)(X ) = X − 2t∆Y − t2∆2Z

exp(tD)(Y ) = Y + t∆Z

exp(tD)(Z ) = Z

Examine t = 1:



exp(tD)(X ) = X − 2t∆Y − t2∆2Z

exp(tD)(Y ) = Y + t∆Z

exp(tD)(Z ) = Z

Examine t = 1:



exp(D)(X ) = X − 2∆Y −∆2Z )

exp(D)(Y ) = Y + ∆Z

exp(D)(Z ) = Z

Examine t = 1:

Nagata’s automorphism!



exp(D)(X ) = X − 2∆Y −∆2Z )

exp(D)(Y ) = Y + ∆Z

exp(D)(Z ) = Z

Examine t = 1: Nagata’s automorphism!
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Affine Algebraic Geometry!
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