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Introduction

If for some class of algebraic objects there exists a moduli space, then we often find
interesting subvarieties of this space by considering the locus of points for which the
corresponding objects have some additional structure, or some extra symmetry. For
example, when we study the moduli space of abelian varieties, we could consider
abelian varieties on which a given ring acts by endomorphisms. In characteristic
zero we can generalize this by considering abelian varieties with a given collection of
Hodge classes. This leads to so-called Shimura subvarieties of the moduli space.
These Shimura subvarieties are very rich in structure. In this thesis, we will add
to this some new results. We prove that Shimura subvarieties are characterized by
certain linearity properties. Over the field of complex numbers, this is the property of
being “totally geodesic”, which we study in some detail. Our main results, however,
concern an analogue of this in mixed characteristic, called “formal linearity”. It
was shown by Noot that Shimura subvarieties (in mixed characteristic) are formally
linear. We show that they are in fact characterized by this property. Our proof
reveals that formal linearity and total geodesicness are more directly related than
one might expect at first glance. Applying our main results, we prove a conjecture

of Oort under some additional hypotheses.

To make this more concrete, let us write Ay ; ®C for the moduli space of principally
polarized complex abelian varieties of dimension g. Question: how can we describe
its Shimura subvarieties?

Experts on Shimura varieties will immediately start to formulate an answer. After
all, Ay; ® C is “the” Shimura variety associated with the group CSpy, ¢ and the
Siegel double space f);t, and to answer the question we should therefore study closed
immersions i: (G, X) < (CSpy,, H7) of Shimura data. The classification problem is
discussed in Satake’s book [55] and Section 1.8 of Deligne’s paper [18].

But this was not really what we had in mind. It is nice to have a description in

terms of Shimura data, but for some problems this is not very useful. To illustrate
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this, here is another question. Write J? C A;; ® C for the open Jacobi locus, i.e., the
image of the Torelli morphism j: M, ® C = A;; ® C. Are there Shimura varieties
S < Ay ® C (say for g > 4) with dim(S) > 0 which are contained in (J2)%" or
which have a positive-dimensional intersection with 727 (This question is formulated
in [47]. It is suggested by a conjecture of Coleman that for g > 4 the answer should
be negative; however, for ¢ = 4 and g = 6 it is shown in [12] that the answer is “yes”.)

In the above problems it should be clear that we write “Shimura variety” where we
really mean an irreducible component at some fixed finite level. To avoid confusion,

let us introduce some terminology. Given a Shimura variety
Shic(G, X) = G(@ \ X x GlAy) | K

in the sense of Deligne, we say that an irreducible subvariety S — Shg(G, X) is
a subvariety of Hodge type if, up to a Hecke correspondence, it is an irreducible
component of a Shimura subvariety. (See |, § 3 for a more precise definition.)

One of the main themes of this thesis is the question: “how can such subvarieties
of Hodge type be characterized?” The following properties play a central role: if
S — Shk(G,X) is of Hodge type, then (i) the special points on S are dense for
the Zariski topology (even for the analytic topology), and (ii) S is a totally geodesic
subvariety, i.e., it is an algebraic subvariety which is covered by a totally geodesic
submanifold of X. If Shg(G,X) is the moduli space of abelian varieties in mixed
characteristics, we have an additional property (iii) S is formally linear at (most of)
its ordinary points in characteristic p; this will be explained later on.

As for the first property, the following conjecture of Oort has been an important
motivation for our research. Note that there is an obvious generalization of this

conjecture, replacing A, , ® C with an arbitrary Shimura variety.

Conjecture. (F. Oort) Let Z — A, ,QC be an irreducible algebraic subvariety such
that the CM-points on Z are dense for the Zariski topology. Then Z is a subvariety
of Hodge type, in the sense of Definition 1.3.8.

Before we further discuss this conjecture, let us consider property (ii). In general,
if Z — Shix (G, X) (over C) is a totally geodesic subvariety, then it is not necessarily
of Hodge type. For example, take Z to be a single point, then Z is totally geodesic,

but it is of Hodge type only if it is a special point. However, it was suggested to us
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by D. Kazhdan that it should be possible to characterize the subvarieties of Hodge

type in terms of total geodesicness.

Apparently, an additional condition is needed for such characterization. In fact, a
special case of this was discussed in the late 1960s, when the question arose which of
“Kuga’s families of abelian varieties” are of Hodge type. The matter was settled by
Mumford in his paper [42], where he showed that a Kuga fibre variety is of Hodge type
if and only if it contains at least one fibre which is of CM-type. The same condition
works in our more general setting: we show that a totally geodesic subvariety Z —

Shk (G, X) is of Hodge type if and only if it contains at least one special point.

One would also like to have a description of general totally geodesic subvarieties.
So, suppose Z — Shy (G, X) is an irreducible, totally geodesic subvariety. We com-
pare it with the smallest subvariety of Hodge type containing it. This subvariety, call
it S, is associated to some sub-Shimura datum (M, Yy) < (G, X). If ug: Y7 — S'is
the natural covering map (the superscript * indicating a connected component) then,
by assumption, Z is covered by a totally geodesic submanifold Y’ C Y,". Essentially,
the problem is therefore to decide which totally geodesic submanifolds Y’ give rise to

algebraic subvarieties of S.

Phrased like this, the answer is not difficult to formulate: for Y’ we can take
all totally geodesic submanifolds Y;" x {y;} C Y,; arising from a decomposition
M2 = M, x M, of algebraic groups over Q. More precisely, if such a decomposition
exists, then Yy = Y] x Ys, where M;(R) acts transitively on Y;. Given a point yo € Y3
and a class nK € G(Ay)/K, we define S,k (Y1 X {y2}) as the image of (Y1 x {y2}) xnK
in Shi (G, X). It is a totally geodesic algebraic subvariety and in Chapter Il, §2 we
show that, conversely, all totally geodesic subvarieties are obtained in this way.

Geometrically, the picture is very simple. If we pass to a suitable level in the
Shimura variety Sh(G, X), the subvariety of Hodge type S is a product variety:
S = S; x Sy and the totally geodesic subvariety Z takes the form S; x {a} for some
point @ € Sy. In particular, if dim(Sy) > 0 (e.g., if Z is not of Hodge type), then
Z can be deformed inside S, by varying the point a € S,. If Sh(G, X) is a Shimura
variety of Hodge type this leads to so-called non-rigid families of abelian varieties:
we have a family of abelian varieties over S; which, fixing the base space S, admits

non-trivial deformations.

This non-rigidity phenomenon was studied by several mathematicians. Faltings

was the first to give an example showing that there exist non-rigid families of abelian
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varieties. The relative dimension in his example is 8; if we exclude isotrivial factors
this is indeed the lowest dimension for which non-rigidity occurs. More recently,
Masa-Hiko Saito classified the algebras which occur as the endomorphism algebra of
the local system R!'f,Qy associated to a non-rigid family f: X — Z.

We present a description of non-rigid families of abelian varieties in terms of
subvarieties of the moduli space. Basically, we show that if X — Z is such a non-rigid
family (say, principally polarized and equipped with a level n structure), then there
exists a sub-Shimura datum (M,Yy) — (CSp,,, H;) and a decomposition M>! =
M, x M, as above, such that Z maps into a subvariety S,x(Y: X {y2}) —= Ay1,®C
and such that all deformations of X over Z are obtained by varying the point y,. For

a more precise formulation, we refer to Chapter Il, § 4.

In Chapter Il the décor is slightly different. The “large” Shimura variety, the sub-
varieties of which we study, is the moduli space of abelian varieties. For most of the
chapter, the base field C can rest in the dressing-room, until its reappearance at a
crucial point in the fifth section. Enter the stage: base schemes of the form Spec(@p),
where 6,, is the completion at a finite prime p of the ring of integers of a number
field F.

Our goal is to study a “linearity property” of subvarieties of Hodge type in mixed
characteristic, which turns out to be a nice analogue of totally geodesicness. The
relevance of this property was first shown by Rutger Noot in his PhD thesis [43]; his
results have greatly stimulated our research. Let us explain the main ideas in their
simplest form, referring to Chapter Ill for more precise statements.

Write A, for the moduli space over Z, of g-dimensional abelian varieties (together
with a principal polarization and possibly a level structure, which we ignore for the
moment). Consider an ordinary abelian variety X over a finite field k. Let x € A,®F,
be its moduli point and write W = W (k) for the ring of infinite Witt vectors of k.
Define 2, as the formal completion of A, at the point z. It is a formal scheme over
Spf(WW), called the formal deformation space of X. It was shown by Serre and Tate
that 2, has a natural structure of a formal torus over Spf(W).

Next consider an algebraic subvariety S — A, ® Q of Hodge type. We obtain
a model § — A, by taking the Zariski closure inside A,. Assume that the moduli
point z is a point of S. By taking the formal completion at  we get a closed formal
subscheme &, — 2, over Spf(WW). Noot’s results essentially say that &, is a formal
subtorus of 2(,, in which case we say that S is formally linear at z. In general

viii
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the situation may be slightly more complicated, but to fix ideas this description is
sufficiently accurate.

A large part of Chapter Il is devoted to a more detailed study of this notion of
“formal linearity” and, keeping Oort’s conjecture at the back of our minds, to explain
its relation to certain collections of CM-points. This relation stems from the fact that
the CM-liftings of X (say over the ring W) are precisely those corresponding to the
torsion points of 2, (W). These liftings, which are mutually all isogenous, are called
quasi-canonical. The lifting X" which corresponds to the identity element of 2,
is called the canonical lifting. Up to isomorphism it is uniquely determined by its
property that all endomorphisms of X lift to X",

Let Z — A, ® Q be an irreducible algebraic subvariety. Write Z for the Zariski
closure inside Ay, and suppose z (still assumed to be a closed ordinary moduli point)
is a point of Z ® IF,,. Let us moreover assume that Z is formally linear at z, i.e.,
the formal completion 3, < A, of Z at the point x is a formal subtorus. It then
easily follows from the preceding remarks that the CM-points on Z are dense for the
Zariski topology. According to Oort’s conjecture Z should therefore be a subvariety
of Hodge type. In Chapter Ill, § 5 we show that this is indeed the case (under slightly

weaker assumptions):

Theorem. Let Z — A,1, ® F' be an irreducible algebraic subvariety of the moduli
space Ay, defined over a number field F'. Suppose there is a prime p of Op such
that the model Z of Z (as in Section I1.3.5) has formally quasi-linear components
at some closed ordinary point x € (Z ® r(p))°. Then Z is of Hodge type, i.e., every
irreducible component of Z @ C is a subvariety of Hodge type.

Together with Noot’s result (to which it is a converse) this theorem provides a
characterization of subvarieties of Hodge type in terms of formal linearity. In the
proof many ingredients of the first two chapters reappear and we see that formal
linearity is not just an analogue of totally geodesicness, but it is indeed strongly
related to it.

As explained above, one of the points to notice is that formal linearity is directly
related to certain sets of CM-points. That is, if Z as above is formally linear at z,
then the torsion points of 3, correspond to a Zariski dense collection of CM-points

on Z. Using our theorem, Oort’s conjecture would be proved if, conversely, we could
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deduce from the existence of a Zariski dense set of CM-points on Z that Z is formally
linear at some ordinary point . Unfortunately, we do not see how to prove this in full
generality. The difficulty lies in the fact that, given a set of CM-points which is dense
in Z, there is no obvious “common property”, using which we can conclude something
about the formal completions of Z at its ordinary points in characteristic p.

The “common property” that we want to assume is the following. Given an
abelian variety X of CM-type over a number field F', the set of finite places v where
X has ordinary reduction X, is of density 1 (if F' is sufficiently large). At all but
finitely many such places v we have that X is the canonical lifting of X,, in which
case we say that X is canonical at v. To our assumption that there exists a Zariski
dense collection of CM-points {X;}icr on Z we add the hypotheses that there is a
residue characteristic p such that each X; is canonical at a prime above p. This extra
hypotheses is quite reasonable: it is not very difficult to show that it is satisfied if Z
is formally linear at some closed ordinary point.

Under these assumptions on Z we prove in Chapter I, § 3 that Z is formally linear
at some of its ordinary points in characteristic p, hence, by our characterization, Z
is a subvariety of Hodge type. Technically speaking this is one of the hardest parts

of our work.

We conclude our work with some applications. In Chapter IV, § 1 we apply the main
results of Chapter Il to prove Oort’s conjecture in a particular situation. Namely, we
start with an abelian variety X over a number field, and we assume that the set P°
of places where X has ordinary reduction has density 1. It is a conjecture of Serre
that this holds if we take the base field large enough. For each v € P° we consider
the moduli point z;*" of the canonical lifting of X, and we define Z C Ay, ® Q as
the Zariski closure of this collection of points {z*" | v € P°}. Then we show that,
up to a finite number of “exceptional” CM-points, Z is the smallest subvariety of
Hodge type containing the moduli point of X. The trick is that, using the Galois
representation on the /-torsion of X (for a suitable prime number ¢), we are able to
find primes p such that sufficiently many of our abelian varieties of CM-type X, are
canonical at a prime above p. Once we have this, a straightforward application of
the results of Chapter Ill proves our statement.

In the last section we study the Zariski closure of the moduli point of X", where
X is an ordinary abelian variety in characteristic p (not necessarily defined over a

finite field). First we show that this Zariski closure, call it Z, is a subvariety of
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Hodge type. Knowing this, one wonders how dim(Z) compares to the dimension of
the Zariski closure {z}*" C A;1, ® F, of the moduli point of X. Clearly, if z is a
closed point, then both dimensions are zero. In general, dim(Z) > dim({z}%*). Our
last result, joint work with A.J. de Jong and F. Oort, shows that there exist ordinary
moduli points  with dim({z}?*) = 1 and dim(Z) = g(g + 1)/2.

Xi






Some conventions and definitions

0.1 General. We write Z for the profinite completion of Z and A; = 7® Q for the
ring of finite adéles of Q. Given a commutative ring R, we write W(R) for its ring
of infinite Witt vectors.

A superscript © indicates a connected component for the Zariski topology; in case
of an algebraic group it refers to the connected component of the identity element. A
superscript © denotes a connected component for other topologies, usually of analytic
nature.

We use a superscript © to denote the open subschemes of A, 1 , ® Z,, and Zsog(p™)
obtained by deleting the non-ordinary locus in characteristic p, see Ill.1 and I11.2. The
same symbol © is used to indicate the dual of a category.

0.2 Schemes, varieties and manifolds. We do not use distinct notations for an al-
gebraic variety over C and the associated analytic space; in most cases (hopefully all)
it should be clear from the context what is meant. We use a superscript %" to denote
a closure for the Zariski topology and a superscript & for the non-singular locus.
Manifolds are assumed to be paracompact. The word subvariety is used only for

closed subvarieties.

0.3 Algebraic groups. Reductive groups are assumed to be connected. In line with
the above, we do not carefully distinguish between an algebraic group over C (or R)
and the associated complex (resp. real) Lie group.

ad (adjoint group), & (algebraic

The superscripts ® (maximal abelian quotient),
envelope), 4 (derived subgroup) and the symbols Lie (Lie algebra) and Res (restric-
tion of scalars & la Weil) are used as is customary in the literature.

Let G be a reductive group over Q and consider a compact open subgroup K C
G(Ay). For the definition of when K is called neat we refer to [52, 0.6]. If K C G(Ay)

is neat then G(Q) N K is a neat arithmetic subgroup in the sense of [4, §17].

xili



Some conventions and definitions

Suppose K is a neat subgroup of G(Ay). Every subgroup K’ C K is again neat.
If H C G is an algebraic subgroup of G then H(A;) N K is a neat subgroup of H(Ay)
s a

—e

and if f: G — G’ is a homomorphism of algebraic groups over Q then f(K)
neat subgroup of G'(A). For every n > 3 the group K, = {g € GL,(Z) | g = 1
(mod n)} is a neat subgroup of GL,,(As). It follows that for every compact open
subgroup K C G(Ay) there is a neat subgroup K’ C K of G(A;) which has finite

index in K.

0.4 Formal schemes. The theory of formal schemes is set up in [27, I, §10 and
ITI, §83-5]. Unfortunately, not everything we need is treated there. Lacking a good
reference, let us briefly discuss some definitions. Convention: all formal schemes we
use are noetherian and adic.

Consider a formal scheme (X, Ox), for which we usually simply write X. We write
X, eq for the associated reduced scheme ([27, I, §10.5]), which has the same underlying
topological space as X. As a particular case we consider X = Spf(A), where A is a
noetherian ring which is complete for the [-adic topology for some ideal I C A.

We call X connected if X,q is a connected scheme, i.e., if the underlying topological
space is connected. If X = Spf(A) then X is connected if and only if [ is a primary
ideal.

We call X formally reduced, if for all points z € X the local ring O, is reduced.
Define a sheaf of ideals Nil C O by Nil(U) = nil(I'(4, Ox)). If this is a coherent
Ox-module (e.g., if X is an excellent formal scheme) then it defines a closed formal
subscheme Xg.q C X which is formally reduced and has the same associated reduced
scheme as X. In this case, we call Xgeq the formal reduction of X; for every closed
point z € X, the local ring of Xgeq at z is isomorphic to (Oy)req = Oy /nil(Oy).

Let 2); and ), be closed formal subschemes of X, defined by coherent ideal sheaves
T, and Z, respectively. We define the closed formal subscheme 2); U C X by the
sheaf of ideals Z; N Z,, which again is coherent.

Suppose X is formally reduced. We say X is formally irreducible if for all closed
formal subschemes )1, Yo with X = P; U Yy we have P; = X or P = X. An
excellent formal scheme X has a well-defined decomposition into (formal) irreducible
components.

Let f: X — %) be a finite morphism of formal (noetherian and adic) schemes (as
defined in [27, III, §4.8]). The Ogy-algebra f.Ox is coherent (loc. cit., Proposition

xiv
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4.8.6), hence K = Ker(Og — f.Ox) is also coherent (op. cit., 0, Corollaire 5.3.4). We
define the image of f (in the sense of formal schemes) as the closed formal subscheme
f(X) C 9 defined by the ideal K. It is the smallest closed formal subscheme of 9
through which f factors.

0.5 Conventions related to Hodge theory. For more details we refer to I, §1.

We define the field C as C = R[i]/(:* + 1), i.e., we choose an element 7 € C with
i> = —1. An R-Hodge structure with underlying vector space Vi corresponds to a
homomorphism of algebraic groups h: S — GL(Vk). This correspondence involves
the choice of a sign. We choose to let S act on V?¢ C V¢ via the character z7Pz71.
The reader can convince herself that these are really just conventions, which play no
crucial role in the rest of this work.

Formally speaking, the Mumford-Tate group of a Q-Hodge structure on a vector
space V is defined as an algebraic subgroup of GL(V) x Gy,. In practice we work
with its image MT C GL(V) under the first projection. The difference between the
two groups is “at most” a central factor G,,, which in most of our statements can be

safely ignored.

0.6 Shimura varieties. For more details, see |, §3.

For the definition of a Shimura variety we refer to Deligne’s papers [14] and [18].
We follow most conventions and notations of [18], most of which are recalled in this
section.

A pair (G, X) satisfying conditions ibid., (2.1.1.1-3) is called a Shimura datum.
We write Shi (G, X) for the canonical model of the associated Shimura variety over
the reflex field E(G, X). However, we often use the same notation for the weakly
canonical model over fields F' O E(G, X) (including the case F' = C), whenever it
is (or should be) clear from the context what is meant. A Shimura datum (G, X)
(as well as the associated Shimura variety) is called “of Hodge type” if there exists a
closed immersion i: G < CSp,, such that X is mapped into the Siegel double space
ﬁ;t. This should not be confused with the notion of “subvariety of Hodge type”,
defined in 1.3.8.

We have made no use of the terminology “Kuga variety”. It should be clear though
that for algebraic subvarieties S < A, 1, ® C there is considerable overlap between
our concepts and the theory of Kuga varieties (or group-theoretic abelian schemes).
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Chapter |

Hodge theory and Shimura varieties

§1 Mumford-Tate groups

1.1 Consider a pure rational Hodge structure of weight n with underlying Q-vector
space V. Following Deligne (cf. [16, Section 2]) we can describe it by giving a homo-
morphism of algebraic groups

h:'S — GL(V)g,

where S = Resc/r G . We follow the sign conventions of [19, Section 3]. To be precise:
let z and Z be the two standard generators of the character group X*(S), then S acts
on VP via the character 277z~9. With this convention, the Tate structure Q(1), as

defined in [16, (2.1.13)], corresponds to the Norm homomorphism
Nm: S — Gm,R ,

which is just the character zZ.

1.2 The Mumford-Tate group of (V,h), denoted MT(h), is defined as the smallest
algebraic subgroup of GL(V) x Gy, defined over Q such that MT(h)g contains the
image of h x Nm. This can be formulated both in more fancy and in more down-to-
earth terminology. For a fancy description, consider the category Hdgg of rational
Hodge structures, and write (V,Q(1))® for the Tannakian subcategory generated by
(V,h) and Q(1). It is a neutral Tannakian category over Q for which the forgetful
functor w: (V,Q(1))® — Vecq is a fibre functor. Then MT(h) = Aut®(w), the
automorphism group of this fibre functor. We refer to [22] for an explanation of these

terms and notations.



Chapter I. Hodge theory and Shimura varieties

In more down-to-earth terms, we can consider the action of GL(V') x Gy, on the

various spaces of the form
V(mlamQ: m3) = V®MI o (V*)®m2 Y Q(m3) )

where G, acts trivially on V and V*, and acts via the character z — 2™ on Q(m3) =
Q(1)®™s, and where GL(V) acts trivially on Q(m3). Then MT(h) is the algebraic
subgroup of GL(V') x Gy, characterized by the fact that, for all my, my € Z>g, mz € Z,
the Hodge classes in V' (m;q, mgy, mg)—defined as the rational classes purely of type
(0,0)—are precisely the invariants of MT(h).

Instead of the Mumford-Tate group as defined here, we could also consider the
smallest algebraic subgroup MT'(h) C GL(V) defined over Q such that MT'(h)g
contains the image of h. It is the image of MT(h) under the first projection map
pr;: GL(V)XGy — GL(V). The homomorphism pr;: MT(h) — MT'(h) is an isogeny
if and only if the weight n is non-zero.

From now on, let us suppose the Hodge structure (V,h) is polarizable. We fix
an element ¢ € C with i> = —1, and use this to identify the Z-modules Z and Z(n)
as in [16, (2.1.14)]. Via this identification a polarization ¢: V®? — Q(—n) gives a
bilinear form on V', which we again call 1. This form is symmetric if n is even, skew-
symmetric if n is odd, and MT'(h) is a reductive subgroup of the group GU(V, ) of
elements g € GL(V') which preserve ¢ up to a scalar. For n even this is the group
GO(V,4) of orthogonal similitudes, for n odd it is the group CSp(V, %) of symplectic
similitudes. We use the notation GU(V, ) to treat both cases simultaneously.

There is a natural character ¢ of GU(V, ), called the multiplier, defined by the
relation ¢ (gz, gy) = c(g) - ¥(x,y). If we define the character v as the restriction to
MT(h) of the second projection pry: GL(V) X Gy, — Gy, then v" = ¢! o pr; as
characters of MT(h).

In what follows we will mostly be interested in Mumford-Tate groups of po-
larizable Hodge structures of weight n equal to 1 or —1. In this case the map
Id x ¢=™: MT'(h) — CSp(V, %) X Gy, gives an inverse of the projection pr;: MT(h) —
MT'(h), which therefore is an isomorphism. This enables us to identify MT'(h)
and MT(h), and to view MT(h) as a subgroup of CSp(V,%). If n # +1 then
MT(h) — MT'(h) is not an isomorphism. Its kernel is a diagonalizable group of
dimension at most one, which is contained in the center of MT(h). In most of our

statements, though, we can safely ignore this difference. Therefore, we do not care-
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§2. Variation of Hodge structure

fully distinguish between MT(h) and MT'(h), and we often write MT where, strictly
speaking, we mean MT".

The group Hg(h) = Ker(v)? is called the Hodge group, or the special Mumford-
Tate group. It is the smallest algebraic subgroup of GL(V') defined over Q such that
Hg(h)r contains the image under h of the circle group U; = Ker(Nm) C S. The
Mumford-Tate group MT(h) is isogenous to Hg(h) X Gy,. Since we assumed (V,h)
to be polarizable, the inner automorphism Inn(h(i)) of Hgy is a Cartan involution
(cf. [18, 1.1.15]). In particular, the center Z(Hgg) (on which Inn(h(7)) is trivial) is
compact, i.e., Z(Hg)(R) is compact.

§2 Variation of Hodge structure

2.1 A polarized variation of Z-Hodge structure (Z-VHS) of weight n over a complex
manifold S is a triplet V = (V;, F", Q) consisting of a locally constant sheaf V; of
free Z-modules of finite rank, a filtration F° of Vo = Og ®z Vz by holomorphic
subbundles, and a polarization form Q: Vz Xg Vz — Zg, such that

(i) F- satisfies VFP C Qf ®p, FP~! with respect to the Gau-Manin connection
V (Griffiths transversality), and

(ii) V induces a polarized Z-Hodge structure (Vz, F;,Qs) of weight n on every
fibre.

If we replace Z by Q in this definition then we get the notion of a polarized
variation of Hodge structure (VHS) of weight n over S.

The polarizable variations of Hodge structure over S (i.e., direct sums of pure
ones) are the objects of a category VHSg, which is Tannakian if S is connected. In
particular, given a polarizable VHS V, we can form V(m;, ms, m3) as in the case of
Hodge structures, where Q(m)g is the constant structure Q(m) over S, and V* =
Homs(V,Q(0)s). In the sequel we often use the short-hand notation V(m), where
m stands for a triplet m = (mq,mq, m3) with my, me € Zxo, ms € Z. Also, let us
explicitly remark that a sub-VHS W C V of a polarizable VHS V is again polarizable:

the restriction to W of a polarization form () on V is a polarization of W.

2.2 Given a polarized VHS V of weight n over a connected complex manifold S, let
MT, denote the Mumford-Tate group of the Hodge structure on the fibre at s € S.

3



Chapter I. Hodge theory and Shimura varieties

We write V, for Vg,.

Let m: S — S be a universal covering, and consider a VHS W of the form W =
V(m). For a global section w of 7™ Wy, let H(w) be the locus of points s € S where
ws is a Hodge class. Since w is holomorphic as a section of 7*Wp, the locus H(w) is

a countable union of irreducible complex analytic subspaces of S. We define

= JH W),

where the union is taken over all W = V(m) and all global sections w of 7*Wg such
that H(w) is not all of 5. Then ¥ has the following properties:

(i) Y is a countable union of proper, irreducible analytic subspaces of S ,

(ii) 3 is stable under the action of the group Cov(S/S) = m(S,s) of covering

transformations,

(i) for s € S\ ¥, W = V(m), and w a global section of 7*Wg, w, is a Hodge class
if and only if w is a Hodge class at every fibre.

Choose a basepoint b € S and a point b € S with 7(b) = b, then we get a trivi-
alization 7*Vgp = S x V, such that the polarization form 7*() corresponds fibrewise
to the form @ on V,. Let s € S, then the choice of a point § € S with m(8) = s
determines an injective homomorphism MT; < GU(V,, Q) X Gy,. Let ¥ be the
image of Y in S, then it follows from the above properties of Y that ¥ is a count-
able union of proper analytic subspaces of S, and that for s € S\ X, the image of
MT; — GU(V,, Q) X Gy, does not depend on s, nor on the choice of §. Moreover, if
we write M for this image, then the image of MT, in GU(Vy, Q) X Gy, is contained
in M for every s € S (and every choice of §). We call M the generic Mumford-Tate
group of the VHS V. Sometimes it is more convenient not to relate this to a specific
base point b, and we simply say that MT; for s € S\ X is the generic Mumford-Tate
group.

For W = V(m) as before, we conclude from the above considerations that there
is a well-defined sub-VHS W' C W such that for s € S\ ¥ the stalk W, C W is the
subspace of Hodge classes. As remarked before, W is again a polarizable VHS. For a
suitable direct sum ;) (m;), the generic Mumford-Tate group MT; (s € S\X) is the
subgroup of GU(Vs, Qs) X Gy, of elements acting trivially on &;V(m;)" C &;V(m;).

In the language of Tannakian categories the generic Mumford-Tate group cor-
responds to the Tannakian subcategory (V,Q(1)s)® of VHSg generated by V and
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§2. Variation of Hodge structure

Q(1)s. The functor w, which associates to a VHS V the Q-vector space Vg, is a
tensor functor on (V,Q(1)s)®, and M = Aut®(wp)-
If S is a nonsingular complex algebraic variety, then X is in fact a countable union

of algebraic subvarieties of S, as was shown in [8§].

2.3 We keep the above notations. From now on we assume that S is a connected,
nonsingular complex algebraic variety. The local system Vg underlying V corresponds
to a representation p: m (S, s) — GL(V;), called the monodromy representation. The
algebraic monodromy group is defined as the smallest algebraic subgroup of GL(Vs)
defined over Q which contains the image of p. We write H; for its connected compo-
nent of the identity, called the connected algebraic monodromy group.

From now on we suppose a Z-structure Vz on V is given, making it a polarized
Z-VHS. As shown in [15, Proposition 7.5], the connected algebraic monodromy group
H; is contained in MT; for s € S\ X. In fact, with all the notations introduced so
far the argument is easy to give: in the direct sum @,V (m;) as above, the subspace
®;V(m;)", is purely of type (0,0), so that the polarization form on it is a positive-
definite quadratic form, invariant under m;(S,s). Since m(S,s) acts through the
discrete group GL(®;Vz(m;),), we conclude that Hy x {Id} acts trivially on &;V(m;)",
hence H; x {Id} C MT.

Since we assumed S to be a nonsingular complex algebraic variety, we have even
stronger results. The following theorem is taken from André’s paper [2], where it is

in fact stated in the more general context of variation of mixed Hodge structure.

2.4 Theorem. (i) For all s € S\ X the group Hj is a normal subgroup of the derived
group M9 of the generic Mumford-Tate group M = MT,.

(ii) Suppose there is a point sy € S such that MTy, is abelian (hence a torus).
Then H, = MY for every s € S\ X.

Proof. In proving the theorem, we may pass to a finite covering of S, as this does
not change the generic Mumford-Tate group and the connected algebraic monodromy
group. Therefore, we may assume that the algebraic monodromy group of the local
system Vg is connected.

Take s € S\ X. By Chevalley’s theorem (see [19, Proposition 3.1(b)]) we can
find a finite-dimensional representation V' of MT; and a line [ C V such that Hy is
the stabilizer of [. By ibid., Proposition 3.1(a) we can take V' to be a direct sum of
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Chapter I. Hodge theory and Shimura varieties

representations of the form V(m),. Let

WCV= éV(mj)s

=1

be the MT-submodule generated by [, and consider the natural morphism
¢: MT; — GL(End(W)).

We claim that H; = Ker(yp).

First of all, if g € Ker(¢) then g commutes with every endomorphism of W, so g
acts as a scalar on W. In particular, g stabilizes [, so g € H,. To prove the converse
it suffices to show that H; acts trivially on W.

Since 71 (S, s) acts on the free Z-modules Vz(m,),, the action on the line ! must
factor through {—1, 1}, hence the action of H on [ is trivial. The space of H,-invariants
in V is the fibre at s of the largest constant Q-sub-local system of @®}_,Vo(m;),
which we call Y. By the theorem of the fixed part (we apply Schmid’s version [57,
Theorem 7.22], and we use that S is algebraic) Vg underlies a constant sub-VHS of
®}_1Vo(my). In particular, the fibre Y, C @7_,Vg(m;), = V is a MT,-submodule,
so W C Y (since | C Y). This proves that Hy, = Ker(y).

To conclude the proof of (i) we have to show that H, C (MT,)%". From H, C
U(Vs, Qs) and H<MT we conclude that H; is a normal subgroup of the Hodge group
Hg,. Since Hg, is reductive this implies that H2" is isogenous to a subtorus of the
center Z(Hg). In particular, H2*(R) is compact. We can find a sequence of my, such
that the subspace X of H3-invariants in @;)V(my), is a faithful representation of
Hg®. The fundamental group (S, s) acts through GL(X N (®,Vz(my),)), which is
discrete. It also acts through the compact torus H2*(R). From the connectedness of
H? it then follows that H?2 is trivial. This proves that H, is a semi-simple group
and H, < (MT,)der.

To prove (ii) we have to show that every Hg-invariant element v, € ®;V(m,); is
also invariant under (MT,)%". Now, v, being H,-invariant means that it is the stalk
at s of a global section v of Vg C @®;V(m;). For every p € S there is a natural
homomorphism of algebraic groups r: MT, — GL(}),) X Gy, with Im(r) = MT(Y),).
Since MT()),) does not depend on p (Y being a constant VHS) and MT(Y,,) is

abelian, we conclude that (MT,)% acts trivially on Y, hence on v. O
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§3. Shimura varieties

83 Shimura varieties

3.1 For the definition of a Shimura variety and a wealth of background information,
we refer to Deligne’s papers [14] and [18], in particular [18, Section 2]. We follow most
notations and conventions of ibid., Section 0. In particular, we write a superscript
0 to indicate algebraic connected components, and a superscript * for topological
connected components. For a reductive group G over Q, we write G(Q), for the
intersection of G(Q) and the inverse image of G*(R)™ under the adjoint map.

A pair (G, X) satisfying the axioms (2.1.1.1-3) of ibid. is called a Shimura datum.
We write Sh (G, X) for the canonical model over the reflex field E(G, X) C C (the
definition of which can be found in [18, 2.2.1]) of the Shimura variety associated to
a Shimura datum (G, X) and a compact open subgroup K C G(Ay). If F is a field
extension of E (G, X) then we write Shx (G, X)r for Shi (G, X) ®ge,x) F. Thus, we
write Shi (G, X)c for the scheme called x Mc(G, X) in [18]. However, in an attempt
to keep the notations simple we mostly omit the subscript “F”, whenever we think
it is clear from the context what is meant. In particular, we often write Shx (G, X)
for the Shimura variety over C.

For a given choice of a connected component X we denote the corresponding
connected Shimura variety by Sh% (G, X).

A morphism f: (G1, X1) = (G2, X3) of Shimura data is defined as a homomor-
phism f: G; — G of algebraic groups over Q which induces a map from X; to Xo.
We call f a closed immersion if it identifies G'; with a closed subgroup of G5. In this
case Sh(G1, X1) is called a Shimura subvariety of Sh(Ga, X3).

If f: (Gi,X1) = (G2, X2) is a morphism of Shimura data, and K; C G1(4y),
Ky C Go(Ay) are compact open subgroups with f(K;) C Kj, then we write

firy, k)t Shi (G, X1) = Shi, (G, Xo)

for the morphism induced by f. In the particular case that (G, X1) = (G2, X3) and

[ is the identity, we write Sh(k, k,) instead of f(x, k)

3.2 An important example of a Shimura variety is the Siegel modular variety. To
describe it, let us first fix some notations. We write CSp,, for the Chevalley group
scheme over Z of symplectic similitudes of the space Z?9 with its standard symplectic
form 9. The subgroup scheme of symplectic automorphisms is denoted by Sp,,.

There is a unique CSp,,(R)-conjugacy class of homomorphisms h: S — CSp,, g
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Chapter I. Hodge theory and Shimura varieties

defining a Hodge structure of type (—1,0) + (0,—1) on Q* for which +277 - ¢ is
a polarization. As a Hermitian symmetric domain it can naturally be identified
with the Siegel double space ﬁgi; we choose this such that the connected compo-
nent §), corresponds to the homomorphisms h for which +27i - 1 is a polariza-
tion.

As explained in [14, Section 4], the Shimura variety Sh(CSp,,, $>) has an inter-
pretation as a moduli space for abelian varieties with certain extra structures. Let
us recall how this works.

A Jacobi level n structure on a polarized abelian variety (X, A) over a base scheme

S is an isomorphism of sheaves
0: X[n] = (Z/n)¥,

such that there exists a sheaf isomorphism v: (Z/n)s =% p1,, ¢ making the diagram

X[n] x X[n] —2— fin,s

o

(Z[n)§ * (Z[n)§ —>(Z/n)s

commutative. Here e, is the Weil pairing and 1 denotes the standard alternating
bilinear form on (Z/n)?9. We write A, 1, for the (coarse) moduli scheme over Z[1/n]
of principally polarized abelian varieties with a Jacobi level n structure, often omitting
the “1,n” in the notation. For n > 3 this is a fine moduli scheme.

For n € Zy, we define K,, = {g € CSpQQ(Z) | g =1 (modn)}. We get an
isomorphism

[t Shg, (CSPQQaﬁ;t) — Ag,l,n((c)

in the following way. First we rewrite
Shi, (CSPay, 9;7)(C) = CSpyy(Q) \ 97 x CSpyy(Ay) / Ko
= szg(Z) \ $g X CSpQg(Z) / Kn.

The map f is then obtained by using the dictionary between principally polarized Z-
Hodge structures of type (—1,0) + (0, —1) and principally polarized complex abelian
varieties. For details see [14, Section 4], where it is also shown that the projective
system of the Ay;, ® Q is a canonical model of Sh(CSpQg,ﬁ;t). In the sequel we
identify Sh, (CSpy,, H;) and A1, @ Q.
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The variety A1, ® C has ¢(n) irreducible components, corresponding to the
various possible choices of the isomorphism v: (Z/n) =% pu,. Level structures with
respect to a fixed choice of v (or, in other words: a fixed choice for a primitive
nth root of unity) are called symplectic level n structures in [25]. By considering
abelian varieties with such symplectic level structures we obtain a moduli subscheme
Agi,ny of Agin ® Z[(Cy, 1/n]. The geometric fibres of A1 (ny — Spec(Z[(n,1/n]) are
irreducible.

3.3 When working with abelian varieties, it will mostly suffice for our purposes to
consider only principal polarizations and (Jacobi) level n structures. It should be
remarked though that one can define the notion of a “level K structure” for arbitrary
compact open subgroups K C CSpy,(Ay), generalizing the Jacobi level n structures
(corresponding to K = K,).

Also let us remark that our interpretation of Sh(CSp,,, ﬁj) depends on the choice
of a “Z-structure” on CSp,,. With a different choice of this “Z-structure” one would
get an interpretation of Shg(CSp,,, f);t) as a moduli spaces of abelian varieties with
a level K structure and some other type of polarization. Since we do not need much

of this in the sequel we will not go into details.

3.4 For the study of Shimura varieties it is an important fact that G(Ay) acts on
Sh(G, X) (on the right) by automorphisms. This action is defined as follows. Take
g € G(Ay) and let K C G(Ay) be a compact open subgroup. Then we define a
morphism Shi (G, X) — Shy-1x,(G, X) by sending [z,0K] to [z,0g9(9 'Kg)]. By
taking the limit over all K we obtain an automorphism of Sh(G, X). This action of
G(Ay) also exists on the canonical model of Sh(G, X). (As mentioned before, the
notation Shx (G, X) is used both for the canonical model and for the Shimura variety
over other fields, such as the field C). The existence of an action of G(4y) is in fact

a crucial part of the definition of a model.

On a fixed finite level we no longer have the full action of G(4Ay); in fact, on
Shi(G,X) we only have an action of the finite group Ng(K)/K (where Ng(K)
is the normalizer of K in G(Ay)). Nevertheless, the group G(A;) does “act” on
Shi (G, X) in the sense of correspondences, as we will explain. Again let g € G(Ay).
Let K, Ky C G(Ay) be compact open subgroups and, for the moment, write K' =
K1NgK,g~!. The Hecke correspondence 7, from Shk, (G, X) to Shk,(G, X) is defined

9
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by the diagram

Shio(GLX) 5 [2,0K)

Shr, (G, X) Shr, (G, X) > [z,09K;]

In general, we will not indicate K; and K5 in the notation; this should not cause
any confusion. Even though the 7, are correspondences, we will apply the usual
terminology for morphisms to them. In particular, for a subvariety Z of Shy, (G, X)
we write T,(Z) C Shg,(G, X) for the image of Z in the sense of correspondences.

3.5 Consider a Shimura datum (G, X) whose weight is defined over Q. For every
representation £: G — GL(V) of G we naturally obtain a polarizable VHS over X
with underlying bundle X x V. In general we cannot expect that this descends to
a VHS on Shi (G, X)¢ for K sufficiently small. To repair this one needs to impose
conditions, either on the Shimura datum or on the representation &.

Let us first analyze the situation. Choose a connected component X* of X and

a compact open subgroup K C G(Ay). Then

Shi(G,X) =[] T,\X",
g

where the (finite) sum runs over a set of representatives g € G(Ay) for the double
coset space G(Q)+\G(A;)/K, and where 'y = G(Q)4+ N gKg~'. The condition to
get a VHS over Shy (G, X) is that for every point € X the stabilizer Iy, acts
trivially on V. Notice that [, N Z(Q) = Z(Q) NgKg™' C Iy, where Z = Z(G) is
the center of G.

Let Ko(z) C G*(R) be the stabilizer inside G? of the point x € X, then
K () is compact (it is in fact a maximal compact subgroup of G*(R)), so that
ad(gKg ') x Ky(z) is a compact subgroup of G*(A). Since G*4(Q) is discrete in
G*(A) (G being affine as a variety) we conclude that for K sufficiently small we have
I,z C Z(G)(Q), hence I'y, = gKg~' N Z(G)(Q). In fact, we can do this for all z

simultaneously, since it suffices to take K neat.

10
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One of the extra conditions we can impose is the requirement that the center 7 is
the almost direct product of a Q-split torus and a torus of compact type defined over
Q. If T is the maximal Q-split torus of Z°, then this is equivalent to the condition
that Inn(h,(7)) is a Cartan involution of G/T for one (equivalently: all) z € X. If
this is the case then Z(Q) is discrete in Z(A;). For K sufficiently small we therefore
get gKg~' N Z(Q) = {1}, and ¢ induces a polarizable VHS on Shx (G, X), which we
denote V(§).

Another possibility is to consider representations £: G — GL(V) which are in-
duced from a representation of G. Again we get a polarizable VHS V() on
Shk (G, X) for K sufficiently small. This also works if the weight of the Shimura
datum is not defined over Q.

In the sequel we will only consider representations £ with Ker(¢) C Z(G), and for
which the weight homomorphism G, — G/Ker(§) is defined over Q. If ¢ induces a
polarizable VHS over Shx (G, X) we denote this by V(£).

3.6 Deligne’s definition of a Shimura variety as a projective system (indexed by
the compact open subgroups K C G(Ay;)) of generally non-irreducible varieties
Shik (G, X) is very suited for global aspects, such as the existence of a canonical
model over the reflex field F(G, X). However, one would sometimes like to work
with a single irreducible component of Shy (G, X) for a fixed sufficiently small K,
rather than working with the whole projective system. In particular, one would like
to have a definition of which irreducible subvarieties are “Shimura subvarieties”. The

notion of a closed immersion of Shimura data leads to the following definition.

3.7 Definition. Let (G, X) be a Shimura datum whose weight is defined over Q, and
let K be a compact open subgroup of G(Ay). Suppose S is an irreducible algebraic
subvariety of Shy (G, X)p, where FF O E(G,X). Then S is called a subvariety of
Shimura type if there exists a closed immersion i: (G', X') — (G, X) of Shimura
data with E(G’, X') C F, and a compact open subgroup K’ C G'(Ay) with i(K') C
K, such that S is an irreducible component of the image of the (finite) morphism
ik k) Shir (G, X")p = Shx (G, X)p.

Another way of thinking about this is that a “Shimura subvariety” should in
some sense be “defined” by the existence of certain Hodge classes in the various VHS

attached to representations £ of G.
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To make this more precise, consider a representation £: G — GL(V), and let H'
be an algebraic subgroup of GL(V). We can look at the locus of points z € X such
that & o h,, factors through H’, or equivalently, the locus {z € X | MT(oh,) C H'}.
Clearly, this only depends on H = £7'(H')® C G, which suggests that we do not
really need the representation &. So, for an algebraic subgroup H C G we define
Yy = {z € X | h; factors through Hz}. Then Yy is a union of H(R)-conjugacy
classes in Hom(S, Hg) C Hom(S,GRr). We claim that it is a finite union. To see this
we argue as follows.

We use the fact that for an algebraic group Hi over R there are finitely many
H(R)-conjugacy classes of maximal tori S C Hy defined over R. Let Sy,...,Sk
(where S; C Hpg is a maximal torus) be representatives for these conjugacy classes,
and choose maximal tori 7; C Gr with S; C T;. Write Wg(S;) for the real Weyl
group corresponding to S;, i.e., Wr(S;) = Ng(S;)(R)/Zg (S;)(R). Similarly, we have
real Weyl groups Wg(T;).

Let Y, C Yy be an H(R)-conjugacy class. We can choose an index i such that
every h,: S — Hy with z € Y, is H(R)-conjugate to a homomorphism that factors

through S;. In this way, Y, gives rise to a well-determined element
cly (Y,) € Wgr(S;)\Hom(X*(S;), X*(S)),

by which it is determined. In a similar way it gives rise to a class clg(Y,) in
Wr(T;)\Hom(X*(T;), X*(S)). However, since all Y,, are contained in a single G(R)-
conjugacy class X, the element clg(Y,) is independent of «. Therefore, clg(Yy,) is in
the image under X*(7;) — X*(S;) of the finite set of representatives for this class
clg(Y,). It follows that there are only finitely many possibilities for cly(Y,), hence

Yy is a finite union of H(R)-conjugacy classes.

3.8 Definition. An irreducible algebraic subvariety S C Shi (G, X)c is called a sub-
variety of Hodge type if there exist an algebraic subgroup H C G (defined over Q),
an element 7 € G(Ay) and a connected component Y, of Yy such that S is the image
of Yi XnK in Shi (G, X). For a subfield F of C which contains E(G, X) we say that
an irreducible algebraic subvariety S C Shi (G, X)F is a subvariety of Hodge type if
every irreducible component of S ® p C is of Hodge type in the sense just defined.

3.9 Remark. The reader should not confuse subvarieties of Hodge type and Shimura
varieties of Hodge type (see 0.6).
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For (G, X) = (CSpQQ,ﬁj), a subvariety of Hodge type is the same as that which

is called a Kuga variety of Hodge type in some literature.

For the rest of this section we consider all Shimura varieties over C; in Chapter Il
we will return to Shimura varieties over number fields.

There are a couple of obvious remarks to be made. If K; C K, are two compact
open subgroups of G(A;) then S C Shg,(G, X) is a subvariety of Shimura type if
and only if it is the image under the natural map Shg,(G,X) — Shk,(G,X) of a
subvariety of Shimura type of Shg, (G, X). The same holds for subvarieties of Hodge
type. Every irreducible component of Shi (G, X) is of Shimura type. An irreducible
component of an intersection of subvarieties of Hodge type is again of Hodge type.

One could guess that the two concepts are equivalent. Although this is not quite
true in general, we will show that a subvariety of Shimura type is of Hodge type, and
that, conversely, a subvariety of Hodge type is the “image” of a subvariety of Shimura

type under a Hecke correspondence.

3.10 Lemma. Let H be a subgroup of G such that Yy is non-empty. Then Yy =

YZ(G)-H-

Proof. Since h, factors through Z(G) - H if and only if it factors through the con-
nected component (Z(G) - H)° C Z(G)° - H, it suffices to show that Yy = Yy g4
Write Z2° = Z(G)°, T = (Z°NH) - (Z°NG%*") C Z°, and, for y € Yz(g)o.u, consider

the homomorphisms
fii S Gr — G2 = 20/(2° N GOy — 2°)T,

for S 20 H — (2°-H)/H=Z7°/(Z°N H), and
m Z°/(Z°NH) — Z°/T.

One easily checks that m o fo = f;. The image of f; does not depend on ¥, since
the image of S in G is already independent of y. The condition that Yy is non-
empty means that there exists a y € Y. ()0 for which the image of f; is the identity
element in Z°/(Z° N H). Therefore the image of f, is contained in Ker () for every
Yy € Yi.z(Gyo- Since 7 is an isogeny (Z°NG9 being a finite group) and S is connected,

we conclude that f, is trivial for every gy, which proves the lemma. O
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3.11 Proposition. (i) Given a subvariety S C Shg (G, X) of Hodge type then there
exists a compact open subgroup K' of G(A;) contained in K, a representation
& G — GL(V) which is induced from a faithful representation of G*, and an al-
gebraic subgroup M C GL(V'), such that

1. € induces a polarizable VHS V() over Shy: (G, X),

2. S is the image under the natural map Shy/(G,X) — Shx(G,X) of an ir-
reducible subvariety S’ C Shy:(G,X) such that S" is a maximal irreducible
subvariety with generic Mumford-Tate group M.

(ii) For every algebraic subgroup H C G and n € G(Ay), the image of Yy x nK
in Shi (G, X) is an algebraic subvariety.

Note that it makes sense to state that V(£)|s has generic Mumford-Tate group
M, since the irreducible component of Shg:(G, X) containing S’ is a quotient of X,
and over X the bundle underlying V(&) is just X x V.

Proof. Using the lemma we can describe S as the image of some Y;f x nK, where
H contains Z(G). Choose a faithful representation £24: G — GL(V), and write
¢ for the induced representation of G. For K' C K sufficiently small we get a
polarizable VHS V(&) over Shy/(G, X), see 3.5. Let S’ be an irreducible component
of Sh(_é,7 (), and define M C {(H) as the generic Mumford-Tate group of V(¢)|s'-
Clearly, £'(M)° C H and Y C Ye-1(ar) € Y, hence Y is a connected component
of Ye-1(pr). Statement (i) readily follows.

With a similar argument, the second statement follows from the results of [8]. O

3.12 Proposition. (i) A subvariety of Shimura type is of Hodge type.

(i) If S is a subvariety of a connected Shimura variety Sh% (G, X) then S is of
Hodge type if and only if it is of Shimura type.

(iii) A subvariety S is of Hodge type if and only if there is a subvariety S’ of
Shimura type such that S is an irreducible component of T, (S") for some n € G(Ay).

Proof. If i: (G', X') — (G, X) is a closed immersion of Shimura data then, as we
have shown before, Y is a finite union of G'(R)-conjugacy classes in Hom(S,G"),
hence X' is a union of components of Yg/, which implies (i).

For (ii), choose a connected component X C X, and consider a subvariety of
Hodge type S C Sh% (G, X). By definition, S is the image of some Y4 xnK. The class
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§3. Shimura varieties

of nin G(Q)+\G(A;)/K is the same as the class of the identity element e € G(Ay).
Possibly after replacing H by a conjugate subgroup of G, we may therefore assume
that Y,; C Xt and n =e.

We choose K', £, M and S’ as in Proposition 3.11 (i). According to this proposi-
tion and its proof, Y} is a connected component of Y, where G' = £ 1(M)°. From
the description of M as the generic Mumford-Tate group of a polarizable VHS it
easily follows that M satisfies axioms (2.1.1.2-3) of [18] with respect to the h, for
yeYt.

Let X' be the G'(R) conjugacy class containing Y+ = Y, C Y. We are done
if we show that (G’, X') is a Shimura datum. Axiom (2.1.1.1) of loc. cit. follows
from the inclusion G’ C G and the fact that (G, X) is a Shimura datum. Axioms
(2.1.1.2) and (2.1.1.3) follow from the corresponding properties of M, since we have
a surjective homomorphism G’ — M with kernel Z(G) N G', which is a torus.

For the last statement, consider a subvariety S C Shg (G, X) of Hodge type, say
the image of some Y x nK. If X* C X is the connected component containing
Vi, then the image of Y;7 x e-nKn~" in Sh) ., 1(G, X) is an algebraic subvariety S’
(Proposition 3.11 (ii)) which by (ii) is of Shimura type. Clearly, S is a component of
the image of S’ under the Hecke correspondence 7, from Sh, k-1 (G, X) to Shx (G, X).

The statement in the opposite direction is clear. ]

3.13 Remark. Even though we have formulated and proved the proposition over the
field C, the conclusions are valid over all fields /' C C which are “large enough”
in a suitable sense. For example, in (ii) one has the statement that if F' is a field
containing the field of definition of Sh%(G, X) (which depends on K) and if S is a
subvariety of Hodge type of Sh% (G, X)r, then there is a finite field extension F' C F'

such that all irreducible components of Sg are of Shimura type.

3.14 In general, a subvariety of Hodge type is not of Shimura type. The point is
that if we try to construct a Shimura datum (G’, X’) as in the proof of (ii), then S
may lie in a component of Shx (G, X) which is not in the image of Sh(G', X'). We
can give an example where this is actually the case.

Let F be an imaginary quadratic subfield of C. The choice of a Q-basis for F
determines a CM-point z € $7, and for n € GLy(A;) the image S = Sy ({z}) of
{z} xnK in Shx(GLsy, $T) is a subvariety of Hodge type. Let T = Resg/qGm, which,

by our choice of a basis, can be viewed as a subtorus of GL,. It has the property that
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Chapter I. Hodge theory and Shimura varieties

{z} is a connected component of Yr,,, and it is in fact the unique connected subgroup
of GLy with this property. If S,x({z}) is of Shimura type we must therefore have
that the class of 7 in

mo(Shi (GLz, 7)) = mo(GL2(Q)\GL2(4)) /(K x Ko)

is in the image of
o (Sh(Te, {x})) = mo(E"\AL),

where K, is the stabilizer in GLy(R) of a point in $7. The determinant homomor-
phism det: GLy; — G, induces an isomorphism 7m(GLy(Q)\GL2(A)) =5 7o(Q*\A*)
([14, Théoreme 2.4]), and class field theory gives us isomorphisms

rec: mo(Q\AT) = Gal(Q@"/Q),

recy: mo(E*\AL) =% Gal(E*/E),
such that the map my(E*\A}) — mo(Q*\A*) corresponds to the natural homomor-
phism on the abelian Galois groups. The image of (K x K) in Q*\A* is an open
subgroup, corresponding to a class field F' C Q*®, which, for K sufficiently small,
contains E. In this case we see that the natural map Gal(E?*/FE) — Gal(F/Q) is

not surjective. This means that we can find  and K such that S,x({z}) is not of

Shimura type.

3.15 Let Z be an irreducible algebraic subvariety of a Shimura variety Shx (G, X).
It is clear from the remarks after Definition 3.8 that there exists a smallest subvariety
of Hodge type, say S, containing Z. By definition, it is an irreducible component of
the image of Y3; X nK in Shi (G, X), where M C G is an algebraic subgroup (over
Q) and n € G(Ay). If Y, C Yy is a connected component such that S is the image
of Y, x nK then we write S = S,k (Y,}).

This description does not uniquely determine the group M. However, as we have
seen, we can take for M the “generic Mumford-Tate group on Z”. More precisely, let
K' C G(Ay) be a compact open subgroup contained in K and let &: G — GL(V) be
a representation such that we obtain a polarizable VHS V() over Shy/ (G, X). Let
7" — S’ be irreducible components of Sh(_l,7 x)(Z) and Sh(_;,7 i) () respectively. The
generic Mumford-Tate group MT of V(&)|z is equal to that of V(§)|s and we may
choose M in the above such that MT is conjugated to £&(M) (for all representations
¢ which induce a VHS for K’ sufficiently small). Up to conjugation by elements of
G(Q) this uniquely determines Z(G) - M C G.
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84. Hermitian symmetric domains

§4 Hermitian symmetric domains

The purpose of this section is to give a brief account of some facts on Hermitian
symmetric domains that can be found in the literature. The basic references are [18],
[29], [32] and [55]. We often identify a linear algebraic group H over R (C) with the
real (complex) Lie group H(R) (H(C)).

4.1 A Hermitian symmetric space is a connected complex manifold X with a Her-
mitian structure on its tangent bundle such that for every z € X there exists a
holomorphic involutive isometry s, of X having x as an isolated fixed point.

Let X be a Hermitian symmetric space, and let A(X) denote the group of holomor-
phic isometries of X. It is a real Lie group acting transitively on X. The same is true
for its connected component of the identity A(X)*. If K, C A(X)™ is the stabilizer of
a point x we therefore get an A(X)"-equivariant diffeomorphism A(X)*/K, =% X.

The universal covering space X is again a Hermitian symmetric space. It has a

canonical decomposition (de Rham decomposition)

T xHx %o
where X 7 is isomorphic to C* for some n > 0 (the flat part), and where X; (for
i€ {l,...,r}) is an irreducible non-flat Hermitian symmetric space.

If X is compact then X is said to be of the compact type; if the flat part is
reduced to a point and all factors )?Z are non-compact then X is said to be of the
non-compact type. In both cases X is simply connected and the Lie group A(X)*
can be described as A(X)T = G(R)" for a semi-simple algebraic group G over R,
which is simple if and only if X is irreducible.

4.2 Suppose X is of non-compact type. Choose a point x € X, let K = K,, and
write g = Lie(G) = Lie(A(X)), ¢ = Lie(K). We have X = G/K. The element
6 = Ad(s,) is a Cartan involution of g with ¢ = g(6;1). Put p = g(6; —1), then the
decomposition g = € + p is called a Cartan decomposition, and there is a natural
identification of p with the tangent space T,(X). The complex structure Jy on p
can be described as Jy = ad,(Hp), where Hj is an element of the center of £ with
ad,(Hp)? = —Id. The triplet (g, 6, Hy) is called a Lie algebra of Hermitian type.

Let p. = pc(Jo,7), p- = pc(Jo, —1), then gc =p, + ¢ +p_. There is an embed-
ding, called the Harish-Chandra embedding, of X into p., which identifies X with
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Chapter I. Hodge theory and Shimura varieties

a bounded domain D C p,. Conversely, for every bounded domain D C C" which
is symmetric (in the sense that for every point z € D there is a holomorphic map
se: D — D with s2 = Id having z as an isolated fixed point) there is a holomor-
phic diffeomorphism of D to a Hermitian symmetric space of the non-compact type.
For this reason the Hermitian symmetric spaces of the non-compact type are often
called bounded symmetric domains, or Hermitian symmetric domains, as we shall
henceforth do.

The involution § = Ad(s;) is a Cartan involution on G. This means that the form
GO of G with complex conjugation g +— 6(g) is compact. The Lie algebra of G is
given by Lie(G®) = € +i-p C gc. If K° denotes the connected component of the
identity of K (which is also connected in the analytic topology) then X = G /K°
is a Hermitian symmetric space of the compact type, called the compact dual of X.
If P_ is the connected algebraic subgroup of G¢ with Lie algebra p_ then there is an
isomorphism X = G /K° = G¢/K2P_. Note however that G acts by isometries
on X, whereas G¢ in general does not.

We have K° = G% N K2P_, so we obtain an embedding of X into X by

X 2GY/K*— G¢/K2P. = X .

This identifies X with an open submanifold of X which is contained in the big open
cell obtained from the Bruhat decomposition with respect to a suitable Borel subgroup
of G.

4.3 Let Gg be a linear algebraic group over R, and let X+ be a connected compo-
nent of the space Hom(S, G) of homomorphisms (of algebraic groups) from S to Gg.
For every representation G — GL(V') we get a collection of R-Hodge structures on
V' parametrized by X . We impose the conditions on the pair (Gg, X*) that there
exist a faithful representation V' of G such that (i) the weight filtration on V' does
not depend on h € X, (ii) there exists a structure of complex manifold on X* such
that the Hodge structures (V, h) form a variation of Hodge structure ¥ over X, and
(iii) every homogeneous component of V is polarizable.

Pairs (Ggr, X ) satisfying these conditions were studied by Deligne in [18, Sec-
tion 1]. He showed that for such a pair (Gg, X ), the space X (with its structure
of complex manifold which is uniquely determined by the second condition) is a Her-

mitian symmetric domain and that, conversely, every Hermitian symmetric domain
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84. Hermitian symmetric domains

arises in this way. Furthermore, Deligne showed that (i), (ii) and (iii) can be for-
mulated purely in terms of the group Gy and the action of S on G&! (via h € X);
this is the stepping stone to the “abstract” definition of a Shimura datum as in [18,
Section 2.

In this context, the compact dual of a Hermitian symmetric domain has a natural
interpretation as a flag manifold. For a given representation of Gk the embedding of

X+ into its compact dual X corresponds to the application

the Hodge structure on = the corresponding Hodge
V defined by h € X filtration on V '

4.4 Let X and X' be two Hermitian symmetric domains with base points o and o/,
and write (g, 0, Hy) and (g', ¢, Hj) for the associated Lie algebras of Hermitian type.
A holomorphic map f: X — X’ with f(0) = o is called strongly equivariant if there
exists a homomorphism of Lie algebras p: g — g’ such that po § = ' o p and such
that f(exp(a) - x) = exp (p(a)) - f(x) for all @ € g and z € X. One can show that
p (if it exists) is uniquely determined by f; its restriction pj,: p — p’ is C-linear and
therefore satisfies
p([Ho, o]) = [Hy, p(e)]  foralla €g.

A homomorphism p: g — g satisfying the latter condition and the condition po 6 =
0’ o p is called a (H;)-homomorphism of Lie algebras of Hermitian type.

We thus see that a strongly equivariant holomorphic map f gives rise to an (H;)-
homomorphism p. Conversely, every such p corresponds to a strongly equivariant
holomorphic map f. For o € g and z € X, the geodesic exp(ta) - x in X is mapped
under f to the geodesic exp (tp(«))- f(z) in X’. One can show that X decomposes as
a product X = XM x X guch that f factors as f = j o pr;, where pr;: X — X
is the first projection map, and j: X < X' is a strongly equivariant holomorphic
map identifying X with a totally geodesic submanifold of X’. (For the definition
of a totally geodesic submanifold, see [29, Ch. 1, §14].)

For a complete totally geodesic complex submanifold ¥ C X, the subgroup
A(X)y C A(X) defined by A(X)y = {¢ € A(X) | ¢(Y) = Y} acts transitively
on Y (see [32, IX, Theorem 4.2]). It follows that Y is a symmetric subspace of X,
and by considering the sectional curvature (see [29, ITII, Theorem 3.1]) we see that it

has non-positive curvature. However, since X has a realization as a bounded domain,
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Chapter I. Hodge theory and Shimura varieties

the complex submanifold Y cannot have a non-trivial flat part, and we conclude that

Y is a Hermitian symmetric subdomain of X.
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Chapter Il
A characterization of subvarieties of

Hodge type

§1 Properties of subvarieties of Hodge type

1.1 Shimura varieties are interesting for various reasons. Although their definition
seems to be a matter of Hodge theory, it turns out they have highly non-trivial
arithmetic properties as well. In some cases Shimura varieties have an interpretation
(depending on the choice of a representation) as moduli spaces of abelian varieties
with certain additional structures; more generally they are believed to have a meaning
as moduli spaces for motives. In Deligne’s words: “Pour interpréter des structures
de Hodge de type plus compliqué, on aimerait remplacer les variétés abéliennes par
des “motifs” convenables, mais il ne s’agit encore que d’un réve.” ([18, p. 248]).

One and a half decades later, these words still apply; see for example the discussion
in Sections 1.6-8 of Deligne’s paper [20]. The theory of motives has not yet been
developed far enough to formulate a modular interpretation of Shimura varieties in
general. It therefore seems very difficult to set up a good theory in mixed and positive
characteristics. To our knowledge there is no completely satisfactory definition of
an “integral canonical model” of a Shimura variety. Note for example that [37,
Proposition 2.13] is based on [25, Theorem V.6.7], which, however, is false in general.
This last fact is discussed in some detail in the forthcoming paper [13]. Nevertheless,
there are many interesting results on Shimura varieties in relation to motives; we
refer to [38] for more on this subject and to [65] for important new results on integral
models.

The main problem that we want to study here is the question what varieties can
arise as Shimura subvarieties in a larger Shimura variety. For example, we could

ask how to characterize the Shimura subvarieties of the moduli space A, of abelian
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Chapter II. A characterization of subvarieties of Hodge type

varieties. It is because we are interested in Shimura varieties as subvarieties that we
introduced in Chapter | the notions of subvariety of Shimura type and of Hodge type.

In this chapter we give a characterization of subvarieties of Hodge type as totally
geodesic subvarieties containing at least one special point. We also try to understand
totally geodesic subvarieties in general. On the basis of our results we can give some
complements to the work of Faltings, Saito and others on non-rigid families of abelian
varieties.

But first, let us inspect our material and describe some of its properties.

1.2 Fix a Shimura datum (G, X) and a compact open subgroup K C G(Ay). As
explained in [18, Section 1] the manifolds X that occur as part of a Shimura datum
are finite unions of Hermitian symmetric domains. For K sufficiently small, the
Shimura variety Shg (G, X) is non-singular and inherits a natural structure of locally
symmetric space.

If S — Shi(G, X) is a subvariety of Hodge type then there is a closed immersion
of Shimura data (G', X') — (G, X) such that S is covered by a connected component
of X'. The space X' is a Hermitian symmetric subdomain of X. In particular, it is
a complete totally geodesic submanifold.

We say that an irreducible algebraic subvariety S of Shx (G, X) is totally geodesic
if it is covered by a totally geodesic submanifold X’ C X, which then is a Hermitian
symmetric subdomain of X (cf. the discussion in 1.4.4). We can also express this con-
dition in terms of the metric on Shx (G, X), provided that we take possible singular-
ities into account. For example, if Shy (G, X) is non-singular, then S — Shy (G, X)
is a totally geodesic subvariety if and only if every geodesic in Shi (G, X) which is
tangent to S at a regular point P € S™8 is a curve in S.

The above remarks show that a subvariety of Hodge type is totally geodesic.
Clearly, it is not true that, conversely, every totally geodesic subvariety is of Hodge
type. For a trivial example, a single point is a totally geodesic subvariety but it is
of Hodge type only if it is special. One of the main goals of this chapter is to clarify

the relation between subvarieties of Hodge type and totally geodesic subvarieties.

1.3 Another interesting property of subvarieties of Hodge type is that the special
points on them lie dense. Recall that if (G, X) is a Shimura datum, then a point

x € X is called a special point if the corresponding homomorphism h,: S — Gg
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factors through a subtorus of G, defined over Q. A point in Shg(G, X) is called
special if it is of the form [g, z] with € X special. In case there is a closed immersion
of Shimura data i: (G, X) < (CSpy,, H7) (see Section 1.3.2) we call such points CM-
points, since they are precisely the points that correspond to abelian varieties of
CM-type.

In [14, §5], it is shown that the special points are dense in Shx (G, X) (even for
the analytic topology). The first step is to show that there is at least one special
point; this is done (in a much stronger form) in ibid., Théoréme 5.1, also see [42, §3].
Once we know that there are special points, we can use the fact that the set of special
points in X is stable under the action of G(Q). Notice that G(Q) is analytically dense
in G(R); this follows from the unirationality of G' and the fact that the (analytic)
closure of G(Q) in G(R) is a subgroup (see also op. cit., 0.4). Similarly, the special
points of Sh(G, X) are stable under the action of G(Ay) and every G(Ay)-orbit in
Sh(G, X) is Zariski dense (ibid., Proposition 5.2). These arguments also show that
the special points lie dense on every subvariety S < Shx (G, X) of Hodge type.

One could ask whether the subvarieties of Hodge type are characterized by this
property. For subvarieties of A, it is in fact a conjecture of Oort that this is the case.
We will discuss CM-points and Oort’s conjecture in greater detail in the next two
chapters. It turns out that they are strongly related to another “linearity property”
of subvarieties of Hodge type, which can be considered as an analogue of “totally

geodesicness” in mixed characteristic.

§2 Decomposition of the adjoint group

2.1 Consider a closed immersion i: (M,Y) < (G, X) of Shimura data. Let M3 =
M; x Ms be a decomposition of the adjoint group of M. (We do not assume M,
and M, to be non-trivial or Q-simple.) There is a corresponding decomposition
Y =Y x Y,, where Y] (i € {1,2}) is a union of Hermitian symmetric domains, and
M;(R) acts transitively on Y;. One easily checks that (M;,Y;) is a Shimura datum,
so we have a decomposition of Shimura data (M?4Y) = (My,Y]) x (Ma, Y3).

Choose compact open subgroups C; C M;(Ay), and C C M(Ay), with ad(C) C
C: x Cs. For C; and Cs sufficiently small the associated morphism

ad(c,cixcy): Sha(M,Y) — Sheyxe,(M*4Y) = She, (Mi, Y1) x She, (M, Ya)
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is finite étale on irreducible components. Given a connected component Y;" C Y7, a
point y, € Y5 and a class 0C € M(Ay)/C, let

Soc (Y1 x {y2}) C Sho(M,Y)

denote the image of (Y™ x {yo}) x 8C in She(M,Y). If 0,C; x 6,C, is the image of
0C in M;(Ar)/Cy x My(A;)/Ca, then Spc(Yi" x {ya}) is an irreducible component of
the inverse image of Sh¢, (M, Y1) X [y2, 02C5] under ad(c,c, xc,)- In other words, the

Shimura variety Shc, xc, (M?3,Y) is a disjoint union

Sheyxes(M™,Y) = She, (M, V1) x Shey (Ma, Ya) = [ [ (T \Y7*) x (Tg,\Y5')
96,95
of product varieties, and Spc(Y;" x {y2}) is an irreducible subvariety of Shc(M,Y)
covering some (I, \Y;") X [ya].

More generally, if K C G(Ay) is a compact open subgroup and nK € G(A;)/K,
then we define

Sy (V" % {y2})
as the image of (Y;" x {y2}) x nK in Shg(G,X). Notice that S,x (V" % {y2})
is an algebraic subvariety. This follows from the remark that S,x(Y;" x {y2}) is an
irreducible component of 7, (Sex (Y;" X {y2})), and for C small enough Sex (Y, X {ya})
is the image of Sec(Y;" % {y2}) C Shc(M,Y') under the finite morphism i (¢ k).

The subvarieties of the form S, (Y;" x {y2}) C Shx (G, X) are totally geodesic,
since ;" x {y2} is a complete totally geodesic submanifold of ¥ = Y; x Y5, and Y is
totally geodesic in X. Note that S,x(Y;" x {y2}) contains special points if and only
if yo is a special point of Y3, in which case the special points are dense.

2.2 As before, let (G, X) be a Shimura datum and let K C G(A;) be a compact
open subgroup. We consider an irreducible algebraic subvariety Z of Shy (G, X).
As discussed in section 1.3.15 there is a smallest subvariety of Hodge type con-
taining Z, which we denote by S,x(Y,f). It corresponds to a closed immersion
it (M,Yy) — (G, X) of Shimura data, a connected component Y;b C Y, and a
class nK € G(Ay)/K. If there is no risk of confusion we simply write ¥ = Y}, and
S = S,k (Ysh). We write j: Z < S for the inclusion map.

Possibly after replacing K by a subgroup K’ of finite index and Z by an irreducible
component of its preimage in S, (Y,}) we may assume that the following conditions
hold.
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1. there exists a representation £&: G — GL(V') with Ker(¢) C Z(G) which induces
a polarizable VHS V(&) on Shi(G, X) such that S is a maximal irreducible
subvariety with generic Mumford-Tate group (M) (cf. Proposition 1.3.11).

2. K is neat; in particular, Shg(G, X) is a union of quotients I';\ Xt such that
the natural maps X* — I[;\X™ are topological coverings and the algebraic
monodromy group associated to the VHS V(&) over I';\ X is connected.

3. the natural map ugs: Y — S = S,k (Y) is a topological covering.

For the last condition we need a lemma.

2.3 Lemma. (i) For K sufficiently small the natural map ug: Y+ = Y} — S =
Spr (Ysh) is a topological covering.

(ii) Let a decomposition (M™Y) = (M;,Y;) x (My,Y3) be given. For K suffi-
ciently small the map Y;" — S, (Y]t X {y2}) is a covering map for every y, € Y and
n € G(Ay).

Proof. Take a compact open subgroup C C M(Ay) such that She(M,Y) is non-
singular. By [14, Proposition 1.15] there exists a compact open subgroup K C G(Ay)
such that i(C) C K and such that i k): She(M,Y) — Shig(G,X) is a closed
immersion. For this choice of C' and K the map Y — S.x(Y™) therefore is a
topological covering.

Let K' = K Nnn 'Kn. Clearly, both K’ and nK’'n~! are contained in K; in
particular, Y* — Sxm-1)(Y'") is a covering. Let X* be the component of X
containing Y". As one easily verifies, the map Sexrp-1)(X+) = Syx/(X™) obtained
by sending the class [z, eK] to the class [z, K] is an isomorphism, compatible with
the uniformization maps from X . Restricting this to Y™ we conclude that Y+ —»
Spr'(Y'T) is a covering, which proves the first part of the lemma.

The second statement easily follows from the first one and [4, Corollaire 8.10]. O

Let Z be a connected component of ug'(Z). The map uzy = ug|z: Z — 7 is
again a topological covering. If Cov(ug) and Cov(uz) denote the groups of covering
transformations, then Cov(uz) = {y € Cov(us) | 7Z = Z}. In general the analytic

space Z is not irreducible!, and in some arguments to follow this causes problems. To

'We do not know whether it is possible in general to choose K small enough such that Z is
irreducible.
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circumvent these, we consider the normalization n: Z™ — Z of Z. Let uzn: Zn — Zm
be a universal covering of Z". (Caution: our notations may be somewhat misleading,
since Z need not be a universal covering of Z, whereas we do write Zn for a universal
covering of Z™".) The analytic space Zn is connected and normal; in particular it is
irreducible.

Let C C Z be an irreducible component. Choose a Hodge generic and regular base
point z € Z, i.e., a regular point outside the locus ¥ as in Section 1.2.2 (applied to
the VHS V(&) over S). This is possible, since Z C ¥ would contradict the fact that
S is the smallest subvariety of Hodge type containing Z. Also choose base points
e€C (e Z"and (€ Zn with uz(2) = 2z, n({) = z and UZn(é:) = (. There is a

well-determined morphism 7i: Z* — Z with 7(() = % and uy 07t = n o uzn. We have

A(Z") =c C Z.
In a diagram, the situation looks as follows:
A vt e X
JNE R
AL - 78 =S x(YT) —= Shi(G, X)

The choice of the point Z above z gives an identification of the fibre V(§), with
V', and we identify the Mumford-Tate group at z with £(M) C GL(V). This is also
the generic Mumford-Tate group of the VHS n*V(&) over Z", via the identification
(m*V(E)), 2 V(§). = V. Since Ker(§) C Z(G) there is a natural surjective homomor-
phism f: £(M) — M?! and composing the monodromy representation pg: 71(S, z) —
£(M)(Q) € GL(V) with f we obtain a homomorphism f o pg: m (S, 2) — M*(Q) C
M*(R).

2.4 Lemma. We have Im(f o pg) € M (R)", and there is a commutative diagram

(27,0 e m1(Z,2) —L 11 (S, 2) L25 ped(R)

; k]

Cov(uzn) — Cov(uz)e — Cov(uy) — Cov(us) — Aut(Y™)

where Cov(uz)e = {v € Cov(uz) | vC = C}.

Proof. It is clear that m1(Z", () & Cov(uz») maps into Cov(uz)c and that the two
diagrams on the left are commutative. We therefore only have to consider the right-
hand square. Let I'\X* be the irreducible component of Shx(G, X) containing Z,
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where T is of the form ' = G(Q), N gKg~'. The local system V(&) over '\ X is
the quotient of the trivial bundle X x V over X' under the action of T given by
v(z,v) = (v-2,£(7) - v).

Take a € m1(5, ) and let v € T be an element mapping to i,(a) € m (T\X T, 2).
Then vY+ = Yt and the image of o in Aut(Y*) is given by the action of 4. The
given description of V() shows that pg(a) = £(y). In particular, vy € Z(G) - M. It
now readily follows that f o pg(a) € M2(R)" (since the action of vy stabilizes Y1),

and that the right-hand square is commutative. O

2.5 As in the proof of the lemma, let T\X™ be the irreducible component of
Shk (G, X)) containing Z. The choice of a I'-stable lattice in V' induces a Z-structure
on V(&), which enables us to apply Theorem 1.2.4. The connected algebraic mon-
odromy group H associated to the VHS n*(V()z) is therefore a normal subgroup
of £(M)der = £(M9T). Since M is reductive, we can find a normal algebraic subgroup
H, < M (defined over Q) such that M is the almost direct product of £ '(H,) and
H,. In this way we obtain a decomposition

(Mad,Y) = (Hgdvyl) X (H§d7Y2) .

2.6 Proposition. The image of C under the projection map pry: Y — Y5 is a single
point, say ys € Ya. We have Z C S, (Y;" x {y2}) for some connected component
Y" C Y and a class nK € G(Ay)/K.

Proof. It follows from the lemma that Cov(uz») acts trivially on Y3, hence the
composition 7n = C CY — Y, factors through Z™. Because Y; has a realization as
a bounded domain in some CV, the map Z" — Y, is given by an N-tuple of bounded
holomorphic functions. Since Z™ is a connected quasi-projective variety these must
be constant functions hence the image of C is a single point.

The last assertion is an immediate consequence of the first. O

If Z contains a regular special point then H, = £(M)%", by the second statement
of Theorem |.2.4. This means that Y 2 Y3, Y5 is a point and that S, x (Y7 x{y2}) = S
is a subvariety of Hodge type. In this case, the proposition does not give us any
information. However, the very fact that H; = £(M)%" can be used to establish a

second decomposition of (M?34,Y").
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Chapter II. A characterization of subvarieties of Hodge type

Consider the group {m € M(Q), | mC = C}, and write N for its closure inside
M (R) for the analytic topology. By Cartan’s theorem A and its connected component
of the identity N'* are Lie subgroups of M (R). Clearly they are contained in M (R), =
{m € M(R) | mC =C}.

2.7 Proposition. Assume that Z contains a non-singular special point. Then there

exists a normal, reductive algebraic subgroup Nz < M, defined over QQ, such that
Nt =Nz(R)*T.

Proof. The center Z(M)(R) of M(R) acts trivially on Y, and Z(M)(Q) is analyti-
cally dense in Z(M)(R), so Z(M)(R) C N. Furthermore, Lemma 2.4 shows that

ad™'(Im(f o ps 0 j, o my: T (2", ¢) = M*(Q)T)) C N,

and since H; = £(M)%" it follows that A is Zariski dense in Mg.

Let ¢: Mg — GL(W) be a finite-dimensional irreducible representation of Mg
with Ker(¢) C Z(M) (which exists, since M is reductive). Let W' C W be the largest
fully reducible N *-submodule of W. Then W' is a N'-submodule, since A’ normalizes
N*. But N is Zariski dense in Mg, so W' = W. Therefore, N /(N NKer(¢)) has a
faithful, fully reducible representation. Since N'* N Ker(y) is contained in the center
of N't, this implies that N'* is analytically reductive, i.e., Lie(N'1) is reductive.

Write n = Lie(N ), which can be decomposed as n = ¢@nder

, Where ¢ is the center
and n%" is the derived algebra. From [9, Chapitre II, Théoréme 15] (alternatively, [5,
Chapter II, Corollary 7.9]) we know that ni°" is algebraic, so n?!8 = ¢ @ nder,

Let N'"38 C My be the algebraic envelop of N'F, and let 9 be the normalizer of
N*38 inside Mg. Clearly, N' C 91(R). On the other hand, 9 is an algebraic subgroup
of My and N is Zariski dense, so 91 = Mk and N8 is a normal subgroup. This
implies that n?'® = Lie(N 728) is an ideal of Lie(Mg), hence ¢ C ¢®& C Lie(Z(M)(R)).
But, as remarked above, Z(M)(R) C N, so ¢ = ¢®& = Lie(Z(M)(R)). We conclude
that N7 is a normal, reductive algebraic subgroup of Mz and N'* is the connected
component of the identity of the Lie group N "28(R).

Since N is open in N and {m € M(Q),; | mC = C} is analytically dense in N,
the group {m € M(Q), NN | mC = C} is dense in Nt for the analytic topology
and hence is Zariski dense in N'"&_ Since it consists of Q-valued points of M we
conclude that N 2# is defined over Q, which proves the proposition. O

In the next section we need the following, similar, statement.
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2.8 Variant. Consider the inclusion Z C S,x(Y7" x {y2}) as in Proposition 2.6,
corresponding to the decomposition (M>1,Y) = (H24, Y1) x (H3,Y3) and let C C Z
be an irreducible (analytic) component, as introduced after Lemma 2.3. There exists a
normal algebraic subgroup H; ¢ <H; g such that H;¢(R)" = {h € H;(R) | hC =C}™.

Proof. The arguments are analogous to those in the previous proof, except that we

leave out the last few lines. O

Assume that Z contains a regular special point. Choose a normal algebraic sub-
group Ny <M such that M is the almost direct product of Nz and N,. From this we
obtain a decomposition (M2 Y) = (N2 Y/) x (N24,Y])). (We write Y/ and Y; to
avoid confusion with the decomposition Y = Y] x Y3 introduced before.)

From the remark that N34(R)" stabilizes C it easily follows that there exists a
component Y™ and a class 'K € G(A;)/K such that Syx(Y{" x {P}) C Z for
every point P in the image of the projection map C — Y,. Notice that this gives

interesting information only if Z(M) is a proper subgroup of Ny.

83 Totally geodesic subvarieties

Building on the results of the previous sections, we can now establish one of the main

results of this chapter. This result was suggested to us by D. Kazhdan.

3.1 Theorem. Let (G, X) be a Shimura datum, and let K be a compact open sub-
group of G(Ay). An algebraic subvariety Z — Shi (G, X) is totally geodesic if and
only if there exists a closed immersion of Shimura data i: (M,Y) — (G, X), a de-
composition (MY = (My,Y1) x (Ms,Y3), a component Y;*, a point y, € Y, and
a class nK € G(Ay)/K such that Z = S,x (Y™ x {y2}) (as defined in Section 2.1).
If Z contains a special point, then Z is totally geodesic if and only if it is of Hodge

type.

Proof. It suffices to prove the theorem for K sufficiently small, so we may assume
that the notations and results of Section 2 apply. Take a totally geodesic subvariety
Z, and consider the inclusion Z C S, (Y;" x {y2}) as in Proposition 2.6. By (ii)
of Lemma 2.3 we may assume that Y™ — S, (Y]" x {y2}) is a covering map. By

Variant 2.8 there is a normal algebraic subgroup H¢ ¢ <1 He g such that

Hee(R)" ={h € H:(R) | hC=C}T. (1)
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Chapter II. A characterization of subvarieties of Hodge type

If H' is a complement for H, ¢ in H. g then we obtain a decomposition YT =Wy xWs,
such that H¢¢(R)" acts transitively on Wy and H'(R)" acts transitively on Wh.

By assumption, C is a complete, totally geodesic submanifold of Y;". The group
Hc(R)™ therefore acts transitively on C (see Section 1.4.4). It follows that

C = W1 X {’UJQ} (2)

for some wy € Ws.

Let H,,, C H' be the stabilizer subgroup of the point wy, which is an algebraic
subgroup of H'. Combining (1) and (2) we see that H; (R)*™ = {1}. On the other
hand, H' is a semi-simple group over R and H,, (R)* is a maximal compact subgroup
of H'(R)*. We conclude that H' = {1}, hence Wj is reduced to the single point ws.
It follows that C = Y;© x {4,}, which proves the first statement of the theorem.

Next, suppose Z contains a special point. Since S,k (Y;" x {y2}) is non-singular
for K sufficiently small we may assume this special point to be regular. As remarked
after Proposition 2.6, this implies that Z = S, k(Y™ x {ys}) is of Hodge type. O

3.2 Corollary. Let Z — Shi (G, X) be a totally geodesic subvariety, then there exists
a subgroup K' C K of finite index, algebraic varieties S1, Ss, a closed immersion
g: S1 X So — Shi: (G, X) and points a,b € Sy such that

1. Sy x{s2} and {s1} x Sy are totally geodesic subvarieties of Shy' (G, X) for every
S1 € Sl; S9 € SQ;

2. 7 is the image of S; x {a} under Sh(x' k),
3. Sy x {b}, hence also Sh(k' k)(S1 x {b}) is a subvariety of Hodge type.

Proof. The map ¢: Y© x Y,;t — Shi (G, X) obtained by sending (y1,y2) to the class
[y1, 32, nK| factors through a finite morphism of algebraic varieties ¢': T'\ (Y;" xY,t) —
Shx (G, X), where I' is an arithmetic subgroup of M?(Q). There are arithmetic
subgroups I'y C H24(Q) and 'y € H34(Q) such that T'; x Ty is of finite index in T
([4, Corollaire 8.10]). Taking S; = I';\Y;" we arrive at the corollary. O

3.3 To conclude this section, let us discuss an example. The example concerns
a subvariety S — Ag1, (d > 2) of Shimura type, such that for a generic point
n € S, the abelian variety Y, is simple, whereas the generic Mumford-Tate group G
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§3. Totally geodesic subvarieties

on S has a non-simple adjoint group. This then leads to non-trivial totally geodesic
subvarieties Z which are not of Hodge type, and for which the connected algebraic
monodromy group H, is a proper subgroup of G%*. We also obtain a negative answer
to two problems formulated in [1, Chapter X].

A sketch of a special case of the example can be found in [2], where a reference is
given to Borovoi’s paper [6]. However, we have not had the opportunity to read (a
translation of) Borovoi’s paper, so it is not clear to us to whom the example is due.

Let F be a totally real field of degree d > 2 over Q, and write ooy, ..., 004 for
its places at infinity. Take two quaternion algebras D, D, which both have at least
one invariant 0 at infinity and which moreover have “complementary” invariants at
infinity, i.e., inv, (D1) = 0 if and only if inv,, (Dy) = 1/2. Then Dy @ p Dy = My (D)
for some other quaternion algebra D over F (using that inv,(D; ® Dy) = inv,(D;) +
inv,(Ds) in Q/Z, and the fact that D; and D, have different invariants at infinity).
Let G = Resp/@D7, G2 = Resg/gD3, let V = D@ D as a Q-vector space, and define
the homomorphism

f: G1 x Gy — GL(V)

as the composition of G1 X Gy — Resp/(GL2(D)) and the natural map
Resp/o(GL2(D)) = GL(Resp/o(D @ D)) = GL(V) .

Let X; be the G1(R)-conjugacy class in Hom(S, G ) of the homomorphism A,
given on R-valued points by

C > a+tbis (zle_I[lId X 1;[ (_b a)) egH xiel_IIZGLQ(R) G(R),
where I} = {i | inve,(D1) = 1/2}, I, = {i | invy,(D;) = 0}. Notice that X is
well-defined since all automorphisms of GLy(R) are inner. Likewise we get a G2(R)-
conjugacy class Xy in Hom(S, Gog). One easily checks that (G;, X;) is a Shimura
datum, i.e., a pair satisfying conditions (2.1.1.1-3) of [18, Section 2.1]. In this way
we get Shimura varieties Sh(G1, X1) and Sh(Ga, X2). Notice that these are not of
Hodge type, since their weight is not defined over Q.

Let G be the image of G; x G5 under f and consider the G(R)-conjugacy class X
in Hom(S, Gg) which is the image of X; x X, under the natural map Hom(S, G r) x
Hom(S, Gog) — Hom(S, Gg). Notice that X; x Xy = X. Again one easily checks
that the pair (G, X) thus obtained is a Shimura datum. For a compact open subgroup
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K of G(Ay) let K; = f;'(K), where f; is the restriction of f to G;. Then K; is a

compact open subgroup of G;(A;) and we get a morphism
f(leKQ,K)I ShleKQ(Gl X GQ,Xl X .X2) — ShK(G,X) .

We choose connected components X", X" and denote the corresponding connected
Shimura varieties by Sh°(—). For K, K, sufficiently small the map f(OKIX Ky i) O

connected Shimura varieties is finite étale.

3.4 Lemma. The weight homomorphism w: G,, — Gy is defined over Q.

Proof. Choose subfields L; C D; of degree 2d over QQ, and let 7; C G; be the associ-
ated maximal torus (so 7; = Resy, /oGm,r;). Let Hom(L1,C) = {o11,012,...,041,042}
and Hom(Lq, C) = {71, T2, ..., Ta1, T2}, where o;; and 7;; extend oo;. The character
group X*(7T7) is canonically isomorphic to the free abelian group on Hom(L;, C), so
it has a standard basis corresponding to the elements o;;. Let e11,€12,. .., €41, €42 be
the dual basis for the cocharacter group X,(77). Likewise we get a standard basis

fi1, fiz, -, far, fae for Xo(To).
There is an exact sequence

1A —>G xG—-G—>1,

where A~ is (the Weil restriction of) the antidiagonal {(f, f~') € DI x D} | f €
F*}. Then T = f(T) x T) is a maximal torus of G and X,(T) is the quotient of
X,(T1) x X,(T») by the subgroup X,(A~) generated by the elements of the form

ein +ep — fu — fia (1 €4{1,...,d}).
In these notations the weight cocharacter w: G, — Gg is the element

w = Zai . (eﬂ + €i2) + (1 - ai) : (fz'l + fz’2) (mOd X*(A_) ) )

i=1

where Q; = 0if iIlVooi (Dl) = 1/2 and Q; = 1if iIlVooi (Dl) = (. Since €ei1te€io = fil +f12

in X,(T) we can rewrite this as

d d
w = Zeil + e = Zfil + fi2
i=1 i=1
and from this it is clear that w is a Gal(Q/Q)-invariant element. O
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By considering the representation of Gg on Vi one sees that there does not exist a
symplectic form ¥ on V such that G acts through symplectic similitudes. Essentially
the problem is that the center of G is “too large”. Therefore, we introduce the
algebraic subgroup G' = w(Gy,) - G4 C G, which, by the lemma, is defined over Q.
All hy: S — Gg for z € X factor through G%, and we have a closed immersion of
Shimura data (G', X) — (G, X).

The lemma shows that (G’, X) satisfies condition (2.1.1.4) of [18, Section 2.1].
It also satisfies loc. cit., condition (2.1.1.5), as one easily verifies. Furthermore, for
x € X the representation h, on V is of type (—1,0) + (0, —1). From [18, Proposition
2.3.2] it now follows that there exists a symplectic form ¥ on V such that the inclusion
G’ < GL(V) induces a morphism of Shimura data i: (G', X) < (CSp(V, ¥), HZ,).
Here we identify the Siegel double space Sﬁjfd as the space of R-Hodge structures
h: S — GL(V) of type (—1,0) + (0, —1) such that +¥ is a polarization. This shows
that Sh(G', X) is a Shimura variety of Hodge type.

For a compact open subgroup K C G(Ay), write K’ = G'(As) N K. For K suffi-
ciently small we get a “universal” family a: (Y, A, 6) — Sh% (G’, X) of 4d-dimensional
principally polarized abelian varieties with a level K’-structure. The morphism
f(OK1>< K»,x) 0N connected Shimura varieties factors through Sh%(G', X). We can

choose a point 75 € X, such that the subvariety
Zyy = SO (£)(ShY%,(G1, X1) X [22, eK3]) = Serr(XiF x {22}) C Sh3%(G', X)

is not contained in the locus ¥ (applying the discussion of Section 1.2.2 to S =
Sh% (G', X) and the natural VHS with local system R'a,Zy). The generic fibre
Y, on Z = Z,, has Mumford-Tate group G’, and the representation of MT(Y;) on
H'(Y,(C),Q) is isomorphic to G' < GL(V). In particular, V being an irreducible
G'-module, Y, is simple. On the other hand, it is clear that the connected algebraic
monodromy group of the restricted family (Y, ),0) over Z is contained in f(Gy)%,
so it is strictly contained in (G)d = Gder.

As remarked by André ([2], footnote on p. 13) the example contradicts the con-
jectural statement IX, 3.1.6 in [1]. We claim that it also gives a negative answer to
op. cit., Chapter X, Problems 2 and 3.

Loc. cit., Problem 2 is essentially the following. Consider a subvariety Z —
Ay 1, @ C satisfying (i) dim(Z) = 1, (ii) the generic fibre in the family of abelian

varieties over Z is simple, (iii) there are infinitely many points on Z which lie on a
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proper subvariety of Hodge type. Does it follow that Z is of Hodge type? We see
that the answer is negative in general: in the above example we choose D; and D,
such that #I, = 1, which implies that dim(Z,,) = 1. As we have seen, Z,, satisfies
condition (ii) and it is not of Hodge type. Finally, for all special points z; € X", the
point Sh®(f)([x1, eK1] X [x9, eK,]) € Z,, lies on a proper subvariety of Hodge type.

A special case of loc. cit., Problem 3, is the following question. Consider a sub-
variety Z — Ay 1, ® C satisfying conditions (i) and (ii) and also satisfying (iv) there
are infinitely many points on Z such that the corresponding abelian varieties are all
isogenous. Does it follow that Z is of Hodge type? Again, the answer is negative.
The example is the same as above; for (iv) we only have to remark that for a fixed
z; € X;, the fibres over the points Sh°(f)([g - z1,eK1] X [9,eK5]) € Z,, with
g1 € G1(Q) are all isogenous.

84 Non-rigid families of abelian varieties

4.1 In his paper [3], Arakelov proved that, given a complete and non-singular curve
B over C, a finite set of points S C B and an integer g > 2, the set

isomorphism classes of non-constant families of
non-singular irreducible curves of genus g over B \ S

is finite. (For S = ) this was done by Parsin.) One of the main steps in the proof
is to show that if X is such a non-constant family of non-singular curves of genus g
over B\ S, then X does not have non-trivial deformations.

In [24], Faltings then gave an example showing that the analogous statement for
abelian varieties is false in general. His example concerns a non-rigid family of abelian
eightfolds. After that, several people came up with related results. As for the non-
rigid families of abelian varieties, Masahiko Saito obtained in [54] a classification of the
endomorphism algebras of the underlying local systems. In particular, he determined
for which (relative) dimensions there exist such non-rigid families (without isotrivial
factors).

Using the notations and results discussed before, we can add to Saito’s work.
We describe the non-rigid families of abelian varieties in terms of the corresponding
subvarieties of the moduli space and we “explain” the non-rigidity geometrically.

Before we do so, let us first discuss the problem in a rather general setting.
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4.2 Suppose we are given a polarized Z-VHS V = (V;, F*, Q) of pure weight n over
a non-singular, irreducible, complex algebraic variety Z. We can ask if there are
non-trivial deformations of V), fixing the base space Z. We are in fact most interested
in the infinitesimal deformations. To give this a precise meaning one has to set up
some theory.

Part of the structure of V is discrete, and therefore cannot vary continuously.
Specifically, let 7 be the set of equivalence classes of 4-tuples (Vz, Q,, p), where
Vz is a free Z-module of finite rank, @Q: Vz x V; — Z is a bilinear form, 7 is a
group and p: m — U(V7, Q) is a homomorphism. Two such 4-tuples (Vz, @, 7, p) and
(V;,Q', 7', p') are said to be equivalent if there exist isomorphisms a: (Vz,Q) =
(V;, Q") and : m = 7’ such that o, 0 p = p' o . For z € Z we get such a 4-tuple by
taking (Vz,Q) = V., Q.), m = m(Z, z) and p: m(Z, z) — U(V,Q) the monodromy
representation. The class of this 4-tuple in 7 does not depend on the choice of z,
and therefore we get a well-determined element 7()) € T associated to V.

In Peters’ paper [51] it is shown that the set

Z-NVHS,(Z) =
(2) { Vover Z with 7(V) =17 €T

isomorphism classes of polarized Z-VHS }

has a natural structure of an analytic variety such that the tangent space to the class
[V] is isomorphic to (E? ®g C)~b!. Here E = H(Z, End(Vg)), the algebra of global
(flat) endomorphisms of the local system Vg, and

E? ={ec E|Q(ev,w)+ Q(v,ew) =0 for all sections v, w of Vo}

is the subspace of elements of £ which are skew-symmetric with respect to (). We
conclude that the polarized Z-VHS V over Z is rigid (i.e., it has no infinitesimal
deformations over Z) if and only if (E? ®g C)~%! = 0. The problem that we are
interested in is to describe, or to classify, the polarizable Z-VHS V over Z such that
V is non-rigid over some finite covering of Z. This is still somewhat vague. Moreover,
there are trivial ways of constructing non-rigid variations of Hodge structure (as we
shall discuss in a moment), and part of the problem is to distinguish these from the

interesting, non-trivial cases.

4.3 Let z € Z be a Hodge-generic point, and write M = MT,, Hg = Hg, for the
Hodge group, and (V,Q) = (Vg., @,). Since we allow finite coverings of Z we may
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assume the algebraic monodromy group to be connected. Then we have algebraic
groups
H, a M =Hg C U(V,Q),

and EQ is just the space of H,-invariants in End® (V).

As in [54, §3] we can reduce the problem to the case that V is isotypical as a H,-
module, in which case the VHS Vy is called primary. To see this, let V =V @-..@
V®) be the canonical decomposition of V into H,-isotypical summands, where V)
is isomorphic to a power of an irreducible H,-module W;. Since H, <M and M acts
(by conjugation) on H, through inner automorphisms, the V) are M-submodules of
V. The form @ restricts to a polarization form @Q; on V. The H,-module End(V)
is a direct sum of the End(V ) and of spaces of the form Hom(W;, W;) with i # j.

By Schur’s lemma there are no H,-invariants in Hom(W;, W;), hence
EQ = (End?(V))"* = (End9 (VD))"= @ ... @ (End % (V)™= |

and we conclude that V is non-rigid if and only if one of the V® (the sub-VHS
corresponding to V®) is non-rigid.

As mentioned before there are trivial ways to produce non-rigid VHS. If, for
example, the VHS Vg splits as Vg = V; @ V, such that the monodromy on one of
the two summands, say V), is trivial, then we can deform V by varying the constant
VHS V;. To exclude this we simply require that the monodromy representation on
the irreducible components of V' is non-trivial. The problem therefore is to describe
the non-rigid VHS over Z for which the underlying local system is primary and non-

constant.

4.4 From now on we assume the VHS V to be of type (—1,0)+ (0, —1), which means
that it corresponds to a family of abelian varieties over Z. We will make free use of
the correspondence between polarizable Z-VHS of type (—1,0) + (0, —1) and families
of abelian varieties; in particular, we say that a family of abelian varieties is non-rigid
if the corresponding VHS is non-rigid.

One of the main advantages of restricting our attention to abelian varieties is that
in this case the endomorphism algebra E = End(V): is of type (—1,1) + (0,0) +
(1,—1). Therefore, the family is rigid if and only if E¥ is purely of type (0,0), which
is equivalent to saying that H, and Hg have the same invariants in End“(V). Notice

that the polarization form () induces an isomorphism V' =% V* as Hg-modules, from
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which we get an isomorphism End?(V) 22 Sym?(V') as representations of Hg, so we
can also say that the family is rigid if and only if H, and Hg have the same invariants
in Sym?(V).

In Saito’s paper [54] we find a classification of the endomorphism algebras E
of the local systems underlying a non-rigid family of abelian varieties. As one of
the corollaries one obtains restrictions on the relative dimensions for which there
exist such non-rigid families. It is known that the smallest relative dimension for
which there exist non-rigid families is 8; as mentioned before, an example for relative
dimension 8 was given in [24].

Our purpose here is to elucidate the structure of the families themselves, in terms
of subvarieties of the moduli space of abelian varieties.

4.5 Consider a family f: X — Z of abelian varieties over a normal variety Z, with
a polarization \: X — X* (X* denoting the dual abelian scheme). It corresponds to
the polarized Z-VHS V over Z. We assume that the algebraic monodromy group is
connected, that the family is non-rigid, and that the local system Vg is primary and
non-constant. We keep the notations z € Z, H,, M, Hg and (V, Q) as above.

Fix an integer n > 3 which is relatively prime with the degree of A. Possibly
after passing to a finite covering of Z we can choose a Jacobi level n structure on
X over Z. The family (X, ) plus the choice of this level structure corresponds to
a morphism ¢s: Z — Ay ;,(C), where 0 is the type of the polarization A\. The fact
that the generic Mumford-Tate group is M means that ¢y maps Z into a subvariety
of Hodge type S,k (Y,;) (with K = K, as in Section 1.3.2).

Recall the decomposition of Shimura data (M*4,Yy) = (H2, Y1) x (H3%,Y53) that
was introduced in Section 2.5, where H, < M is the connected algebraic monodromy
group of the family X — Z. It follows from Proposition 2.6 that ¢(Z) C S, (Y7 x
{y2}) for some component Y;" C Y; and a point y € Y5. Let W be the Z-VHS
corresponding to the universal family over S = S,k (Y]" X {y2}), then we can identify
the fibres V, and W), (,), and the monodromy representation of V factors through that
of W. Pulling back by ¢ defines a map ¢}: Z-VHS, (w)(S) — Z-VHS,(y)(Z) which
induces an isomorphism on the tangent spaces at [W)| and [V] respectively. Therefore,
it remains to explain the non-rigidity of the family over S. In order to keep the
notations as clear as possible, we assume from now on that Z = S = S, (Y;" X {y2})

and V = W.
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The basic idea now becomes apparent: Z is totally geodesic, and after Corol-
lary 3.2 there is a product variety S; x Sy covering S,k (Y;" x Y;"), such that Z is
the image of S; x {a} for some a € S,. If ¥, (hence also Ss) is not reduced to a
single point then we can vary the point a € S5, and this gives global deformations
of the VHS over S; x {a}. However, if Y;" is a single point (which happens if Z
is of Hodge type) then this idea does not seem to work. It does, but in general we
first have to replace (M, Y),) by a “larger” Shimura datum (N, Yy). We do this as
follows.

Consider the algebraic group C' = Csy(v,0)(H;), the centralizer of H, inside
Sp(V, Q). Its connected component C° is a reductive subgroup of Sp(V, Q). No-
tice that E¢ = Lie(C). Similarly, (E9)%° is isomorphic to the Lie algebra of
Cspv.@)(Hg), so the fact that E? is not purely of type (0,0) is equivalent to say-
ing that Csp(v,0)(Hg)® & C° = Csp(v,q) (H.)".

The reductive group C° is the almost direct product of its center Zco and a
number of Q-simple semi-simple factors C?. Let C. be the product of the factors
C? for which C?(R) is compact, and let C’ be the product of Z2 and the factors C
which are not compact over R. The intersection H, N C? is contained in the center
of H, and is therefore finite, so H, - C° C Sp(V, Q) is the almost direct product of
H, and C°. Clearly, M C G, - H, - C° C CSp(V,Q) (using that H, is normal in
M), and it follows from [18, 1.1.15] that Inn(h(:)) is a Cartan involution of H, - C°
(where h: S — My C CSp(V, Q)r is the homomorphism giving the Hodge structure
on V =Vg,,). The composite map

S = (G - H, - C%)g 24 H x 024 x (") 2 o

must therefore be trivial, hence h factors through Gy, - H, - C".

Let N = Gy - H, - C', and let Yy be the N(R)-conjugacy class of h. The
above arguments show that (N,Yy) is a Shimura datum. We have a decomposi-
tion (N*Yy) = (H,Y]) x (C'*,Yw), and S = S,k (Yt x {y2}), which we can
also write as S,k (Y;" x {v}) for a point v € Yer. Notice that Y is not reduced to
a single point, or, equivalently: C’ has non-trivial semi-simple factors. This follows
from the fact that Lie(C) is not purely of type (0,0). Alternatively: C’ being a torus
would contradict the above remark that Csyv,0)(Hg)? & C°, since Hg C H, - C".

This brings us to a situation where we can apply Corollary 3.2. We have a
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commutative diagram

Sl X {a}c—>5’1 X Sg

gi ig,

S = Syx(V1" x {v}) =S (1" x Y&))

where g and ¢ are finite surjective morphisms, and where S; = Y;* /'y, Sy = Y5 /Ty
for some arithmetic subgroups I'y € H24(Q) and 'y C C'*4(Q). We may take T'; and
['s small enough such that S; and S5 are non-singular.

The morphism g*: Z-VHS(w)(S) — Z-VHS,(4-w)(S1) induces an isomorphism on
tangent spaces at W and ¢g*W respectively; this follows from the description of the
tangent space given above and the fact that both the generic Mumford-Tate group
and the connected algebraic monodromy group on S and S; are the same.

Varying the point a € S, then gives global deformations of the VHS ¢*W over
S1. We remark that this indeed “explains all deformations”: we have seen that the
tangent space to Z-VHS,(S) at the point [V] is isomorphic to Lie(C)~"!, and since
Lie(C,) is purely of type (0,0) this is equal to Lie(C')~"'. Our remark then follows
from the fact that there are natural isomorphism 7, Sy & T, Yor =% Lie(C')~1! (where
Yo 3 v a € Sy), which is an infinitesimal version of the correspondence

varying the point v € Yor  ~»  deformations of the VHS ¢g*V over S,

see [51, Sections 1 and 2| (notice that in our case the horizontal tangent bundle to
the period domain Y is equal to the full tangent bundle).

In summary, we obtain the following result.

4.6 Theorem. Let f: X — Z be a principally polarized abelian scheme over a normal
irreducible complex algebraic variety Z, and assume that X admits a Jacobi level n
structure 0 for some n > 3. Let s: Z — Ag1, ® C be the corresponding morphism
of Z into the moduli space. Then there exists a closed immersion of Shimura data
i: (N,Yn) = (CSpy,, H7), a decomposition (N*4,Yy) = (Ny,Y1) x (N3,Y3) and a
diagram

Six{a) o e x5 A ®C

| v |

7§ = Syl Vi x {v}) m Sy (Vi x Vi) Ay @ C
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Chapter II. A characterization of subvarieties of Hodge type

such that there are natural isomorphisms
T,Y; 2 T,S; =5 Tigow)(Z-VHS(S1)) <=~ Tiw (Z-VHS(S)) =% Thn(Z-VHS(Z)) .

Here we write V, W and U for the VHS corresponding to the first homology of
the abelian schemes over Z, S and S; x S, respectively, and the map 1,5, =%
Tig»w)(Z-VHS(4-w)(S1)) is the map on tangent spaces induced by the map Sy —
Z-NHS, (g=w)(S1) sending sy € Sy to the class of U g, x{s,} in Z-VHS (g (S1).

4.7 Corollary. Let X be a simple abelian variety over C with dim(X) < 7. Then
MT(X) is either trivial or it is a Q-simple algebraic group.

Proof. This now follows immediately from the fact that there are no (non-trivial)

non-rigid families of abelian varieties of relative dimension < 7, see [54, Corollary
8.4]. O
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Chapter Il
Formal linearity, special points and Shimura

varieties

§1 Local moduli of abelian varieties

1.1 Fix an integer n > 3 and a prime number p with p t n. We also fix a finite field
k of characteristic p. Write W = W (k) for its ring of (infinite) Witt vectors, and
write A, for Ay 1, @ W. Let (A, ® k)° be the ordinary locus in characteristic p. This
is a locally closed subscheme of A,, hence we can take the formal completion along
it to obtain a formal scheme A, = Ay /(a,0k)0 over Spf(IW).

Let U C A, be an open subscheme such that the ordinary locus U N (A, ® k)°
is a closed subscheme of U, defined by an ideal sheaf 7. For m > 0, let Y,, be the
subscheme of U defined by J™ and let (X, Apm, 0,) be the universal object over Y,.
Then X,, is an ordinary abelian scheme over Y, and the multiplicative part X,,[p], of
its p-torsion is a finite, locally free subgroup scheme of X, of rank p9, which moreover
is maximal totally isotropic for the Weil pairing ey, . It then follows that the abelian
scheme X, = X,/ X [pl, has a principal polarization A}, such that 7*A], = p- A,
where 7 X,,, — X is the canonical map. Also, since p { n, the level n structure 6,,
naturally induces a level n structure 6], on X, .

The new triplet (X, \l,,0,,) corresponds to a morphism ®,,: ¥;, — A,, which
factors through Y,,. These morphisms ®,, form a projective system. Taking the
inverse limit we obtain an endomorphism ®: U — U on the formal completion. Fi-
nally, we can glue these ®y to obtain a morphism ®,,: ./Zl\g — jg over Spf(W). (Al-
ternatively, we can take for U the complement of the non-ordinary locus in character-
istic p, in which case U = .,zl\g.) It lifts the endomorphism of (A,®k)° which is obtained
by pulling back the Frobenius endomorphism of (A, 1 ,®[F,)° via Spec(k) — Spec(F,).
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1.2 Let (Xo, Ao, 0) be a principally polarized abelian variety of dimension g with a
Jacobi level n structure over Spec(k). It corresponds to some closed point z of A4, ®k.
Let 2, — Spf(WW) be the formal completion of A, at z. If z is an ordinary point
(i.e., the corresponding abelian variety X is ordinary) then 2, has the structure of
a formal torus over & = Spf(W). (See Section 3.1 for a brief discussion on formal

tori.) Let us recall how this is defined.

1.3 We can define the group structure on 2, over & by working out the following

steps:

1. Identify 2., as a functor on affine formal schemes Spf(R) for R in a certain
category 5w, with the formal deformation functor of the pair (X, Ag) which is
studied in [48] and [56].

2. Show that this deformation functor is a group functor, using a theorem by Serre

and Tate, and using that x is an ordinary point.

3. Conclude that there exist morphisms s: A, x2(, — 2, (multiplication), ¢: 2, —
A, (inverse) and e: & — 2, (identity element) in the category of formal schemes

over & = Spf(W), giving the desired group structure.

1.4 To explain this in more detail, let us introduce categories Cy and 5W, following
[56]. The objects of Cy are the artinian local W-algebras R such that the structure
homomorphism W — R is local and induces an isomorphism k& =% R/mp. The
morphisms in Cy, are the homomorphisms of W-algebras. Then 5W is defined as the
category of complete noetherian local W-algebras R such that R/mé, is in Cy for
all 2. Again the morphisms are just the homomorphisms of W-algebras. Notice that
Cw is a full subcategory of 5W. We consider the rings R in 5W with their mp-adical
topology; for R in Cy this is just the discrete topology.
Next we define a formal deformation functor Defo, : Cw — Sets, given by

isomorphism classes of pairs (X, ), where X is an abelian
scheme over Spec(R) and ¢ is an isomorphism ¢: X ® k =% X, |

Defoy,(R) = {

Similarly, we have deformation functors Defo x, 5,y and Defo x, ,4,) Of the pair

(X0, Ao), and the triplet (Xo, A, fy), respectively, where in each case an isomorphism
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§1. Local moduli of abelian varieties

¢ over Spec(k) is part of the data. We extend these deformation functors to the
category Cw by defining Defo,(R) as the projective limit of the Defo,(R/m%,).

1.5 Lemma. The natural morphism Defo x, y, 9,) — Defo(x, »,) 18 an isomorphism.

Proof. Let R be an object of Cy,, and suppose we have a polarized abelian scheme
(X, ) over Spec(R) and an isomorphism ¢: (X, ) @ k& = (X, Ao). Since p 1 n,
the n-torsion X[n| is an étale group scheme over Spec(R), which implies that there
is a unique level n structure on X lifting #;. From this the statement immediately
follows. O

The functor Defo x, .6, 1S represented by ;. More precisely: the composed
functor A, o Spf(—): Cw — Sets is naturally isomorphic to Defo x, \,4,)- This is a
formal consequence of the fact that Ay ; ,, is a fine moduli scheme. Let us also remark
that every triplet (X, \,#) over an affine formal W-scheme Spf(R) is algebraizable:
it is the formal completion of a polarized abelian scheme with level structure over
Spec(R).

The next step is based on a theorem of Serre and Tate, which, roughly speaking,
tells us that the deformations of X are completely determined by the deformations
of the associated p-divisible group. To state this more precisely, we have to introduce
some notations. For a given ring R and an ideal I C R, let Ro = R/I. Write AS(R)
for the category of abelian schemes over R and write BT-Defo(R, Ry) for the category
of triplets (Ag, G, a), where Ay is an abelian scheme over Ry, G is a p-divisible (or
Barsotti-Tate) group over R and « is an isomorphism a: Gy = G ® Ry =% Ay[p™].

A proof of the following theorem can be found in [31] and also in [35, Chapter 5].

1.6 Theorem. (Serre and Tate) Let R be a ring in which the prime p is nilpotent,
let I C R be a nilpotent ideal and write Ry = R/I. Then the functor AS(R) —
BT-Defo(R, Ry) obtained by sending A to the triplet

(Ag = A® Ry, A[p*], the natural isomorphism «)

is an equivalence of categories.

Now we start using the assumption that X, is an ordinary abelian variety. In
this case the p-divisible group X,[p™] is a direct sum X,[p®] = Xo[p*°], & Xo[p*™]st
of a toroidal and an étale part, which are both of height g. For R in Cy these
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Chapter Ill. Formal linearity, special points and Shimura varieties

summands both have a unique lifting to a p-divisible group over R, say G, r and
G, r- The deformations of X, over Spec(R) correspond to the extension classes in
Ext(Get,r, Gp,r) which are trivial over R/mpg. Since the set of these classes has a
natural group structure, this shows that Defoy, is a group functor. The functor

Defo xq,70,00) = Defo(x,,2) 18 @ closed sub-group functor.

1.7 The existence of morphisms s: /A, xg A, — Ay, 1: A, = ™A, and e: & — A, in
the category of formal schemes over & = Spf(W), giving the group structure on 2,
over G, now is a formal consequence of the existence of products in this category.

1.8 We still have to show that 2, is a formal torus. Let & be an algebraic closure
of k, and write W = W (k) for its ring of Witt vectors. Write T, X, = T, X, (k) and
T,Xt = T,Xt(k) for the “physical” Tate modules of X, and X, respectively. Over k
there are isomorphisms

Xo[p™], 5 = Hom(T, X}, Gr) and  Xo[p™]; 2= T, X0 ®z, (Qy/Zy) -

ok —

This leads to a description of Defox, (R) (with R in Cyy) as the category of extensions
Ext (T, Xo ®z, (Qy/Z,), Hom(T, X}, G)) .

Since Ext((Q,/Z,), Gum) = G,y (considering both sides as functors on Cyy) it follows
that Defoy o7 is a formal torus.
It can be shown that every class in Ext(7,X,®z, (Q,/Z,), Hom (T, X{, Gm)) (over

W) is obtained from the exact sequence
0—>T1,Xo = T,X0®Q, = T,X0® (Q,/Zy) = 0

by pushing out along a homomorphism 7, X, — Hom(7,X¢, @m) This leads to an
isomorphism of functors Defo oz =% Hom(T, X, ® T, X§, Gun)-

We can also describe liftings of homomorphisms between ordinary abelian vari-
eties. So, suppose Xy and X are ordinary abelian varieties over &, and let f: Xy — X
be a homomorphism. For R in 5W, let G and G, be the liftings over R of Xo[p*]e:
and Xgy[p™Js respectively, and, similarly, write GG, and G, for the liftings of the
toroidal p-divisible groups. Then f induces homomorphisms fg: G¢y — G, and
fu Gy — G,. As we have seen, liftings of X, and X are given by extensions of

p-divisible group, and f lifts to a homomorphism f: X — X" if and only if it extends
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to a homomorphism of the corresponding extensions. If [X] and [X'] are the exten-
sion classes of X and X' respectively, then this is the case precisely if (f,).[X] =
(fer)*[X'] in Ext(G),, G¢). For R in Cy this becomes the condition that the elements
gx € Hom(T,Xo @ T,X¢, Gm)(R) and gx/ € Hom(T, X} @ T,(X})!, Gm)(R) satisfy

ax(a, f'(B)) = ¢ (f(), B)

for all elements o € T, Xq, B € T, X,.

As an application, consider the isomorphism 7,X, % T, X{ induced by the polar-
ization A\ (which we assumed to be principal). From the preceding remarks we derive
that A, ® W is the formal subtorus Hom(Sym?(7T,Xj), Gu) of Hom (7, X, Gu)
Hom(T, X, ® T,X¢, Gu). For proofs we refer to [31, esp. Theorem 2.1].

1.9 Let o: W — W be the Frobenius automorphism of W. The Frobenius morphism
Frob: Xy — Xép) induces an isomorphism X,/ X,[p|, = Xép). Using this we see that
the formal completion of A, at the point ®.,,(z) is isomorphic to A = A, Xg,0 6.
The morphism ®.,, introduced in 1.1 above therefore induces a morphism 2, — Q[(za),
which we again call @, (cf. [21, p. 135]). It is not difficult to see that this is a group
homomorphism. If N = Plog(#k) (i.e., k = F,v) then ®[

can 1S an endomorphism of

2. It is the endomorphism “raising to the p"th power” in the group 2.
The next lemma, which we quote from the appendix to [21] by Katz, shows that
the group structure is uniquely determined by the fact that it is compatible with ®.,;,.

1.10 Lemma. (Katz, [21, A.1]) Let k be a perfect field of characteristic p > 0, let
W = W(k) its ring of Witt vectors, and let o: W = W be the automorphism
induced by the Frobenius automorphism of k. Let M be a formally smooth affine
formal scheme of finite type over W, i.e., M = Spf(W{ti,...,t,]). Suppose we are

given a morphism

oM — MO

of formal schemes over W whose reduction modulo p is the Frobenius morphism
Frob: M @y k — (M ®w k)@ .

(i) Given (M, ®), there exists at most one structure of commutative formal group

over W on M for which the given map ®: M — M) is a group homomorphism.
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(ii) If this structure exists, it makes M into a formal torus and the given ® is the
unique homomorphism lifting Frobenius.

(iii) If (M1, ®1) and (Mg, ®;) both admit group structures as in (i), then a
morphism f: M; — M of formal schemes over W is a group homomorphism if and

only if the diagram

is commutative.

1.11 Remark. Fix an integer m > 1. We can replace (iii) by the slightly stronger
statement that f is a group homomorphism if and only if the diagram

Ml—f>M2

@Tl l@;ﬂ
Fe™)

Mgam) LA Mgcrm)

is commutative. The proof is similar to the one given by Katz in [21, p. 130]. A

stronger statement is proved in [11].

~

In particular (the case that My = Gy,), a function ¢ on M is a character if and
only if (®™)*(¢®™)) = ¢

1.12 Choose a Zjy-basis ay, ..., a, for T,X, and let of, ..., o} be the basis of T, X{
given by o = Ag(c). Define characters ¢;; = g(, o) on
Hom (T, Xy ® T, X!, Gr) = Hom(T,X&?, Gy

by sending ¢ € Hompg(7,X, ® T,,Xé,@m) to p(o; ® of) € Gm(R) = 1+ mg. This

gives an isomorphism
Hom (T, Xo ® T, X;, Gm) 2 Spf(W[{gi — 1}1<ij<o]) -

(This is a rather tautological statement.) We can describe 2 = A, ® W as the
formal subtorus Spf(W{g; — 1]/(¢i; — ¢ji)). To keep the notations easy we write

A =Wlai; — 11/ (g5 — g54)-
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Let X — 2 be the universal (polarized) formal abelian scheme. The A-module
H = H}i(X/2) with the GauB-Manin connection V and its Hodge filtration

F'=H > F' =H(X, Q%)

has the structure of an ordinary Hodge F'-crystal of level 1. Such crystals are studied
in [21]. Here we confine ourselves to giving a description of H; proofs of our statements
can be found in [31].

To the chosen elements «; and a§- we can associate elements aq,...,a, (called

Fix(ey') in [31]) and by, ..., by (w(cf) inloc. cit.) of H such that F' = A-b;®---®A-b,
and H is the direct sumof U =A-a;®---A-ay and F'. For the connection V we

have

V(a;) =0, V(bj) = Zai Q& 1Mij
for certain forms 7;; € Q W (continuous differential forms). Furthermore,

F(Pean)®lan (07)) = a3y F(Pean)®lan (B7) = pbi, Dn(n) = piij, and  drgy; = 0.

can can can

In particular, U is a unit sub-F-crystal of H.

Let K be the fraction field of W (k) and write 7;; = log(g;;) € K[gi; — 1]. Let
B = K]|r;;]/(mij — 7ji), then we obtain a homomorphism A — B by sending g¢;; to
exp(7;j). We have the identities @zan(qg-f )) = @ @zan(Ti(f)) = pry; and n;; = dry;. If
0: A — W(k) is the Teichmiiller lift of the augmentation map A — k with respect
to ®capn then ¢;;(0) =1 and 7;;(0) = 0.

Write ¢; = b; — >, Tija;. The elements a4,...,a4,¢1,. .., ¢, form a horizontal B-

basis for H® 4B, and the Hodge flag F'® 4B is spanned by the elements Ci+ >, Tijli.

1.13 As above, let N = Plog(#k). We still assume that X, is an ordinary abelian
variety. Write m = mx,: Xo — X, for the Frobenius endomorphism of X; (so “m =
Frob™”). Let R be an object of Cyy and let s: Spf(R) — 2, be an R-valued point of
2, over Spf(W). Let X denote the corresponding abelian scheme over Spec(R).

We say that an abelian scheme X over Spec(R) is of CM-type if End®(X ® R)
contains a commutative semi-simple Q-subalgebra of rank 2g over Q. Here R =
RIW. If R is a normal domain then X is of CM-type if and only if its generic fibre
is of CM-type.
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1.14 Lemma. The following conditions are equivalent.
(a) s is the identity element of A, (R).
(b) Endg(Xs) = Endg(X,).

(¢) =™ lifts to an endomorphism of X, for some m > 1.

Proof. The implications (a) = (b) = (c) are obvious. If 7™ lifts to an endomor-
phism of X, then this is certainly also the case over R ® W, and it follows from
the discussion in 1.8 that the extension class ¢, = gx, € Hom(T,X?, Gu)(RQW)
satisfies ¢5(7™ (), B) = ¢s(a, (79)™(B)) for all o, 8 € T,Xo. Now 7 induces an au-
tomorphism of T, X,, whereas the endomorphism of 7, X, induced by 7* is divisible
by p. It follows that ¢,(a, 3) is a p"™th power for every i € Zg, and from this we
conclude that s must be the identity element of 2, (R). O

1.15 Lemma. The following conditions are equivalent.
(a) s is a torsion element of A, (R).
(b) Endr(X,) ® Z{1/p] = Endy(Xo) ® Z[1/p]
(c) X, is isogenous to the lifting Xy (where 1 is the identity element of %A, (R)).
(d) X is of CM-type.

Proof. Assume s is torsion in A, (R). Its order must be a p-power, since A, (R) is
¢-divisible for all primes ¢ # p. We therefore have s*" = 1 for some m € Zs;. Let
¢ be a multiple of p™ in Endy(Xy). To prove (b) it suffices to show that ¢ lifts to
an endomorphism of the p-divisible group X;[p™], using the Serre-Tate theorem 1.6.
This reduces to a general statement about extensions: given an extension 0 — A —
E — B — 0 in an abelian category such that the corresponding class in Ext(B, A)
is n-torsion, then every multiple of n in End(A @ B) induces an endomorphism of E.
With a similar argument, taking ¢ = p™ - Id, we conclude that (a) implies (c).

The implications (b) = (d) and (c¢) = (d) are obvious. Next assume that Xj is
of CM-type. Then X, ® R also is, and it suffices to show that the corresponding
element sz € A, (R) is torsion. The endomorphism algebra End®(X, ® R) contains a
commutative subalgebra K of rank 2g over Q. The image of K under End’(X,@R) —
End’(X, ® k) contains the center of End®(X, ® k), and in view of [63, Theorem 2] it
follows that m - 7 lifts to an endomorphism of X, ® R for some m € Zsy. If X' is the
lifting of Xo®F given by the class ¢’ € Hom(T,X?, G )(R) with ¢(a, 8) = g5(ct, B)™
then it follows that 7 lifts to an endomorphism of X', hence by the previous lemma,
q =1. O
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1.16 Definition. Suppose R € Cyy is a flat W-algebra. The lifting of X, over Spec(R)
corresponding to the identity element of 2, (R) is called the canonical lifting of X.
We denote it by X§*". The liftings of X, over Spec(R) corresponding to the torsion

elements of 2, (R) are called quasi-canonical liftings; by 1.15 these are precisely the
CM-liftings of Xj.

1.17 Remark. The canonical and quasi-canonical liftings of an ordinary abelian va-
riety X, were first studied by Serre and Tate; see the report [33].

Property (c) in Lemma 1.14 is a little bit weaker than what is needed for the
arguments in Section 3. The statement we need is the following: given an ordinary
abelian variety X, over a finite field k£, then a lifting X of X, over W (k) is the
canonical lifting if and only if Frob: X, — Xép ) lifts to a morphism F: X — X0
A proof of this statement (which does not make sense for liftings over more general
rings R) can be found in [35, Appendix, Corollary (1.2)].

The property that Frob lifts can be formulated in terms of ®.,,. Let us give the

statement in the form we require.

1.18 Lemma. Consider the formal scheme .,Zl\g over Spf(W) as in Section 1.1, with
k = Fyn. Let k — k' be a finite field extension, and let s: Spf(W (k")) — .;l\g
be a W (k')-valued point, giving rise to a triplet (X, \,0) over Spec(W(k')). Let
Frob = Frobx,, p: Xpr — X,gf’) be the Frobenius morphism. If a is a multiple of
N then Frob® lifts to a morphism F: X = X0 over Spec(W) if and only if the
diagram

SpE(W (k) — A,
Spf(W (k")) —— A,

1s commutative.

Proof. For m € Z+ let s,,,: Spf(W,,, (k")) — ./zl\g ® W, be the reduction of s modulo
p™, and let ®,, be the endomorphism of ./Zl\g ® W,, induced by ®..,. Then Frob®
lifts over W (k') if and only if it lifts (necessarily uniquely) over each W,,(k’). Also,
oL,
for m =1, since a is a multiple of N.)

Let (X, Am, 0n) be the reduction of (X, A, 6) modulo p™ and, similar to the

construction in 1.1, let (X, , Al ,6) be the triplet obtained by dividing out X,,[p°],.

m) 'm)m

os = soo®if and only if ®% o s, = s,,, 0 0%, for all m. (Notice that this holds
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Clearly, ®% o s,, = s, 0 0% if and only if (X2, A%, 0%y = (X' X ¢ ). For
m = 1, there is a unique such isomorphism, induced by Frob®. We conclude that
®¢ o s, = s, 002 implies that Frob® lifts over W, (k).

Conversely, if Frob® lifts to Fy, over W, (k') then (ﬁm)*,\ﬁz“) = p?¥ . \,, since
deg(F,,) = deg(Frob®) = p. Also, (Fp,)*0%") = 6, since we consider level n
structures with p f n. It follows that (X2, A%") 9"y = (X! A\ 6 ), and this

proves the lemma. O

1.19 So far we only discussed the “unramified” case, studying formal completions
of the scheme A, , over a ring of Witt vectors. By base change we can extend most
of the above results to a slightly more general situation, which is what we need for
the next sections. Since most of this is obvious, the following remarks are mainly
intended to fix notations, which extend the ones used before.

Let F' be a number field with ring of integers O, and let p be a prime of O lying
over p. We write @p for the completion of the local ring O,. Write A; = Ag1, ® @,,,
and let .,Zl\g be the formal completion of .4, along the ordinary locus in characteristic
p. We obtain a morphism ®,,: .;l\g — ./Zl\g over Spf(@p) by pulling back the &,
defined in 1.1 via Spf(0,) — Spf(W (k(p)))-

Let = be a closed point of the ordinary locus (A, ® k(p))°. Consider the ring
A =W(k(z)) Ow(xp)) @p, which is a complete local ring with residue field x(z), and
write & = Spf(A). We let A, — & be the formal completion of A, at = (which
has a natural morphism to &). It is obtained via base change & — Spf(W (k(z)))
from a formal deformation space as studied above, and therefore has the structure
of a formal torus over &. Via this base change and the results of 1.12 we also get a
description of the de Rham cohomology Hp (X/2l) in this more general setting.

82 Isogenies

2.1 In this section we recall the definition of an algebraic stack called Isog(p®)
(in the cases we study it is actually a scheme). Here we follow [25, Chapter VII].
We use the scheme Isog(p®?) to give an alternative description of the morphism ®.,,
introduced in Section 1.1.

Recall that a p-isogeny between principally polarized abelian schemes (X, A) and

(X', ') of relative dimension g over a base scheme S is an isogeny f: X — X' such
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that f*\" = p°- X for some e € Zy;. If this holds then f has degree p®. If X
and X' are equipped with level n structures 6 and #' (p 1 n) then we further require
that f*0" = 6 (meaning that # “=" @' via the isomorphism 77X = TP?X' on the
“prime-to-p Tate modules” induced by f).

Let A, be the moduli stack of pincipally polarized abelian schemes, as in [25,
Chapter I, 4.3]. The p-isogenies form a stack p-lsog, with two natural morphisms
pry, pry: p-lsog — A, obtained by associating to an isogeny f: (X, ) — (X', X) its
source (X, A), and its target (X', \'), respectively. Bounding the degree of the isogeny
gives a substack of p-Isog which is representable by a relative scheme over A; x A,.
We write Isog(p®) for the stack of p-isogenies of degree p® (it is empty if the degree
is not a power of p9).

As a variant, we can take level structures into account. Choose an integer n > 3
with p { n and, as before, write A,;, for the moduli scheme over Spec(Z[1/n|) of
principally polarized g-dimensional abelian varieties with a Jacobi level n structure.
It is a fine moduli scheme (n > 3). By considering isogenies which respect level
structures we obtain a scheme lIsog(p®) over Ay, X Ay ,; to keep notations easy we

do not write a subscript “g,1,n” to Isog(p®).

2.2 We use the notations F', p and @p of Section 1.19, and we write A, = Ag,l,n®(/’)\p,
Zsog(p®?) = lsog(p®) @ 6p. Write A7 C A, for the open subscheme obtained by
deleting the non-ordinary locus in characteristic p. The isogenies lying over A9 x A7
form an open subscheme Zsog(p®)° of Zsog(p®?). The restricted projection morphisms
pr;: Zsog(p®)° — Aj are finite and flat.

The ordinary locus Zsog(p®)° ® k(p) in characteristic p is a locally closed sub-
scheme of Zsog(p®¥). We can take the formal completion along it to obtain a formal

scheme Zsog(p®)" over Spf(@p), with projection maps pr;: Zsog(p®)" — .,Zl\g.

2.3 Proposition. There is an open and closed formal subscheme 7cC Zsog(p®9)" such

that the restriction pry: 7 — .;l\g is an isomorphism, and such that the composition

-~

~ —1 ~
Py o pry
A, — T —5 A,

is equal to the morphism ®¢, | where ®,, is defined as in 1.1 and 1.19. The reduced

can’

underlying scheme T4 is a disjoint union of irreducible components.

Proof. This is essentially [25, Proposition VII.4.1]; in the notation of loc. cit., our 7
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is the formal completion along the subscheme of Isog(p®?) classifying isogenies of type
LmL with m = diag(p®-1dg, 1-1d,). In other words, 7 is the formal completion along
the pull-back (via Spec(x(p)) — Spec(FF,)) of the graph of the Frobenius morphism.
Let us nevertheless sketch a proof.

Except for the last statement, it suffices to prove the proposition over Z,, since
all ingredients over 6p are obtained via pull-back over Spf (6,,) — Spf(Z,). We only
do the case e = 1; the general argument only differs in that the notations are more
complicated.

Write (X, Am, 0m) for the universal object over Ap ® (Z/p™). In Section 1.1, we
have defined ®c,n on Ay as the limit of morphisms ®,, such that @ (X, Am, O) =
(X745 A, 01,), obtained by dividing out X,,[p|,. (Here we apply the discussion of
Section 1.1 to U = A}, in which case J =p- Oy.)

We obtain a section sy, of pry: Zsog(p?)° ® (Z/p™) — A; ® (Z/p™) by associating
to (X, Am, b) the natural isogeny m,,: X, = X, = X/ Xn[pl, (compatible with
polarizations and level structures). Clearly, pr, o s, = ®,,, on Y,,.

Define I, C Tsog(p?)° ® (Z/p™) as the (scheme-theoretic) image of s,,. The
section s,, maps into the open subscheme of Zsog(p?)° ® (Z/p™) of isogenies with a
kernel of multiplicative type. Over this locus, the first projection is finite étale (by
rigidity of group schemes of multiplicative type). It follows that I,, is an open and
closed subscheme of Zsog(p?)° ® (Z/p™), with s,,: Ay ® (Z/p™) = I,. Moreover,
Iy = Ik @z jpm+ry (Z/p™) for every k > 0.

Define 7 C Tsog(p®®)" as the formal subscheme with Z ® (Z/p™) = I,, for every
m > 0. It follows from the preceding remarks that 7 is an open and closed formal
subscheme of Zsog(p®?)". The section s: le\g — T obtained by taking the limit over
all s,, is an isomorphism, and pry 0 8§ = ®.,,. This proves the proposition, except
for the statement that i}ed is a disjoint union of irreducible components. To see
this, remark that the topological space underlying fred is homeomorphic to that of
(Ag ® K(p))° = A3 ® k(p). Since this is the disjoint union of irreducible components,
the same holds for Z,.q. O

§3 Formal linearity

3.1 Let k be a perfect field of characteristic p > 0, let k£ an algebraic closure of k,
and write W = W (k), W = W(k). Let A be a complete local noetherian ring with
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residue field k. A formal group M over Spf(A) (defined as in [23, Exposé VIIg]) is
called a formal torus if M®A is isomorphic to @fn for some d > 0, where A = AQuw W
(which again is a complete local noetherian ring). Such a formal torus is completely
determined by its fibre M®xk. In particular, every formal torus is defined over W,

and there is an (anti-)equivalence of categories

formal tori | e, free Z,-modules of finite rank with a
over Spf(A) continuous action of Galey (A/A) = Gal(k/k)

by associating to M its character group X*(M) = Hom(M®A, Gy ).

For a Galois submodule Y C X*(M) we write N(Y) for the common kernel of
the characters y € Y. If Y is primitive (meaning that the quotient group is torsion
free) this is a formal subtorus of M with character group X*(M)/Y. For general Y
it has the form M(Y) = - N, where N is a formal subtorus of M and ¥ is a torsion
subgroup.

3.2 Lemma. Let k be a finite field, and let W, M and ® be as in Lemma 1.10. Sup-
pose M has the structure of a formal torus such that ®: M — M) is a group
homomorphism. Let A be a complete discrete valuation ring with residue field k, and
let N C My be an irreducible closed formal subscheme of My = M Xsprwy Spf(A)
which is formally smooth over A. Take an integer m > 1 such that the automor-
phism ¢™ of W lifts to an automorphism 7 of A. Then the following properties are
equivalent.

(a) N is a formal subtorus of M.

(b) There is a primitive Galois submodule Y C X*(M) such that N = N (Y ),.

) ®™|y: N = M?, obtained by restricting

" @ Id: My — M) xgpemy SpE(A) 2 MY

to N, factors through N7 — M(AT) = (ME™),.

Proof. Assume N has property (c). For the implication (c) = (a) it suffices to show
that N is a formal subtorus of My. We know that

Mz 2 (Gy5)* =Spf(Algr — 1,...,q2— 1])

for some d > 0, with ®™ given by ¢; — ¢*" .
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Since N is formally smooth over A we can take our coordinates such that the
composition
~ pPre -~
NK — (fon —>» an
is an isomorphism, where pr, is the projection map onto the first e factors. Let

a: Ge, — N5 be the inverse isomorphism. Property (c) means that we have a com-

mutative diagram
i A Pr. N\
Ny & (G 1) — (Guz)

‘bmb\/‘l l@m l@m
T T

Therefore, the morphism 7o a: (@m,x)e — (@m’x)d satisfies the relation @™o (ioa) =
(i o a)™ o ®™. From Remark 1.11 (which is also valid over A) it then follows that
10« is a group homomorphism, and this proves that A is a formal subtorus of M.
Finally, the implications (a) = (b) = (c) are clear. O

3.3 Remark. It turns out that the condition that A is “compatible” with ® is very
strong. In [11] it is shown that the above lemma is also true if we replace the
assumption that N is formally smooth over A by the weaker condition that N is flat
over A. We will use this stronger result, which allows us to formulate the main results

of this chapter without restrictive smoothness conditions.

3.4 Lemma. Let k,WW, M, ® A, m and 7 be as in the previous lemma, and let N be
an irreducible closed formal subscheme of My which is flat over A. The following
properties are equivalent.

(a) N =T-N'is the translate of a formal subtorus N C M over an irreducible
closed formal subscheme ¥, flat over A, contained in the p™-torsion subgroup My [p"|
for some n > 0.

(b) There is a (generally non-primitive) Galois submodule Y C X*(M) such
that N is an irreducible component of N'(Y'),.

(c) There are integers k,1 > 1 such that the morphism ®*+0m| - A7 — M
factors through (®*™[)™): N — MS\TW).

k+l)

Proof. Again the implications (a) = (b) = (c) are clear. Assume that (c) holds, and
let A" be the image of ®"™|,,. Then A" is mapped into (N")(™) under ®*™: MS(Z) N

k+1
ME\T . By the previous lemma (here we use the stronger version of the lemma
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which is proved in [11]) it follows that A is a formal subtorus of M), compatible
with ®™. From the description of ®™ over A it readily follows that

(6™)7 (NG) € Mylp™) - A%

hence also

N g (¢lm)—1(./\/'l) g MA[plm] 'Nl.

Because we assumed N to be irreducible we conclude that (a) holds. O

3.5 At this point, let us set up the situation that we will study the rest of this chap-
ter. As before, A, = Ay1, (n > 3) denotes the fine moduli scheme over Spec(Z[1/n])
of principally polarized g-dimensional abelian varieties with a Jacobi level n struc-
ture. We consider a closed, absolutely irreducible algebraic subvariety Z of A, ® F,
where F'is a number field.

Next we introduce models in mixed characteristic. So, let p be a finite prime of F'
with residue field « of characteristic p > 0, with p { n. Write Ay = Ag1, ® O, and
define Z — A, as the Zariski closure of Z inside .A,. We write Z< ./Zl\g for the formal
completion along the ordinary locus in characteristic p, and for a closed ordinary point
z € (Z2Qk(p))°, let 3, — A, over & = Spf(A) (with A = W(k(2)) @w(xe)) 6,,)
be the formal completion at x. Notice that here ./Zl\g and A, are defined as formal
completions of the scheme A, , ® 6,,, cf. 1.19.

If we want to indicate the dependence on p, then we use notations such as Z;
and 3y ;.

3.6 Definition. We say that Z is formally linear at the closed point x € (Z®k(p))° if
3. is a formal subtorus of 2. If all irreducible components of 3, have the properties
described in Lemma 3.4 (with respect to A, and ®c,,) then we say that Z is formally
quasi-linear at x.

If 3, has at least one irreducible component which is a formal subtorus of 2,
(respectively the translate of a formal subtorus over a torsion point) then we say that

Z has formally linear (respectively formally quasi-linear) components at x.

3.7 Definition. Let X be an abelian variety of CM-type, defined over a number field
K. If p is a finite prime of K then we say that X is canonical at p if there exists an

abelian scheme A, over Spec(Ok ) with generic fibre X and ordinary special fibre
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X, ® k(p), such that &}, is the canonical lifting of &}, ® k(). We say that a CM-point

t € Ay1,,(K) is canonical at p if the corresponding abelian variety has this property.

3.8 Suppose that Z has formally quasi-linear components at the closed ordinary
point x. Let R be a complete local algebra which is finite and flat over A, and let
t € 3,(R) be a torsion point. The formal abelian scheme over Spf(R) corresponding
to t is algebraizable, so we get an abelian scheme X = X, over Spec(R), and # extends
to a section t € Z(R). It follows from Lemma 1.15 that X" is of CM-type.

Let 7 be the collection of all points £ € 3:(R), where R ranges over all complete
local domains, finite and flat over A, and f is a torsion point of 3,(R). Let T be
the collection of corresponding points t € Z(R). We claim that 7 is Zariski dense in
Z. To see this, write Z' C Z for the Zariski closure of 7. By assumption, there is
an irreducible component € C 3, which is the translate of a formal subtorus of 2,
over a torsion point. From the definition of the set 7 we see that € is contained in
the formal completion of Z’ at x. The claim follows by a dimension argument: Z’
and Z are flat over Spec(@p) of relative dimensions d’ < d. Then the closed fibres
Z'® k(p) and Z ® k(p) are equidimensional of dimension d’ and d respectively, and
€ C (2') 1z} implies that d' = d. Since Z ® Q(@p) is irreducible, the generic fibre of
Z"is equal to Z ® Q(@p), and by definition of Z this implies that Z' = Z.

Let @ = Q(R) denote the quotient field of a complete domain R as above, then
we have a collection 7" of CM-points ¢ € Z(Q), corresponding to the characteristic
zero fibres X, of the abelian schemes X;. From the fact that 7 is Zariski dense in Z it
follows that 7" is dense in Z. Notice that the abelian varieties X; are all p-isogenous,
i.e., given two torsion points ¢ € 3,(R) and # € 3,(R’) in the collection 7, then over
a common field extension of Q(R) and Q(R') the abelian varieties X; and X, are
isogenous via an isogeny whose degree is a power of p. This is because X; and Xy
are CM-liftings of the same ordinary abelian variety in characteristic p.

Choose one of the points ¢ € T, and consider the corresponding abelian variety
X;. As X, is of CM-type, it is defined over some number field K; O F, which we
take large enough so that all endomorphisms of X; ® K, are defined over K;. The
endomorphism ring End(X;) is an order in End®(X;). It has a well-determined index
in a maximal order of End®(X;), which we call the conductor of End(X;), and which
we denote by f(X;).

Now choose a prime number £ # p, with the following properties:
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1. £ does not divide the conductor f(X;), i.e., End(X;) is “maximal at £7,

2. the prime ¢ splits completely in the endomorphism algebra End’(X,), i..,
End’(X,) ® Q is a product of algebras M,,(Qy).

Possibly after first replacing K; by a finite extension, X; has good reduction Xy
at all primes [ above £. The fact that £ splits completely in EndO(Xt) implies that
the reduction is ordinary (using [64, Lemme 5]). By Lemma 1.15, X; is isogenous
to the canonical lifting of X;, so End’(X;) = End’(X;,). The conductors of the
endomorphism rings can only differ by an /-power, see [49, Lemma 2.1], and it then
follows from the first condition on ¢ that End(X;) = End(X;). We conclude that X;
is canonical at all primes of K; above /.

As remarked above, all abelian varieties X; with ¢t € T are p-isogenous. Therefore,
the conditions on ¢ do not depend on the chosen ¢, and our conclusion is valid for all
X, simultaneously. This shows that if Z is formally quasi-linear at an ordinary point
z in characteristic p, then there is a different characteristic £ and a Zariski dense
collection T" of CM-points t € Z(K;) such that each X is canonical at all primes [ of
K, above /.

Conversely, we will now show that this last property implies that Z has formally
linear components at some of its ordinary points in prime characteristic. First we

need two lemmas.

3.9 Lemma. Let O be a complete discrete valuation ring, and write & = Spf(@).
Let f: X — & and g: %)) — G be G-formal schemes which are formally reduced,
noetherian and adic, flat and of finite type over &. Suppose the associated reduced
schemes X,eq and Yreq are equidimensional, with dim(X,eq) = dim(Yreq) = d. Let
p: X — ) be a finite G-morphism. Then for every irreducible component € C X, the

image p(€) C 9 (in the sense of formal schemes) is an irreducible component of ).

Proof. Replacing X by the irreducible component € and g) by an irreducible compo-
nent containing p(¢€), we may assume X and ) to be irreducible. The image p(X) C
is defined by the coherent sheaf of ideals J = Ker(Ogy — p.Ox). Let A = Annp, (J)
be the annihilator sheaf of the Ogy-module J, which is a coherent ideal by [27, 0y,
5.3.10]. Write 2 C 9) for the closed formal subscheme defined by A. The assumption
that ) is formally reduced implies that 2 = p(X) U . In fact, this immediately
follows from the remark that in a reduced ring R we have I N Anng (/) = (0) for all
ideals 1.
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Suppose p(X) # %), then there exists an affine open formal subscheme { =
Spf(A) C 9 such that J(M) = J C A is not the zero ideal. We are done if we
show that A(L) = Ann,4(J) is also not zero, for this would contradict the assumption
that Q) is irreducible.

The preimage p ' (i) is again affine (p being finite), say p~*(4) = Spf(B), where
A — B is continuous and finite. By assumption, A and B are flat over O. We claim
that A and B are equidimensional of dimension d+1. To see this, we argue as follows.

Let 7 € O be a uniformizing element, then ¢*(7)Oy is a defining ideal of 9
(because g is of finite type, hence adic). It follows that $feq = Spec(A/rad(m)). Let
m C A be a maximal ideal. Using the flatness of A over 6, the equidimensionality
of Yrea and [34, Theorem 15.1] we see that

dim(Ay) = dim(O) + dim(Ay, ®5 O/(7)) = 1 + dim((A/rad(7))m) = 1 +d.

For the ring B, the argument is similar.
We conclude that the morphism Spec(B) — Spec(A) is a finite morphism between
(reduced) noetherian schemes, both of equidimension d + 1. The image, which is

Spec(A/I) C Spec(A), is a union of irreducible components of Spec(A). Therefore,

if q1,...,qx are the minimal prime ideals of A (taken in a suitable order), we have
I =qiN...Nq,. The assumption that I # (0) = nil(A) implies that » < k. Therefore,
Anny(J) =¢qre1 N ... N g # (0), and this is what we wanted to prove. O

3.10 Lemma. Let O be a complete discrete valuation ring, and write S = Spec(@),
G = Spf(@). Let f: X — S be an S-scheme, flat and of finite type over S. Write
f: ¥ = & for the formal completion of X along its closed fibre. Let R be a complete
local domain which is finite and flat over O, and let t: Spec(R) — X be an S-
morphism. Write : Spf(R) — X for the induced &G-morphism. Assume t maps
the generic point of Spec(R) into the regular locus of X. Then there is a unique

irreducible component € C X such that t factors through €.

Proof. Let U = Spec(A) C X be an affine open subscheme such that ¢ factors
through U. Write p C A for the kernel of t*: A — R. The assumption that ¢ maps
the generic point of Spec(R) to the regular locus of X implies that the local ring A,
is regular. Let 7 € O be a uniformizing element, and let A denote the completion of
A for the (7)-adic topology.

Since R is a finite module over @, this is also the case for A/p C R, which therefore
is complete and separated for the (m)-adic topology ([34, Theorem 8.7]). It follows
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that A/p = A\/ple\, and we have a flat homomorphism of local rings A4, — A\pg.
Write m = pA, and n = ]JA\p ; for the maximal ideals. Clearly, n is generated by the
image of m, and (A,)/m = k(p) = (A\pg)/n. Applying [34, Theorem 15.1] we see that

~

dim(4,) = dim(4, ), hence

dimy) n/n? < dim,) m/m? = dim(4,) = dim(4 7).
We conclude that A\p 7 s a regular local ring.

Let q1,...,qx be the minimal prime ideals of A. If ¢ factors through more than
one irreducible component of X, then there are at least two minimal primes ¢; # q;,
which are contained in p;l\. Since the prime ideals iil A\p 7 are in bijfif:tive, inclusion-
preserving correspondence with the prime ideals of A contained in pA, it follows that
there is more than one minimal prime in A\p 7- This contradicts the regularity of this
ring. U

3.11 Proposition. Let Z, p, Z etc. be as in 3.5. Suppose there is a collection T of
CM-points t € Z(K;) (K; a number field containing F') which is Zariski dense in Z
(over F). Also suppose that each X, is canonical at some prime ¢ of K; above p.
Then there is a non-empty union U of irreducible components of (£ ® k(p))° such

that Z has formally linear components at all closed points © € U.

Proof. For each ¢, choose a prime g of K; above p such that X; is canonical at
q. Write Rq = W(k(q)) Qw (k) @p, then X, gives rise to an R,-valued point
tq: Spec(Rq) — Z, corresponding to the abelian scheme X}, over R,.

Let N = Plog (#x(p)). The automorphism o of W (x(q)) lifts to an automor-

phism 7 of R,. Since &4 is the canonical lifting of X, ; ® £(q), the morphism
Frob™: X,q @ k(q) — (Xiq ® r(q))®")

lifts to a morphism Fy: &, — Xt(,;) over Spec(R,). We consider this as a point
F, € Ts0g°(R,), where Zsog = Zsog(p™?). Define Y C Zsog® as the Zariski closure
over Spec(@p) of these points.

For the projection maps pr;: Zsog® — Aj we have pr, (F}) = tq and pry(F}) = tqo7,
and since the points #, (hence also the points ¢, 07) are Zariski dense in Z° = ZNAjp,
it follows that pr; (i € {1,2}) restricts to a finite surjective morphism pr;: Y — Z°.
Possibly after replacing the collection of CM-points T by a subcollection 7" (which is
still dense in Z), and replacing ) by the Zariski closure of the points F; with ¢t € T”,
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we may assume that, moreover, every irreducible component of ) maps surjectively
to an irreducible component of Z°.

Write & = k(p). By construction, Y and Z° are flat over Spec(@,,) and, as
remarked above, the projections pr; are finite. The closed fibres ) and Z; are
therefore equidimensional of the same dimension, and every irreducible component
of )V maps surjectively to an irreducible component of Zp.

We have seen before (§2) that there is a disjoint union of irreducible components
T C Isogy, classifying the Nth power of Frobenius. Then Y, = Y, U Y,/, where )
and Y; are unions of connected components of Y, chosen such that V), C 7, and
Vi NIy = 0. Now pry ;2 I, — Aj ® k is an isomorphism and (by our choice of N)
the composition pr, o (prl‘I)_l: A; ® k — Ap ® k is the identity on the underlying
topological space. The image of )} under both projections to Z? is therefore the
same; call it ZY' C Zp. It is a union of irreducible components of Z;, which is
non-empty because the special fibre of every F; factors through ).

Next we look at formal completions. Write )7, 57\’ and Z for the formal completions
of Y, Y, Z along Vi, ), and Z respectively. Notice that these formal schemes are
formally reduced, noetherian and adic, flat and of finite type over Spf (@p), since )
and Z° are excellent schemes (being of finite type over a complete local ring) with
the corresponding properties.

Since Y, and Yy are disjoint, )/7\’ is an open and closed formal subscheme of )7 Let
Z= Uae Aéa be the decomposition of Z into irreducible components. The projections
pi;: V' — Z are finite (using [27, III, Corollaire 4.8.4]), so by Lemma 3.9 we have

~ ~

ﬁr11 V' Uaea; Za; f)\rz(y') = Uqaea, Za

for some A; C A, A; C A. Proposition 2.3 shows that the composition

~

13\1‘2 © (13\1‘1)71: Uae4, Za — UaEAQZa

is the restriction of ®% .

At this point we apply Lemma 3.10. We take ¢ € T' (the subcollection with which
we replaced the original T") corresponding to a point in the regular locus of Z. This is
certainly possible, since the collection 7' is Zariski dense in Z. We conclude that there
is a unique component é\a(t) C Z with a(t) € Ay such that fq: Spf(R,) — Z factors
through Z\a(t). Let j}a(t) be the unique irreducible component with pr;: ?a(t) RauS

Za)- Since tq = pr; o Fy, the section Ey: Spf(Rq) — Y' factors through j/\a(t). The
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image of ﬁa(t) under pr, is some irreducible component é\ar(t) through which pr, o E,
factors. But pr, o F} = 7o ty: SPf(Ry) — z and, 7 being an automorphism of R, we
see that fq factors through Z\a:(t). By assumption we have Z\a(t) = Z\a:(t).

Let = be a closed point on the component é\a(t). The formal completion of é\a(t)
at x is the union of a number of irreducible components, say €, ..., &, of 3,. If m is
a suitable multiple of both N and Plog (#k(z)) then ®7 induces a finite morphism

o7 - A, — A, of formal schemes, and it follows from the above that this maps

U;€; C A, onto itself. Then @7 acts by permutations on the set {€,..., &, }, so
after replacing m by a suitable multiple it preserves all €;. By Lemma 3.2 these

irreducible components €; C 3, are therefore formal subtori of 2. Il

3.12 Corollary. Let Z, p, Z = Z, be as in 3.5 and suppose Z, has formally quasi-
linear components at some closed ordinary point x. Then there exist infinitely many

~

primes | of O such that the model Z; of Z over Spec(O)) is formally linear at all

closed points y in a non-empty open subset of (Z; ® x(1))°.

Proof. We start as in 3.8. We have seen that for primes ¢ satisfying conditions 1.
and 2. on p. 56, there is a Zariski dense collection 7" of CM-points ¢ € Z(K;) such
that each X; is canonical at all primes of K; above /.

We consider primes [ of Op such that the residue characteristic £ satisfies these
conditions 1. and 2., and such that no irreducible component of Z;® ([) is contained
in the singular locus of Z;. This last condition excludes only finitely many primes
[. The model Z; being an excellent scheme, it follows that for generic y € Z; ® x([),
the completed local ring O, of Z; at y is regular. The corollary now results from the

previous proposition and the remark that (Zi);y) is irreducible if Oy is regular. [

3.13 Remark. A posteriori we will get a much stronger conclusion, see 5.3

54 A theorem of Noot

4.1 Our main motivation for introducing the concept of formal linearity is its relation
to Shimura varieties, or rather (using the terminology introduced in Chapter I) to
subvarieties of A, i, of Hodge type. The first main result in this direction was
established in the PhD thesis of Noot ([43], see also [44]). Roughly speaking it says

that subvarieties of Shimura type are “almost everywhere” formally linear. In this

61



Chapter Ill. Formal linearity, special points and Shimura varieties

section we give a precise formulation of Noot’s theorem and we deduce some linearity

properties of subvarieties of Hodge and of Shimura type.

4.2 Let (M, X)) be a Shimura datum giving rise to a Shimura variety of Hodge
type. This means that there exists a closed immersion of Shimura data i: (M, X)) <

(CSpy,, ﬁ;t) for some g > 1. We fix such a closed immersion. Let
K,={g€ CSpQQ(Z) lg=1 (mod n)} C CSpy,(Ay),

and let K/, = i~*(K,) C M(A;). One can show that, for a given prime number p,
there exists an integer n with p { n such that the morphism i(x: x,): Shi: (M, Xn) —
Sh, (CSpyy, $7) is a closed immersion ([44, Lemma 3.3]. Here i(x; k) is defined over
the reflex field E(M, Xj/) of the datum (M, X).

Fix p and choose n accordingly. Let F' be a finite field extension of E(M, X;,),
and let p be a prime of F' lying over p. Let S be an irreducible component of
Shi: (M, Xp)r (which, by definition, is therefore a subvariety of Shimura type of
Shi, (CSPag, HE)r = Ag1n ® F), and let S be the model over Spec(O,) obtained by
taking the Zariski closure of S in A,. We assume n and F' to be large enough such
that S is non-singular and geometrically irreducible.

Finally, let & be an algebraic closure of x(p); write W(&) for its ring of Witt
vectors. We write W2 for the completion of the integral closure of W (%) in an
algebraic closure of its field of fractions.

4.3 Theorem. (Noot, [43, Proposition 2.2.3] and [44, Theorem 3.7]) (i) Using
the above notations, suppose that s € S(O,) is an Oyp-valued point of S such that
the corresponding abelian scheme X; — Spec(O,) has good and ordinary reduction
X, ® k(p). Let z € S(k(p))° be the closed point corresponding to X, ® k(p), and let
&, — A, be the formal completion of S at x. Since S is a regular scheme there is
a unique irreducible component € C &, such that §: Spf(@p) — &, is a section of
¢. Then ¢(§)@p Wabs is the translate of a formal subtorus of A,Q@W? over a torsion
point.

(ii) For F sufficiently large and p outside a finite collection of prime numbers, S
is formally linear at all its non-singular points x € S(k(p))°.

For a proof of this theorem we refer to [43] and [44].
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4.4 Corollary. (i) Let S — A1, ® F' be a subvariety of Shimura type, and let S, be
its Zariski closure inside Ag 1, ® @p. Let x be a closed point of (S, ® k(p))°. Then S,
is formally quasi-linear at x. For p outside a finite set X of primes of O, the formal
completion &, of S, at x is a union of formal subtori of . If S is non-singular then
we can choose the (finite) set 3 such that S, for p ¢ ¥ is formally linear at all closed
ordinary points = € (S, ® k(p))°.

(ii) Let S — Ay 1, ® F' be a subvariety of Hodge type, and let S, and x be as in
(i). For p outside a finite set of primes of O, the formal completion &, is a union

of formal subtori of 2.

Proof. (i) There is a Shimura datum (M, X;;) as in 4.2 such that S is an irreducible
component of Shg: (M, Xy )p. Let ' C F' be a finite field extension, m € Zx,
an integer with p { m, and let S" < Ag1mn ® F' be an irreducible component of
Shg: (M, Xyr)p which maps to S ® F' under the morphism Sh(g: = x:y. Choose a
prime p’ of Op with p' N Op = p, and write S’ for the model of S’ over O,. The
morphism f = fuunn): Agimn — Ag1,n is a quotient morphism for the action of a
finite group, and &' is an irreducible component of the pull-back f*(S ® Oy ).

We claim that we can choose F' and m so large that Noot’s theorem applies for
all points 2’ € (8§’ ® k(p'))° in the preimage of z and all irreducible components of
S, . This is what we do: first we choose m and F' so large that S’ — Ay ® F'
is non-singular, such that all points z’ € S’ ® k(p') in the preimage of x are rational
over x(p') and such that all irreducible components of &', over W2 are defined over
@p:. After further enlarging F” these properties are maintained and every irreducible
component € C &', (which is flat over @pr) has a section §: Spf(ép/) — € which
is obtained by completion from a section s: Spec(Oy) — Ag1mn. Applying Noot’s
theorem, the first two statements of (i) now readily follow.

The last assertion of (i) then follows from the remark that if S is non-singular,
then there exists a finite set ¥ of primes such that S, ® x(p) is non-singular for
all p ¢ ¥; here we use some results of [27, Ch. IV, §17], in particular (17.7.11)(ii),
(17.8.2) and (17.15.2).

(ii) If S — Ag1n ® F is a subvariety of Hodge type then we can find m and
F C F' as above, n € CSpy,(Ay), and a subvariety S' < Ay, ., ® F' of Shimura
type, such that K,,,, C nK,n~! and such that S®F’ is the image of S’ under the Hecke
correspondence T,: Ag1mn — Ag1n (which in this case is a morphism). At all but

finitely many primes p’ of Op+, the morphism 7, has a natural extension to a morphism
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Tn: Agimn — Agi,n on models over @p:, which induces a group homomorphism on
completions at closed ordinary points in characteristic p. Statement (ii) now follows
directly from (i). O

§b Formal linearity and Shimura varieties of Hodge type

5.1 The main result of this section is a converse to Noot’s theorem discussed in the
previous section. Together with this and the yoga on formal linearity that we carried
out in Section 3, it provides a characterization of subvarieties of A, ,, of Hodge type

in terms of formal linearity.

5.2 Theorem. Let Z — Ay, ® F' be an irreducible algebraic subvariety of the
moduli space Ay 1, defined over a number field F'. Suppose there is a prime p of Op
such that the model Z of Z (as in Section 3.5) has formally quasi-linear components
at some closed ordinary point x € (Z ® x(p))°. Then Z is of Hodge type, i.e., every
irreducible component of Z @F C is a subvariety of Hodge type.

Proof. We divide the proof in a number of steps.

Step 1. First we reduce to the case that Z is absolutely irreducible and Z is
formally linear at z. Fix a field embedding F' — C. It suffices to show that one of
the irreducible components of Z¢ = Z @ C is of Hodge type. This is because the
class of subvarieties of Hodge type is stable under the action of Gal(Q/Q) on the
(non-connected) variety Ay, ® C. To see this, let S C Ay;, ® C be a subvariety of
Hodge type, and let 7 € Gal(Q/Q). By Proposition 1.3.12 there is a subvariety S’ of
Shimura type, and a Hecke correspondence 7, such that S is an irreducible component
of T,(S"). Then S is a component of 7, (S’ (M), since the Hecke correspondences
are defined over the reflex field, which for A, is the field Q. It therefore suffices to
see that S'(" is again of Shimura type. This follows easily from the main results on
conjugation of Shimura varieties, which are discussed in [36, Section II.4].!

Choose a finite extension F' of F such that every irreducible component 7' —
Agin® F' of Z®p F' is absolutely irreducible. There exists a component Z' and a
prime p’ of Op above p, such that the model Z’ of Z' over Spec(@p/) has formally
linear components at some point z’ in the preimage of z. By the preceding remarks

it suffices to prove the theorem for Z’. However, since Z’ is absolutely irreducible, we

Tt is possible to carry out Step 1 without using the results on conjugation of Shimura varieties.
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can apply Corollary 3.12, and it follows that we may even assume that Z’ is formally
linear at the point z'.

From now on we may therefore assume that Z is absolutely irreducible and that
Z is formally linear at z.

Step 2. Write A = W QW (x(p)) @p, where W denotes the ring of Witt vectors of
an algebraic closure of k(z). For the rest of the proof we fix compatible embeddings
A~ Cand F — C.

Using these embeddings, let z&*" € Z¢ be the moduli point of the canonical lifting
of x. As in Chapter Il, we compare Z¢ with the smallest subvariety of Hodge type
containing it, which we call S,x(Y;7) (see Section 1.3.15). Here M C CSp,, q is the
generic Mumford-Tate group on Z¢ and Y,} is a M (R)-conjugacy class in Hom(S, Mg).
If there is no risk of confusion we write Y = Y,;, S = S, (Y;r). Let ug: Y — S be
the uniformization map, and let Z be a connected component of ug 5 (Zc). We assume
that the integer n of the level structure with which we are working, is large enough
such that the conditions formulated in Section 11.2.2 are satisfied. For this we may
have to pass to finite coverings of Z¢ and S, but it suffices to prove the theorem after
such modifications. We use the notations Cov(ug) and Cov(uz) as in Chapter Il.

Let C C 7 be an irreducible (analytic) component and choose a point ZF" € C
with u(Z@") = z#". We define a subgroup m¢ C m(Z¢, z&") by

e ={a € m(Zc,z¢") | aC =C}.

Let n: Z" = Z¢ — Z¢ be the normalization and let uzn: Z" — Z" be a universal
covering. We can choose points ¢ € Zn and ¢ € Z" with uzn(C) = ¢ and n({) = 3"
There is a well-determined morphism 7i: Z" — Z with ii(¢) = #&" and ﬁ(Z”) =C.

With these choices and notations we are in the situation of the first diagram on
page 26 and we can apply Lemma [1.2.4.

Step 3. Let ﬁ;/ be the compact dual of §,. This can be described as the flag
variety of g-dimensional subspaces of C* which are totally isotropic for the (standard)
symplectic form ).

Suppose ay, . ..,a,,C1,-.-,C, is a basis for C* such that F = Span{cy,...,c,} is
totally isotropic. Then $); = Spy, o/ P(F), where P(F) is the stabilizer of F, which
is a parabolic subgroup of Sp,,c. Let P(F)~ C Spy,c be the parabolic subgroup
opposite to P(F), and define U as the image of P(F)~ in §,. It is a Zariski open

subset of ﬁ;’, whose complement D, = fj;/ \ U is a divisor.

65



Chapter Ill. Formal linearity, special points and Shimura varieties

In terms of flags, U is the open part of ﬁ;/ corresponding to flags of the form

Fr = Span({c; + ZTij Qi }j=1,.m)

i=1

where T is a g X g matrix such that Fr is totally isotropic. (If ¢ has the standard form
with respect to the basis ai,...,a4,c1,...,c4 then this is equivalent to the condition
that T is symmetric. However, we do not want to assume that ) has a special
form on the given basis.) The coeflicients t;; of the matrix 7" are well-determined
regular functions on U and can in fact be described as global sections of the line
bundle £ = O(kD4,) for some k£ > 1 (a direct computation shows that one can take
k = 1). Notice that there is a natural action of Spy,  on £, which makes it into a
Spa, c-bundle over §/.

Step 4. Similar to the discussion in Section 1.12, write A = A, QA = Spf(A),
with A = Ag;; —1]/(gi; — gji). Our assumption that Z is formally linear at = implies
that 3 = 3,®A can be described as 3 = Spf(A/a) — A, where a C A is an ideal
generated by elements of the form ([T;; ¢;;") — 1, with my; € Z,,.

Let K be the quotient field of A. We have an isomorphism

K[/ (7ij — 736) == Klai; — 11/ (g5 — 1) »

given by 7;; — log(gi;). Under this isomorphism the element ;. m;;7;; maps to
> i mijlog(gij) = log ([T q;;"), which, up to a unit in Kfg; — 1]/(g;; — ¢;), is
mij

equal to ([];; ;") — 1. Using the chosen embedding of A into C, we obtain a ring

homomorphism

=

A = Mai; —11/(ai — @;1) — Ac = Clrys]/ (75 — 751)

such that the ideal ac = a - A¢ is generated by elements of the form Zij MijTij
where the coefficients m;; (as above) are now viewed as elements of C, via the chosen
embedding Z, C A — C.

Pulling back the universal formal abelian scheme X — 2 via the continuous
homomorphism A — Ac yields a formal abelian scheme X¢ — d¢ = Spf(Ac¢) for
which we have a description of the de Rham cohomology in terms of the elements
7;5- Namely, there is a horizontal basis a1, ..., ag,c1,..., ¢y for the Ac-module He =
Hir (¥Xc/Uc) such that the Hodge flag F* is spanned by the elements ¢; + >, 7;a;.
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The formal abelian scheme X — 2 is algebraizable, i.e., it is the formal completion
along the closed fibre of an abelian scheme X — Spec(A). Write Xz — Spec(Ac) for
the pull-back via A — Ag; its formal completion along the closed fibre is X¢ — .
The corresponding morphism Spec(Ac) — Ay1.,®@C sends the point with coordinates
7;; = 0 to the point 2", and it follows from the given description of the de Rham
cohomology that X¢ — 2¢ is the universal deformation of Xg*. We thus have an
isomorphism of Spf(Ac¢) with the formal completion of Ay, ® C at zE".

The assumption that Z is formally linear at x implies that the point z lies in the
locus where the structure morphism Z5 — Spec(A) is smooth. Since this is an open
locus, the same is true for the point %", and by the results of [27, Chap. IV, §17]
it follows that z@" is a non-singular point of Z¢. We claim that the isomorphism of

Spf(Ac) with the formal completion of Ay, ® C at z&" restricts to an isomorphism
3¢ = Spf(Ac/ac) == (Zc) jfagny € (Agin @ C)jfagny -
First we remark that the composite morphism
Spec(Ac/ac) < Spec(Ac) = Ag1, ®C

factors through Zc. It follows that the closed formal subscheme Spf(Ac/ac) <
(Ag1n ® C)geany is contained in (Zc)/{zeeny. The point 28" € Z¢ being non-singular,
the claim then follows from the fact that the dimensions of Ac/ac and Z¢ are equal.

Since z@" is a regular point of Z¢, the covering maps u: ﬁ_j]t —- Ay, ® C and

uzic: C = Zc¢ induce isomorphisms
@ (97) ggony = (Agin @ O)pageny and s Cyageny = (Zc) pageny -

The choice of the point z&" € C C Z gives a symplectic basis for H! (X" Q), which
we use to identify H! (X" C) with C?*. The comparison isomorphism between de
Rham and singular cohomology yields an isomorphism H' (X", C) =% H¢ ®ac ev, C,
where evg: Ac — C is the evaluation map at zero (i.e., the map with 7;; — 0). In
this way we obtain a basis of elements ay,...,a,4,¢1,...,¢, € C¥ such that F =
Span{ci, ..., ¢y} is a totally isotropic subspace. As in Step 3 we have global sections
ti; € I'($,, L), which extend the regular functions 7;; on Ac. (Notice that we get the
condition 7' = T"* on the matrix T = (t;;), since the polarization form is the standard

one with respect to the elements ay,...,a4,¢1,...,¢,.)
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The situation now is as follows. The open part U of 53;/ can be described as
U= Spec(C[tZ]]/(t” — tﬂ)) The point

i e (CnNU)C(ZNU)CU
has coordinates ¢;; = 0, and in the formal completion at Z&", the locus C is given by
linear equations »_,;; mi;t;; = 0. We define a subspace I C I'($,, £) by

I={sel(%,,L)|sc=0}.

Notice that all sections >, mi;ti; € I'(9,, £) (where the m;; € C are as before) are
in I, since they define holomorphic functions on C with vanishing Taylor expansion
at the point Z&". If V(I) denotes the zero locus of I then it follows that C is an
irreducible component of V' (I) N §,,.

We have a homomorphism m1(Z",{) — M9 (Q) C Spy,(Q) induced from the
composition Z" — Zc < S. This gives an action of m(Z", () on ['(,, £). Since £
is a Spy, c-bundle, the fact that 7,(Z", () maps into the subgroup 7¢ of 7 (Z¢c, &™)
(by Lemma I1.2.4) implies that the subspace I C T'($);, £) is stable under the action of
m1(Z™, (). Then I is also stable under the algebraic envelope of the image of 7 (2", ()
in GL(['(9,, £)). At this point we can apply André’s result, see Theorem 1.2.4, from
which we conclude that M9 is equal to the connected algebraic monodromy group
H, of the abelian scheme over Z™ (obtained by pulling back the abelian scheme over
Z¢). The image of m(Z™,() is therefore Zariski dense in M3 (cf. the remark in
the penultimate paragraph of the proof of Theorem 11.3.1) and I is stable under the
action of M (R). Consequently, V(I) N $, is stable under M (R)", and since this
last group acts transitively on Y C §, we conclude that C =Y, hence Z¢ = S. This
proves that Z¢ is of Hodge type. O

5.3 Conclusion. In summary, we have proved that subvarieties S < Ag;, ® F of
Hodge type are characterized by their property of being “formally linear” in a suitable
sense. More precisely, if S is of Hodge type then we have seen in 4.4 that for almost
all primes p of Op, the model S of S over Spec(ép) is a union of formally linear
components at all closed ordinary points. If S is of Shimura type or if S is non-singular

then it is formally linear at all its ordinary points in characteristic p (excluding finitely

many p).
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Conversely, if S is “formally linear” in the weaker sense that & has formally quasi-

linear components at some closed ordinary point, then the previous theorem shows,

via the results of Section 3, that S is of Hodge type.
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Chapter IV

Some applications

§1 Qort’s conjecture

1.1 In our study of subvarieties Z < A/, of Hodge type in the previous two
chapters, we have seen that an important role is played by the CM-points. It then
seems natural to ask whether subvarieties of Hodge type are characterized by the
property that the CM-points on them are dense. It is a conjecture of Oort that
this is the case. Before we give a precise statement, let us remark that one could
formulate the conjecture for general Shimura varieties (in which case we would use the
terminology “special points” rather than “CM-points”). Here, however, we restrict

our attention to moduli spaces of abelian varieties.

1.2 Conjecture. (Oort) Let Z — A,1, ® C be an irreducible algebraic subvariety
such that the CM-points on Z are dense for the Zariski topology. Then Z is a
subvariety of Hodge type, in the sense of Definition I.3.8.

1.3 Remark. In [1, Chapter X, §4], a number of problems are suggested, the first
of which is equivalent to the above conjecture for dim(Z) = 1. As mentioned, the
example discussed in 11.3.3 provides a counterexample to loc. cit., Problems 2 and 3.

Let Z be a subvariety as in the conjecture. Then Z is defined over a number field,
since it is the Zariski closure of a set of points which are rational over Q (even over
the union Q°™ C Q of all CM-subfields). It follows from the results of the previous
chapter (in particular Corollary I11.3.11 and Theorem I11.5.2) that the conjecture is

equivalent to the following statement.

1.4 Conjecture. (Variant of 1.2) Let F' be a number field, and let Z — Ay1, ® F

be an irreducible algebraic subvariety such that the CM-points on Z are dense for the
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Zariski topology. Then there is a collection T of CM-points t € Z(K;) (K; a number
field containing F') and a prime number p such that the collection T' is Zariski dense

in Z, and such that every X, is canonical at a prime q; of K; lying over p.

Given an abelian variety X; of CM-type over a number field K; we know that
X, is canonical at infinitely many primes of K;. However, it is not true that for any
infinite collection of CM-points ¢t € Ay(K;) there is always a prime number p such
that infinitely many of the abelian varieties X; are canonical at a prime q; above p.
For example, let £;,&s, ... be elliptic curves of CM-type such that the conductor of
End(&;) (by which we mean the index of End(&;) in the ring of integers of End®(&;)) is
divisible by the first ¢ rational prime numbers. By [49, Lemma 2.2] we conclude that
for every given prime number p, there are only finitely many &; which are canonical
at a prime above p.

Of course this does not provide a counterexample to the conjecture: the Zariski
closure of our collection of CM-points &; is the whole moduli space A; 3, (assuming

that the & were equipped with a level n structure), which is certainly of Hodge type.

1.5 In the proof of the next result we will use the Galois representation on the
{-torsion and on the Tate-/-module of an abelian variety X defined over a number
field. A lot of useful general theory can be found in [61], [53] and in the letters of
Serre to Ribet and Tate [58], [59]; part of the material of these letters is given in
Chi’s paper [10]. Here we only record some facts needed further on.

Let X be an abelian variety over a number field F', and write p;: Gal(Q/F) —
Aut(T,X) and p,: Gal(Q/F) — Aut(X(Q)[¢]) for the Galois representation on its
Tate-/-module and its /-torsion respectively. We write G, for the algebraic envelope
of the image of p;. Its connected component of the identity is a reductive algebraic
group over (Qy containing the group Gy, - Id of homotheties. Its Lie algebra does not
change if we replace F' by a finite extension, but GG, itself may be non-connected and
may become smaller after such an extension.

Choose an embedding o: F' — C, and write V = H;(X,(C), Q) and V; = T;X ®,
Q. There is a natural comparison isomorphism V; 2 V ® Qy, and, by the results of
Deligne and Piatetski-Shapiro (see [19]), G, is an algebraic subgroup of MT(X,) ® Q.
The Mumford-Tate conjecture (stated in [41] and in a more refined version in [60])
asserts that the two groups are equal.

It is known that the representation of MT(X,) on V is defined by miniscule
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weights. By this we mean the following: first we write MT (X, )q as the almost direct
product of its center Z and a number of simple factors My,..., M,. Then every
irreducible submodule W C V4 decomposes as a tensor product W = x @ Wi (@) ®
-+ @ W,(w,), where x is a character of Z, and where W;(w;) is an irreducible M;-
module with highest weight w; (with respect to a chosen Borel subgroup of M;). The
representation V' is said to be defined by miniscule weights if all occurring weights
w; are miniscule in the sense of [7, Ch. VIII, §7, n°3].

An immediate consequence of the Mumford-Tate conjecture would be that the
representation of Gy on V; is also defined by miniscule weights. So far this has not
been proved in general. However, Zarhin proved it under the additional assumption
that X has ordinary reduction at a set of places of density 1; see [66, Theorem 4.2].

1.6 Lemma. Let K be an algebraically closed field of characteristic zero, let G be
a reductive algebraic group over K and let V' be a finite-dimensional representation
of G which is defined by miniscule weights. Write V = W @ --- @ Win  where
Wi, ..., W,, are mutually non-isomorphic irreducible representations of G. If w is a
weight of W; then it has multiplicity d; in the representation V. The total number of
different weights that occur in the representation V' is therefore equal to dim(W;) +

4 dim(W,).

Proof. Suppose g is a simple Lie algebra over K, w is a miniscule weight of g (with
respect to a chosen Cartan subalgebra) and W is an irreducible g-module with highest
weight . The lemma follows directly from the following two facts, proven in [7, Ch.
VIII, §7, n° 3]: (i) all weights of W have multiplicity 1, (ii) the Weyl group acts
transitively on the set of weights of W. O

1.7 Let X be defined over the number field F', and let v be a finite place of F'
such that X has good reduction at v. If £ v then p, is unramified at v. By the
choice of a place 7 of Q extending v we get a well-determined action of a Frobenius
element p,(Fry) € Aut(V,X). Alternatively, X having good reduction at v means
that it extends to an abelian scheme X, over Spec(O,), whose special fibre X, is an
abelian variety over the finite field x(v). Let m, be the Frobenius endomorphism of
X,, which acts on the Tate module 7;X,. Via the choice of the place v we get an
isomorphism T, X = T,X,, and the action of 7, on T;X obtained in this manner is

given by the element py(Fry).
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Associated to X, there is an algebraic torus 7, over QQ, called a Frobenius torus. As
a module under Gal(Q/Q), its character group X*(7,) is isomorphic to T, /Tors(T,),
where T', C @ is the subgroup generated by the eigenvalues of py(Fry). This descrip-
tion determines 7}, up to isomorphism. The choice of a place v as above induces an
injective homomorphism 7, ® Q; < G;. For more on Frobenius tori we refer to [10,
Section 3.

The following facts were proved by Serre (see [10]): (i) the rank of G, does not
depend on ¢, (ii) we can replace F' by a finite extension such that all groups G, and
all Frobenius tori 7, (for places v of good reduction) are connected, and (iii) after
replacing F' by such an extension, there is a Zariski open and dense subset U C G
such that if £t v and py(Fry) € U(Qy), then T, ® Q; is a maximal torus of G, (the set
of places v for which this holds thus has density 1).

1.8 Theorem. Let (X, \,0) be a principally polarized abelian variety with a Jacobi
level n structure, defined over a number field F'. Suppose that for some finite field
extension F' C F', the set

P°(F') = {finite places v of F' | X ® F’ has good and ordinary reduction at v}

has Dirichlet density 1. For each v € P°(F') with residue characteristic p, not dividing
n, let (X,, Ay, 8,) be the reduction at v, and let x3* € Ay 1, ® Q be the moduli point
of its canonical lifting. Define Z C Ay, ® Q as the Zariski closure of the set
{z¢* | v € P°(F),p, 1 n}. Then Z is a union of subvarieties of Hodge type; more
precisely:
Z5= U SO U {sy,..., s},
0€Gal(Q/Q)

where S < A, 1, ® Q is the smallest subvariety of Hodge type containing the moduli
point of (X, \,0) ®r Q for some embedding F — Q, and where si,...,s, (r € Z>)
are CM-points.

Proof. Suppose F' is a finite extension of F' such that P°(F") has Dirichlet density
1. Let F"” be a Galois extension of F’ of degree d, and write Q for the set of primes
of F' which split completely in F"/F'. Using the Cebotarev density theorem we see
that the set P°(F') N Q has Dirichlet density 1/d, which means that the function

Z N(p)™® + 1/d-log(s—1)

peEPO(FNQ
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extends to a holomorphic function on {s € C | Re(s) > 1}. If R is the set of primes
of F" lying over P°(F") N Q, then it it follows that the function

Y ONE) + log(s —1)

PER
also extends to a holomorphic function of s for Re(s) > 1. Clearly, R C P°(F"), and
almost all primes of P°(F")\ R have degree at least 2 over Q. It readily follows from
this that P°(F") has Dirichlet density 1.

The preceding remarks show that, in proving the theorem, we may replace F' by
a finite extension. We claim that, after such an extension, there exists an infinite
subset P’ C P°(F) and a prime p of Op such that each of the abelian varieties X"
with v € P’ is canonical at some prime ¢ above p. Before we prove this, let us show
how the result would follow from it.

So, suppose we have such a set P’, and write Z' C Z for the Zariski closure of the
corresponding set of CM-points {z{** | v € P’, p, 1 n}. It follows from Corollary I11.4.4
that almost all points 23 lie on U, cq.1@/q) S5 < Ay1n, S0 Zf@ C Zg is contained in
the union of UaeGal(@/@S(") and a finite number of CM-points. On the other hand,
from I11.3.11 and 111.5.2 we see that all irreducible components of Z' are of Hodge
type. Therefore, we are done if we show that the moduli point 2 of (X, A, ) lies on
Z'. This we can see as follows.

First we may replace P’ by an infinite subset such that its Zariski closure Z’ is
irreducible. Over some open part U = Spec(Z[1/N]) of Spec(Z), the point xr extends
to a section z: Spec(Or[1/N]) — Ay1,. We define Z' as the Zariski closure of Z’
inside Ay 1,,®Z[1/N]. Then we have an infinite collection P” = {v € Spec(Op[1/N]) |
v € P',p, 1 N} such that (by construction) every

T,: Spec(k(v)) = Ay, ® Z[1/N]

with v € P" factors through Z’. Because the collection P” is dense in Spec(Op[1/N])
it then follows that = factors through Z’, which means that xzr is a point of Z’. We
conclude that the theorem follows if we can construct a set P’ as above.

From now on we use the notations and results discussed in 1.5 up to 1.7 above.
We replace F by a finite extension such that P°(F’) has Dirichlet density 1 and such
that the groups G, and the Frobenius tori 7, are connected (for all £ and all places
v where X has good reduction). This implies that all endomorphisms of X ® Q and
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X, ® k(v) are defined over F and k(v), respectively. We write § = §(X) for the
conductor of the endomorphism ring End(X), i.e., the index of End(X) in a maximal
order of End®(X), and if X has good reduction at a place v of F' then we simply
write f, for the conductor of End(X,).

Suppose £ is a prime number and v is an element of P°(F) such that ¢t f, and
such that £ splits completely in the field Q(, )™ C Q generated by the eigenvalues
of m,. We claim that under these assumptions X" (which is defined over some
number field K D F)) is canonical at all primes A of K above ¢ (where we take K
large enough such that X" has good reduction at all primes of K). In fact, the

) norm

assumption that ¢ splits completely in Q(m, implies that the reduction Y, of
X" modulo A is ordinary (using [64, Lemme 5]) and since £ does not divide the
conductor of End(X$*"), the endomorphism rings of X" and Y are the same (see
Lemma 111.1.15), so X" is the canonical lifting of Y. Therefore, we are done if we

show that there are primes ¢ such that the set
Pe(l) = {v € P°(F) | £1f, and ¢ splits completely in the field Q(m, )"}

is infinite.

Suppose X' is an abelian variety which is F-isogenous to X, say by an isogeny
f: X — X' of degree d. For a place v where X and X' have good reductions X, and
X!, the associated fields Q(7(X,))"™ and Q(7(X)))"™ are naturally isomorphic
and there is an isogeny f,: X, — X| of degree d, cf. [25, Ch. I, Proposition 2.7]. It
follows that for all £, the sets P°(¢) associated to X and X' differ only by finitely many

elements. We may therefore assume that X = Y™ x ... x Y™ where Y1,...,Y, are
mutually non-isogenous simple abelian varieties over F' and my, ..., m, are positive
integers.

Choose a place v of F' and a place v of Q extending v, such that X has good
reduction at v and such that 7, ®Q, C GG, is a maximal torus for every ¢ # p,. Choose
a prime p with p # p, which splits completely in End’(X), i.e., End®(X) ® Q, is a
product of matrix algebras over Q,. Let Y be one of the simple factors Y;, let E be
the center of End’(Y), and let py,. .., p. be the primes of O above p. By the choices
we have made, End’(Y) ® Q, & M4(Q,)¢ with e = [E : Q]. The representation p, of
Gal(Q/F) on V,Y =T,Y ®;, Q, decomposes as

LY =vVie eV,
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where V;, ..., V, are mutually non-isomorphic and absolutely irreducible G),-modules
such that F acts on V; through its completion E,, = Q,. Write p, for the represen-
tationof G, on V; @ --- @ V,.

Let P,(t) = det(t - Id — p,(Fry) | Vi @ --- @ V.) be the characteristic polynomial
of p,(Frz), which has coefficients in Z. We define dy € Z as the discriminant of the
polynomial P,(t), and we put dx = dy, ---dy,. We observe that dx # 0. In fact,
the eigenvalues of f,(Fr;) are the elements w(m,) € Q,, where @ runs through the
set of weights (counted with multiplicities) of p, with respect to the maximal torus
T,®Q,. Since T), is generated by the element 7,, we have w(r,) = @'(m,) if and only
if w = w'. By Zarhin’s result [66, Theorem 4.2], the representation p, is defined by
miniscule weights, and using Lemma 1.6 we conclude that all eigenvalues of p,(Fry)
have multiplicity 1, hence dx # 0.

Next we consider prime numbers / satisfying the following conditions: (i) £ splits
completely in End’(X,), (ii) £ 1 dx - f(X). We claim that for every such ¢ the set
P°(¢) is infinite. To see this, consider the representation p, of Gal(Q/F) on X (Q)[¢],
and write v = p,(Fry) € Aut(X (Q)[(]) & GLy,(F,), where g = dim(X).

As above, let Y be one of the simple factors of X, and write vy for the restriction
of v to Y(Q)[£]. The assumption that ¢ { §(X) implies that End(Y") ® Z, is a maximal
order of End(Y) ® Q, which by (i) is isomorphic to M4(Q,)¢. Thus End(Y) ® Z, =
Mq4(Z,)¢, and we conclude from this that there exists a decomposition of the Tate
module (as a Zg-module with an action of Gal(Q/F) )

Y =T{® ---0T¢,

where T, is a free Z;module of rank 2 - dim(Y')/ed and T; ® Q is an absolutely
irreducible representation of Gy. The above argument shows that all eigenvalues of
Fry on (T, &---®T.) ®Q, have multiplicity 1. Moreover, assumption (i) on £ implies
that all these eigenvalues lie in Z;. Now

Y(@Q)[4 = (T, /¢Ty) & - - & (T /¢Te))?

and we assumed that £ 1 dx, so the 2dim(Y")/d different eigenvalues of Fr; are also dif-
ferent modulo £. It follows that vy € Aut(Y (Q)[¢]) = GLy dim(v)(F¢) is diagonalizable
over F, with eigenvalues all of multiplicity d.

Now we start working backwards. Suppose w is a place in the set P°(F'), and w

is an extension of w to Q, such that £ # p,, and p,(Frg) = 7. Since Aut(X (Q)[£])
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Chapter IV. Some applications

is finite and P°(F') has density 1, there are infinitely many such places w, by the
Cebotarev density theorem. Therefore, the proof is finished if we show that all such
w lie in the set P°(¢), i.e., £1 f,, and ¢ splits completely in the field Q(m,, ) ™.

First we reduce to the case that X = Y is absolutely simple. Since Q(7m, )™

norm

is the compositum of the fields Q(7y; ) associated to the simple factors Y;, the

prime £ splits completely in Q(m,, )™ if and only if it splits completely in each of
the fields Q(7y; ,,)"°™. Also, we claim that /¢ | f, if and only if ¢ divides one of the
factors f,,(Y;). In the “if” direction this is clear, so let us assume that ¢ does not
divide any of the factors f,(Y;). Suppose A C Y;,, and A’ C Y], are simple factors
which are isogenous. Then End®(A) = End®(A’) is a CM-field (since A and A’ are
ordinary) and, by assumption, both orders End(A) and End(A’) are maximal at £.
Using Tate’s theorem that Hom(A, A") ® Z; =% Homga (1pA, T;A') we conclude that
A and A’ are prime-to-£ isogenous. From this remark and our assumption that X
is the product of the factors Y;™ it then follows that ¢ does not divide f,, = f,(X).
From now on we may therefore assume that X =Y is absolutely simple.

The characteristic polynomial P,(t) of the action of Fr; on Ty & --- @ T, has
coefficients in Z. Modulo / it is a product of linear factors, and all zeroes have
multiplicity 1. By Hensel’s lemma, P,(t) = (t — a1) - (t — ay) in Z,[t], with all
a; € Zyg different and v = 2 - dim(Y)/d. Let YD, V8 be the simple factors
of the reduction Y,,, and let m(j) be the Frobenius automorphism of Yu(,i). Then ¢
splits completely in each of the fields (Q(m(f))“orm C Q generated by the eigenvalues
of 7r1(5), hence it splits completely in Q(m,,)"°™. Finally, the eigenvalues «; of Frgz on
T, ®---® T, are all different and T,Y = (T, & - - - & T )%, so we get

End(Y,) ® Z¢ = Endpy, (T;Y) 2 My(ZY) — Mg(QY) = Endpy, (V;Y) 2 End(Y,) ®Qy,
and we see that £1 f,. This finishes the proof. O

1.9 Remark. Regarding the condition that the set P°(F') should have density 1 (pos-
sibly after first replacing F' by a finite extension), we can say the following. The
condition is satisfied if dim(X) < 2; see [46, Corollary 2.9]. Also, it is satisfied if X
is of CM-type. It was conjectured by Serre in [59] that P°(F') has density 1 for all
abelian varieties over a number field F'; where F' should be taken large enough such
that the groups G are connected. To our knowledge, this is a deep problem.

There is another case where the condition is known to be satisfied. Suppose X
is an abelian fourfold with End(Xg) = Z. Then the Mumford-Tate group MT(X,)
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is either isomorphic to CSpg (over Q) or it is isogenous (over Q) to Gy x (SLy)3.
By Mumford’s example in [42] both possibilities occur (see also the discussion in
[43, Section 1.4], where it is shown that both possibilities occur for abelian varieties
defined over a number field). For the group G, we have the same two possibilities
(with Q replaced by Q). We see that in this case we can not determine the groups
MT and G, only by knowing the endomorphism algebra of X. If G, is (isogenous
to) a form of G, x (SLy)? then the Mumford-Tate conjecture of course predicts that
this is also the case for MT, but as yet this remains unproved. For abelian varieties
of dimension < 4 this is in fact the only type of example where the Mumford-Tate
conjecture is not known to be true. This fact, probably known to some experts for
a long time (cf. Mumford’s remark “...what seems to be the only family of this
type...”, [42, p. 349]) is proved in [39] and [40].

It was shown in Noot’s PhD thesis [43] that if X is an abelian fourfold over
a number field F such that Gy ® Q, ~ G, x (SLy)?, then the set P°(F) (for F
sufficiently large, as always) has density 1. If we have a principal polarization A
and a level n structure # on X then, by our theorem, the Zariski closure Z of the
set {z* | v € P°(F),py, 1 n} either is the full moduli space As1, ® Q (which
would contradict the Mumford-Tate conjecture), or Z¢ is the union of a number of
(conjugated) Shimura curves in Ay, ® C and a finite number of CM-points.

More generally, for every m > 1 there exist abelian varieties X of dimension 4™,
defined over a number field F, such that G, ® Q, ~ Gy x (SLy)?™*!. This was
discussed in [62]. Noot showed in [45] that for such abelian varieties X the density
of P°(F) is 1 for F large enough.

1.10 Remark. In the statement of the theorem we must allow a finite number of
“exceptional” CM-points s1,...,s,. For example, let X, be an ordinary abelian
variety over a finite field, and let X be a quasi-canonical lifting which is not canonical.
The density condition in the theorem is satisfied (cf. the preceding remark). The

can

moduli point z°" of the canonical lifting of X, will occur as one of the exceptional

points s;.

§2 The canonical lifting of a moduli point
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2.1 So far we only considered canonical liftings of ordinary abelian varieties over a
finite field. However, we can associate a moduli point %" € A; 1, ® Q to any point
z € (Ay1, ®F,)°. Namely, write x(z) for the residue field of z, and let x(z) be an
algebraic closure. Since x is an ordinary moduli point, we have a canonical lifting of

552 Spec(k(z)) — A1, to a section s: Spec(W (k(z))) — Ay1,, and we define 2
as the image under s of the generic point of Spec(W (x(x))). The point 2" is easily
seen to be independent of any choices.

In order to understand the behaviour of the canonical lifting under specialization,
we have to generalize our notion of canonical lifting to abelian schemes over a perfect
ring. This is done as follows.

Let R be a domain of characteristic p > 0 with fraction field K. Write KP* for
the perfect closure of K, and let RP*™ be the integral closure of R in KP®f which is
a perfect closure of R. The ring W (RP®) of Witt vectors is a domain, complete and
separated for the p-adic topology, and W (RP*™)/p = RPef. Suppose Xy — Spec(R)
is an ordinary abelian scheme. By extending scalars we get an ordinary abelian
scheme X over Spec(RP®™), and because RP*! is a perfect ring of characteristic p, the
p-divisible group X [p*°] is the direct sum X[p*®°] = X[p*°], & X[p™]« of a toroidal
and an étale part. These summands each have a unique lifting to a p-divisible group,
say G, and Gg, respectively, over Spec(W (RP®?)), using [27, IV.18.3.4] and Cartier
duality. Applying the Serre-Tate theorem Il11.1.6 we get a lifting X" of X over
Spec(W (RP)) whose p-divisible group is G, ® Ge.

This construction is functorial in the obvious sense. For example, if m C R is a
maximal ideal then the quotient homomorphism R —» x = R/m naturally extends to
a homomorphism RP*f — kP! and we get a canonical map W (RP®T) — W (kPeT).
It is clear from the construction that X" @y geet) W (kPT) is the canonical lifting
of Xy ®p k. Likewise, X" @y (gperr) W (KP*f) is the canonical lifting of X, @ K.

2.2 Lemma. Let z, y be points of (A1, ® IF,)° such that x specializes to y. Then

%" specializes to y©@".

Proof. (See also [50, Proof of Lemma 1.3].) Let O, be the local ring of A, ; , ®F, at
y, and let p, C O, be the prime ideal corresponding to the point z. Let R = O, /p,,
then we have an ordinary abelian scheme X over RP* and, as just explained, we can
form a canonical lifting X of X over Spec(W (RP*)). The lemma readily follows

from the functoriality of this construction (as explained above). (Il
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2.3 Lemma. Let W be a p-adically complete and separated domain such thatp € W
is prime. Let I be an index set, and let {p, C W | a € I} be a collection of
prime ideals such that p ¢ p,. Assume that the intersection of the ideals q, =
(v/P+ po mod p) in W/p is the zero ideal. Then the set {p, | o € I} is Zariski dense
in Spec(W).

Proof. If f € Nuerpa then (f mod p) € Nacrqa = (0), hence f = p- f' for some
f' € W. Since p ¢ p, we have f' € NyerPa, and by induction we then see that
f €p"-W for every n. As W is p-adically separated, this implies f = 0. Il

2.4 Proposition. Let z € (Ag1,, ® F,)°, and define Z — Ay1, ® Q as the Zariski

can

closure of its canonical lifting x®. Then Z is a subvariety of Hodge type.!

Proof. Let Y — Aj1, ® F, be the Zariski closure of z, and consider the set } of
closed ordinary points of Y. If Z/ — Ay, ® Q is the Zariski closure of the set
{y** | y € Y} then by Lemma 2.2 we have Z' C Z. First we show that Z and Z' are
in fact equal.

Let U = Spec(B) C (Ag,1,» ®TF,)° be an affine open subscheme with x € U. Write
C =UnNY = Spec(B/J), then C is irreducible and x € C. The ring R = B/J is
a domain of finite type over F,. As above, let Rret be a perfect closure of R, let
W (RPe™) be its ring of Witt vectors, and let s°*": Spec(W (RP™)) — A, 1, ® Z, be
the canonical lifting of s: Spec(RP*™) — (A, 1, ® F,)°. If m C RP*! is a maximal
ideal with quotient field k¥ = RP*f/m, then the morphism g: Spec(k) — Spec(RPeT)
lifts to W (g): Spec(W (k)) — Spec(W (RP*™)), and 5" o W (g) is the canonical lifting
of sog.

Let {m, | € I'} be the set of maximal ideals of RP®f. For each o € I the kernel
of W(RP*™) — W (RP* /m,,) is a prime ideal p, C W (RP*T). Clearly, the collection
{pa | @ € I} satisfies the assumptions of the previous lemma, and therefore it is
Zariski dense in Spec(W (RP®™)). By construction, every p, maps into Z’ under s%*,
It follows that " also maps into Z', hence Z = Z'.

We thus have an irreducible algebraic subvariety Z — A1, ® Q with a dense
collection of CM-points (namely the points y“*) which are all canonical at some
prime in characteristic p. Applying Corollary 111.3.12 we conclude that the model Z
of Z over Z, is formally linear at some of its ordinary points, and by Theorem [11.5.2

we conclude that Z is of Hodge type. O

LThis result was obtained independently by M. Nori (unpublished).
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Our final results are joint work with A.J. de Jong and F. Oort. The results were
announced in [47], where also a sketch of the arguments was given. We keep the
above notations, i.e., we fix an integer n > 3 and we consider an ordinary (but not
necessarily closed) moduli point z € Ay, ® F,. The problem that we are interested

in is to compare
tr.deg.p k() = dim({z}**) and tr.deg.qr(z") = dim({z®}%r) .

We have an inequality tr.deg.p r(z) < tr.deg.gr(z"). Our result shows that in
general the two numbers are not equal. Before we state the precise result, we introduce
some notations and we formulate a lemma.

Let R be a ring such that n is invertible in R. Given a morphism f: S — Ay, ®
Spec(R) of schemes over R, we simply write Xg for the corresponding abelian scheme
over S, if it is clear which morphism f we take. Let § be a geometric point of S, and let
£ be a prime number which is invertible in R. The polarization on X; induces a non-
degenerate alternating bilinear form ¢, on 7,X;, and the image of the monodromy
representation

ps: m1(S,8) — Aut(T,X5)

is an ¢-adic Lie subgroup G, = G,(S) of CSp(7, X5, ¢¢). Via the choice of a symplectic
basis for T, X; we can identify G, with a subgroup of CSng(Zg). If S is connected
then, up to conjugation, the group Gy(S) is independent both of the chosen basis and
the choice of the base point s.

If z is a point of A, ; , then we write Gy(z) for Gy(Spec(k(z))). Write S = {z}**" for
the Zariski closure of {z} inside A, ; ,,, then the monodromy representation PSpec(x(z))
factors through pg, hence G,(x) = Go({x}%®"). From this we see that if z specializes
to a point y, then G,(y) is conjugated to a subgroup of Gy(z).

2.5 Lemma. Given a positive integer g and two different prime numbers p and ¢, not
dividing n, there exists an irreducible curve C' C Ay, ® Fp such that C meets the
ordinary locus (Ag1, ® F,)° and Go(C) = Spy,(Zy).

Proof. Choose a primitive nth root of unity in F,. We will construct C as a subvari-
ety of the moduli space Ay 1 (n) ®z(¢,,1/n] Fp of abelian varieties with a symplectic level
n structure, which can be identified with an irreducible component of A, 1 , ®7 F,.
Let W be the ring of Witt vectors of Fp. By the work of Faltings and Chai,
see [25, TV, Theorem 6.7 and V, Theorem 5.8], there exists a scheme A, smooth and
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projective over Spec(W), such that A = Ay, (,) ® W is identified with the complement
of a divisor D C A with normal crossings relative to Spec(W), and such that the
universal abelian scheme over A extends to a semi-abelian scheme over A. Choose
a projective embedding A — P, over Spec(WW). We consider an intersection of Kﬁp
with hyperplanes

C = KIE, NH:N...N Hg(g+1)/2_1 C IP]FA;

such that (i) C is irreducible and smooth, (ii) C intersects the divisor Dy transver-
sally at smooth points and (iii) C'N (Ag1,n) ® Fp)° is not empty. Note that such
intersections exist by Bertini’s Theorem (see [28, II, Theorem 8.18]). Write C' =
CN(Agi,m ®F,). (For g =1 we have C = Ay (») ® F,.) We claim that C has the
required properties.

To see this, we choose arbitrary hyperplanes H; C P}, with #; ®Fp = H;, and let
C=An HiN...N 7'[9(94_1)/2_1 .

Then C is a projective curve, which by [27, IV.6.8.7 and IV.17.5.1] and property
(i) above is smooth over Spec(W). Moreover, C N D C C is a divisor with normal
crossings relative to Spec(W) (it is a union of sections).

Write C = C\ D, let i) be the generic point of Spec(W), and write 7: Spec(x(n)) —
Spec(W) for the geometric point of Spec(W) that factors through n. By [26, Exposé
XIII, 2.10] there is a specialization homomorphism

sp: W{(Cﬁ) — i (C)

on tame fundamental groups (omitting base points from the notation). The repre-
sentations pc and pe, factor through «}(C) and 7} (C;) respectively, as follows from
the fact that the universal abelian scheme over A extends to a semi-abelian scheme
over A. From the definition of the specialization homomorphism and the fact that
the monodromy representation comes from an abelian scheme over C, it follows that
pc, also factors through sp. We conclude that G,(C;) C G¢(C) (up to conjugation), so
it suffices to prove that G;(C;) = Spy,(Z¢). For this, in turn, it suffices to show that
71(Cy) maps surjectively to 71 (Ag1,my ® £(n)), since Ge(Ag1,m) ® k(1)) = Spay(Ze).
This last statement follows from [25, IV, 6.8], and our assumption that £t n.
Consider curves I' C A¢ which satisfy

(%) T is a smooth complete intersection which intersects D¢ transversally .
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We are done if we show that for any such curve T, the map 71 (I') — 7, (Ac) on
topological fundamental groups is surjective, writing Ac = Ay 1 () ®Cand I' = T'NAc.
For a generic curve T this is true by [17, Lemma 1.4]. Now, any two curves I\,
I'; satisfying (%) can be connected by a continuous family I'; C A¢ of such curves
(t € 0,1]), and if w1 (I'y) — 71 (Ac) is surjective for ¢ = 0 then this holds for every
t € [0,1]. This proves the lemma.

Second proof. Using a stronger Bertini theorem, we can give a different proof of the
lemma. First we remark that, for some fixed, sufficiently large integer m, it suffices
to construct an irreducible curve C' which intersects the ordinary locus and for which
Ge(C) maps surjectively to Spy,(Z/¢™). (In fact, for £ # 2 we can take m = 2; for
{ = 2 we take m = 3. We omit the proof of this fact; a similar statement can be
found in [60, Chap. IV, 3.4))

Consider the Galois covering
g: A = Ag,l,(ﬁmn) — A= Ag,l,(n) s

which has Galois group Spy,(Z/¢™). Write d = g(g + 1)/2, which of course is the
dimension of A. By first choosing an embedding A < P¥ and then projecting from a
sufficiently general linear subvariety of codimension d 4 1, we can find an affine open
subscheme U C A for which there exists a finite morphism f: U — A4. Write U’ for
the inverse image of U in A’.

Starting from the morphism f o g: U’ — A? and applying [30, Theorem 6.3] d — 1
times, we find a line L C A% such that (f o g)~!(L) is an irreducible curve in U’. Let
C C A and C'" C A’ be the Zariski closure of f~'(L) and (f o g)~!(L), respectively.

The diagram
O/( > A/

glc/l lg

C——=A

is Cartesian and C and C' are irreducible curves. It follows that gc: C' — C is a
Galois covering with group Spy,(Z/¢™). By what was said before, this implies that
C has the required properties. ]

2.6 Theorem. (A.J. de Jong, B.M., F. Oort) Given a prime number p not divid-

ing n and an integer g > 1, there exists a field k of characteristic p and a k-valued
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§2. The canonical lifting of a moduli point

ordinary moduli point x € A | (k) such that

glg+1)

tr.deg.y k(z) =1 and tr.deg.gr(z™") = 5

Proof. We take a curve C C A, 1, ®F, as in the lemma. For z € A, , ® F, we take
the generic point of C, which is an ordinary moduli point. Clearly, tr.deg. x(z) = 1.

By Proposition 2.4, the Zariski closure Z of the point 2" € Ay, ® Q is a
subvariety of Hodge type. We are done if we show that it is equal to Ay, ® Q.
To see this we use that, by construction, the monodromy representation of Z has a
“large” image.

Write Z for the Zariski closure of Z over Spec(Z,), and let 77 be a geometric point
of Z which factors through the generic point 1. Then 7 specializes to =, and as
Ge() D Spy,(Z) (by construction of C) we have Sp,,(Z¢) C Ge(n) = Ge(Z).

Next we choose a number field F' such that there exists an F-rational point
z: Spec(F) — Z. If Z is a geometric point factoring through z then we have a
homomorphism z,: Gal(Q/F) — m1(Z, z), which is a section on Gal(Q/F) of the
natural homomorphism 7(Z, z) — Gal(Q/Q).

Let M be the generic Mumford-Tate group on Z, and write Z = Z ®g Q. The
homomorphisms pz: 7, (Z, 2) — m1(Z,2) — CSp(Te X5, ¢¢) and p o z,: Gal(Q/F) —
CSp(Ty X5, ¢¢) both factor through M(Qy). We conclude that there is a subgroup of
finite index 7 C m1(Z, 2) such that p(m) C M(Qg) € CSpy,(Qr). Since M ® Q is an
algebraic subgroup of CSpy, ® Q; with Gy, - Id C M, and since Spy,(Z¢) C Gi(Z) we
conclude that M = CSpy;, ® Q and Z = A1 ,,. This finishes the proof. O
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Samenvatting

Voor de studie van abelse variéteiten is het van belang dat we beschikken over een
moduliruimte. We schrijven Ay, voor de moduliruimte van g-dimensionale abelse
variéteiten (met een hoofdpolarisatie en een niveau n structuur). We vinden vaak in-
teressante deelvariéteiten van Ay, , door de locus van punten te beschouwen waarbij
de corresponderende abelse variéteiten een bepaalde extra structuur of extra symme-
trie hebben. We kunnen bijvoorbeeld abelse variéteiten bestuderen die een gegeven
ring van endomorfismen toelaten. In karakteristiek 0 is het een directe generalisatie
hiervan om abelse variéteiten te beschouwen waarop bepaalde Hodgeklassen bestaan.
Dit geeft aanleiding tot zogeheten Shimuravariéteiten binnen de moduliruimte van
abelse variéteiten. De irreducibele componenten van deze Shimuravariéteiten noemen
we deelvariéteiten van Hodge type.

Deze deelvariéteiten van Hodge type zijn zeer rijk aan structuur. In dit proefschrift
voegen we daar nieuwe inzichten aan toe. We bewijzen dat de deelvariéteiten van
Hodge type gekarakteriseerd worden door bepaalde lineariteitseigenschappen. Over
de complexe getallen is dit het “totaal geodetisch” zijn. De belangrijkste van onze
resultaten betreffen een analogon hiervan in gemengde karakteristiek; we noemen dit
“formele lineariteit”. Door Noot werd bewezen dat deelvariéteiten van Hodge type (in
gemengde karakteristiek) formeel lineair zijn. We bewijzen dat deelvariéteiten van
Hodge type door deze eigenschap gekarakteriseerd worden. Hierbij zal blijken dat
de beide lineariteitseigenschappen directer verband houden dan men op het eerste
gezicht zou vermoeden. We passen onze hoofdresultaten toe om, onder bepaalde

extra aannamen, een vermoeden van Oort te bewijzen.

Beschouw, om het bovenstaande wat concreter te maken, een deelvariéteit van
Hodge type S < A, 1,. Dan heeft S de volgende eigenschappen: (i) de speciale pun-
ten van S liggen dicht voor de Zariski-topologie, (ii) S is een totaal geodetische deel-

variéteit, in de zin dat S overdekt wordt door een totaal geodetische deel-menigvoud
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van X en (iii) S is “formeel lineair” bij (de meeste) van zijn gewone modulipunten

in karakteristiek p > 0 —een uitspraak die toegelicht zal worden.

In Hoofdstuk Il van dit proefschrift richten we ons voornamelijk op de tweede
eigenschap, waarbij we werken binnen een (algemene) Shimura variéteit Shx (G, X).
Het is niet waar dat elke totaal geodetische deelvariéteit Z — Shg (G, X) van Hodge
type is. We bewijzen dat dit echter wel het geval is wanneer Z tenminste 1 speciaal
punt bevat. Tevens geven we een beschrijving van totaal geodetische deelvariéteiten
in het algemeen en passen we de gebruikte technieken toe om een beschrijving te

geven van zogenaamde niet-starre families van abelse variéteiten.

In Hoofdstuk Ill bestuderen we de moduliruimte .4, van g-dimensionale abelse
variéteiten over Z,. Als x € A, ® F, het modulipunt is van een gewone abelse
variéteit over een eindig lichaam &, dan heeft de formele completering A, van A,
in z de structuur van een formele torus over de Wittring W (k). We noemen een
algebraische deelvariéteit Z — A, met z € Z ® F, “formeel lineair” in het punt z

als de formele completering 3, < 2, een formele subtorus is.

In het proefschrift [43] van R. Noot werd een tot dan toe onvermoede structuur aan
het licht gebracht. Noot bewees dat deelvariéteiten S — A4, van Hodge type formeel
lineair zijn in de gewone gesloten punten van SQI,. (Hierbij staan we onszelf toe een
vereenvoudigde voorstelling van zaken te geven.) We bewijzen hiervan een omkering:
als een algebraische deelvariéteit Z < 4, formeel lineair is bij een gewoon gesloten

punt, dan is Z van Hodge type.

Tevens bestuderen we de relatie van “formele lineariteit” met Zariski-dichte collec-
ties van CM-punten. Onze belangstelling hiervoor heeft te maken met een vermoeden
van Qort, dat de deelvariéteiten van Hodge type karakteriseert als de algebraische
deelvariéteiten waarop de CM-punten dicht liggen. Wanneer Z ergens formeel lin-
eair is, dan volgt daaruit vrij eenvoudig dat de CM-punten op Z dicht liggen in de
Zariski-topologie. De omkering hiervan bewijzen we onder een extra aanname: stel
er is een residukarakteristiek p en een Zariski-dichte collectie 7" van CM-punten op
Z, zo dat elk van de corresponderende abelse variéteiten X; canoniek is bij een plaats
p boven p (waarmee we bedoelen dat X; de canonieke lifting is van zijn reductie X,
bij p). Dan is er een gewoon punt z € Z ® F, zo dat Z formeel lineair is bij z. Onze

karakterisering toepassend concluderen we dat Z van Hodge type is.

In Hoofdstuk IV passen we deze resultaten toe om het vermoeden van Qort te be-

wijzen in een speciaal geval. We beginnen met een abelse variéteit X (met een hoofd-
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polarisatie en eventueel een niveaustructuur, die we hier steeds buiten beschouwing
laten) die gedefinieerd is over een getallenlichaam F', dat we voldoende groot nemen.
Schrijf P° voor de collectie van plaatsen van F' waar X goede en gewone reductie
heeft. We nemen aan dat P° dichtheid 1 heeft. Voor v € P° duiden we het mod-
ulipunt van de canonieke lifting van X, aan met z{*" € A, ® Q. Dan bewijzen we
dat de Zariski-afsluiting van de verzameling {z¢" | v € P°} gelijk is aan de kleinste
deelvariéteit van Hodge type die het modulipunt van X bevat, eventueel nog verenigd
met een eindig aantal “uitzonderlijke” CM-punten.

Tenslotte bestuderen we deelvariéteiten van de vorm Z = {z®"}% C A, ® Q,
waarbij z een gewoon, maar niet noodzakelijk gesloten, modulipunt in karakteristiek
p is. We tonen aan dat dergelijke deelvariéteiten Z van Hodge type zijn. Verder
laten we zien (gezamenlijk werk met A.J. de Jong en F. Oort) dat er voorbeelden zijn
waarbij tr.deg.y x(z) =1 en dim(Z) = g(g +1)/2.
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