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Introduction

At the 1996 Durham symposium, a series of four lectures was given on

Shimura varieties in mixed characteristics. The main goal of these lectures

was to discuss some recent developments, and to familiarize the audience

with some of the techniques involved. The present notes were written with

the same goal in mind.

It should be mentioned right away that we intend to discuss only a small

number of topics. The bulk of the paper is devoted to models of Shimura

varieties over discrete valuation rings of mixed characteristics. Part of the

discussion only deals with primes of residue characteristic p such that the

group G in question is unramified at p, so that good reduction is expected.

Even at such primes, however, many technical problems present themselves,

to begin with the “right” definitions.

There is a rather large class of Shimura data—those called of pre-abelian

type—for which the corresponding Shimura variety can be related, if maybe

somewhat indirectly, to a moduli space of abelian varieties. At present, this

seems the only available tool for constructing “good” integral models. Thus,
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if we restrict our attention to Shimura varieties of pre-abelian type, the con-

struction of integral canonical models (defined in §3) divides itself into two

parts:

Formal aspects. If, for instance, we have two Shimura data which are

“closely related”, then this should have consequences for the existence of

integral canonical models. Loosely speaking, we would like to show that if

one of the two associated Shimura varieties has an integral canonical model,

then so does the other. Most of such “formal” results are discussed in §3.

Constructing models for Shimura varieties of Hodge type. By definition,

these are the Shimura varieties that can be embedded into a Siegel modular

variety. As we will see, the existence of an integral canonical model is es-

sentially a problem about smoothness, which therefore can be studied using

deformation theory. We are thus led to certain deformation problems for p-

divisible groups. These can be dealt with using techniques of Faltings, which

are the subject of §4. This is not to say that we can now easily prove the

existence of integral canonical models. Faltings’s results only apply under

some assumptions, and in the situation where we want to use them, it is not

at all clear that these are satisfied. To solve this, Adrian Vasiu has presented

an ingenious, but technically complicated strategy. We will discuss this in

§5. Unfortunately, it seems that Vasiu’s program has not yet been brought

to a successful end. We hope that our presentation of the material can help

to clarify what technical points remain to be settled.

I have chosen to include quite a bit of “basic material” on Shimura vari-

eties, which takes up sections 1 and 2. Most of this is a review of Deligne’s

papers [De1] and [De3]. I also included some examples and some references

to fundamental work that was done later, such as the generalization of the

theory to mixed Shimura varieties. The main strategy of [De3] is explained

in some detail, since it will reappear in our study of integral models.

The only new result in the first two sections concerns the existence of

canonical models for Shimura varieties which are not of abelian type. It was

pointed out to me by J. Wildeshaus that the argument as it is found in the

literature is not complete. We will discuss this in section 2, and we present

an argument to complete the proof.

In §3 we take up the study of integral models of Shimura varieties. The

first major problem here is to set up good definitions. We follow the pattern

laid out by Milne in [Mi3], defining an integral canonical model as a smooth

model which satisfies a certain Néron extension property. The main difficulty
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is to decide what class of “test schemes” to use. We explain why the class

used by Milne in loc. cit. leads to unwanted results, and we propose to use

a smaller class of test schemes which (at least for p > 2 and ramification

e < p − 1) avoids this. Our definition differs from the one used by Vasiu in

[Va2].

In the rest of §3 we prove a number of “formal” results about integral

canonical models, and, inspired by Deligne’s approach in [De3], we develop the

notion of a connected Shimura variety in the p-adic setting. The main result of

this section is Cor. 3.23. It says, roughly, that in order to prove the existence

of integral canonical models for all Shimura varieties of pre-abelian type at

primes of characteristic p > 2 where the group in question is unramified, it

suffices to show that certain models obtained starting from an embedding

into a Siegel modular variety, are formally smooth. As we will explain, there

are finitely many primes that may cause additional problems if the group has

simple factors of type Aℓ. We give full proofs of most statements. Although

the reader may find some details too cumbersome, we think that they are

quite essential, and that only by going through all arguments we are able

to detect some unexpected problems. Some of our results were also claimed

in [Va2], but most proofs given here were obtained independently (see also

remark 3.24).

In §4 we study deformation theory of p-divisible groups with given Tate

classes. The main results are based on a series of remarks in Faltings’s paper

[Fa3], of which we provide detailed proofs.

In §5 we attempt to follow Vasiu’s paper [Va2]. Our main goal here is to

explain Vasiu’s strategy, and to explain which technical problems remain to be

solved. This section consists of two parts. Up until Thm. 5.8.3, we prove most

statements in detail. This leads to a result about the existence of integral

canonical models under a certain additional hypothesis (5.6.1). After that we

indicate a number of statements that should allow to remove this hypothesis.

It is in this part of Vasiu’s work that, to our understanding, further work

needs to be done before the main result (see 5.9.6) can be accepted as a solid

theorem.1

The last section contains a hodgepodge of questions and results, due to

1After completing our manuscript we received new versions of Vasiu’s work (A. Vasiu,

Integral canonical models of Shimura varieties of Preabelian type, third version, July 15,

1997, UC at Berkeley, and Ibid., December 1997, UC at Berkeley.) We have not yet had

the opportunity to study this work in detail, and we therefore cannot say whether it can

take away all doubts we have about the arguments in [Va2]. We strongly recommend the

interested reader to consult Vasiu’s original papers.
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various people. We will try to give references in the main text. The main topic

here is no longer the existence of integral canonical models per se. Instead, we

discuss some results about the local structure of (examples of) such models,

in relation to conjectures of Coleman and Oort.

There are some interesting related topics for which we did not find place

in this article. Among the casualties are the recent work [RZ] of Rapoport

and Zink, examples of bad reduction (see, e.g., [R2]), the Newton polygon

stratification of Ag in characteristic p (for an overview, see [Oo1], [Oo2]) and

the study of isocrystals with additional structure as in [Ko1], [Ko3], [RR].

Acknowledgements. In preparing this paper I benefited a lot from dis-

cussions with Y. André, D. Blasius, C. Deninger, B. Edixhoven, O. Gabber,

J. de Jong, G. Kings, E. Landvogt, F. Oort, A. Vasiu, A. Werner and J. Wilde-

shaus. I thank them all cordially. Also I wish to thank the referee for several

useful comments.

Notations. Superscripts and subscripts: 0 denotes connected components

for the Zariski topology, + connected components for other (usually analytic)

topologies. A superscript − (as in G(Q)−+ for example) denotes the closure of

a subset of a topological space. If G is an algebraic group then ad (adjoint

group), ab (maximal abelian quotient), der (derived group) have the usual

meaning, G(R)+ denotes the pre image of Gad(R)+ under the adjoint map,

and in case G is defined over Q we write G(Q)+ for the intersection of G(Q)

and G(R)+ inside G(R). For fields, ab denotes the maximal abelian extension.

A superscript p usually denotes a structure “away from p”; a subscript p

something “at p”.

If (X, λ) is a g-dimensional principally polarized abelian scheme over a

basis S then λ gives rise to a Weil pairing eλ : X[n] × X[n] → µn,S. Write

ψn : (Z/nZ)2g × (Z/nZ)2g → (Z/nZ) for the standard symplectic form. By

a Jacobi level n structure on (X, λ) we mean an isomorphism η : X[n] ∼−→
(Z/nZ)S such that there exists an isomorphism α : (Z/nZ)S

∼−→ µn,S with

α ◦ ψn ◦ (η × η) = eλ. We write Ag,1,n for the (coarse) moduli scheme over

Spec(Z[1/n]) of principally polarized, g-dimensional abelian varieties with a

Jacobi level n structure. If n ≥ 3 then it is a fine moduli scheme.

Let S := ResC/RGm,C. We write µ : Gm,C → SC for the cocharacter which

on complex points is given by C∗ ∋ z 7→ (z, 1) ∈ C∗ × C∗ ∼= (C⊗R C)∗. The

natural inclusion w : Gm,R → S is called the weight cocharacter.
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We write Af for the ring of finite adèles of Q and AL for the ring of (full)

adèles of a number field L. We refer to [Pi], 0.6, for an explanation of when a

subgroup K ⊆ G(Af ) (where G is an algebraic group over Q) is called neat,

and for some basic properties concerning this notion.

Abbreviations: H.S. for Hodge structure, V.H.S. for variation of Hodge

structure, d.v.r. for discrete valuation ring, p.p.a.v. for principally polarized

abelian variety, i.c.m. for integral canonical model (see 3.3), a.t.s. for admis-

sible test scheme (see 3.5), e.e.p. for extended extension property (see 3.20).

§1 Shimura varieties

1.1 Recall ([De2]) that a pure Hodge structure of weight n with underlying

Q-vector space V is given by a homomorphism of algebraic groups h : S →
GL(V )R such that the weight cocharacter h ◦ w : Gm → GL(V )R maps z to

z−n · idV . The Tate twist Q(1) corresponds to the norm character Nm: S→
Gm,R. An element v ∈ V is called a Hodge class (in the strict sense) if v is

purely of type (0, 0) in the Hodge decomposition VC = ⊕V p,q. In other words:

the Hodge classes are the rational classes v ∈ V which, as elements of VR, are

invariant under the action of S given by h.

The Mumford-Tate group MT(V ) of V is defined as the smallest algebraic

subgroup of GL(V )×Gm which is defined over Q and such that h×Nm: S→
GL(V )R ×Gm,R factors through MT(V )R. In Tannakian language MT(V ) is

the automorphism group of the forgetful fibre functor 〈V,Q(1)〉⊗ → VecQ,

where 〈V,Q(1)〉⊗ ⊂ HdgQ is the Tannakian subcategory generated by V and

Q(1). Concretely, this means that for every tensor space

V (r1, r2; s) := V ⊗r1 ⊗ (V ∗)⊗r2 ⊗Q(s) ,

the Hodge classes in V (r1, r2; s) are precisely the invariants under the natural

action of MT(V ).

In more classical language one would define a Hodge class to be a rational

class v ∈ V which is purely of type (n/2, n/2) in the Hodge decomposition.

Clearly there are in general more Hodge classes in this sense than in the

“strict” sense, but the difference is only a matter of weights. If we define the

Hodge group Hg(V ) (sometimes called the special Mumford-Tate group) to be

the kernel of the second projection map MT(V ) ։ Gm, then the Hodge classes

(in the more general sense) of a tensor space V ⊗r1 ⊗ (V ∗)⊗r2 are precisely the

invariants of Hg(V ). All in all, the Hodge group contains essentially the same
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information as the Mumford-Tate group, except that it does not keep track

of the weight.

The main principle that we want to stress here is the following: if h : S→
GL(V )R defines a Hodge structure on the Q-vector space V , and if we are

given tensors t1, . . . , tk in spaces of the form V (r1, r2; s), then there is an

algebraic group G ⊆ GL(V ) (depending on the classes ti) such that

t1, . . . , tk are Hodge classes ⇐⇒ h factors through GR .

1.2 To illustrate the usage of Mumford-Tate groups, let us discuss some

examples pertaining to Hodge classes on abelian varieties. There are at least

two reasons why abelian varieties are special:

(i) Riemann’s theorem tells us that there is an equivalence of categories

{complex abelian varieties} eq.−−→ {polarizable Z-H.S. of type (0, 1) + (1, 0)} ,

sending X to H1(X,Z). (This should really be done covariantly, using H1; as

we shall later always work with cohomology we phrase everything in terms of

H1.) This result has some important variants, in that polarized abelian vari-

eties are in equivalence with polarized Z-H.S. of type (0, 1) + (1, 0), abelian

varieties up to isogeny correspond to polarizable Q-H.S. of type (0, 1)+(1, 0),

and if S is a smooth variety over C then abelian schemes over S correspond

to polarizable Z-V.H.S. of type (0, 1)+ (1, 0) over S. (See [De2], section 4.4.)

Furthermore, all cohomology of X and of its powers Xm, can be expressed

directly in terms of H1(X,Z): we have natural isomorphisms of Hodge struc-

tures

Hk(Xm,Z) ∼=
k∧(
⊕m H1(X,Z)

)
.

(ii) Let V := H1(X,Q), and write Hg(X) := Hg(V ). Choose a po-

larization of X. The corresponding Riemann form ϕ is a Hodge class in

Hom
(
V ⊗2,Q(−1)

)
= V (0, 2;−1), hence it is invariant under Hg(X). This

means that Hg(X) is contained in the symplectic group Sp(V, ϕ). Next we

remark that, because of the above equivalence of categories,

End(X)⊗Z Q =: End0(X) ∼= {Hodge classes in End(V ) } = End(V )Hg(X) .

We conclude that Hg(X) is contained in the centralizer of End0(X) inside

Sp(V, ϕ), and that the commutant of Hg(X) in End(V ) equals End0(X).

These observations become even more useful if we remark that for abelian

varieties of a given dimension, the Albert classification (see [Mu2], section 21)
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gives a finite list of possible types for the endomorphism algebra End0(X).

When combined with other properties of the Hodge group, knowing End0(X)

is in some cases sufficient to determine Hg(X) and its action on V . This then

enables us—at least in principle—to determine the Hodge ring of all powers

of X. In general, however, the endomorphism algebra does not determine the

Hodge group.

Example 1. Main references: [Ri], [Haz], [Ku], [Se2], [Ch]. Let X be a

simple abelian variety of dimension 1 or of prime dimension. Then the Hodge

group is equal to the centralizer of End0(X) in Sp(V, ϕ). (This does not

depend on the choice of the polarization.) The Hodge ring of every power of

X is generated by divisor classes; in particular, the Hodge conjecture is true

for all powers of X.

Example 2. Main references: [We], [MZ2]. Suppose k is an imaginary

quadratic field, acting on X by endomorphisms. If σ and τ are the two

complex embeddings of k, then H0(X,Ω1
X) = V 1,0 is a module over k⊗Q C =

C(σ)×C(τ), hence it decomposes as V 1,0 = V 1,0(σ)⊕V 1,0(τ). Suppose that the

dimensions nσ = dimV 1,0(σ) and nτ = dimV 1,0(τ) are equal. This implies

that dim(X) is even, say dim(X) = 2n. The 1-dimensional k-vector space

Wk :=
2n∧

k

V

can be identified with a subspace of ∧2n
Q V = H2n(X,Q). Moreover, the con-

dition that nσ = nτ implies that Wk ⊂ H2n(X,Q) consists of Hodge classes.

This construction was first studied by Weil in [We]; we call Wk the space

of Weil classes with respect to k. Weil showed that for a generic abelian

variety X with an action of k (subject to the condition nσ = nτ ), the non-

zero classes in Wk are exceptional, i.e., they do not lie in the Q-subalgebra

D.(X) ⊂ ⊕H2i(X,Q) generated by the divisor classes.

The construction of Weil classes works in much greater generality. They

play a role in Deligne’s proof of “Hodge = absolute Hodge” for abelian vari-

eties. In [MZ2] the space WF of Weil classes w.r.t. the action of an arbitrary

field F →֒ End0(X) is studied. We find here criteria, purely in terms of F ,

End0(X) and the action of F on the tangent space V 1,0, of when WF contains

Hodge classes, and of when these Hodge classes are exceptional.

Example 3. Main references: [Mu1], [MZ1], [Ta]. Let X be an abelian

fourfold with End0(X) = Q. Then either Hg(X) is the full symplectic group

Sp8,Q, in which case the Hodge ring of every power of X is generated by

divisor classes, or Hg(X) is isogenous to a Q-form of SL2× SL2× SL2, where
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the representation V is the tensor product of the standard 2-dimensional

representations of the three factors. Both possibilities occur. In the latter

case, the Hodge ring of X is generated by divisor classes, but for X2 this is

no longer true: H4(X2,Q) contains exceptional classes. These are not of the

same kind as in example 2, i.e., they are not Weil classes with respect to the

action of a field on X2.

In case X is defined over a number field, we have “the same” two pos-

sibilities for the image of the Galois group acting on the Tate module. In

particular, knowing End0(X) here is not sufficient to prove the Mumford-

Tate conjecture. Known by many as “the Mumford example”, this is actually

the lowest dimensional case where the Mumford-Tate conjecture for abelian

varieties remains, at present, completely open. Mumford’s example can be

generalized to abelian varieties of dimension 4k, see [Ta].

1.3 Guided by the considerations in 1.1, we can make sense of the problem

to study Hodge structures with “a given collection of Hodge classes”. How

one translates this in purely group-theoretical terms is explained with great

clarity in [De3], especially section 1.1. Here we summarize the most important

points.

Fix an algebraic group GR over R, and consider the space Hom(S, GR) of

homomorphisms of algebraic groups h : S → GR. Its connected components

are the G(R)+-conjugacy classes. Given one such component X+, and fixing a

representation ρR : GR → GL(VR), we obtain a family of R-Hodge structures

on VR, parametrized by X+. From an algebro-geometric point of view, the

natural conditions to impose on this family are:

(a) the weight decomposition VR = ⊕n∈ZV
n

R does not depend on h ∈ X+,

(b) there is a complex structure on X+ such that the family of Hodge

structures on each V n
R is a polarizable R-V.H.S. over X+.

Now an important fact is that (a) and (b) can be expressed directly in

terms of GR and X+, and that, at least for faithful representations, they do

not depend on ρR. If (a) and (b) are satisfied for some (equivalently: every)

faithful representation ρR, then the complex structure in (b) is unique and

X+ is a hermitian symmetric domain. (For all this, see [De3], 1.13–17.) By

adding a Q-structure on GR, one is led to the following definition.

1.4 Definition. A Shimura datum is a pair (G,X) consisting of a connected

reductive group G over Q, and a G(R)-conjugacy class X ⊂ Hom(S, GR),

such that for all (equivalently: for some) h ∈ X,
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(i) the Hodge structure on Lie(G) defined by Ad ◦ h is of type (−1, 1) +

(0, 0) + (1,−1),

(ii) the involution Inn
(
h(i)

)
is a Cartan involution of Gad

R ,

(iii) the adjoint group Gad does not have factors defined over Q onto which

h has a trivial projection.

In this definition we have followed [De3], section 2.1. Pink has suggested

(cf. [Pi]) to allow not only G(R)-conjugacy classes X ⊂ Hom(S, GR) but also

finite coverings of such. We will not use this generalization in this paper.

There are some other conditions that sometimes play a role. For instance,

condition (i) implies that the weight cocharacter h◦w : Gm,C → GC (for which

we sometimes simply write w) does not depend on h ∈ X, and one could

require that it is defined over Q. It turns out, however, that the theory works

well without this assumption, and that there are rather natural examples

where it is not satisfied.

1.5 Let (G,X) be a Shimura datum, and let K be a compact open subgroup

of G(Af ). We set

ShK(G,X)C = G(Q)\X ×G(Af )/K ,

where G(Q) acts diagonally on X ×
(
G(Af )/K

)
. If X+ ⊆ X is a connected

component, and if g1, . . . , gm are representatives in G(Af ) for the finite set

G(Q)+\G(Af )/K, then we can rewrite ShK(G,X)C as a disjoint sum

ShK(G,X)C =
∐

i=1,...,m

Γi\X+ ,

where Γi is the image of G(Q)+ ∩ giKg
−1
i inside Gad(Q)+, which is an arith-

metic subgroup. By the results of Baily and Borel in [BB], the quotients

Γi\X+ have a natural structure of a quasi-projective algebraic variety. For

compact open subgroups K1 ⊆ K2, the natural map

Sh(K1, K2) : ShK1(G,X)C −→ ShK2(G,X)C

is algebraic. We thus obtain a projective system of (generally non-connected)

algebraic varieties ShK(G,X)C, indexed by the compact open subgroups K ⊂
G(Af ). This system, or its limit

Sh(G,X)C = lim←−
K

ShK(G,X)C ,

(which exists as a scheme, since the transition maps are finite) is called the

Shimura variety defined by the datum (G,X).
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1.6 We will briefly recall some basic definitions and results. For further

discussion of these topics, see [De1], [De3], [Mi2].

1.6.1 The group G(Af ) acts continuously on Sh(G,X)C from the right. The

continuity here means that the action of an element g ∈ G(Af ) is obtained

as the limit of a system of isomorphism ·g : ShK(G,X)C
∼−→ Shg−1Kg(G,X)C,

see [De3], 2.1.4 and 2.7, or [Mi2], II.2 and II.10. On “finite levels”, the G(Af )-

action gives rise to Hecke correspondences: for compact open subgroups K1,

K2 ⊂ G(Af ) and g ∈ G(Af ), set K ′ = K1 ∩ gK2g
−1; then the Hecke corre-

spondence Tg from ShK1(G,X)C to ShK2(G,X)C is given by

Tg : ShK1(G,X)C
Sh(K ′,K1)←−−−−−− ShK ′(G,X)C

·g−−−−→ ShK2(G,X)C .

1.6.2 A morphism of Shimura data f : (G1, X1) → (G2, X2) is given by a

homomorphism of algebraic groups f : G1 → G2 defined over Q which induces

a map from X1 to X2. Such a morphism induces a morphism of schemes

Sh(f) : Sh(G1, X1)C −→ Sh(G2, X2)C .

If f : G1 → G2 is a closed immersion then so is Sh(f). (See [De1], 1.14–15.)

1.6.3 Let (G,X) be a Shimura datum. Associated to h ∈ X, we have a

cocharacter h ◦ µ : Gm,C → GC, whose G(C)-conjugacy class is independent

of h ∈ X. The reflex field E(G,X) ⊂ C is defined as the field of definition of

this conjugacy class. It is a finite extension of Q. If f : (G1, X1)→ (G2, X2)

is a morphism of Shimura data, then E(G2, X2) ⊆ E(G1, X1) ⊂ C.

1.6.4 A point h ∈ X is called a special point if there is a torus T ⊆
G, defined over Q, such that h : S → GR factors through TR. In this case

(T, {h}) is a Shimura datum, and the inclusion T →֒ G gives a morphism

(T, {h}) → (G,X). A point x ∈ ShK(G,X)C is called a special point if it is

of the form x = [h, gK] with h special. (This does not depend on the choice

of the representative (h, gK) for x.) Here we follow [De3]; the definition in

[De1], 3.15, is more restrictive.

1.6.5 Consider a triplet (Gad, G′, X+) consisting of an adjoint groupGad over

Q, a covering G′ of Gad, and a Gad(R)+-conjugacy class X+ ⊂ Hom(S, Gad
R )

such that the conditions (i), (ii) and (iii) in 1.4 are satisfied. Let τ(G′) be the

linear topology on Gad(Q) for which the images in Gad(Q) of the congruence
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subgroups in G′(Q) form a fundamental system of neighbourhoods of the

identity. The connected Shimura variety Sh0(Gad, G′, X+)C is defined as the

projective system

Sh0(Gad, G′, X+)C = lim←−
Γ

Γ\X+ ,

where Γ runs through the arithmetic subgroups of Gad(Q) which are open

in τ(G′). It comes equipped with an action of the completion Gad(Q)+∧ of

Gad(Q)+ for the topology τ(G′).

Given a Shimura datum (G,X) and a connected component X+ ⊆ X, we

obtain a triplet (Gad, Gder, X+) as above. The associated connected Shimura

variety Sh0(Gad, Gder, X+)C is the connected component of Sh(G,X)C con-

taining the image of X+ × {e} ⊂ X ×G(Af ). In particular, we see that this

component only depends on Gad, Gder and X+ ⊂ X. In the sequel, when

working with connected Shimura varieties, we will usually omit Gad from the

notation. For lack of better terminology, we will refer to a pair (G′, X+) as

above as “a pair defining a connected Shimura variety”.

1.6.6 Let G be a reductive group over a number field L. Write ρ : G̃→ Gder

for the universal covering (in the sense of algebraic groups) of its derived

group. By [De1], Prop. 2.2 and [De3], Cor. 2.0.8, G(L) · ρG̃(AL) is a closed

subgroup of G(AL) with abelian quotient π(G) := G(AL)/G(L) · ρG̃(AL).

(Note: AL is the ring of full adèles of L.) Consequently, the set of connected

components π0π(G) is also an abelian group.

Now let (G,X) be a Shimura datum. If K ⊂ G(Af ) is a compact open

subgroup then ShK(G,X)C is a scheme of finite type over C. For K getting

smaller, its number of connected components generally increases. Deligne

proves in [De3], 2.1.3 that

π0

(
ShK(G,X)C

) ∼= G(Af )/G(Q)+ ·K ∼= π0π(G)/K ,

where π0π(G) := π0π(G)/π0G(R)+. Passing to the limit one finds that the

G(Af )-action on Sh(G,X)C makes π0

(
Sh(G,X)C

)
a principal homogeneous

space under π0π(G) ∼= G(Af )/G(Q)−+.

1.6.7 Given a Shimura datum (G,X), we can define some other data as

follows. Write Xad ⊂ Hom(S, Gad
R ) for the Gad(R)-conjugacy class contain-

ing the image of X under the map Hom(S, GR) → Hom(S, Gad
R ). The map

X → Xad is not necessarily an isomorphism, but every connected component

of X maps isomorphically to its image. The pair (Gad, Xad) is a Shimura
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datum, called the adjoint Shimura datum. Similarly, the image Xab of X in

Hom(S, Gab
R ) is a Gab(R)-conjugacy class (necessarily a single point), and we

have a Shimura datum (Gab, Xab).

Another construction that is sometimes useful is the following. Suppose

the group G is of the form G = ResF/Q(H), where F is a totally real number

field and H is an absolutely simple algebraic group over F . (Such is the

case, for example, if G is a simple adjoint group.) Now take an extension

F ⊂ F ′ of totally real number fields, and set G2 = ResF ′/Q(HF ′). There is

a unique G2(R)-conjugacy class X2 ⊂ Hom(S, G2,R) such that the natural

homomorphism G→ G2 gives a closed immersion of Shimura data (G,X) →֒
(G2, X2).

1.7 One might ask “how many” Shimura varieties there are. A possible

approach is to begin by classifying the Shimura varieties of adjoint type.

These are products of Shimura varieties Sh(G,X)C, where G is a Q-simple

adjoint group. The group GR is an inner form of a compact group, of one of

the types A, B, C, DR, DH, E6 or E7, and given GR, the possibilities for X

are classified in terms of special nodes in the Dynkin diagram. We refer to

[De3], sections 1.2 and 2.3 for more details.

Given (Gad, Xad), we can list all possibilities for Gder. As we have seen,

the pair (Gder, X+) consisting of Gder and a connected component X+ ⊆ X,

determines the connected components of the Shimura variety. In particular,

the “toric part” (Gab, Xab) does not contribute to the geometry of Sh(G,X)C,

in the sense that it has no effect on Sh0
C, but only on π0

(
Sh(G,X)C

)
. Finally,

let us remark that “toric” Shimura data are in bijective correspondence to

pairs (Y, µ) consisting of a free Z-module Y of finite rank with a continuous

action of Gal(Q/Q) (the cocharacter group of the torus), together with an

element µ ∈ Y .

1.8 The definition of a Shimura variety is set up in such a way that that

if ξ : GR → GL(VR) is a representation, then we obtain a (direct sum of)

polarizable R-VHS V(ξ)R over X with underlying local system X × VR. If

VR = V ⊗QR for a Q-vector space V , and if the weight ξ◦w : Gm,R → GL(V )R

is defined over Q, then V(ξ)R comes from a polarizable Q-VHS V(ξ). Under

some conditions on G/Ker(ξ), this VHS descends, for K sufficiently small, to

a Q-VHS on ShK(G,X). (It suffices if the center of G/Ker(ξ) is the almost

direct product of a Q-split torus and a torus T for which T (R) is compact.)

One expects (see [De5], [Mi4]) that these variations of Hodge structure
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are the Betti realizations of families of motives, and that Shimura varieties,

at least those for which the weight is defined over Q, have an interpretation

(depending on the choice of a representation ξ) as moduli spaces for mo-

tives with certain additional structures. What is missing, at present, is a

sufficiently good theory of motives. In certain cases, however, the dictionary

between abelian varieties and certain Hodge structures (see 1.2 above) leads

to a modular interpretation of Sh(G,X). Let us briefly review some facts and

terminology.

1.8.1 Siegel modular varieties. Let ϕ denote the standard symplectic form

on Q2g, and set G = CSp2g. The homomorphisms h : S → GR which deter-

mine a Q-H.S. of type (−1, 0)+(0,−1) on Q2g such that ±ϕ is a polarization,

form a single G(R)-conjugacy class H±
g . It can be identified with the Siegel

double-1
2
-space. The pair (CSp2g,H

±
g ) is a Shimura datum with reflex field

Q. The associated Shimura variety is often referred to as the Siegel modular

variety.

For K ⊂ G(Af ) a compact open subgroup, ShK(CSp2g,H
±
g )C is a moduli

space for g-dimensional complex p.p.a.v. with a level K-structure (as defined,

for instance, in [Ko2], §5). Here a couple of remarks should be added. The

interpretation of ShK(CSp2g,H
±
g )C in terms of abelian varieties up to isomor-

phism depends on the choice of a lattice Λ ⊂ Q2g. This choice also determines

the “type” of the polarization; if we want to work with principally polarized

abelian varieties then we must choose Λ such that ϕ|Λ has discriminant 1

(e.g., Λ = Z2g). For further details see [De1], §4. In the sequel, we identify

Sh(CSp2g,H
±
g )C and lim←−n

Ag,1,n ⊗ C.

1.8.2 Shimura varieties of PEL and of Hodge type. By definition, a Shimura

datum (G,X) (as well as the associated Shimura variety) is said to be of

Hodge type, if there exists a closed immersion of Shimura data j : (G,X) →֒
(CSp2g,H

±
g ) for some g. If this holds, the Shimura variety Sh(G,X)C →֒

Sh(CSp2g,H
±
g )C has an interpretation in terms of abelian varieties with cer-

tain “given Hodge classes”. The precise formulation of such a modular inter-

pretation is usually rather complicated.

This is already the case for Shimura varieties of PEL type (see [De1], 4.9–

14, [Ko2]). Loosely speaking, these are the Shimura varieties parametrizing

abelian varieties with a given algebra acting by endomorphisms.2 Recall (1.2)

2For the reader who has not worked with Shimura varieties before, it may be instructive

to read Shimura’s paper [Sh]. Here certain Shimura varieties of PEL type are written
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that endomorphisms of an abelian variety are particular examples of Hodge

classes. On finite levels one thus looks at abelian varieties with a Polarization,

certain given Endomorphisms, and a Level structure.

Shimura varieties of PEL type are more special in that they represent a

moduli problem that can be formulated over an arbitrary basis. For more

general Shimura varieties of Hodge type we can only do this if we assume the

Hodge conjecture.

In 2.10, we will introduce two more classes of Shimura varieties: those of

abelian and of pre-abelian type. Among these classes we have the following

inclusions

(
Sh. var. of

PEL type

)
⊂

(
Sh. var. of

Hodge type

)
⊂

(
Sh. var. of

abelian type

)
⊂

⊂
(

Sh. var. of

pre-ab. type

)
⊂

(
general

Sh. var.

)

All inclusions are strict; for the first one see 1.2. (A priory, the Shimura

variety corresponding to a “Mumford example” could have a different real-

ization for which it is of PEL type. By looking at the group involved over R,

one easily shows that this does not happen.)

1.9 Compactifications; mixed Shimura varieties. This is a whole subject in

itself, and we cannot say much about it here. We will briefly indicate some

important statements, referring to the literature for details.

The first compactification to mention is the Baily-Borel (or minimal) com-

pactification, for which we write ShK(G,X)∗C. (References: [BB], see also [Br],

§4 for a summary.) It was constructed by Baily and Borel in the setting of

locally symmetric varieties. If Γ\X+ is a component of ShK(G,X)C, say with

K neat so that Γ\X+ is non-singular, then its Baily-Borel compactification

is given as a quotient Γ\X∗. Here X∗ is the Satake compactification of X+;

as a set it is the union of X+ and its (proper) rational boundary components,

which themselves are again hermitian symmetric domains. It is shown in

[BB] that Γ\X∗ has a natural structure of a normal projective variety. The

stratification of X∗ by its boundary components F induces a stratification of

Γ\X∗ by locally symmetric varieties ΓF\F .

down “by hand”. Both for understanding Shimura’s paper and for understanding the

abstract Deligne-formalism we are presenting here, it is a good exercise to translate the

considerations of [Sh] to the “(G, X) language”.
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As the referee pointed out to us, it is worth noticing that the Baily-Borel

compactification ShK(G,X)∗C is not simply defined as the disjoint union of

the Γ\X∗. Instead, one starts with a Satake compactification of the whole

of X at once, and one defines ShK(G,X)∗C as a suitable quotient. Thus, for

example, if (G,X) = (GL2,H
±), one does not adjoin the points of P1(Q) to

H+ and H− separately but one works with P1(Q)∪H+∪H−. We refer to [Pi],

Chap. 6 for further details.

The Baily-Borel compactification is canonical. In particular, it is easy to

show (see [Br], p. 90) that it descends to a compactification of the canon-

ical model ShK(G,X) (to be discussed in the next section). In general,

ShK(G,X)∗ is singular along the boundary.

Next we have the toroidal compactifications3 studied in the monograph

[Aea]. These are no longer canonical, as they depend on the choice of

a certain cone decomposition. We will reflect this in our notation, writ-

ing ShK(G,X;S)C for the toroidal compactification corresponding to a K-

admissible partial cone decomposition S as in [Pi], Chap. 6. From the con-

struction, we obtain a natural stratification of the boundary. For suitable

choices of S (and K neat), one obtains a projective non-singular scheme

ShK(G,X;S)C such that the boundary is a normal crossings divisor—in this

case one speaks of a smooth toroidal compactification.

Although both the Baily-Borel and the toroidal compactifications were

initially studied in the setting of locally symmetric varieties, it was realized

that they should be tied up with the theory of degenerating Hodge structures

(e.g., see [Aea], p. iv). For certain Shimura varieties this was done by Brylinski

in [Br], using 1-motives. Subsequently, Pink developed a general theory of

mixed Shimura varieties and studied compactifications in this setting. Similar

ideas, but in a less complete form, were presented by Milne in [Mi2]. It seems

that several important ideas can actually be traced back to Deligne.

The main results of [Pi] include the following statements (some of which

had been known before for pure Shimura varieties or some special mixed

Shimura varieties). We refer to loc. cit. for definitions, more precise state-

ments and of course for the proofs.

(i) Let ShK(G,X)C be a pure Shimura variety. It has a canonical model

ShK(G,X) over the reflex field E(G,X) (see §2 below). The Baily-Borel

compactification descends to a compactification ShK(G,X)∗ of this canoni-

3Here we indulge in the customary abuse of terminology to call these compactifications,

even though ShK(G, X ;S) is compact only if the cone decomposition S satisfies some

conditions.
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cal model. The boundary has a stratification by finite quotients of (canon-

ical models of) certain pure Shimura varieties; each such stratum is a finite

union of the natural boundary components in the Baily-Borel compactifica-

tion. Which pure Shimura varieties occur in this way can be described directly

in terms of the Shimura datum (G,X).

(ii) Next consider K-admissible cone decompositions S for (P,X). If

S satisfies certain conditions (such S always exists if K is neat) then the

following assertions hold. The toroidal compactification ShK(P,X;S)C de-

scends to a compactification ShK(P,X;S) of the canonical model. It is a

smooth projective scheme, and the boundary is a normal crossings divisor.

The boundary has a stratification by finite quotients of (canonical models of)

certain other mixed Shimura varieties; each such stratum is a finite union of

the strata of ShK(P,X;S) as a toroidal compactification. The natural mor-

phism π : ShK(P,X;S)→ ShK(P,X)∗ is compatible with the stratifications.

If ShK(P ′, X ′) is a mixed Shimura variety of which a finite quotient occurs

as a boundary stratum C ⊂ ShK(P,X;S), then the restriction of π to C is

induced by the canonical morphism of ShK(P ′, X ′) to the associated pure

Shimura variety.

Furthermore, Pink proves several results about the functoriality of the

structures in (i) and (ii).

To conclude this section, let us remark that in some cases (modular

curves: Deligne and Rapoport, [DR]; Hilbert modular surfaces: Rapoport,

[R1]; Siegel modular varieties: Chai and Faltings, [FC]) we even have smooth

compactifications of Shimura varieties over (an open part of) Spec(Z) or the

ring of integers of a number field. As Chai and Faltings remark in the intro-

duction to [FC], many of their ideas also apply to Shimura varieties of PEL

type; they conclude: “. . .and as our ideas usually either carry over directly,

or we are lead to hard new problems which require new methods, we leave

these generalizations to the reader.”

§2 Canonical models of Shimura varieties.

2.1 Before turning to more recent developments, we will discuss some aspects

of the theory of canonical models of Shimura varieties (over number fields).

Our motivation for doing so is twofold.

(i) For “most” Shimura varieties, the existence of a canonical model was

shown by Deligne in his paper [De3]. As we will see, the same strategy of

proof is useful in the context of integral canonical models.
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(ii) The existence of canonical models in general, i.e., including the cases

where the group G has factors of exceptional type, was claimed in [Mi1] (see

also [La], [Bo2], [MS], [Mi2]) as a consequence of the Langlands conjecture on

conjugation of Shimura varieties. It was pointed out to us by J. Wildeshaus

that the argument given there is not complete. Below we will explain this in

more detail, and we correct the proof.

2.2 Recall (1.6.6) that for a reductive group G over a global field K of

characteristic 0 we have set π(G) = G(AK)/G(K) · ρG̃(AK). We have the

following constructions, for which we refer to [De3], section 2.4.

(a) Given a finite field extension K ⊂ L, there is a norm homomorphism

NmL/K : π(GL) −→ π(G).

(b) If T is a torus over K and M is a G(K)-conjugacy class of homomor-

phisms TK → GK which is defined over K, then there is associated to M a

homomorphism qM : π(T ) −→ π(G).

If (G,X) is a Shimura datum with reflex field E = E(G,X) ⊂ C, we use

this to define a reciprocity homomorphism

r(G,X) : Gal(Q/E) −→ π0π(G) = G(Af )/G(Q)−+

as follows. Global class field theory provides us with an isomorphism

(2.2.1) Gal(Q/E)ab ∼−−→ π0π(Gm,E) .

Applying (b) to the conjugacy class M = {h◦µ : Gm,C → GC | h ∈ X}, which

(by definition) is defined over E, we obtain a map qM : π(Gm,E) −→ π(GE).

From (a) we get NmE/Q : π(GE) −→ π(G). Combining these maps we can

now define the reciprocity map as

r(G,X) : Gal(Q/E) ։ Gal(Q/E)ab (2.2.1)−−−−→ π0π(Gm,E)

π0(NmE/Q◦qM )−−−−→ π0π(G) ։ π0π(G) .

(2.2.2)

For a Shimura datum (T, {h}) where T is a torus, the reciprocity map can

be described more explicitly: if v is a place of E dividing p then

r(T,{h}) : Gal(Q/E) −→ π0π(T ) = T (Af )/T (Q)−

sends a geometric Frobenius element Φv ∈ Gal(Q/E) at v to the class of the

element NmE/Q

(
h(πv)

)
∈ T (Qp) →֒ T (Af ), where πv is a uniformizer at v.
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2.3 If (T, {h}) is a Shimura datum with T a torus, then for every com-

pact open subgroup K ⊂ T (Af ) the Shimura variety ShK(T, {h})C con-

sists of finitely many points. To define a model of it over the reflex field

E = E(T, {h}) it therefore suffices to specify an action of Gal(Q/E). Write

ShK(T, {h}) for the model over E determined by the rule that σ ∈ Gal(Q/E)

acts on ShK(T, {h})C by sending [h, tK] to [h, r(T,{h})(σ) · tK]. It is clear that

the transition maps Sh(K ′,K) descend to E, and we define the canonical model

of Sh(T, {h})C to be

Sh(T, {h}) = lim←−
K

ShK(T, {h}) .

2.4 Definition. Let (G,X) be a Shimura datum.

(i) A model of Sh(G,X)C over a field F ⊂ C is a scheme S over F together

with a continuous action of G(Af ) from the right and a G(Af )-equivariant

isomorphism S ⊗F C ∼−→ Sh(G,X)C.

(ii) Let F ⊂ C be a field containing E(G,X). A weakly canonical model

of Sh(G,X) over F is a model S over F such that for every closed immersion

of Shimura data i : (T, {h}) →֒ (G,X) with T a torus, the induced morphism

Sh(T, {h})C →֒ Sh(G,X)C
∼= SC descends to a morphism Sh(T, {h}) ⊗E

EF →֒ S ⊗F EF , where E = E(T, {h}), and where Sh(T, {h}) is the model

defined in 2.3.

(iii) A canonical model of Sh(G,X) is a weakly canonical model over the

reflex field E(G,X).

It should be noticed that if S is a model of Sh(G,X) over the field F ⊂ C,

then we have an action of G(Af ) × Gal(F/F ) on SF (i.e., two commuting

actions of G(Af ) and Gal(F/F ).)

2.5 Let f : (G1, X1) → (G2, X2) be a morphism of Shimura data, and sup-

pose there exist canonical models Sh(G1, X1) and Sh(G2, X2). Then, as shown

in [De1], section 5, the morphism Sh(f) descends uniquely to a morphism

Sh(G1, X1) → Sh(G2, X2) ⊗E(G2,X2) E(G1, X1), which we will also denote

Sh(f). In particular, it follows that a canonical model, if it exists, is unique

up to isomorphism. (The isomorphism is also unique, since the isomorphism

Sh(G,X)⊗E C ∼−→ Sh(G,X)C is part of the data.)

2.6 If Sh(G,X) is a canonical model of a Shimura variety, then the Ga-

lois group Gal(Q/E) acts on the set of connected components of Sh(G,X)C,

which, as recalled in 1.6.6, is a principal homogeneous space under π0π(G).
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Deligne proves in [De3], section 2.6, that the homomorphism Gal(Q/E) →
π0π(G) describing the Galois action on π0

(
Sh(G,X)C

)
is equal to the homo-

morphism r(G,X) defined above. (Strictly speaking, this is only true up to a

sign: in [De3] the Galois action on π0(ShC) is described to be r(G,X); Milne

pointed out in [Mi3], Remark 1.10, that the reciprocity law is given by r(G,X),

not its inverse.)

2.7 An important technique for proving the existence of canonical models

is the reduction to a problem about connected Shimura varieties. To explain

this, let us assume that Sh(G,X) is a canonical model of the Shimura variety

associated to the datum (G,X), and let us inventory the available structures.

As in all of this section, we are mainly repeating things from Deligne’s paper

[De3].

The group G(Af ) acts continuously on ShC = Sh(G,X)C from the right.

If Z denotes the center of G then Z(Q)− ⊂ G(Af ) acts trivially. Write

Gad(Q)1 := Gad(Q) ∩ Im
(
G(R) → Gad(R)

)
. The action of Gad on G by

inner automorphisms induces (by functoriality) a left action of Gad(Q)1 on

Sh(G,X)C. For g ∈ G(Q), the action of g through Gad(Q)1 coincides with the

one of g−1 considered as an element of G(Af ). In total we therefore obtain a

continuous left action of the group

Γ :=
(
G(Af )/Z(Q)−

)
∗

G(Q)/Z(Q)
Gad(Q)1 =

(
G(Af )/Z(Q)−

)
∗

G(Q)+/Z(Q)
Gad(Q)+

(converting the operation of G(Af ) to a left action). The group Γ operates

transitively on π0(ShC). For any connected component of ShC, the stabilizer

of this component is the subgroup

(
G(Q)−+/Z(Q)−

)
∗

G(Q)+/Z(Q)
Gad(Q)+ ∼= Gad(Q)+∧ (rel. τ(Gder)) ,

where the completion Gad(Q)+∧ is taken relative to the topology τ(Gder).

The profinite set π0(ShC) is a principal homogeneous space under the abelian

group

G(Af )/G(Q)−+
∼= π0π(G) .

(Cf. 1.6.5 and 1.6.6.)

From now on we fix a connected component X+ ⊂ X, and we write

Sh0
C = Sh0(Gder, X+)C for the corresponding connected Shimura variety, to

be identified with a connected component of Sh(G,X)C. We have an action of

the Galois group Gal(Q/E) on ShC. As mentioned in 2.6, it acts on π0(ShC)
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through the reciprocity homomorphism r(G,X). The subgroup EE(Gder, X+) ⊂
Γ×Gal(Q/E) which fixes the connected component Sh0

C is an extension

0 −→ Gad(Q)+∧ −→ EE(Gder, X+) −→ Gal(Q/E) −→ 0 .

With these notations, we have the following important remarks.

(i) The extension EE(Gder, X+) depends only on the pair (Gder, X+); in

particular this justifies the notation. (See [De3], section 2.5.)

(ii) Galois descent (see also 2.15 below) tells us that it is equivalent to

give a model of Sh(G,X)C over E or to give a scheme S over Q with a

continuous action of Γ × Gal(Q/E) and a Γ-equivariant isomorphism S ⊗Q

C ∼−→ Sh(G,X)C.

(iii) Write e ∈ π0(ShC) for the class of the connected component Sh0
C. To

give a Q-scheme S as in (ii), which, in particular, comes equipped with a

Γ-equivariant isomorphism π0(S) ∼= π0(ShC), is equivalent to giving its con-

nected component Se corresponding to e together with a continuous action of

EE(Gder, X+). The idea here is that we can recover S from Se by “induction”

from EE(Gder, X+) to Γ×Gal(Q/E). (See [De3], section 2.7.)

2.8 Definition. (i) Let (G′, X+) be a pair defining a connected Shimura

variety with reflex field E, let F ⊂ Q be a finite extension of E, and write

EF (G′, X+) for the extension of Gal(Q/F ) by Gad(Q)+∧ (completion for the

topology τ(G′)) described in [De3], Def. 2.5.7. Then a weakly canonical model

of the connected Shimura variety Sh0(G′, X+)C over F consists of a scheme S

over Q together with a continuous left action of the group EF (G′, X+) and an

isomorphism i : S ⊗Q C ∼−→ Sh0(G′, X+)C such that the following conditions

are satisfied.

(a) The action of EF (G′, X+) on S is semi-linear, i.e., compatible with the

canonical action on Spec(Q) through the quotient Gal(Q/F ).

(b) The isomorphism i is equivariant w.r.t. the action of Gad(Q)+∧ ⊂
EF (G′, X+) (which by (i) acts linearly on S).

(c) Given a special point h ∈ X+, factoring through a subtorus h : S →
HC ⊂ Gad

C defined over Q, let E(h) denote the field of definition of the cochar-

acter h ◦ µ. Delinge defines in loc. cit., 2.5.10, an extension 0 → H(Q) →
EF (h) → Gal(Q/EE(h)) → 0, for which there is a natural homomorphism

EF (h) → EF (G′, X+). Then we require that the point in Sh0(G′, X+)C de-

fined by h is defined over Q and is fixed by EF (h).

(ii) A canonical model of the connected Shimura variety Sh0(G′, X+)C is

a weakly canonical model over the reflex field E.
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Although our formulation of condition (c) in (i) is a little awkward, it

should be clear that this definition is just an attempt to formalize the above

remarks. In fact, these remarks lead to the following result (= [De3], Prop.

2.7.13).

2.9 Proposition. Let (G,X) be a Shimura datum, and choose a connected

component X+ of X. If Sh(G,X) is a weakly canonical model of Sh(G,X)C

over F ⊇ E(G,X), then the connected component Sh0(G,X)Q determined

by the choice of X+ is a weakly canonical model of Sh0(Gder, X+)C over F .

Conversely, if there exists a weakly canonical model of Sh0(Gder, X+)C over F ,

then it is obtained in this way from a weakly canonical model of Sh(G,X)C.

2.10 The main result of [De3] is the existence of canonical models for a

large class of Shimura varieties (see below). Since the strategy of proof also

works for other statements about Shimura varieties, let us present it in an ab-

stract form (following [Mi2], II.9). So, suppose we want to prove a statement

P(G,X) about Shimura varieties.

(a) Prove P(CSp2g,H
±
g ) using the interpretation of Sh(CSp2g,H

±
g )C as a

moduli space.

(b) For a closed immersion i : (G1, X1) →֒ (G2, X2), prove the implication

P(G2, X2) =⇒ P(G1, X1).

(c) Find a statement P0(G′, X+) for pairs (G′, X+) defining a connected

Shimura variety, such that, for any connected component X+ ⊆ X, we have

P(G,X)⇐⇒ P0(Gder, X+).

(d) Given pairs (G′
i, X

+
i ), i = 1, . . . , m, prove that ∀i P0(G′

i, X
+
i ) =⇒

P0(
∏

iG
′
i,

∏
iX

+
i ).

(e) For an isogeny G′ → G′′, prove that P0(G′, X+) =⇒ P0(G′′, X+).

Roughly speaking, the class of Shimura varieties of abelian type is the

largest class for which (a)–(e) suffice to prove statement P. (As we will see

below, this is not completely true: we may have to modify the strategy a bit,

and even then it is not clear whether we obtain property P for all Shimura

varieties of abelian type.) More precisely, a Shimura datum (G,X) is said to

be of abelian type if there exists a Shimura datum (G2, X2) of Hodge type

and an isogeny Gder
2 ։ Gder which induces an isomorphism (Gad

2 , X
ad
2 ) ∼−→

(Gad, Xad). Deligne has analysed which simple Shimura data belong to this

class. He showed that if (G,X) is of abelian type with G simple over Q, then

the following two conditions hold:

(i) The adjoint datum (Gad, Xad) is of type A, B or C, or of type DR, or
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of type DH (cf. [De3], section 1.2), and

(ii) For a datum (Gad, Xad) of type A, B, C or DR, let G♯ denote the

universal covering of Gad; for (Gad, Xad) of type DH
ℓ , let G♯ be the double

covering of Gad which is an inner form of (a product of copies of) SO(2ℓ), cf.

ibid., 2.3.8, and notice that the case DH
4 is defined to exclude the case DR

4 .

Then Gder is a quotient of G♯.

Conversely, if (G′, X+) is a pair defining a connected Shimura variety such

that (i) and (ii) hold, then there exists a Shimura datum (G,X) of abelian

type with Gder = G′, X+ ⊆ X.

Finally, we define (G,X) to be of pre-abelian type if condition (i) holds.

We see that, as far as connected Shimura varieties is concerned, this class is

only slightly larger than that of data of abelian type.

2.11 Let us check steps (a)–(e) above for the statement

P(G,X) : there exists a canonical model for Sh(G,X)C .

(a) The scheme lim←−n
Ag,1,n ⊗Q is a canonical model for Sh(CSp2g,H

±
g )C.

Given the definitions as set up above, this boils down to a theorem of Shimura

and Taniyama—see [De1], section 4. (Needless to say, the theorem of Shimura

and Taniyama historically came first. The definition of a canonical model was

modelled after a number of examples, including the Siegel modular variety.)

(b) This is shown in ibid., section 5. We should note here that, using

a modular interpretation, one can prove P(G,X) more directly for Shimura

varieties of Hodge type. This was indicated in the introduction of [De3], and

carried out in detail in [Br].

For steps (c)–(e), let us work with the statement

P0(G′, X+) : there exists a canonical model for Sh0(G′, X+)C .

The (d) and (e) follow easily from the definitions (cf. [De3], 2.7.11) As for

(c), we see that our strategy is not completely right: to prove P0(G′, X+), we

want to take a Shimura datum (G2, X2) of Hodge type (for which we know

P(G2, X2) by (a) and (b)) with (Gder
2 , X+

2 ) ∼= (G′, X+), and then we can

apply Prop. 2.9. The problem here is that this only gives the existence of a

weakly canonical model of Sh0(G′, X+)C over E(G2, X2), which in general is

a proper field extension of E(Gad, X+). (Notice that (G2, X2) is required to

be of Hodge type—without this condition there would be no problem.) Thus

we see that our “naive” strategy has to be corrected. This is done in two

steps.
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First one assumes that G is Q-simple, and one considers the maximal

covering G♯ → Gad (as in 2.10) which occurs as the semi-simple part in a

Shimura datum of Hodge type. As explained, the Shimura data (G2, X2)

of Hodge type with Gder
2
∼= G♯ in general have E(Gad, X+) ( E(G2, X2).

Deligne shows, however, that by “gluing in” a suitable toric part, the field

extension E(G2, X2) can be made in almost every “direction”; for a precise

statement see [De3], Prop. 2.3.10. Finally one shows that this is enough to

guarantee the existence of a canonical model of Sh0(G′, X+)C; one proves

(ibid., Cor. 2.7.19): if for every finite extension F ⊂ Q of E = E(G′, X+),

there exists another finite extension E ⊆ F ′ ⊂ Q which is linearly disjoint

from F , and such that Sh0(G′, X+)C has a weakly canonical model over F ′,

then it has a canonical model.

Putting everything together, one obtains the following result.

2.12 Theorem. (Deligne, [De3]) Let (G,X) be a Shimura datum, and let

(Gad, Xad) ∼= (G1, X1) × · · · × (Gm, Xm) be the decomposition of its adjoint

datum into simple factors. Suppose that, using the notations of 2.10, Gder is

a quotient of G♯
1×· · ·×G♯

m. Then there exists a canonical model of Sh(G,X).

Notice that it is not clear whether this statement covers all data (G,X)

of abelian type.

To extend this result to arbitrary Shimura data, additional arguments are

needed. Since eventually we want to apply a Galois descent argument, it

would be useful if we could first descend Sh(G,X)C to a scheme over Q.

Faltings has shown that this can be done using a rigidity argument.

2.13 Theorem. (Faltings, [Fa1]) Let G be a semi-simple algebraic group

over Q, K∞ ⊆ G(R) a maximal compact subgroup, and Γ ⊂ G(Q) a neat

arithmetic subgroup. If X = G(R)/K∞ is a hermitian symmetric domain,

then the locally symmetric variety Γ\X (with its unique structure of an al-

gebraic variety) is canonically defined over Q. The special points on Γ\X are

defined over Q. If Γ1,Γ2 ⊂ G(Q) are neat arithmetic subgroups, γ ∈ G(Q)

an element with γΓ1γ
−1 ⊆ Γ2, then the natural morphism γ : Γ1\X → Γ2\X

is also defined over Q.

Next we have to recall Langlands’s conjecture on the conjugation of Shimura

varieties (now a theorem, due to work of Borovoi, Deligne, Milne, and Milne-

Shih, among others). We will not go into details here; the interested reader

can consult [Bo1], [Bo2], [Mi1], [MS].
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2.14 Theorem. (Borovoi, Deligne, Milne, Shih, ... ) Given a Shimura

datum (G,X), a special point x ∈ X, and a τ ∈ Aut(C), one can define a

Shimura datum (τ,xG, τ,xX), a special point τx ∈ τ,xX, and an isomorphism

G(Af ) ∼−→ τ,xG(Af ), denoted g 7→ τ,xg, satisfying the following conditions

(writing T (g) for the action of an element g ∈ G(Af ) on Sh(G,X)C)

(i) There is a unique isomorphism ϕτ,x : τSh(G,X)C
∼−→ Sh(τ,xG, τ,xX)C

with ϕτ,x(
τ [x, 1]) = [τx, 1] and with ϕτ,x ◦ τT (g) = T (τ,xg) ◦ ϕτ,x for all

g ∈ G(Af ).

(ii) If x′ ∈ X is another special point then there is an isomorphism

ϕ(τ ; x, x′) : Sh(τ,xG, τ,xX)C
∼−→ Sh(τ,x′

G, τ,x′

X)C such that ϕ(τ ; x, x′) ◦ ϕτ,x =

ϕτ,x′ and such that ϕ(τ ; x, x′)◦T (τ,xg) = T (τ,x′

g)◦ϕ(τ ; x, x′) for all g ∈ G(Af ).

As explained in [La], section 6 (see also [Mi2], section II.5), using the

theorem one obtains a “pseudo” descent datum from C to E = E(G,X) on

Sh(G,X)C. By this we mean a collection of isomorphisms

{fτ : τSh(G,X)C
∼−−→ Sh(G,X)C}τ∈Aut(C/E)

satisfying the cocycle condition fστ = fσ ◦ σfτ . At several places in the

literature (e.g., [La], section 6, [Mi2], p. 340, [MS], §7) it is asserted that

“by descent theory” this gives a model of Sh(G,X)C over E. (Due to the

properties of the fτ , this model would then be a canonical model.) We think

that this argument is not complete—let us explain why.

2.15 To descend a scheme XC from C to a number field E ⊂ C, it does

in general not suffice to give a collection of isomorphisms {fτ : τXC
∼−→

XC}τ∈Aut(C/E) with fστ = fσ ◦ σfτ (or, what is the same, a homomorphism of

groups α : Aut(C/E) → Aut(XC) sending τ to a τ -linear automorphism of

XC). For instance, using the fact that Q is an injective object in the category

of abelian groups, we easily see that there exist non-trivial group homomor-

phisms c : Aut(C/E)→ Q. Taking XC = A1
C, on which we let τ ∈ Aut(C/E)

act as the τ -linear translation over c(τ), we get an example of a non-effective

“pseudo” descent datum. The same remarks apply if we replace C by Q.

(Thus, for example, [Mi4], Lemma 3.23 is not correct as it stands.)

In this context it seems useful to remark the following. Given a Q-scheme

XQ, one might expect that a descent datum on XQ relative to Q/E can be

expressed as a collection of isomorphisms {ϕτ : τXQ
∼−→ XQ}τ∈Gal(Q/E) for

which, apart from the cocycle condition ϕστ = ϕσ ◦ σϕτ , a certain “continuity

condition” holds. To see why a continuity condition should enter, one must

realize that a scheme such as Spec(Q⊗E Q) is not a disjoint union of copies of
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Spec(Q) indexed by Gal(Q/E) (which would not be a quasi-compact scheme),

but rather a projective limit Spec(Q⊗E Q) = lim←−F
Spec(Q)Gal(F/E), where F

runs through the finite Galois extensions of E in Q. (In other words: this is

Gal(Q/E) as a pro-finite group scheme.) It seems though that it is not so easy

to formulate the desired continuity condition directly. Even if one succeeds

in doing this, however, it should be remarked that descent data relative to

Q/E are not necessarily effective (cf. [SGA1], Exp. VIII).

Since we are really only interested in effective descent data relative to

Q/E, we take a slightly different approach. Let us call a (semi-linear) action

α : Gal(Q/E)→ Aut(X ′) of Gal(Q/E) on a Q-scheme X ′ continuous if it is

continuous as an action of a locally compact, totally disconnected group (see

[De3], section 2.7). Since the Galois group is actually compact, the following

statement is then a tautology.

2.15.1 The functor X 7→ X ′ = X ⊗E Q gives an equivalence of categories

(
quasi-projective

schemes X over E

)
eq.−−−−→




quasi-projective schemes X ′ over Q

with a continuous semi-linear action

of Gal(Q/E)


 .

We thus see that, in order to prove the existence of canonical models in

the general case, we need to show that Theorem 2.14 provides us with a

continuous Galois action on Sh(G,X)Q. For this we will use the following

lemma.

2.16 Lemma. Let (G,X) be a Shimura datum, K ⊂ G(Af ) a compact open

subgroup, and let S = Γ\X+ be a connected component of ShK(G,X)C.

Then we can choose finitely many special points x1, . . . , xn ∈ S0 such that S

has no non-trivial automorphisms fixing the xi.

Proof. Let j : S →֒ S∗ denote the Baily-Borel compactification. Every auto-

morphism of S extends to an automorphism of S∗. There exists an ample line

bundle L on S∗ such that α∗L ∼= L for every α ∈ Aut(S). In fact, if G has no

simple factors of dimension 3 then we can take L := j∗Ω
d
S , where d = dim(S).

In the general case one has to impose growth conditions at infinity: using the

terminology of [BB] we can take for L the subsheaf of j∗Ω
d
S (now taken in the

analytic sense) of automorphic forms which are integral at infinity. (So L is

the bundle O(1) corresponding to the projective embedding of S∗ as in loc.

cit., §10. Mumford showed in [Mu3] that if S is a smooth toroidal compact-

ification and π : S → S∗ is the canonical birational morphism, then π∗L is

the sheaf Ωd
S
(log ∂S).)
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Let P be the “doubled” Hilbert polynomial of L, given by P (x) = PL(2x).

Recall from [FGA], Exposé 221, p. 20, that the scheme Hom(S∗, S∗)P given

by

Hom(S∗, S∗)P (T ) = {g : S∗ ×C T −→ S∗ ×C T | χ
(
(L⊗OT

g∗L)⊗n
)

= P (n)}

is of finite type. With the obvious notations, it follows that Aut(S∗)P is a

scheme of finite type, being a locally closed subscheme of Hom(S∗, S∗)P . The

lemma now follows from the following two trivial remarks:

(i) if α ∈ Aut(S∗) fixes all special points of S then α = id,

(ii) if x1, . . . , xn are special points of S0 then

Aut(S∗; x1, . . . , xn)P := {α ∈ Aut(S∗)P | α(xi) = xi for all i = 1, . . . , n}

is a closed subgroup scheme of Aut(S∗)P . �

2.17 We now complete the argument showing that Sh(G,X)C has a canon-

ical model. Obviously, the first step is to use Theorem 2.13, so that we

obtain a model Sh(G,X)Q over Q. We claim that the “pseudo” descent da-

tum {fτ : τSh(G,X)C
∼−−→ Sh(G,X)C}τ∈Aut(C/E) considered in 2.14 induces

a semi-linear action of Gal(Q/E) on Sh(G,X)Q, which is functorial. We

can show this using the special points: if Sh(T, {h})C →֒ Sh(G,X)C is a 0-

dimensional sub-Shimura variety, then the canonical model Sh(T, {h}) over E ′

= E(T, {h}) gives rise to a collection of isomorphisms {f̃σ : σSh(T, {h})C
∼−→

Sh(T, {h})C}σ∈Aut(C/E′), and for σ ∈ Aut(C/E′), the two maps fσ and f̃σ are

equal on σSh(T, {h})C. Using the fact that the special points on Sh(G,X)C

are defined over Q for the Q-structure Sh(G,X)Q, one now checks that the

fσ induce a system

{ϕτ : τSh(G,X)Q
∼−−→ Sh(G,X)Q}τ∈Gal(Q/E)

with ϕστ = ϕσ ◦ σϕτ . What we shall use is that the action on the special

points agrees with the one obtained from the canonical models Sh(T, {h}).
Now for the continuity of the Galois action on Sh(G,X)Q. First let us

remark that it suffices to prove that the semi-linear Galois action on each of

the ShK(G,X) is continuous, since the transition morphisms then automat-

ically descend. Here we may even restrict to “levels” ShK where K is neat.

Furthermore, it suffices to show that there is an open subgroup of Gal(Q/E)

which acts continuously. In fact, if we assume this then ShK(G,X) descends

to a finite Galois extension F of E. On the model ShK(G,X)F thus obtained
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we still have a Galois descent datum relative to F/E, and since this is now a

finite Galois extension, the descent datum is effective.

Since ShK(G,X)Q is a Q-scheme of finite type, there exists a finite exten-

sion E ′ of E and a model SE′ of ShK(G,X) over E ′. This model gives rise to

semi-linear action of Gal(Q/E′) on ShK(G,X)Q, which we can describe as a

collection of automorphisms

{ψτ : τShK(G,X)Q
∼−−→ ShK(G,X)Q}τ∈Gal(Q/E) .

Observe that ϕτ ◦ (ψτ )
−1 is a Q-linear automorphism of ShK(G,X)Q, and

that {τ ∈ Gal(Q/E) | ϕτ = ψτ} is a subgroup of Gal(Q/E).

At this point we apply Lemma 2.16. It gives us special points x1, . . . , xn ∈
ShK(G,X)Q such that there are no automorphisms of ShK(G,X)Q fixing all

xi. For each xi, choose a closed immersion ji : (Ti, {hi}) →֒ (G,X) and an

element gi ∈ G(Af ) such that xi lies in gi · Sh(Ti, {hi})Q ⊆ Sh(G,X)Q. Let

Ki := j−1
i (K) ⊂ Ti(Af ). There exists a finite extension E ′′ of E ′, containing

the reflex fields E(xi), such that the xi are all E ′′-rational on the chosen model

SE′ and such that furthermore all points of ShKi
(Ti, {hi}) are rational over

E ′′ (for every i = 1, . . . , n). It now follows from what was said above that the

two Galois actions on ShK(G,X)Q, given by the ϕτ and the ψτ , respectively,

are the same when restricted to Gal(Q/E′′). This finishes the proof of the

following theorem.

2.18 Theorem. Let (G,X) be a Shimura datum. Then there exists a canon-

ical model Sh(G,X) of the associated Shimura variety.

2.19 Remark. In [Pi], the notion of a canonical model is generalized to the

mixed case, and the existence of such canonical models is proven for arbitrary

mixed Shimura varieties. Pink’s proof essentially reduces the problem to

statement 2.18; once we have 2.18, the mixed case does not require any further

corrections.

2.20 Remark. There is also a theory of a canonical models for automorphic

vector bundles on Shimura varieties. The interested reader is referred to [Ha]

and [Mi2].

§3 Integral canonical models

3.1 Let (G,X) be a Shimura datum with reflex field E = E(G,X), and let

v be a prime of E dividing p > 0. We want to study models of the Shimura
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variety Sh(G,X) over the local ring OE,(v) of E at v. In our personal view,

the theory of such models is still in its infancy. How to set up the defini-

tions, what properties to expect, etc., are dictated by the examples where

the Shimura variety represents a moduli problem that can be formulated in

mixed characteristics (notably Shimura varieties of PEL type). Even in the

case where G is unramified over Qp, this leaves open some subtle questions.

Some of the rules of the game become clear already from looking at Siegel

modular varieties. We have seen that the canonical model in this case can be

identified with the projective limit lim←−n
Ag,1,n ⊗ Q. Fixing a prime number

p, we see that, for constructing a model over Z(p), we run into problems at

the levels Ag,1,n with p | n. By contrast, if we only consider levels with p ∤ n,

then we have a natural candidate model, viz. lim←−p∤n
Ag,1,n ⊗ Z(p), which has

all good properties we can expect.

Returning to the general case, this suggests the following set-up. Let

(G,X), E and v be as above. We fix a compact open subgroup Kp ⊂ G(Qp),

and we consider

ShKp(G,X) = lim←−
Kp

ShKp×Kp(G,X) ,

where Kp runs through the compact open subgroups of G(Ap
f ). It is this

scheme ShKp(G,X), the quotient of Sh(G,X) for the action of Kp, of which

we shall study models. Notice that we can expect to find a smooth model (to

be made precise in a moment) only for special choices of Kp.

3.2 Definition. Let (G,X) be a Shimura datum, E = E(G,X), v a finite

prime of E dividing p, and let Kp be a compact open subgroup of G(Qp). Let

O be a discrete valuation ring which is faithfully flat over O(v). Write F for

the quotient field of O.

(i) An integral model of ShKp(G,X) over O is a faithfully flat O-scheme

M with a continuous action of G(Ap
f ) and a G(Ap

f )-equivariant isomorphism

M⊗ F ∼= ShKp(G,X)⊗E F .

(ii) An integral model M of ShKp(G,X) over O is said to be smooth

(respectively normal) if there exists a compact open subgroup C ⊂ G(Ap
f ),

such that for every pair of compact open subgroups Kp
1 ⊆ Kp

2 ⊂ G(Ap
f )

contained in C, the canonical map M/Kp
1 → M/Kp

2 is an étale morphism

between smooth (resp. normal) schemes of finite type over O.

It should be clear that an integral model M, if it exists, is by no means

unique. For example, given one such model, we could delete a G(Ap
f )-orbit

properly contained in the special fibre, or we could blow up in such an orbit,
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to obtain a different integral model. To arrive at the notion of an integral

canonical model, we will impose the condition thatM satisfy an “extension

property”, similar to the Néron mapping property in the theory of Néron

models (cf. [BLR], section 1.2). This idea was first presented by Milne in

[Mi3]. As we shall see, one of the main difficulties in this approach is to

find a good class of “test schemes” for which the extension property should

hold. Given a base ring O, we will work with a class of O-schemes that we

call “admissible test schemes over O”, abbreviated “a.t.s.”. We postpone the

precise definition of the class that we will work with until 3.5.

3.3 Definition. Let (G,X), E, v, Kp, O and F be as in 3.2.

(i) An integral modelM of ShKp(G,X) over O is said to have the exten-

sion property if for every admissible test scheme S over O, every morphism

SF →MF over F extends uniquely to an O-morphism S →M.

(ii) An integral canonical model of ShKp(G,X) at the prime v is a sep-

arated smooth integral model over O(v) which has the extension property.

A local integral canonical model is a separated smooth integral model over

Ov := O∧
(v) having the extension property.

3.4 Comments. A definition in this form was first given by Milne in [Mi3].

As admissible test schemes over O he used all regular O-schemes S for which

SF is dense in S. Later it was seen that this is not the right class to work

with (cf. [Mi4], footnote on p. 513); the reason for this is the following. One

wants to set up the theory in such a way that lim←−p∤n
Ag,1,n⊗Z(p) is an integral

canonical model for the Siegel modular variety. Using Milne’s definition, this

boils down to [FC], Cor. V.6.8, which, however, is false as it stands. Recall

that this concerns the following question: suppose given a regular scheme

S with maximal points of characteristic 0, a closed subscheme Z →֒ S of

codimension at least 2, and an abelian scheme over the complement U = S\Z.

Does this abelian scheme extend to an abelian scheme over S? In loc. cit.

it is claimed that the answer is “yes”—this is not correct in general. A

counterexample, due to Raynaud-Ogus-Gabber, is discussed in [dJO], section

6. Let us try to explain the gist of the example, referring to loc. cit. for

details.

As base scheme we take S = Spec(R), where R = W (Fp)[[x, y]]/
(
(xy)p−1−

p
)
. There exists a primitive pth root of unity ζp in R. Let s ∈ S be the

closed point, and set U1 = D(x), U2 = D(y), U = S \ {s} = U1 ∪ U2,

U12 = D(xy) = U1 ∩ U2. We obtain a finite locally free group scheme GU of
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rank p2 over U by gluing

G1 =
(
µp × Z/pZ

)
U1

and G2 =
(
µp × Z/pZ

)
U2

via the isomorphism

ϕ : G1|U12
∼−→ G2|U12

given by the matrix

(
1 0

β 1

)
,

where β : µp
∼−→ Z/pZ (over U12) maps ζp ∈ Γ(U12, µp) to 1̄ ∈ Γ(U12,Z/pZ).

One easily sees from the construction that we have an exact sequence

0 −→ (Z/pZ)U
γU−→ GU −→ µp,U −→ 0 ,

and that this extension is not trivial.

The group scheme GU extends uniquely to a finite locally free group

scheme G over S. Also, the homomorphism γU extends uniquely to a ho-

momorphism γ : (Z/pZ)S → G, which, however, is not a closed immersion.

(The whole point!) To get the desired example, one only has to embed G into

an abelian scheme X over S (using the theorem [BM3], Thm. 3.1.1 by Ray-

naud), and take YU := XU/(Z/pZ)U , where (Z/pZ)U is viewed as a subgroup

scheme of XU via γU and the chosen embedding G →֒ X.

To understand what is going on, the following remarks may be of help.

One can show that the fibre Gs is isomorphic to αp × αp. There is a blowing

up π : S̃ → S with center in s such that (Z/pZ)U →֒ GU extends to a closed

flat subgroup scheme N →֒ GeS. Over S̃, the abelian scheme YU extends to

the abelian scheme YeS := XeS/N . When restricted to the exceptional fibre

E, we have YeS |E
∼= (Xs ×E)/NE, where NE →֒ (αp × αp)E is a non-constant

subgroup scheme isomorphic to αp. Therefore, we cannot blow down YeS to

an abelian scheme over S.

In order to guarantee that lim←−p∤n
Ag,1,n⊗Z(p) is an i.c.m., we want our a.t.s.

to satisfy the following condition. (Here O is a d.v.r. with field of fractions

F and S is an O-scheme.)

(3.4.1)

for every closed subscheme Z →֒ S, disjoint from SF and of codi-

mension at least 2 in S, every abelian scheme over the complement

U = S \ Z extends to an abelian scheme over S.

On the other hand, we want that an integral canonical model, if it exists,

is unique up to isomorphism. Thus we want it to be an a.t.s. over O(v) itself.

The notion that we will work with in this paper is the following.
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3.5 Definition. Let O be a discrete valuation ring. We call an O-scheme

S an admissible test scheme (a.t.s.) over O if every point of S has an open

neigbourhood of the form Spec(A), such that there exist O ⊆ O′ ⊆ A0 ⊆ A,

where

—O ⊆ O′ is a faithfully flat and unramified extension of d.v.r. withO′/(π)

separable over O/(π),

—A0 is a smooth O′-algebra, and where

—Spec(A)→ Spec(A0) is a pro-étale covering.

We write ATSO for the class of a.t.s. over O.

We want to stress that this should be seen as a working definition, see

also the remarks in 3.9 below. Clearly, a smooth model of a Shimura variety

over O belongs to ATSO. In particular, we have unicity of integral canonical

models:

3.5.1 Proposition. Let (G,X) be a Shimura datum, v a prime of its reflex

field E dividing the rational prime p, and let Kp be a compact open subgroup

of G(Qp). If there exists an integral canonical model of ShKp(G,X) over O(v),

then it is unique up to isomorphism.

Furthermore, we have the following properties.

(3.5.2) If S ∈ ATSO then S is a regular scheme, formally smooth over O. (To

prove that the local rings of S are noetherian, we can follow the arguments

of [Mi3], Prop. 2.4.)

(3.5.3) If O ⊆ O′ is an unramified faithfully flat extension of d.v.r., then

S ∈ ATSO′ ⇒ S ∈ ATSO, and S ∈ ATSO ⇒ (S ⊗O O′) ∈ ATSO′.

Next we investigate whether (3.4.1) holds. For this we use the following

two lemmas.

3.6 Lemma. (Faltings) Let O be a d.v.r. of mixed characteristics (0, p)

with p > 2. Suppose that the ramification index e satisfies e < p − 1. Then

every regular formally smooth O-scheme S satisfies condition (3.4.1).

Proof (sketch). As mentioned above, some statements in [FC], section V.6,

are not correct. The mistake can be found on p. 182: the map p− dim(G) ·
traceG[pn+1]/G[pn] is not a splitting of the map OG[pn] ⊂ OG[pn+1], as claimed.

Most arguments in the rest of the section are correct however, and with some
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modifications we can use them to prove the lemma. Let us provisionally write

RFSO for the class of regular, formally smooth O-schemes. For S ∈ RFSO,

we have the following version of [FC], Thm. V.6.4’.

3.6.1 Let S be a regular, formally smooth O-scheme (O as above, with

e < p− 1), and let U →֒ S be the complement of a closed subscheme Z →֒ S

of codimension at least 2. Then every p-divisible group GU over U extends

uniquely to a p-divisible group G over S.

The only step in the proof of [FC], Thm. V.6.4’ that we have to correct is

the one showing the existence of an extension G in case dim(S) = 2 (loc. cit.,

top of p. 183). So we may assume S = Spec(R) ←֓ U = S \ {s}, where R

is a 2-dimensional regular local ring, and where s is the closed point of S.

The GU,n := Gu[p
n] extend uniquely to an inductive system of finite flat group

schemes {Gn; in : Gn → Gn+1}. (See [FC], Lemma V.6.2.) We have to prove

that the sequences

(3.6.2) 0 −→ Gn
in−→ Gn+1

pn

−→ G1 −→ 0

are exact. That in is a closed immersion needs to be checked only on the

closed fibre. The formal smoothness of R over O guarantees that there exists

an unramified faithfully flat extension of d.v.r. O ⊂ O′ such that S has a

section over O′ with s contained in the image. Pulling back to O′, it then

follows from [Ra1], Cor. 3.3.6, that in is a closed immersion. Finally, this

implies that Gn+1/Gn is a finite flat extension of GU,1, and because of the

unicity of such an extension it follows that (3.6.2) is exact.

It remains to be checked that, using 3.6.1 to replace [FC] Thm. V.6.4’, all

steps in the proof of ibid., Thm. 6.7 go through for S ∈ RFSO. One has to

note that in carrying out the various reduction steps, we stay within the class

RFSO. At some points one furthermore needs arguments similar to the above

ones, i.e., taking sections over an extension O′ and using [Ra1], Cor. 3.3.6.

We leave it to the reader to verify the details. �

3.7 Lemma. Let (G,X) be a Shimura datum, and let v be a prime of

E(G,X) dividing p. Assume that GQp is unramified (see 3.11 below). Then

v is an unramified prime (in the extension E(G,X) ⊃ Q).

Proof. See [Mi4], Cor. 4.7. �
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3.8 Corollary. Notations as in 3.2. If p > 2 then every S ∈ ATSO(v)
satisfies

(3.4.1). In particular, if p > 2 then lim←−p∤n
Ag,1,n⊗Z(p) is an integral canonical

model of ShKp(CSp2g,Q,H
±
g ), where Kp = CSp2g(Zp).

Proof. We can follow Milne’s proof of [Mi3], Thm. 2.10, except that we have

to modify the last part of the proof in the obvious way. Notice that the group

CSp2g is unramified everywhere, so that Lemmas 3.6 and 3.7 apply. �

3.9 Remarks. (i) We do not know whether the corollary is also true for

p = 2. (Note that in the example in 3.4, the base scheme S is not an a.t.s.

over W or W [ζp].) This is one of the reasons why we do not pretend that

Def. 3.5 is in its final form.

(ii) Our definitions differ from those used in [Va2]. Vasiu’s definition of

an integral canonical model is of the above form, but the class ATSO he

works with is the class of all regular schemes S over Spec(O), for which the

generic fibre SF is Zariski dense and such that condition (3.4.1) holds. As

we have seen above, this contains the class we are working with if p > 2 and

e(O) < p− 1.

It seems to us that Vasiu’s definition is more difficult to work with. For

example, it is not clear to us whether his notion of an a.t.s. is a local one,

and whether it satisfies S ∈ ATSO ⇒ (S⊗OO′) ∈ ATSO′. (This is important

for some of the constructions.) On the other hand, if we want that the

extension property is preserved under extension of scalars from O(v) to Ov or

to W
(
κ(v)

)
, then this forces us to work with a class ATSO which is not “too

small”. Here we should draw a comparison with the theory of Néron models:

we note that the proof of [BLR], Thm. 7.2.1 (ii) makes essential use of Weil’s

theorem, ibid. Thm. 4.4.1, for which we see no analogue in the context of

Shimura varieties. This may help to explain why we set up the Def. 3.5 the

way we did.

3.10 Proposition. Let (G,X), E = E(G,X), v and Kp be as in 3.2.

(i) There exists an integral canonical model of ShKp(G,X) at v if and only

if there exists a local integral canonical model.

(ii) Suppose that p > 2 and that the prime v is (absolutely) unramified.

Write B for the fraction field of W (Fp), and choose an embedding Ov →֒
W (Fp), where Ov = O∧

(v) is the completed local ring of OE at v. Suppose

there exists a smooth integral model M for ShKp(G,X) ⊗ B over W (Fp)

having the extension property. Then there exists an integral canonical model

of ShKp(G,X) over O(v).
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Proof. (i) In the “only if” direction this readily follows from (3.5.3). For the

converse, suppose thatM♯ is a local integral canonical model of ShKp(G,X)

over Ov. We have M♯ = lim←−M
♯
Kp, where Kp runs through the compact

open subgroups of G(Ap
f ). Write S ′ = Spec(Ov) → S = Spec(O(v)) and

η′ = Spec(Ev) → η = Spec(E). Also write S ′′ = S ′ ×S S
′, η′′ = η′ ×η η

′, and

write pi (i = 1, 2) for the ith projection S ′′ → S ′ (resp. η′′ → η′). On the

generic fibreM♯ ⊗Ev we have an effective descent datum relative to η′ → η.

If we consider p∗1(M♯ ⊗Ev)→ η′′ as a η′-scheme via p2 : eta′′ → η′, then this

descent datum is equivalent to giving a morphism p∗1(M♯ ⊗ Ev)→M♯ ⊗ Ev

over η′. (Here we ignore the cocycle condition for a moment.) Since p∗1M♯,

considered as a S ′-scheme via p2 : S ′′ → S ′, is an a.t.s. over S ′, and sinceM♯

was assumed to have the extension property, the descent datum onM♯ ⊗Ev

extends to one on M♯ relative to S ′ → S. (It is clear that the extended

descent datum again satisfies the cocycle condition, M♯ being separated.)

By the arguments of [BLR], pp. 161–162, the extended descent datum is

effective. (We can work with each of the M♯
Kp separately, and since M♯ is

a smooth model, we may furthermore restrict our attention to those M♯
Kp

which are smooth over Ov.) Thus we obtain a smooth model M over O(v).

It remains to be shown that this model again has the extension property.

This follows easily from property (3.5.3) and the fact that descent data for

morphisms are effective ([BLR], Prop. D.4(b) in section 6.2).

(ii) The descent from M to a local i.c.m. M♯ is done following the same

argument. By (i) this suffices. �

3.11 From now on, we will concentrate on the case where Kp ⊂ G(Qp)

is a hyperspecial subgroup. This means that there exists a reductive group

scheme GZp over Zp (uniquely determined by Kp) with generic fibre GQp such

that Kp = G(Zp). Hyperspecial subgroups of G(Qp) exist if and only if GQp

is unramified, i.e., quasi-split over Qp and split over an unramified extension.

For more on hyperspecial subgroups we refer to [Ti], [Va2].

One can show ([Va2], Lemma 3.13) that the group GZp is obtained by

pull-back from a group scheme G over Z(p). This suggests that we define an

integral Shimura datum to be a pair (G, X), where G is a reductive group

scheme over Z(p), and where, writing G = GQ, the pair (G,X) is a Shimura

datum in the sense of 1.44. To (G, X) we associate the Shimura variety

4We hasten to add that one has to be careful about morphisms: if we have two pairs

(G1, X1) and (G2, X2) plus a morphism f : (G1, X1)→ (G2, X2) such that f(Kp,1) ⊆ Kp,2

then it is not true in general that f extends to a morphism f̃ : G1 → G2; cf. [BT], 1.7 and
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Sh(G, X) := ShKp(G,X), where of course Kp := G(Zp).

Suppose GQp is unramified. Whether there exists an integral canonical

model of ShKp(G,X) does not depend on the choice of the hyperspecial sub-

group Kp ⊂ G(Qp). This is a consequence of the fact that the hyperspecial

subgroups of G(Qp) are conjugate under Gad(Qp), see [Va2], 3.2.7.

3.12 Examples. (i) Let (T, {h}) be a Shimura datum with T a torus. The

group TQp is unramified precisely if the character group X∗(T ) is unramified

at p as a Gal(Q/Q)-module. If this is the case then TQp extends uniquely to

a torus T over Zp, and Kp := T (Zp) is the unique hyperspecial subgroup of

T (Qp). Let Kp ⊂ T (Ap
f ) be a compact open subgroup. It follows from the

description given in 2.2 and 2.3 that ShKp×Kp(T, {h}) = Spec(L1 × · · · × Lr)

for certain number fields Li ⊃ E which are unramified above p. Now set

MKp×Kp = Spec(O1 × · · · × Or), where Oi is the normalization of O(v) in

Li. Then lim←−Kp
MKp×Kp is an integral canonical model of ShKp(T, {h}) over

O(v).

(ii) If (G,X) defines a Shimura variety of PEL type, then we can use the

modular interpretation of Sh(G,X) to study integral canonical models. As

mentioned before, the precise formulation of a moduli problem requires a lot of

data, and we refer to [Ko2] for details. We remark that the Shimura varieties

that we are interested in, in general only form an open subscheme of the

moduli space studied in loc. cit., section 5. The arguments given there (see

also [LR], §6) show that, for primes p satisfying suitable conditions which

imply the existence of a hyperspecial subgroup Kp ⊂ G(Qp), the Shimura

variety ShKp(G,X) has an i.c.m. over O(v) for all primes v of E(G,X) above

p.

3.13 Remark. If there exists an i.c.m. M for Sh(G, X), then one expects

that each “finite level” MKp is a quasi-projective O(v)-scheme. This is cer-

tainly the case for the examples in 3.8 and 3.12. Moreover, one easily checks

that the quasi-projectivity is preserved under all constructions presented in

this section.

3.14 Our next goal is to show that if GQp is unramified, then we can adapt

[De3], 2.1.5–8 (which we summarized in 1.6.5) to the present context. The

connected component of ShKp(G,X)Q containing the image of X+×{e} is the

projective limit lim←− Γ\X+, where Γ = Im
(
[Gder(Q)+∩(Kp×Kp)]→ Gad(Q)+

)

for some compact open subgroup Kp ⊂ Gder(Ap
f ). (Here we use [De3], 2.0.13.)

[Va2], 3.1.2.
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Formalizing this, we are led to consider pairs (G′, X+) consisting of a

semi-simple group G′ over Z(p) and a Gad(R)+-conjugacy class of homomor-

phisms h : S → Gad
R (writing G′ = G′Q, Gad = Gad

Q := (G′)ad
Q ) such that

conditions (i), (ii) and (iii) in 1.4 are satisfied. For such a pair we define

the topology τ(G′) on Gad(Z(p)) as the linear topology having as a funda-

mental system of neighbourhoods of 1 the images of the {p,∞}-congruence

subgroups G′(Z(p)) ∩ Kp, where Kp is a compact open subgroup of G′(Ap
f ).

We then write Sh0(G′, X+)C := lim←− Γ\X+, where Γ runs through the {p,∞}-
arithmetic subgroups of Gad(Z(p)) which are open in τ(G′).

On Sh0(G′, X+)C we have a continuous action of Gad(Z(p))
+∧ (completion

rel. τ(G′)), and by 2.13, these data are all canonically defined over Q. (Even

over a much smaller field, as we shall see next.) For an integral Shimura datum

(G, X) and a connected component X+ ⊆ X, the corresponding connected

component of Sh(G, X)Q is a scheme with continuous Gad(Z(p))
+∧-action, iso-

morphic to Sh0(Gder, X+)Q. Note that Sh0(G′, X+) is an integral scheme (use

[EGA], IV, Cor. 8.7.3).

3.15 Lemma. Let (G,X) be a Shimura datum, E = E(G,X), v a prime

of E dividing p. Assume that GQp is unramified, and let Kp ⊂ G(Qp) be a

hyperspecial subgroup. Then the connected components of ShKp(G,X) are

defined over an abelian extension Ẽ of E which is unramified above p.

Proof. First we prove this under the additional assumption that Gder is

simply connected. The G(C)-conjugacy class of homomorphisms µx : Gm,C →
GC (for x ∈ X) gives rise to a well-defined cocharacter µab : Gm,C → Gab

C ,

which has field of definition E(Gab, Xab) ⊆ E. Writing TE = ResE/QGm,E,

we get a homomorphism

ρ = Nm
E/Q
◦ µab

E : TE → Gab ,

inducing a map ρ(A/Q) : A∗
E/E

∗ → Gab(A)/Gab(Q) = π(Gab). The assump-

tion that Gder is simply connected implies (see [De1], 2.7) that π0π(G) is a

quotient of π(Gab). Moreover, the action of Gal(Q/E)ab on π0

(
Sh(G,X)

)
fac-

tors through π0ρ(A/Q) : π0π(TE)→ π0π(Gab). By class field theory it there-

fore suffices to show that the image under ρ(Qp) of Cp :=
∏

v|pO∗
v ⊂ TE(Qp)

in Gab(Qp) is contained in Kab
p := Im

(
Kp ⊂ G(Qp)→ Gab(Qp)

)
.

The fact that GQp is unramified implies ([Mi4], Cor. 4.7) that TE is un-

ramified over Qp, so it extends to a torus TE over Zp. Clearly, Cp = TE(Zp).

Write G for the extension of GQp to a reductive group scheme over Zp with
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Kp = G(Zp). The map ρ extends to a homomorphism TE → Gab over Zp,

hence we are done if we show that Gab(Zp) = Kab
p , i.e., G(Zp) maps sur-

jectively to Gab(Zp). Again using that Gder is simply connected we have

H1(Qp, G
der) = {1}, hence G(Qp) ։ Gab(Qp). For s ∈ Gab(Zp) we thus can

lift the corresponding sη ∈ Gab(Qp) to s̃η ∈ G(Qp). Taking the Zariski clo-

sure of the image of s̃η inside G then gives the desired Zp-valued point s̃ of G
mapping to s.

The general case is reduced to the previous one. An easy generalization

of [MS], Application 3.4 shows that there exists a morphism of Shimura data

f : (G1, X1) → (G,X) such that fder : Gder
1 → Gder is the universal covering

of Gder, such that E(G1, X1) = E(G,X), and such that there is a hyperspecial

subgroup K̃p ⊂ G1(Qp) with f(K̃p) ⊆ Kp. This suffices to prove the lemma,

since the components of Sh fKp
(G1, X1) map surjectively to components of

ShKp(G,X) and since all components have the same field of definition (being

permuted transitively under the G(Af )-action). �

3.16 Consider a pair (G′, X+) as in 3.14. Write G′ = G′Q, and write Ẽ

for the maximal subfield of E(Gad, Xad)ab which is unramified above p. The

lemma implies that the connected Shimura variety Sh0(G′, X+) has a well-

defined “canonical” model over Ẽ. Indeed, we can choose an integral Shimura

datum (G, X) with G′ = Gder, X+ ⊆ X and E(G, X) = E(Gad, Xad), and take

Sh0(Gder, X+) eE (which makes sense, grace to the lemma) as the desired model.

That this does not depend on the chosen pair (G, X) follows from the facts

in 2.7.

3.17 Definition. Write Sh0(G′, X+) eE for the model over Ẽ just defined, and

let w be a prime of Ẽ above p. We adapt Def. 3.2 to connected Shimura vari-

eties, replacing E by Ẽ and G(Af ) by G(Z(p))
+∧. Then an integral canonical

model (resp. local i.c.m.) for Sh0(G′, X+) eE at w is a separated smooth integral

model over O(w) (resp. Ow) which has the extension property.

Of course, the point of this definition is that a Shimura variety can be re-

covered from the (or rather: some) corresponding connected Shimura variety

by an “induction” procedure. This will enable us to follow the same strategy

as in 2.10. We consider the properties

P(G, X; v) : there exists an i.c.m. for Sh(G, X) over O(v)
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(for (G, X) an integral Shiumura datum, v a prime of E = E(G,X) above p),

and

P0(G′, X+;w) : there exists a local i.c.m. for Sh0(G′, X+) eE over O(w)

(for (G′, X+), Ẽ and w as above). Using the induction technique of [De3],

Lemma 2.7.3 and Prop. 3.10, we can prove the following statement. We leave

the details of the proof to the reader.

3.18 Proposition. Notations as above, with G′ = Gder, X+ ⊆ X. Suppose

that v and w restrict to the same prime of E ∩ Ẽ. Then P(G, X; v) ⇐⇒
P0(Gder, X+;w).

From now on we restrict our attention to the case p > 2. Recall that it is

implicit in our notations that we are working at a prime where the group is

unramified, since G and G′ are supposed to be reductive group schemes over

Z(p). Write P(G, X) for “P(G, X; v) holds for all primes v of E above p”, and

similarly for P0(G′, X+). We have shown that statements (a) and (c) in 2.10

hold. Furthermore, statement (d) is almost trivially true. By contrast, it is

not at all obvious how to prove (b). The only thing we get more or less for

free is a good normal model.

3.19 Proposition. Let i : (G1, X1) →֒ (G2, X2) be a closed immersion of

Shimura data such that there exist hyperspecial subgroups Kj,p ⊂ Gj(Qp)

with i(K1,p) ⊆ K2,p. Suppose there exists an i.c.m. M for ShK2,p(G2, X2)

over OE2,(v). If w is a prime of E1 = E(G1, X1) above v then there exists a

normal integral model N of ShK1,p(G1, X1) over OE1,(w) which has the exten-

sion property (see Def. 3.3).

Proof. Let Gj (j = 1, 2) denote the extension of Gj to a reductive group

scheme over Z(p) with Gj(Zp) = Kj,p. Write K for the set of pairs (Kp
1 , K

p
2)

of compact open subgroups Kp
j ⊂ Gj(A

p
f ) such that i(Kp

1 ) ⊂ Kp
2 , partially

ordered by (Kp
1 , K

p
2 ) � (Lp

1, L
p
2) iff Kp

1 ⊇ Lp
1 and Kp

2 ⊇ Lp
2. Given (Kp

1 , K
p
2) ∈

K, we have a morphism

i(Kp
1 , K

p
2) : ShKp

1
(G1, X1) −→ ShKp

2
(G2, X2) −֒→ MKp

2
⊗OE1,(w) .

Write N(Kp
1 , K

p
2 ) for the (scheme-theoretical) image of i(Kp

1 , K
p
2), and let

N (Kp
1 , K

p
2) be its normalization. For fixed Kp

1 we set

NKp
1

= lim←−
Kp

2

N(Kp
1 , K

p
2) , NKp

1
= lim←−

Kp
2

N (Kp
1 , K

p
2) , MKp

1
= lim←−

Kp
2

MKp
2
,
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where the limits run over all Kp
2 such that (Kp

1 , K
p
2 ) ∈ K. Also we set

N := lim←−
Kp

1

NKp
1
, N := lim←−

Kp
1

NKp
1
.

First we show that, for Kp
1 ⊇ Lp

1 sufficiently small, the canonical morphism

NLp
1
→ NKp

1
is étale. For this, we take compact open subgroups Cp

j ⊂ Gj(A
p
f )

with i(Cp
1 ) ⊆ Cp

2 , and such that for all Kp
j ⊇ Lp

j contained in Cp
j (j = 1, 2),

the transition morphisms ShLp
1
(G1, X1) → ShKp

1
(G1, X1) and MLp

2
→ MKp

2

are étale morphisms of smooth schemes over E1 and OE2,(v) respectively. One

checks that for all such Kp
1 ⊇ Lp

1, the morphism t : MLp
1
→ MKp

1
is again

étale, of degree [Kp
1 : Lp

1]. It follows that NLp
1
→ NKp

1
is a pull-back of t, hence

étale. Now NKp
1

has finitely many irreducible components, being a scheme-

theoretical image of ShKp
1
(G1, X1), and the normalization of NKp

1
is just NKp

1
.

Using this remark, it follows that NLp
1
→ NKp

1
is étale, so that N is a normal

model of Sh(G1, X1) over OE1,(w).

That N has the extension property is seen as follows. We consider an S ∈
ATSO (with O = OE1,(w)) and a morphism αE1 : SE1 → NE1 on the generic

fibre. The fact that OE1,(w) is an unramified extension of OE2,(v) implies, using

(3.5.3), thatM⊗OE1,(w) has the extension property over OE1,(w), hence αE

extends to a morphism

α : S −→ N −֒→M⊗OE1,(w) .

Now fix (Kp
1 , K

p
2) ∈ K, and set

S̃ = S̃(Kp
1 , K

p
2) := S ×

N(Kp
1 ,Kp

2 )
N (Kp

1 , K
p
2)

ρ−−−−→ S .

Then S̃ is integral over S, since ρ is a pull-back of the normalization map

N (Kp
1 , K

p
2) → N(Kp

1 , K
p
2 ). On the generic fibre, ρ is an isomorphism. Since

S is a normal scheme (being an a.t.s.), it follows that ρ is an isomorphism,

hence α lifts to α̃ : S → N . �

3.20 Remark. SupposeM is an integral model of a Shimura variety over a

d.v.r. O. We will say that M has the extended extension property (e.e.p.),

if it satisfies the condition that for every S = Spec(O1) with O ⊂ O1 a

faithfully flat extension of d.v.r., setting F = Frac(O1), every morphism

αF : Spec(F )→MF over O extends to an O-morphism α : S →M.

It follows from the Néron-Ogg-Shafarevich criterion that the model of the

Siegel modular variety as in 3.8 enjoys the e.e.p. Also it is clear that in the

situation of 3.19, we have the implication “M has the e.e.p. ⇒ N has the

e.e.p.”, if N is the model constructed in the proof.
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3.21 The last step in our strategy is statement (e). So, we consider a pair

(G′, X+) defining a connected Shimura variety and an isogeny π : G′
։ G′′.

We assume that G′ (hence also G′′) is unramified over Qp, so that π extends

to an isogeny π : G′ → G′′ of semi-simple groups over Z(p).

Let us also assume that there exists an i.c.m. M of Sh0(G′, X+) eE over

O(w), where w is a prime of the field Ẽ (as in 3.16) above p. We want to show

that there exists an i.c.m. N of Sh0(G′′, X+) eE over O(w).

3.21.1 Set

∆ := Ker
[
Gad(Z(p))

+∧ rel. τ(G′) −−−−→ Gad(Z(p))
+∧ rel. τ(G′′)

]
.

This is a finite group which acts freely on Sh0(G′, X+) eE . The canonical mor-

phism Sh(π) : Sh0(G′, X+) eE → Sh0(G′′, X+) eE is a quotient morphism for this

action. (Cf. [De3], 2.7.11 (b).) Since M has the extension property, the ac-

tion of ∆ onM eE extends uniquely to an action onM. The natural candidate

for an i.c.m. of Sh0(G′′, X+) eE is the quotient N :=M/∆.

3.21.2 Problem. Consider a faithfully flat extension of d.v.r. Z(p) ⊆ O. Let

∆ be a finite (abstract) group acting on a faithfully flat O-scheme M which

is locally noetherian and formally smooth over O. Assume the action of ∆ on

the generic fibre of M is free. Under what further conditions does it follow

that the action of ∆ on all ofM is free?

3.21.3 It follows from a result of Edixhoven ([Ed1], Prop. 3.4) that, under

the previous assumptions, the action of ∆ on all of M is free if p does not

divide the order of ∆. On the other hand, if p does divide |∆|, then extra

assumptions are needed.

Example 1: take O = Zp[ζp],M = Spec(O[[x]]) with the automorphism of

order p given by x 7→ ζp · x− (ζp− 1). In this case, the action of Z/pZ on the

generic fibre is free (note that x− 1 is a unit in O[[x]]), but the action on the

special fibre is trivial.

In order to avoid examples of this kind, we can add the assumption that

p > 2 and e(O/Z(p)) < p − 1. (In the situation where we want to use it,

this holds anyway.) That this is not a sufficient condition is shown by the

following example that was communicated to us by Edixhoven.

Example 2: write Λ for the Zp-module Zp ⊕ Zp[ζp], and consider the

automorphism of order p given by (x, y) 7→ (x, ζp · y). This induces a Zp-

linear automorphism of order p on P(Λ) = Pp−1
Zp

. On the generic fibre there
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are (geometrically) p fixed points. On the special fibre there is an Fp-rational

line of fixed points. By removing the closure of the fixed points in the generic

fibre we obtain a Zp-scheme M with a Z/pZ-action as in 3.21.2, such that

the action is not free on the special fibre.

3.21.4 Proposition. In the situation of 3.21, suppose that (i) the action of

∆ on M is free, and (ii) M has the extended extension property (see 3.20).

Then N :=M/∆ is an i.c.m. of Sh0(G′′, X+) eE over O(w).

Proof. Condition (i) implies that N is a smooth model, so it remains to be

shown that it has the extension property. Consider an a.t.s. S over O(w) plus

a morphism α eE : S eE → N eE. Let

T eE := (S eE ×
N eE

M eE)
β eE−−−−→M eE ,

and write T for the integral closure of S in the fraction ring of T eE. We have

a canonical morphism ρ : T → S. If U ⊆ S is an open subscheme such that

α eE |U eE
extends to αU : U → N , then ρ−1(U) ∼= U ×NM, so that ρ−1(U)→ U

is étale.

We now first consider the special case where S = Spec(A) for some d.v.r.

A which is faithfully flat over O(w). It then follows from the e.e.p. ofM that

β eE extends to a morphism β : T →M which is equivariant for the action of

∆. On quotients this gives the desired extension α of α eE .

Back to the general case, it follows from the special case, the remarks

preceding it and the Zariski-Nagata purity theorem of [SGA1] Exp. X, 3.1,

that ρ : T → S is étale, so that T ∈ ATSO(w)
. This again gives an extension

β of β eE and, on quotients, an extension α as desired. �

3.21.5 For a reductive group G over Q, define δG as the degree of the

covering G̃ → Gad. (In other words: δG is the “connectedness index” of the

root system of GQ.) By definition, δG depends only on Gad. We claim that, in

the situation of 3.21 and 3.21.1, the order of ∆ is invertible in Z[1/δ], where

δ = δG′ = δG′′ . To prove this, we need some facts and notations. We write

ρ1 : G̃ → G′ and ρ2 : G̃ → G′′ for the canonical maps from the universal

covering. Writing Γ1 := ρ1G̃(Ap
f ) ∩ G′(Z(p)), Γ2 := ρ2G̃(Ap

f ) ∩ G′′(Z(p)), we

have

Gad(Z(p))
+∧ rel. τ(G′) = ρ1G̃(Ap

f ) ∗
Γ1

Gad(Z(p))
+ ,

and similarly for Gad(Z(p))
+∧ rel. τ(G′′). (Cf. [De3], (2.1.6.2).)
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Write K := Ker(ρ2 : G̃ → G′′). We claim there is an exact sequence

(3.21.6) K(Ap
f )

t−−→ ∆
u−−→ Γ2/ρ2G̃(Z(p)) .

Here the map t sends an element g ∈ G̃ with ρ2(g) = eG′′ to the element

ρ1(g)∗Γ1 eGad , which obviously lies in ∆. The map u sends an element x∗Γ1 y ∈
∆ ⊂ ρ1G̃(Ap

f ) ∗Γ1 Gad(Z(p))
+ to π(x) mod ρ2G̃(Z(p)); notice that x ∗Γ1 y ∈ ∆

means that (π(x), y) =
(
γ−1, ad(γ)

)
for some γ ∈ Γ2. If x ∗Γ1 y ∈ Ker(u)

then we can take γ = ρ2(g) for some g ∈ G̃(Z(p)), in which case x ∗Γ1 y =(
x · ρ1(g)

)
∗Γ1 eGad ∈ Im(t). This proves the exactness of (3.21.6).

It follows from the definitions that every element of K(Ap
f ) has a fi-

nite order dividing δ. On the other hand, Γ2/ρ2G̃(Z(p)) is a subgroup of

H1
fppf(Z(p),K), in which again all elements are killed by δ. This proves our

claim that |∆| ∈ Z[1/δ]∗.

For simple groups G, the number δG is given by δ(Aℓ) = ℓ+ 1, δ(Bℓ) = 2,

δ(Cℓ) = 2, δ(Dℓ) = 4, δ(E6) = 3, δ(E7) = 2. (The other three simple types

have δ = 1 but do not occur as part of a Shimura datum.) In particular, we

see that |∆| is invertible in Z[1/6] if G does not contain factors of type Aℓ.

After the technical problems encountered in our discussion of steps (b)

and (e), the good news is that we can prove the converse of (e).

3.22 Proposition. Consider the situation as in the first paragraph of 3.21,

and assume that Sh0(G′′, X+) eE has an i.c.m. N over O(w). Then the nor-

malization M of N in the fraction field of Sh0(G′, X+) eE is an i.c.m. of

Sh0(G′, X+) eE over O(w).

Proof. First we remark that the action of the group ∆ onM eE extends to an

action onM and thatM/∆ ∼−→ N . (We have a mapM/∆→ N which is an

isomorphism on generic fibres; now use that N is normal.) We claim that the

action of ∆ onM is free. On the generic fibre we know this. The important

point now is that the purity theorem applies, so that possible fixed points

must occur in codimension 1. So, suppose ∆ has fixed points. Without

loss of generality we may assume that ∆ is cyclic of order p (cf. 3.21.3).

Restricting to a suitable open part Spec(A) ⊂ M, we then obtain a non-

trivial automorphism of order p of the O(w)-module A which (using purity and

the fact that the action is free on the generic fibre) is the identity modulo p.

But now we have the following fact from algebra, probably well-known and in

any case not difficult to prove: if R is a principal ideal domain, p > 2 a prime

number with (p) 6= R, M a flat R-module, and α an R-module automorphism
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of M with αp = idM and (α mod p : M/pM → M/pM) = idM/pM , then

α = idM . Applying this fact we obtain a contradiction, and it follows that

M is a smooth model.

For the extension property, consider an S ∈ ATSO(w)
and a morphism

α eE : S eE → M eE. The projection β eE : S eE → N eE of α eE to N extends to a

morphism β : S → N . Set T := S ×N M, then T → S is a finite étale

Galois covering with group ∆. The section T eE ← S eE on the generic fibres

(corresponding to α eE) therefore extends to a section on all of S (recall that

S and T are flat over O(w) and normal), which means that α eE extends to a

morphism α. �

Combining all the results in this section, we arrive at the following con-

clusion.

3.23 Corollary. Fix a prime number p > 2. Let (H, Y ) be a Shimura datum

of pre-abelian type with p ∤ δH , and let v be a prime of E(H, Y ) above p. Sup-

pose that for each simple factor (Gad, Xad) of the adjoint datum (Had, Y ad),

there exist:

(i) a Shimura datum (G,X) covering (Gad, Xad),

(ii) a closed immersion i : (G,X) →֒ (CSp2g,H
±
g ),

(iii) a prime w of E(G,X) such that v and w restrict to the same prime

of E(Gad, Xad),

(iv) a hyperspecial subgroup Kp ⊂ G(Qp) with i(Kp) ⊆ CSp2g(Zp),

such that the normal model N of ShKp(G,X) constructed in 3.19 is a formally

smooth O(w)-scheme. Then for every hyperspecial subgroup Lp ⊂ H(Qp)

there exists an integral canonical model of ShLp(H, Y ) over O(v).

3.24 Remark. In this section, we have tried to follow the strategy of [De3]

very closely, adapting results to the p-adic context whenever possible. We

wish to point out that our presentation of the above material is very different

from the treatment in Vasiu’s paper [Va2]. In particular, our definitions

are different (see 3.9), and models of connected Shimura varieties (which

play a central role in our discussion) do not appear in [Va2]. Vasiu claims

3.23 (using his definitions) without the condition that p ∤ δH . We were not

able to understand his proof of this (in which one step is postponed to a

future publication). It seems to us that at several points the arguments

are incomplete, and that Vasiu’s proof furthermore contains some arguments

which are not correct as they stand.
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3.25 Remark. We should mention Morita’s paper [Mor]. (See also Carayol’s

paper [Ca].) Of particular interest, in connection with the material discussed

in this section, are the following two aspects.

(i) Morita proves that certain Shimura varieties (of dimension 1) have good

reduction by relating them to other Shimura varieties which are of Hodge

type. (The example is classical—see §6, “Modèles étranges” in Deligne’s

Bourbaki paper [De3].) In Morita’s method of proof we recognize several

results that have reappeared in this section in an abstract and somewhat

more general form.

(ii) The Shimura varieties in question (M ′
0 = M ′

Z∗
p×Kp

(G′, X ′) in the no-

tations of [Ca]) are shown to have good reduction at certain primes p of the

reflex field. This includes cases where the group G′
Qp

in question is ramified.

Thus we see that good reduction is possible also if the group Kp (the “level

at p”) is not hyperspecial.

§4 Deformation theory of p-divisible groups with Tate

classes

In the next section, we will try to approach the smoothness problem appearing

in 3.23 using deformation theory. The necessary technical results are due to

Faltings and are the subject of the present section. Here we work out some

details of a series of remarks in Faltings’s paper [Fa3].

4.1 To begin with, let us recall a result from crystalline Dieudonné theory.

For an exposition of this theory, we refer to the work of Berthelot-Messing

and Berthelot-Breen-Messing ([BM1], [BBM], [BM3]); some further results

can be found in [dJ].

Let k be a perfect field of characteristic p > 2, let W = W (k) be its ring

of infinite Witt vectors, and write σ for the Frobenius automorphism of W .

We will be working with rings of the form A = W [[t1, . . . , tn]]. For such a ring,

set A0 = k[[t1, . . . , tn]], m = mA = (p, t1, . . . , tn), J = JA = (t1, . . . , tn), let

eA : A→ W be the zero section, and define a Frobenius lifting φA by φA = σ

on W , φA(ti) = tpi .

With these notations we have the following fact: the category of p-divisible

groups over Spf(A) is equivalent to that of p-divisible groups over Spec(A)

(see [dJ], Lemma 2.4.4), and these categories are equivalent to the category

of 4-tuples (M,Fil1,∇, F ), where

—M is a free A-module of finite rank,

44



—Fil1 ⊂M is a direct summand,

—∇ : M → M ⊗ Ω̂1
A/W is an integrable, topologically quasi-nilpotent

connection,

—F : M → M is a φA-linear horizontal endomorphism,

such that, writing M̃ = M + p−1Fil1,

F induces an isomorphism F : φ∗
AM̃

∼−→ M , and(4.1.1)

Fil1 ⊗A A0 = Ker(F ⊗ FrobA0 : M ⊗A A0 −→M ⊗A A0).(4.1.2)

(Here, as often in the sequel, we write φ∗
A− for −⊗A,φA

A.) Notice that (4.1.1)

implies that there is a φ−1
A -linear endomorphism V : M → M such that

(4.1.3) F ◦ V = p · idM = V ◦ F .

This equivalence is an immediate corollary to [Fa2], Thm. 7.1. One also

obtains it by combining the following results:

—the description of a Dieudonné crystal on Spf(A0) in terms of a 4-tuple

(M,∇, F, V ), see [BBM], [BM3], [dJ],

—the Grothendieck-Messing deformation theory of p-divisible groups, see

[Me],

—the results of de Jong, saying that over formal Fp-schemes satisfying cer-

tain smoothness conditions, the crystalline Dieudonné functor for p-divisible

groups is an equivalence of categories, see [dJ].

If (M,Fil1,∇, F ) corresponds to a p-divisible group H over A then

rkA(M) = height(H) , rkA(Fil1) = dim(H) .

4.2 The 4-tuples (M,Fil1,∇, F ) form a category MF∇
[0,1](A) similar to the

category MF∇
[0,1](A) as in [Fa2], except that we are working here with p-

adically complete, torsion-free modules, rather than with p-torsion mod-

ules. More generally, let us write MF∇
[a,b](A) for the category of 4-tuples

(M,Fil
.
,∇, F ), where M and ∇ are as in 4.1, where F is a φA-linear en-

domorphism M ⊗ A[1/p] → M ⊗ A[1/p], and where Fil
.

is a descending

filtration of M such that

Fili+1 is a direct summand of Fili , FilaM = M , Filb+1M = 0 ,

and such that, writing M̃ =
∑b

i=a p
−iFiliM ,

F induces an isomorphism F : φ∗
AM̃

∼−→M .
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The arguments of [Fa2], Thm. 2.3, show that for p > 2 and 0 ≤ b − a ≤
p−1, the category MF∇

[a,b](A) is independent, up to canonical isomorphism, of

the chosen Frobenius lifting φA. Every morphism in MF∇
[a,b](A) (the definition

of which, we hope, is clear) is strictly compatible with the filtrations (cf. [Wi],

Prop. 1.4.1(i), in which the subscript “lf” should be replaced by “tf”).

For a′ ≤ a and b′ ≥ b, we have a natural inclusion MF∇
[a,b](A) ⊆ MF∇

[a′,b′](A).

We will write MF∇
[ , ](A) for the union of these categories, i.e., M ∈ MF∇

[ , ](A)

means that M ∈ MF∇
[a,b](A) for some a and b.

The Tate object A(−n) ∈ MF∇
[n,n](A) is given by the A-module A with

∇ = d, Filn = A{n} ⊃ Filn+1 = (0) and F (a) = pn · φA(a).

4.3 Before we turn to the deformation theory of p-divisible groups, we need

to discuss some properties of 4-tuples (M,Fil1,∇, F ) as in 4.1.

4.3.1 The connection ∇ induces a connection ∇̃ on φ∗
AM̃ (not on M̃ itself):

if m ∈M and ∇(m) =
∑
mα⊗ωα, then ∇̃(m⊗ 1) =

∑
(mα⊗ 1)⊗ dφA(ωα).

One checks that this gives a well-defined integrable connection ∇̃. The hor-

izontality of F can be expressed by saying that ∇̃ is the pull-back of ∇ via

F : φ∗
AM̃

∼−→M .

4.3.2 Given (M,Fil1, F ) satisfying (4.1.1) and (4.1.2), there is at most

one connection ∇ for which F is horizontal. Indeed, the difference of two

such connections ∇ and ∇′ is a linear form δ ∈ End(M) ⊗ Ω̂1
A/W satisfying

Ad(F )(δ) = δ. Here Ad(F )(δ) = (F ⊗ id) ◦ δ̃ ◦ F−1, where δ̃ = ∇̃ − ∇̃′. One

checks that if δ ∈ J tEnd(M)⊗Ω̂1
A/W , then Ad(F )(δ) ∈ p·J t+1End(M)⊗Ω̂1

A/W ,

so that Ad(F )(δ) = δ implies δ = 0. Similar arguments show that any con-

nection δ for which F is horizontal, is integrable and topologically quasi-

nilpotent.

4.3.3 Suppose A = W [[t1, . . . tn]] and B = W [[u1, . . . um]] are two rings of the

kind considered above. Let f : A→ B be a W -homomorphism. If H is a p-

divisible group over A corresponding to the 4-tuple D = (M,Fil1M ,∇M , FM),

then the pull-back f ∗H corresponds to a 4-tuple f ∗D = (N,Fil1N ,∇N , FN)

described as follows:

(i) N = f ∗M := M ⊗A,f B, Fil1N = f ∗Fil1M , ∇N = f ∗∇M .

(ii) To describe FN , we have to take into account that f may not be

compatible with the two chosen Frobenius liftings φA and φB. First we use
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the connection ∇M to construct an isomorphism

c = c(φB ◦ f, f ◦ φA) : φ∗
Bf

∗M ∼−→ f ∗φ∗
AM ,

which, using multi-index notations

∇(∂)i = ∇(∂t1)
i1 · · · · · ∇(∂tn)in , zi = zi1

1 · · · · · zin
n , etc. ,

is given (for m ∈M) by

c(m⊗ 1) =
∑

i

∇(∂)i(m)⊗ p|i| · z
i

i!
,

where zi =
(
φB◦f(ti)−f ◦φA(ti)

)
/p. Then one defines FN as the composition

FN : φ∗
BN = φ∗

Bf
∗M

c∼−−→ f ∗φ∗
AM

f∗FM−−−−→ f ∗M = N .

4.4 Theorem. (Faltings) Let A = W [[t1, . . . tn]] and consider a p-divisible

group H over A with filtered Dieudonné crystal D(H) = (M,Fil1M,∇M, FM).

Write H = e∗AH, which has Dieudonné module D(H) =
(
M,Fil1M , FM

)
=

e∗A(M,Fil1M, FM). Assume that H is a versal deformation of H in the sense

that the Kodaira-Spencer map

κ : W∂t1 + · · ·+W∂tn −−→ HomW

(
Fil1M ,M/Fil1M

)

is surjective.

Next consider a ring B = W [[u1, . . . um]] and a 3-tuple E′ = (N ,Fil1N , FN )

satisfying (4.1.1) and (4.1.2), and such that E′⊗B,eB
W ∼= D(H). Then there

exists a W -homomorphism f : A → B such that E′ is isomorphic to the

pull-back of (M,Fil1M, FM). In particular, E′ can be completed to a filtered

Dieudonné crystal E by setting ∇N = f ∗∇M, and therefore corresponds to a

deformation of H .

Proof. For every W -homomorphism f1 : A→ B there is an isomorphism of

filtered B-modules g1 : f ∗
1 (M,Fil1M) ∼−→ (N ,Fil1N ), which is unique up to an

element of Aut(N ,Fil1N ). The map g1 induces an isomorphism g̃1 : f ∗
1M̃ ∼−→

Ñ . By induction on n ≥ 1 we may assume that the two Frobenii

FN : φ∗
BÑ ∼−−→ N

and (with c1 = c(φB ◦ f1, f1 ◦ φA) as in 4.3.3)

F ′
N : φ∗

BÑ
φ∗

B g̃−1
1∼−−→ φ∗

Bf
∗
1M̃

c1∼−−→ f ∗
1φ

∗
AM̃

f∗
1 FM∼−−→ f ∗

1M
g1∼−−→ N
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are congruent modulo Jn
B. (For n = 1 this is so by our assumptions.) Because

B is JB-adically complete, it suffices to show that we can modify f1 and g1

such that the new F ′
N is congruent to FN modulo Jn+1

B .

Consider an f2 : A→ B which is congruent to f1 modulo Jn
B. Notice that

f1 ◦ φA ≡ f2 ◦ φA and φB ◦ f1 ≡ φB ◦ f2 modulo Jn+1
B , so we have canonical

isomorphisms

φ∗
Bf

∗
1M̃ ⊗ B/Jn+1

B
∼= φ∗

Bf
∗
2M̃ ⊗ B/Jn+1

B

and

f ∗
1φ

∗
AM̃ ⊗ B/Jn+1

B
∼= f ∗

2φ
∗
AM̃ ⊗B/Jn+1

B .

Next we choose an isomorphism h : f ∗
2 (M,Fil1M) ∼−→ f ∗

1 (M,Fil1M) which re-

duces to the canonical isomorphism modulo Jn
B, and we set g2 = g1 ◦ h.

The first important remark is that, given the above identifications, the

two maps

ci : φ
∗
Bf

∗
i M̃ ∼−−→ f ∗

i φ
∗
AM̃ (i = 1, 2)

are equal modulo Jn+1
B . One can check this using the description of the maps

ci given in 4.3.3 and using that fi(tj) ∈ JB.

Write ν for the automorphism of N such that FN = ν◦F ′
N . The induction

hypothesis gives us that ν ≡ idN mod Jn · End(N ). It follows from the

previous remarks that we are done if we can choose f2 and h such that the

diagram

(4.4.1)

f ∗
1φ

∗
AM̃ ⊗B/Jn+1

f∗
1 FM∼−−→ f ∗

1M⊗ B/Jn+1
ν◦g1∼−−−−→ N ⊗ B/Jn+1

≀
∥∥∥

∥∥∥

f ∗
2φ

∗
AM̃ ⊗B/Jn+1

f∗
2 FM∼−−→ f ∗

2M⊗ B/Jn+1
g2∼−−→ N ⊗ B/Jn+1

commutes. Note that the diagram is commutative modulo Jn
B and that,

given f2, we can still change h (and consequently g2) by an element of

Aut(f ∗
2M, f ∗

2Fil1M).

The composition g−1
1 ◦ ν−1 ◦ g2 induces a W -linear map

ξ : f ∗
1 Fil1M ⊗B/J

can∼= f ∗
2 Fil1M ⊗B/J −→ f ∗

1

(
M/Fil1M

)
⊗ Jn/Jn+1 ,

which is independent of the choice of h. Similarly, f ∗
1FM ◦ (f ∗

2FM)−1 induces

a W -linear map

η : f ∗
1 Fil1M ⊗B/J −→ f ∗

1

(
M/Fil1M

)
⊗ Jn/Jn+1 .

48



The assumption that H is a versal deformation of H now implies that we

can choose f2 such that η = ξ. This means precisely that we can modify g2

by something in Aut(f ∗
2M, f ∗

2Fil1M) such that the diagram (4.4.1) commutes.

This proves the induction step. �

4.5 Let H be a p-divisible group over W , with special fibre H0. Write

n = dim(H0) · dim(HD
0 ), and let A = W [[t1, . . . , tn]]. The formal deformation

functor of H0 is pro-represented by A (see [Il]), where we may choose the

coordinates such that H corresponds to the zero section eA. Write H for the

universal p-divisible group over A, and let D(H) = (M,Fil1M,∇M, FM) be

its filtered Dieudonné crystal. We will use the previous result to give a more

explicit description of D(H).

Let (M,Fil1M , FM) = e∗AD(H) be the filtered Dieudonné module of H .

Choose a complement M ′ for Fil1M ⊆ M . Inside the reductive group GL(M)

over W , consider the parabolic subgroup of elements g with gM ′ = M ′, and

let U be its unipotent radical. Notice that U is (non-canonically) isomorphic

to Gn
a,W . Let Û = Spf(B) be the formal completion of U along the identity,

and choose coordinates B ∼= W [[u1, . . . , un]] such that eB gives the identity

section. Over B we define a filtered Dieudonné crystal E = (N ,Fil1N ,∇N , FN )

as follows. We set

N = M ⊗W B , Fil1N = Fil1M ⊗W B , FN = g · (FM ⊗ φB) ,

where g : N ∼−→ N is the “universal” automorphism, i.e., the automorphism

given by the canonical B-valued point of U ⊂ GL(M). At this point we

apply the theorem. This gives us a connection ∇N and a W -homomorphism

f : A→ B such that E ∼= f ∗D(H).

We claim that the map f is an isomorphism. Since A and B are formally

smooth W -algebras of the same dimension, it suffices for this to show that E

is a versal deformation of (M,Fil1M , FM). Now we have an isomorphism

Ñ ⊗B,φB
B/φ(JB) =

(
(Ñ ⊗B,eB

W )⊗W,σ W
)
⊗W B/φ(JB)

can∼= (M̃ ⊗W,σ W )⊗W B/φ(JB) .

(4.5.1)

On the left hand term we have the connection ∇̃; on the right we take 1⊗ d.

It follows easily from the definition of ∇̃ that (4.5.1) is horizontal modulo

Jp−1
B . Composing with the isomorphisms FN and FM then gives a horizontal

isomorphism

ḡ : N ⊗B B/J
p−1 ∼←−M ⊗W B/Jp−1 ,
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which, as is clear from the constructions, is just the reduction modulo Jp−1

of the automorphism g. Since p > 2, it then follows from the choice of U that

E is a versal deformation.

4.6 Our next goal is to redo some of the above constructions for p-divisible

groups with given Tate classes. We keep the notations of 4.5. For r1, r2 ∈ Z≥0

and s ∈ Z, set

M(r1, r2; s) := M⊗r1 ⊗ (M∗)⊗r2 ⊗W (s) ,

with its induced structure of an object of MF[ , ](W ). We will refer to any

direct sum of such objects as a tensor space T = T (M) obtained from M .

We assume given a polarization ψ : M ⊗W M →W (−1), i.e., a morphism

in MF[0,2](W ) which on modules is given by a perfect symplectic form. We

let CSp(M,ψ) act on the Tate twist W (−1) through the multiplier character.

Then we consider a closed reductive subgroup G ⊆ CSp(M,ψ) such that

(4.6.1)

there exists a tensor space T and an element t ∈ T such that

L = W · t is a subobject of T in MF[ , ](W ) isomorphic to W (0),

and such that G ⊆ CSp(M,ψ) is the stabilizer of the line L.

4.7 Remark. In [Fa3], Faltings gives an argument which shows that, for

(4.6.1) to hold, it suffices if the Lie algebra g ⊂ End(M) is a subobject in

MF[−1,−1](W ). Since, by assumption, G is a smooth group, an easy argument

then shows that (4.6.1) is equivalent to the condition that g is stable under

the Frobenius on End(M).

4.8 We can now construct a “universal” deformation ofH such that the Tate

class t remains a Tate class. The procedure is essentially the same as in 4.5.

First, however, we have to find the right unipotent subgroup UG ⊂ G. For this

we use the canonical decomposition M = M0⊕Fil1 defined by Wintenberger

in [Wi]. The corresponding cocharacter

µ : Gm,W −→ GL(M) ; µ(z) =

{
id on M0

z−1 · id on Fil1M

factors through G. In 4.5 we now takeM ′ = M0, and we set UG = U∩G. Then

UG is a smooth unipotent subgroup of G , whose Lie algebra is a complement

of Fil0g ⊆ g. (Here we use that G is reductive.)
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Taking formal completions of UG →֒ U along the origin corresponds, on

rings, to a surjection

B = W [[u1, . . . , un]] ։ C = W [[v1, . . . , vq]] ,

where q = dimW (g/Fil0g). We set

P = M ⊗W C , Fil1P = Fil1M ⊗W C , FP = h · (FM ⊗ φC) ,

where h : P ∼−→ P is the universal element of UG. As in 4.5, applying Theo-

rem 4.4 gives a connection ∇P and a homomorphism fG : A→ C such that

EG := (P,Fil1P ,∇P , FP)

is the Dieudonné crystal of a deformation HG = f ∗
GH of H over Spf(C) = ÛG.

From the fact that FP is horizontal w.r.t. ∇P , one can derive that ∇P is

of the form ∇P = d + β with β ∈ gC ⊗ Ω̂1
C/W ⊆ End(M)⊗ Ω̂1

C/W . It follows

that if we extend the space T to an object T ∈ MF∇
[a,b](C) by applying to

P = M ⊗ C the same linear algebra construction as was used to obtain T

from M , then the line L ⊂ T extends to a subobject L ⊂ T in MF∇
[a,b](C).

To finish, let us prove that, conversely, every deformation of H over a ring

D = W [[x1, . . . , xr]] such that the tensor t deforms as a Tate class (i.e., the line

L ⊂ T extends to an inclusion L ⊂ T in MF∇
[a,b](D) ), can be obtained by pull-

back fromHG. The map End(M)→ T/L obtained by sending α ∈ End(M) to

the evaluation at t of the induced T (α) ∈ End(T ) is a morphism in MF[ , ](W ),

hence strictly compatible with the filtrations. It follows that

(4.8.1) if T (α) maps L into Fil0T, then α ∈ Fil0End(M) + g .

To prove the claim we can now follow the same reasoning as in 4.4, making

use of (4.8.1). Alternatively, it follows from what we did in 4.5 that our

deformation ofH overD is obtained by pulling back the universal deformation

HB over B via a homomorphism π : B → D. It then suffices to show that

πn : B/Jn
B → D/Jn

D factors via C/Jn
C for every n. For this we can argue by

induction, and because of the way we have chosen UG and U , the induction

step easily follows from (4.8.1). This proves:

4.9 Proposition. Notations and assumptions as above. We have a formally

smooth deformation space ÛG = Spf(C) →֒ Û of relative dimension equal

to dimW (g/Fil0g) which parametrizes the deformations of H such that the

horizontal continuation of t remains a Tate class.
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§5 Vasiu’s strategy for proving the existence of integral

canonical models

After our excursion to deformation theory, we return to the problem of the

existence of integral canonical models. Our aim in this section is to explain

the principal ideas in Vasiu’s paper [Va2] (which is a revised version of part

of [Va1]). We add that, to our understanding, some technical points are not

treated correctly in loc. cit, to the effect that the main conclusions remain

conjectural.

5.1 Consider a closed immersion of Shimura data i : (G,X) →֒ (CSp2g,H
±
g ).

Let v be a prime of E = E(G,X) above p > 2, and assume that there is a

hyperspecial subgroup Kp ⊂ G(Qp) with i(Kp) ⊂ Cp := CSp2g(Zp). (In

particular, GQp is unramified.) Write A := lim←−p∤n
Ag,1,n ⊗ Z(p) which, as we

have seen, is an i.c.m. of ShCp(CSp2g,H
±
g ) over Z(p), and let N ։ N ⊂

A ⊗ O(v) be the normal integral model constructed in the proof of 3.19 (so

N is the normalization of N). Choose embeddings Q ⊂ Ev = Qp ⊂ C, and

write N → N ⊂ A for the base-change of N , N and A to W := W
(
κ(v)

)
.

Let x̃0 ∈ N be a closed point mapping to x0 ∈ N ⊂ A.

We would like to show that N is formally smooth at x̃0. If this holds

(for all x̃0) then N is an i.c.m. of ShKp(G,X) over O(v). To achieve this,

we would like to use Prop. 4.9. This is a reasonable idea: over our Shimura

variety we have certain Hodge classes, which, by a results of Blasius and

Wintenberger, give crystalline Tate classes (in the sense used in §4). The

corresponding formal deformation space of p-divisible groups with these Tate

classes is formally smooth and has a dimension equal to that of N . Arguing

along these lines one could hope to prove that N is formally smooth at x̃0.

We see at least two obstacles in this argument: (i) in §4 we started from

a p-divisible group over a ring of Witt-vectors, and (ii) we need a reductive

group G ⊂ GL(M) (the generic fibre of which should essentially be our group

G). To handle these problems, we will first try to prove the formal smoothness

of N under an additional hypothesis (5.6.1). In rough outline, the argument

runs as follows. We start with a lifting of x0 to a V -valued point of N , where

V is a purely ramified extension of W . If (X, λ) is the corresponding p.p.a.v.

over V then the associated filtered Frobenius crystal can be described as a

module M over some filtered ring Re. We have a closely related ring R̃e

which is a projective limit of nilpotent PD-thickenings of V/pV and on which

we have sections i0 : Spec(W ) →֒ Spec(R̃e) and iπ : Spec(V ) →֒ Spec(R̃e).
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We will construct a deformation (X̃, λ̃) over R̃e which corresponds to an R̃e-

valued point of N and such that i∗π(X̃, λ̃) = (X, λ). Then i∗0(X̃, λ̃) will give a

lifting of x0 to a W -valued point of N , which takes care of problem (i).

To construct (X̃, λ̃), we will use the Grothendieck-Messing deformation

theory; the essential problem is to find the right Hodge filtration on the

module M̃ := M ⊗Re R̃e. (We remark that the filtration on M cannot be

used directly for this purpose: M is filtered free over the filtered ring Re,

whereas the desired Hodge filtration should be a direct summand.) One of

the key steps in the argument is to show that the Zariski closure of a certain

reductive group G1,Re[1/p] →֒ GL(M [1/p]) inside GL(M) is a reductive group

scheme—this will also take care of problem (ii). To achieve this, we have to

keep track of Hodge classes on X in various cohomological realizations. At a

crucial point we use a result of Faltings which permits to compare étale and

crystalline classes with integral coefficients.

Once we have shown that the closure ofG1,Re[1/p] is reductive, an argument

about reductive group schemes leads to the definition of the desired Hodge

filtration on M̃ . After checking that it has the right properties, this brings us

in a situation where the deformation theory of § 4 can be applied. The formal

smoothness of N at x̃0 is then a relatively simple consequence of Prop. 4.9.

Sections 5.2 and 5.5 contain the necessary definitions and a brief descrip-

tion of the crystalline theory with values in Re-modules. In 5.6 the argument

that we just sketched is carried out, resulting in Thm. 5.8.3. What then

remains to be shown is that there exist “enough” Shimura data for which

(5.6.1) is satisfied. Vasiu’s strategy to solve this problem is discussed briefly

from 5.9 on.

5.2 Let O be a d.v.r. with uniformizer π and field of fractions F . Let W be

a finite dimensional F -vector space with a non-degenerate symplectic form ψ.

Write F (−n) for the vector space F on which CSp(W,ψ) acts through the nth

power of the multiplier character, and consider tensor spaces W (r1, r2; s) :=

W⊗r1 ⊗ (W ∗)⊗r2 ⊗ F (s). The fact that ψ ∈ W (0, 2;−1) is non-degenerate

implies that there exists a class ψ∗ ∈ W (2, 0; 1) such that 〈ψ, ψ∗〉 = 1 ∈ F =

W (0, 0; 0).

Consider a faithfully flat O-algebra R and a free R-moduleM with a given

identification M ⊗R R[1/π] = W ⊗F R[1/π]. An element t ∈ W (r1, r2; s) is

said to be M-integral if, with the obvious notations, t⊗1 lies in the subspace

M(r1, r2; s) of W (r1, r2; s) ⊗F R[1/π]. For example, ψ and ψ∗ are both M-

integral precisely if ψ induces a perfect form ψM : M ×M → R.
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If t ∈ W (r1, r2; s) then we shall say that t is of type (r1, r2; s) and has

degree r1 + r2. In the sequel we shall often use a notation T (W ) for direct

sums of spaces W (r1, r2; s), and we call such a space a “tensor space obtained

from W”.

5.3 Definition. Let G ⊂ CSp(W,ψ) be a reductive subgroup, and consider

a collection {tα}α∈J of G-invariants in spaces Tα(W ). We say that {tα}α∈J
is a well-positioned family of tensors for the group G over the d.v.r. O if, for

every R and M as above, we have

ψ, ψ∗ and {tα}
are M-integral

=⇒ the Zariski closure of GR[1/π] inside CSp(M,ψM)

is a reductive group scheme over R
.

If in addition there exists an O-lattice M ⊂ W such that ψ, ψ∗ and all tα
are M-integral, then we say that {tα}α∈J is a very well-positioned family of

tensors.

5.4 Remarks. (i) One should not think of a well-positioned family of tensors

as some special family of tensors which cut out the group G (i.e., such that G

is the subgroup of CSp(W,ψ) leaving invariant all tα), since G may be strictly

contained in the group cut out by the tα. We only use the well-positioned

families of tensors to guarantee that certain models of G are again reductive

groups.

(ii) For general reductive G ⊂ CSp(W,ψ), the main difficulty with this

notion is to prove the existence of (very) well-positioned families of tensors.

We will come back to this point in 5.9 below.

5.5 Consider a purely ramified extension of d.v.r. W = W (Fp) ⊂ V . Write

Frac(W ) = K0 ⊂ K = Frac(V ), fix K ⊂ K →֒ C, and let e = e(V/W ) = [K :

K0]. Suppose we have a p.p.a.v. (X, λ) over V . We write

H1
B,Z := H1

B(X(C),Z) , H1
B := H1

B,Z ⊗Q ,

H1
dR,K := H1

dR(XK/K) , H1
dR,C := H1

dR(XC/C) = H1
dR,K ⊗K C and

H1
ét,Zp

:= H1
ét(XK ,Zp) , H1

ét := H1
ét,Zp
⊗Qp .

Let TB = T (H1
B) be a tensor space as in 5.2, obtained from H1

B. We adopt

the notational convention that TdR, Tét etc. stand for “the same” tensor space

built from the corresponding first cohomology group H1
dR, H1

ét etc. In each

case, T? naturally comes equipped with additional structures (Hodge struc-

ture/filtration/Galois action/· · · ), where we interpret F (n) as a Tate twist.
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(Cf. [De4], Sect. 1 and Sect. 5.5.8 below.) In each theory, the polarization λ

gives rise to a symplectic form on H1
?, which, if there is no risk of confusion,

we denote by ψ without further indices.

5.5.1 Choose a uniformizer π of V , and write g = T e + ae−1T
e−1 + · · ·+ a0

for its minimum polynomial over K0, which is an Eisenstein polynomial. The

PD-hull (compatible with the standard PD-structure on (p)) of W [[T ]] ։

W [[T ]]/(g) = V is the ring Se obtained from W [[T ]] by adjoining all T en/n!.

Let I := (p, g) = (p, T e) ⊂ Se. We define Re as the p-adic completion of Se

and R̃e as the completion of Se w.r.t. the filtration by the ideals I [n]. (Thus

R̃e is the nilpotent PD-hull of W [[T ]] ։ V/pV .) Notice that these rings

only depend on the ramification index e, which justifies the notation. We can

identify R̃e (resp. Re) with the subring of K0[[T ]] consisting of all formal power

series
∑
an · T n such that all ⌊n/e⌋! · an are integral (resp. the coefficients

⌊n/e⌋! · an are integral and p-adically convergent to zero for n→∞). On Re

we have

—a filtration by the ideals Filn(Re) := (g)[n],

—a σ-linear Frobenius endomorphism φ = φRe given by T 7→ T p,

—a continuous action of Gal(Qp/K0), commuting with φ and respecting

the filtration.

5.5.2 Next we briefly recall the definition of the ring Acrys as in [Fo]. (In [Fa3]

and [Va2] the notation B+(V ) is used.) Write OC for the p-adic completion

of the integral closure of Zp in K = Qp, and let C (= Cp) be its fraction field.

Let

ROC
:= lim←−(OC/pOC ← OC/pOC ← · · · ← OC/pOC ← · · · ) ,

where the transition maps are given by x 7→ xp. It is a perfect ring of charac-

teristic p. Choose a sequence of elements π(n) ∈ OC with π(1) = π (the chosen

uniformizer of V ) and (π(m+1))p = π(m), and set π =
(
π(1) mod p, π(2) mod

p, . . .
)
∈ ROC

. There is a surjective homomorphism θ : W (ROC
) ։ OC

whose kernel is the principal ideal generated by ξ := g([π]), where [π] is the

Teichmüller representative of π and where g is the polynomial as in 5.5.1 (see

[Fa3], sect. 4).

Define Acrys as the p-adic completion of the PD-hull of W (ROC
) ։ OC ,

compatible with the canonical PD-structure on (p). Then Acrys is aW -algebra

which comes equipped with

—a filtration by the ideals Filn(Acrys) := (ξ)[n],
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—a σ-linear Frobenius endomorphism φ = φAcrys ,

—a continuous action of Gal(Qp/K0) commuting with φ and respecting

the filtration.

There is a Zp-linear homomorphism Zp(1) →֒ Fil1(Acrys). We let β (called

t in [Fo]) denote the image of a generator of Zp(1); we have φ(β) = p · β.

5.5.3 We have ring homomorphisms

R̃e Re W

V

� �
-

6

���������1

1

where the sections Re → W and R̃e → W are given by T 7→ 0, and where

R̃e → V is given by T 7→ π. Also we have a homomorphism

ι : Re −֒→ Acrys

given by T 7→ [π] (hence g 7→ ξ). This map is strictly compatible with the

filtrations and induces ([Fa3], sect. 4) an isomorphism gr.(Re) ⊗W OC
∼−→

gr.(Acrys). Also, ι is compatible with the Frobenii, but in general not with

the Galois-actions.

5.5.4 Let H be a p-divisible group over V . Its Dieudonné crystal can be

described ([BBM], Thm. 1.2.7) as a free Re-module M = M(H) of finite rank

with an integrable, topologically nilpotent connection ∇ on M as a W [[T ]]-

module. On M we have

—a filtration by Re-submodules Fil
.
M ⊂M ,

—a φRe-linear horizontal endomorphism F ,

such that

—there exists a basis m
(0)
1 , . . . , m

(0)
r0 , m

(1)
1 , . . . , m

(1)
r1 such that FiljM =∑

a+b=j FilaRe ·m(b)
i ,

—the connection satisfies Griffiths transversality,

—F is divisible by pj on FiljM , and we can choose the basis {m(j)
i } as

above in such a way that the elements F (m
(j)
i )/pj form a new Re-basis of M .

(Modules M with these additional structures are the objects of a category

MF∇
[0,1](V ), analogous to the categories considered in §4; see [Fa3], §3.)

The Dieudonné module of the special fibre H0 := H ⊗V Fp is a free W -

module M0 with a σ-linear Frobenius endomorphism F0. We have a canonical
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isomorphism of Frobenius crystals

(5.5.5) M0
∼= M ⊗Re Re/T · Re .

(Recall that Re/T ·Re
∼−→W .) On the other hand, the reduction (H mod p)

on Spec(V/pV ) is isogenous, via some power of Frobenius, to H0 ⊗Fp
V/pV ,

so that

(5.5.6) M ⊗Re Re[1/p] ∼= M0 ⊗W Re[1/p]

as Frobenius crystals.

Although the homomorphism ι from 5.5.3 is in general not compatible with

the Galois actions, there is a canonical action of Gal(Qp/K) on M⊗Re,ιAcrys.

(Here one uses that M is a crystal over Re, see [Fa3], §4.) We also define

H1
ét,Zp

(H) := Tp(H)∗ ,

which is a free Zp-module with Gal(Qp/K)-action.

5.5.7 Theorem. (Faltings, [Fa3]) There is a functorial injection

ρ : M(H)⊗Re Acrys −֒→ H1
ét,Zp

(H)⊗Zp Acrys ,

which after extension of scalars to Bcrys := Acrys[1/β], and using the isomor-

phism M ⊗Re Re[1/p] ∼= M0 ⊗W Re[1/p] gives back Faltings’s comparison

isomorphism ρ̃ : M0 ⊗W Bcrys
∼−→ H1

ét(H) ⊗Qp Bcrys of [Fa2]. The map ρ is

compatible with the Frobenii, filtrations and Galois actions on both sides. Its

cokernel is annihilated by β ∈ Acrys.

5.5.8 We shall try to be precise about Tate twists and polarization forms.

We have

—ZB(1) := 2πi · Z ⊂ C, with H.S. purely of type (−1,−1),

—KdR(1) := K with filtration Fil−1 = K ⊃ Fil0 = (0) (similarly for other

fields than K),

—Zp(1) := lim←−µpn(K) as Gal(K/K)-module (similarly for other fields).

Fixing i ∈ C with i2 = −1 we have generators 2πi for ZB(1) and 1 for KdR(1).

Also, the choice of i determines a generator
(
exp(2πi/pn)

)
n∈N

for Zp(1) over

C. Via the chosen embedding K →֒ C this gives a generator ζ for Zp(1) over

K. We have comparison isomorphisms (over C)

ZB(1)⊗Z Zp
∼−→ Zp(1) and ZB(1)⊗Z C ∼−→ CdR(1) ,
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(see [De4], Sect. 1) mapping generators to generators.

If (X, λ) is a p.p.a.v. over C then λ gives rise to a perfect symplectic

form ψB : H1
B × H1

B −→ ZB(−1). For de Rham and étale cohomology we

have an analogous statement, and the various forms ψ? are compatible via

the comparison isomorphisms. Using the chosen generators for Tate objects,

we can view the forms ψ? as “ordinary” bilinear forms with values in the

coefficient ring corresponding to ? ∈ {B, dR, ét}. This is consistent with our

usage of the notation F (n) in 5.2.

For crystalline cohomology (or Dieudonné modules) with values in Re, the

Tate twist is given by

—Re(−1) := Re with filtration Filj
(
Re(−1)

)
= Filj−1Re and Frobenius

F = p · φRe .

(This should be thought of as an object of a category MF(V ), see [Fa3].

We have Re(−1) ∼= M(Ĝm).) The generator ζ ∈ Zp(1) over K determines

a generator ζ∗ of Zp(−1) and an element β ∈ Acrys as in 5.5.2 (see [Fo],

1.5.4). On Tate twists, the comparison map of Thm. 5.5.7 is (after a suitable

normalization) the map δ : Re(1)⊗Re Acrys
∼−→ Zp(1)⊗Zp Acrys with 1⊗ 1 7→

ζ ⊗ β. Here we see a factor β entering. In other words: if (X, λ) is a p.p.a.v.

over V with associated p-divisible groupH = X[p∞], then λ gives polarization

forms

ψét : H1
ét,Zp
× H1

ét,Zp
−→ Zp(−1) and ψcrys : M(H)×M(H) −→ Re(−1) ,

so that under the map ρ from 5.5.7 we have δ◦(ψcrys⊗1) = (ψét⊗β)◦(ρ×ρ).

5.6 Vasiu’s strategy—first part. We return to the situation considered in 5.1.

We shall first try to prove the formal smoothness of N under the following

assumption. Here we recall that we write CSp2g for the Chevalley group

scheme CSp(Z2g, ψ), where ψ is the standard symplectic form on Z2g.

(5.6.1)

There is a collection of tensors {tα ∈ (Z2g
(p))(rα, rα; 0)}α∈J1 of de-

grees 2rα ≤ 2(p−2) such that this collection is very well-positioned

over the d.v.r. Z(p) for the group G (considered as a subgroup of

CSp2g,Q via the given closed embedding i).

Also, we shall consider a larger collection {tα}α∈J (with J1 ⊂ J ) of tensors

which, together with the tensor ψ, cut out the group G. (The tα with α ∈
J \J1 again of types (rα, rα, 0) but not neccesarily Z2g

(p)-integral, nor of degree

≤ 2(p− 2).)
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5.6.2 Consider triplets (XC, λC, θ
p) consisting of a g-dimensional p.p.a.v.

over C with a compatible system of Jacobi level n structures for all n with p ∤ n

(which we represent by the single symbol θp). The modular interpretation

ShCp(CSp2g,Q,H
±
g )(C) ∼−−→ {(XC, λC, θ

p)}/ ∼=
is given as follows. If (h, γ) ∈ H±

g × CSp2g(Af ), then we can view γ as an

isomorphism γ : Q2g⊗Q Af
∼−→ Ẑ2g⊗Ẑ Af . For XC we take the abelian variety

determined by the lattice Λ := Q2g ∩ γ−1(Ẑ2g) and the Hodge structure h.

There is a unique q ∈ Q∗ such that q · ψ is the Riemann form of a principal

polarization λC on XC, and the system of level structures is given by the

isomorphism γ : Λ ⊗ (
∏

ℓ 6=p Zℓ) ∼−→
∏

ℓ 6=p Z2g
ℓ . One checks that this gives a

well-defined bijection as claimed.

By construction of the model N , there exists a purely ramified extension

W ⊂ V as in 5.5 such that the closed point x̃0 ∈ N lifts to a V -valued point

x : Spec(V ) → N . Considered as a point of A it corresponds to a p.p.a.v.

with a system of level structures (X, λ, θp) over V . We shall use the notations

and assumptions of 5.5; in particular we obtain a triplet (XC, λC, θ
p) over C

via base-change over the chosen embedding V ⊂ K →֒ C. The corresponding

point of ShCp(CSp2g,Q,H
±
g )(C) can be represented by a pair (h, e) ∈ H±

g ×
CSp2g(A

p
f ). In particular, we get an identification H1

B(X(C),Z)⊗Z(p)
∼= Z2g

(p).

The fact that x factors through N now implies that the tensors tα as in (5.6.1)

correspond to Hodge classes tα,B on XC which for α ∈ J1 ⊂ J are integral

w.r.t. the Z(p)-lattice H1
B,Z ⊗ Z(p) ⊂ H1

B. Notice that ψ gives an isomorphism

(H1
B,Z)∗ ∼= H1

B,Z(1), so that it is no restriction to assume that all tα live in

spaces (Z2g)(rα, rα; 0).

By [De4], Prop. 2.9, the de Rham realizations tα,dR (α ∈ J ) are defined

over a finite extension of K. Possibly after replacing V by a finite extension,

we may therefore assume that the tα,dR are defined over K (i.e., they are

elements of tensor spaces of the form H1
dR,K(rα, rα; 0)). In particular, we

obtain a subgroup G1,K ⊂ CSp(H1
dR,K , ψ) such that G1,K ⊗K C = G⊗Q C.

Write tα,ét for the (p-adic) étale realization of tα,B, which is an element

of some tensor space Tα,ét. For α ∈ J1, the class tα,ét is H1
ét,Zp

-integral.

Since the tα,B are Hodge classes on XC, the tα,dR and tα,ét correspond to each

other via the p-adic comparison isomorphism. More precisely, we have the

following result, which was obtained independently by Blasius (see [Bl]) and

Wintenberger. A simplified proof was given by Ogus in [Og].

5.6.3 Theorem. (Blasius, Wintenberger) Let O be a complete d.v.r. of

characteristic (0, p) with perfect residue field. Set F = Frac(O), and let
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XF be an abelian variety over F with good reduction over O. Let tdR ∈
H1

dR(r1, r2; s) and tét ∈ H1
ét(r1, r2; s) be the de Rham component and the p-

adic étale component respectively of an absolute Hodge class on X. Under

the comparison isomorphism

γ : H1
dR(XF/F )⊗F BdR

∼−→ H1
ét(XF ,Qp)⊗Qp BdR

we have γ(tdR ⊗ 1) = tét ⊗ β−s.

We remark that in [Bl] and [Og], this results is only proven under the

additional assumption that XF is obtained via base-change from an abelian

variety over a number field. It can be shown that this condition, which

appears in the proof of a version of Deligne’s “Principle B”, is superfluous. In

[Va2], Vasiu shows this by using a trick of Lieberman. One can also remark

that the “Principle B” is needed only in the situation where we have a family

of abelian varieties X → S over a variety S over Q, such that XF occurs as

the fibre over an F -valued point of S. (The variety S constructed in [De4],

Sect. 6 is a component of a Shimura variety.) In this situation, the arguments

given in [Bl], Sect. 3 and [Og], Prop. 4.3 suffice.

We also remark that the factor β−s appears because we choose KdR(1)⊗
BdR

∼−→ Qp(1) ⊗ BdR to be the map 1 ⊗ 1 7→ ζ ⊗ β−1. (In [Bl] a different

normalization is used.)

5.6.4 Set H := X[p∞], where X is as in 5.6.2. Notice that H1
ét,Zp

(H) ∼=
H1

ét,Zp
(XK). There are well-defined F0-invariants τα,crys ∈ M0[1/p](rα, rα; 0)

such that ρ̃(τα,crys⊗1) = tα,ét⊗1. Using (5.5.6), we then obtain horizontal F -

invariant classes tα,crys ∈ M [1/p](rα, rα; 0). Also we have polarization forms

ψcrys and ψét as already mentioned in 5.5.8.

We claim that, writing Tα,crys for the tensor spaces obtained from M =

M(H), the tα,crys lie in Fil0(Tα,crys[1/p]). To see this, we use that tα,crys is

a lifting of tα,dR in the following sense. By (5.5.5) and the isomorphism

M0 ⊗W K ∼= H1
dR,K from [BO], we have M ⊗Re K

∼−→ H1
dR,K . Combining this

with the isomorphism Re(−1) ⊗Re K
∼−→ KdR(−1) by 1 ⊗ 1 7→ 1, we obtain

maps M(H)(r1, r2; s)⊗Re K
∼−→ H1

dR,K(r1, r2; s). The functoriality of the map

ρ in Theorem 5.5.7 implies that tα,crys⊗ 1 7→ tα,dR and ψcrys⊗ 1 7→ ψdR. That

tα,crys ∈ Fil0Tα,crys now follows from the fact that Fil1M(H) is the inverse

image of Fil1H1
dR,K under the map M(H) → M(H)⊗Re K

∼= H1
dR,K . In this

way we see that ψcrys and the tα,crys are crystalline Tate classes, in the sense

that they are horizontal, in Fil0 and invariant under Frobenius.
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We will be able to exploit assumption (5.6.1) by using the following sup-

plement to Thm. 5.5.7.

5.6.5 Theorem. (Faltings, [Fa3]) Suppose that r ≤ (p− 2), and consider

Tate classes

tcrys ∈M(H)(r, r; 0)⊗Re Re[1/p] and tét ∈ H1
ét,Zp

(H)(r, r; 0)⊗Zp Qp ,

with ρ(tcrys ⊗ 1) = (tét ⊗ 1). Then tcrys is M(H)-integral if and only if tét is

H1
ét,Zp

(H)-integral.

It follows from this result that the tα,crys with α ∈ J1 are M(H)-integral

classes. (Notice that we assumed these classes to have degree ≤ 2(p− 2), as

required in Faltings’s theorem.)

5.6.6 We are now ready to prove one of the key steps in the argument. Since

at this point we were not able to follow [Va2], we present our own explanation

of what is going on.

The tensors τα,crys cut out a subgroup G1 of CSp(M0[1/p], ψM0). By

Thm. 5.6.3 we have G1 ⊗K0 K = G1,K (where the latter is the group cut

out by the tα,dR that was introduced in 5.6.2 above), so that G1 is reductive.

What we would like to show now is that the Zariski closure G1,Re of G1,Re[1/p]

inside CSp(M(H), ψcrys) is a reductive group scheme over Re. Here we use the

identification (5.5.6) to identify G1,Re[1/p] as a subgroup of CSp(M(H), ψcrys).

Obviously, we will try to achieve our goal by using (5.6.1). If we look

at Def. 5.3 then we see that we already know (grace to Thm. 5.6.5) that

ψcrys, ψ
∗
crys and the tα,crys with α ∈ J1 are M(H)-integral, and therefore it

only remains to show that there exists an isomorphism Q2g ⊗ Re[1/p] ∼−→
M(H)[1/p] such that ψ and the tα (α ∈ J ) are sent to ψcrys and the tα,crys

respectively. The first step is that we have an isomorphism Q2g ⊗Qp
∼−→ H1

ét

sending ψ and the tα to their étale realizations ψét and tα,ét.

Notice that we now only have to consider rings with p inverted. Since

the tα,crys were obtained from the τα,crys using (5.5.6), it suffices (and will

actually be easier) to show that there exists an isomorphism ν : H1
ét ⊗Qp

K0
∼−→ M0[1/p] such that ψét 7→ ψM0 and tα,ét 7→ τα,crys. (This isomorphism

is of course not required to have any “meaning”.)

By what was explained before, we can compare H1
ét and M0[1/p] after

extension of scalars to the ring Bcrys, in such a way that the tensors tα,ét

and the τα,crys correspond. We have to be a little more careful about the

polarization forms, since ψcrys and ψét correspond to each other only up to a
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factor β (see 5.5.8). The ring to work over therefore is Bcrys[
√
β], since the

factor
√
β allows us to modify the isomorphism M0[1/p]⊗Bcrys

∼= H1
ét⊗Bcrys

in such a way that the forms ψcrys and ψét do correspond. This does not affect

the tensors tα, since these are of type (rα, rα; 0). In any case, we see that there

exists a field extension K0 ⊂ Ω such that the desired comparison isomorphism

exists after extension of scalars to Ω. Writing V = (H1
ét;ψ, {tα,ét}α∈J ) and

V′ = (M0[1/p];ψM0, {τα,crys}α∈J ) the torsor Isom(V,V′) is therefore non-

empty. Since the automorphism group of the system V is precisely GQp, the

obstruction for finding ν then is a class in H1
(
Gal(Qp/K0), G(Qp)

)
. Now

the fact that K0 is a field of dimension ≤ 1, together with [Se2], Thm. 1 in

Chap. III, §2.2, proves that the obstruction vanishes, whence the existence

of an isomorphism ν as desired. By applying (5.6.1) this gives the following

statement.

5.6.7 Proposition. The Zariski closure G1,Re of G1,Re[1/p] inside the scheme

CSp(M(H), ψcrys) is a reductive group scheme over Re.

It will now rapidly become clear why 5.6.7 is important. For this, we set

M̃ := M ⊗Re R̃e , and MV := M ⊗Re V = H1
dR(X/V ) ,

using the maps Re ⊂ R̃e → V from 5.5.3. Also we set

G1, eRe := G1 ×Re R̃e , G1,V := G1 ×Re V ,

which are reductive groups over R̃e and V respectively. We write Fil1(MV ) =

Fil1(M)⊗Re V for the Hodge filtration on MV .

5.7 Lemma. (i) There exists a complement M ′
V for Fil1(MV ) ⊂ MV such

that the cocharacter µ : Gm,V → GL(MV ) given by

µ(z) =

{
id on M ′

V

z−1 · id on Fil1(MV )

factors through G1,V .

(ii) The cocharacter µ : Gm,V → G1,V lifts to a cocharacter µ̃ : Gm, eRe →
G1, eRe .

We will admit this lemma, referring to [Va2], sect. 5.3 for a proof. We remark

that the reductiveness of G1,V and G1, eRe is used in an essential way.

The cocharacter µ̃ yields a direct sum decomposition M̃ = M̃ ′ ⊕ M̃ ′′

with M̃ ′′ ⊗ eRe V = Fil1(MV ). Since R̃e is a projective limit of nilpotent PD-

thickenings of V/pV , we can apply the Grothendieck-Messing deformation

62



theory of abelian varieties (see [Me], in particular Chap. V). This gives us

a formal p.p.a.v. (X, λλ) over Spf(R̃e) (with the I-PD-adic topology on R̃e),

the de Rham cohomology of which is given by H1
dR(X/R̃e) = M̃ with Hodge

filtration M̃ ′′ and Gauß-Manin connection induced from the connection on

M(H) as a crystal. The fact that we have a polarization on X implies that

(X, λλ) algebraizes to a p.p.a.v. (X̃, λ̃) over Spec(R̃e). We have (X̃, λ̃)⊗ eReV =

(X, λ). Since we only consider level n structures with p ∤ n, the system of level

structures θp extends to a system θ̃p on (X̃, λ̃). We claim that the morphism

Spec(R̃e)→ A corresponding to (X̃, λ̃, θ̃p) factors through N ⊂ A. To prove

this, we will use the following lemma.

5.8 Lemma. Notations as above. Let R := C[[z]] with its (z)-adic topology,

and let y : Spf(R) → A ⊗ C be a morphism corresponding to a (formal)

p.p.a.v. (Y, µ, ηp) over Spf(R). Let i0 : Spec(C) → Spf(R) be the unique C-

valued point (given by z 7→ 0), and assume that y0 := y ◦ i0 is a point of

Sh(G,X)C →֒ A⊗C. As in 5.6.2, we obtain de Rham classes tα,dR,0 ∈ Tα,dR,0

for α ∈ J , where the subscript “0” refers to the fact that these are classes on

the special fibre Y0. Assume that the formal horizontal continuations of the

classes tα,dR,0 over Spf(R) remain inside Fil0Tα,dR. Then y factors through

Sh(G,X).

Proof (sketch). There exists a p.p.a.v. (Ỹ , µ̃) over an algebraic curve S such

that the formal completion at some non-singular point s0 ∈ S gives back

(Y, µ). (In this sketch of the argument we will forget about the level struc-

tures.) Over some open disc U →֒ San around s0, we can choose a symplectic

basis of H1
dR(ỸU/U). By virtue of the Hodge filtration, this gives rise to a map

q : U → H∨
g , where H∨

g (the compact dual of Hg) is the domain parametrizing

g-dimensional subspaces Fil1 ⊂ C2g which are totally isotropic for the stan-

dard symplectic form ψ. The point q(s0) lies on a subvariety X̌ ⊂ H∨
g (where

X̌ is the compact dual of the hermitian symmetric domains X+ ⊆ X as in

the given Shimura datum) parametrizing those flags for which the horizontal

continuations t̃α,dR of the tα,dR,0 remain in the filtration step Fil0. By consid-

eration of the Taylor series development of the map q at s0 one shows that q

maps U into X̌, and this implies the assertion. �

5.8.1 Proposition. The morphism x̃ : Spec(R̃e) → A factors through N ⊂
A.

Proof (sketch). It suffices to show that the generic point of Spec(R̃e) maps

to Sh(G,X). Consider the homomorphism j : R̃e →֒ C[[z]] with T 7→ z+σ(π)
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(using the chosen embeddingK0 ⊆ K
σ−֒→ C). Note that if we set (Y, µ, ηp) :=

j∗(X̃, λ̃, θ̃p), then (Y0, µ0, η
p
0) = σ∗(X, λ, θ). The de Rham classes j∗tα,dR on

Y are formally horizontal, since ∂/∂z · (j∗tα,dR) = j∗(∂/∂T · tα,dR) = 0. The

claim now follows by applying the lemma. �

5.8.2 The rest of the argument is easy. Pulling back (X̃, λ̃, θ̃p) via the mor-

phism Spec(W ) →֒ Spec(R̃e) we obtain a lifting of the closed point x0 that

we started off with, to a W -valued point of N . If H1 is the correspond-

ing p-divisible group over W then, by specialization, we have a collection

{tα,crys,1}α∈J of crystalline Tate classes on H1. Writing M1 := M(H1) =

M̃⊗ eReW and G := G1, eRe× eReW →֒ CSp(M1, ψ1), the group G is reductive and

is precisely the group fixing all tensors tα,crys,1. This brings us in a situation

where we can apply the results of §4. Writing N ∧
, N

∧
and A∧

for the formal

completions at x̃0 and x0, and using the notations of 4.5–4.9, the same reason-

ing as in 5.8.1 above shows that the composition Spf(C) = ÛG −֒→ Û ∼= A∧

factors through N
∧
. Now C and ÔN,x0

are local W -algebras of the same

dimension, hence ÛG →֒ N
∧

is dominant onto a component of N
∧

and lifts

to a morphism ÛG →֒ N ∧
. Then ÔN ,x̃0

։ C is a surjective homomorphism

between local domains of the same dimension, hence an isomorphism. This

concludes the proof of the following result.

5.8.3 Theorem. In the situation of 5.1, assume that (5.6.1) holds. Then the

model N is an integral canonical model of ShKp(G,X) over O(v).

5.9 Vasiu’s strategy—second part. We continue our discussion of the paper

[Va2]. What remains to be done to complete Vasiu’s program is to show

that, in the situation of Corollary 3.23, there exists a covering (G,X) with

i : (G,X) →֒ (CSp2g,H
±
g ) for which the assumption (5.6.1) holds. This is

a highly non-trivial problem, and it is not clear to us if one can expect to

solve this with the definition of a well-positioned family of tensors as in 5.3.

The presentation of this material as it is presently available is too sketchy

to convince us of the correctness of all arguments5; we will indicate by a

marginal symbol ? statements of which we have not seen a complete proof.

In the rest of this section we shall only indicate the main line of Vasiu’s

arguments, without much further explanation.

5As remarked before, we strongly encourage the reader to read Vasiu’s original papers,

some versions of which appeared after we completed this manuscript.
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5.9.1 Let W be a finite dimensional vector space over a field F of char-

acteristic zero, and consider a semi-simple subgroup G ⊂ GL(W ). On Lie

algebras we have gl(W ) = g⊕ g⊥, where g⊥ is the orthogonal of g := Lie(G)

w.r.t. the form (A1, A2) 7→ Tr(A1A2) on gl(W ). Write πg for the projec-

tor onto g; we view πg as an element of W (2, 2; 0). Next we consider the

Killing form βg : g × g → F . Since G is semi-simple, the form βg is non-

degenerate, so that there exists a form β∗
g
: g∗ × g∗ → F with 〈βg, β

∗
g
〉 = 1.

Using the direct sum decomposition gl(W ) = g⊕g⊥ and the induced isomor-

phism gl(W )∗ = g∗ ⊕ (g⊥)∗, we can view βg and β∗
g

as elements of W (2, 2; 0).

Clearly the tensors πg, βg and β∗
g

are G-invariant. Even better: if G is the

derived subgroup of a reductive group H ⊂ GL(W ) then πg, βg and β∗
g are

also H-invariant.

Finally we define an integer s(g,W ). For this we fix an algebraic closure

F of F and we choose a Cartan subalgebra t ⊂ gF . For a root α ∈ R(gF , t),

let sα ⊂ gF denote the Lie subalgebra (isomorphic to sl2) generated by gα

and g−α. We write

dα := max{dim(Y ) | Y ⊂WF is an irreducible sα-submodule} ,

and we define s(g,W ) := max{dα | α ∈ R(g, t)}. If Ξ is the set of weights

occurring in the g-module W then dα = 1 + max{α∨(ξ) | ξ ∈ Ξ}. So, if

α = α1, α2, . . . , αr is a basis of R(g, t) and if W is irreducible with highest

weight ̟ = n1 · ̟1 + · · · + nr · ̟r, where ̟i is the fundamental dominant

weight corresponding to αi, then dα = dα1 = 1 + n1.

5.9.2 Claim. Let W be a finite dimensional Q-vector space with a non-?

degenerate symplectic form ψ. If G ⊂ CSp(W,ψ) is a semi-simple subgroup

and if p ≥ s(g,W ) then {πg, βg, β
∗
g
} is a well-positioned family of tensors for

the group G over the d.v.r. Z(p).

If one tries to prove a statement like this then a priori one would have

to consider an arbitrary faithfully flat Z(p)-algebra R and a free R-module

M with M ⊗R R[1/p] ∼= W ⊗Q R[1/p]. Since we are dealing with a finite

collection of tensors, however, one easily reduces to the case that R is of

finite type over Z(p). Also we may replace R by a faithfully flat covering,

since taking a Zariski closure of something quasi-compact commutes with flat

base-change. This allows one to reduce to the case that R is a complete local

noetherian ring.

It should be noted that in general the Zariski closure of GR[/p] inside

GL(M) is not a subgroup scheme, even if R is a regular local ring. We refer
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to the work [BT] of Bruhat and Tits, especially loc. cit., 3.2.15, for further

theory and a very instructive example.

5.9.3 Corollary. Assume 5.9.2 to hold. Consider a closed immersion of?

Shimura data i : (G,X) →֒ (CSp2g,Q,H
±
g ). Let p be a prime number, with

p ≥ 5. Assume that the Zariski closure of G inside CSp2g,Z(p)
is reductive and

that the tensors πgder, βgder and β∗
gder are Z2g

(p)-integral. Then condition (5.6.1)

is satisfied. In particular: for every prime v of E = E(G,X) above p and ev-

ery hyperspecial subgroup Kp ⊂ G(Qp), there exists an i.c.m. of ShKp(G,X)

over OE,(v).

Up to one technical detail, we can derive this corollary from the previous

claim by the following argument. By the results of [De3], Sect. 1.3, all highest

weights in the representation i : G →֒ GL(Q2g) are miniscule in the sense

of [Bou], Chap. VIII, §7, no 3. It follows from this that s(gder,Q2g) = 2.

Since p ≥ 5, the set of tensors {πgder, βgder, β∗
gder} is a well-positioned set of

G-invariant tensors (of degree 4) for the group Gder over Z(p).

Next we consider the Zariski closure G of G inside CSp2g,Z(p)
. By assump-

tion, it is reductive. Let Z := Z(G)0 be the connected center of G, which is a

torus over Z(p) with generic fibre Z := Z(G)0. Also write C ⊂ End(Z2g
(p)) for

the subalgebra of endomorphisms which commute with the action of G. We

claim that the elements of C form a well-positioned collection of G-invariant

tensors (of degree 2) for the group Z over Z(p). We will not prove this; the

essential idea is to reduce to the situation where Z is a split torus. For details

we refer to [Va2].

Now we take T := {πgder, βgder, β∗
gder} ∪ C as our collection of G-invariant

tensors. Notice that the condition 2rα ≤ 2(p− 2) in (5.6.1) is satisfied, since

we are only using tensors of degrees 2 and 4 and since p ≥ 5. To conclude

the proof of the corollary, one considers a faithfully flat Z(p)-algebra R and a

free R-module M with an identification M ⊗R R[1/p] ∼= Q2g ⊗Q R[1/p] such

that ψ and ψ∗, as well as all tensors in our collection T are M-integral. Then

we know that ψ induces a perfect form ψM on M , that the Zariski closure

G1 of Gder ⊗Q R[1/p] inside CSp(M,ψM ) is semi-simple, and that the Zariski

closure Z1 of Z⊗QR[1/p] inside CSp(M,ψM ) is a torus. We are therefore left

with the following question. (In [Va2] it is used implicitly that the answer is

affirmative.)

5.9.4 Problem. Let R be a faithfully flat Z(p)-algebra and let M be a free

R-module of finite rank. If GR[1/p] ⊆ GL(M [1/p]) is a reductive subgroup
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scheme such that the Zariski closures G1 and Z1 of respectively its derived

subgroup and its connected center are reductive subgroup schemes of GL(M),

does it follow that the Zariski closure of GR[1/p] inside GL(M) is flat over R

and therefore again a reductive subgroup scheme?

Perhaps the answer to this question is known to experts in this field, in

which case we would be interested to hear about it. If we assume that the

answer is affirmative then Cor. 5.9.3 follows by the arguments given above.

5.9.5 Claim. Let (Gad, Xad) be an adjoint Shimura datum of abelian type,?

and let p ≥ 5 be a prime number such that Gad
Qp

is unramified. Then there

exists a Shimura datum (G,X) covering (Gad, Xad) and a closed immersion

i : (G,X) →֒ (CSp2g,Q,H
±
g ) such that condition (5.6.1) holds for G.

In [Va2] this statement is claimed as a consequence of a whole chain of

constructions, reducing the problem to Cor. 5.9.3.

5.9.6 Corollary. (Assuming 5.9.2—5.9.5) Let (G,X) be a Shimura da-?

tum of pre-abelian type. Let p ≥ 5 be a prime number such that (notations of

3.21.5) p ∤ δG and such that GQp is unramified. Let Kp ⊂ G(Qp) be a hyper-

special subgroup and let v be a prime of E(G,X) above p. Then there exists

an integral canonical model M of ShKp(G,X) over OE,(v). As a scheme, M
is the projective limit of smooth quasi-projective OE,(v)-schemes with étale

coverings as transition maps.

§6 Characterizing subvarieties of Hodge type;

conjectures of Coleman and Oort

6.1 We now turn to a couple of problems of a somewhat different flavour.

Consider a Shimura variety ShK(G,X). We have seen in §1 that, depending

on the choice of a representation of G, we can view it, loosely speaking, as

a “moduli space” for Hodge structures with some given Hodge classes. In

this interpretation, the “Shimura subvarieties” would be components of the

loci where the Hodge structures have certain additional classes. The type

of question that we are interested in here is: “can we give a direct descrip-

tion of these Shimura subvarieties?”, and “given an arbitrary subvariety of

ShK(G,X), can we say something about “how often” it intersects a Shimura

subvariety?”. More specific questions will be formulated below. First, how-

ever, let us make the notion of a Shimura subvariety more precise.
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6.2 Definition. Let (G,X) be a Shimura datum. An irreducible algebraic

subvariety S ⊆ ShK(G,X)C is called a subvariety of Hodge type if there exist

an algebraic subgroup H ⊆ G (defined over Q), an element η ∈ G(Af ) and a

connected component Y +
H of the locus

YH := {h ∈ X | h : S→ GR factors through HR}

such that S(C) is the image of Y +
H × ηK in ShK(G,X)(C) = G(Q)\X ×

G(Af )/K.

If E(G,X) ⊆ F ⊆ C, then an algebraic subvariety S ⊆ ShK(G,X)F is

called a subvariety of Hodge type if all components of SC are of Hodge type.

(If S is irreducible then it suffices to check this for one component of SC.)

For example: a point x of ShK(G,X), considered as a 0-dimensional subva-

riety, is of Hodge type if and only if x is a special point. If ShK(G,X) →֒ Ag,1,n

is a Shimura subvariety of Hodge type then these conditions on x are equiva-

lent to saying that x corresponds to an abelian variety of CM-type (in which

case we say that x is a CM-point.)

If f : (G1, X1) →֒ (G2, X2) is a closed immersion of Shimura varieties and

if we have compact open subgroups Ki ⊂ Gi(Af ) (i = 1, 2) with f(K1) ⊆
K2, then the connected components of the image of Sh(f) : ShK1(G1, X1)→
ShK2(G2, X2) are called subvarieties of Shimura type. The subvarieties of

Hodge type are precisely the irreducible components of Hecke translates of

subvarieties of Shimura type. For further details see [Mo1], Chap. I or [Mo2],

section 1.

Now for some of the concrete problems that we are interested in.

6.3 Conjecture. (Coleman, cf. [Co]) For g ≥ 4, there are only finitely

many smooth projective genus g curves C over C (taken up to isomorphism)

for which Jac(C) is of CM-type.

6.4 Conjecture. (Oort, cf. [Oo3]) Let Z →֒ Ag,1,n ⊗ C be an irreducible

algebraic subvariety such that the CM-points on Z are dense for the Zariski

topology. Then Z is a subvariety of Hodge type.

6.5 Let us first make some remarks on the status of these conjectures. Cole-

man’s conjecture, as we phrased it here, is false for g = 4 and g = 6: there

exist families of curves C → S of genus 4 and 6, such that the image of S in

Ag,1 corresponding to the family of Jacobians Jac(C/S)→ S is (an open part

of) a subvariety of Hodge type of dimension > 0. The known examples of this
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type are given by explicit polynomial equations. For example, let S be the

affine line with coordinate λ, and let CN be the smooth curve over S with affine

equation yN = x(x− 1)(x− λ). If 3 ∤ N then C is a family of curves of genus

N − 1 with an automorphism ζN of order N given by (x, y) 7→ (x, e2πi/N · y).
For N = 5 (resp. N = 7) we obtain a family of Jacobians JN → S with com-

plex multiplication by Q[ζ5] (resp. Q[ζ7]), and one computes that the complex

embedding given by ζN 7→ ek·2πi/N has multiplicity 2,1,1,0 for k = 1, 2, 3, 4

(resp. multiplicity 2, 2, 1, 1, 0, 0 for k = 1, . . . , 6) on the tangent space. Now

the Shimura variety of PEL type parametrizing abelian 4-folds (resp. 6-folds)

with complex multiplication by an order of Q[ζ5] (resp. Q[ζ7]) and the given

multiplicities on the tangent space is 1-dimensional, so the image of S in A4,1

(resp. A6,1) is an open part of such a subvariety of PEL type. It follows that

there are infinitely many values of λ such that Jac(Cλ) is of CM-type. For

further details, and another example of this kind, we refer to [dJN].

For genera g = 5 and g ≥ 7, Coleman’s conjecture remains, to our knowl-

edge, completely open. It is plausible that the known counter examples are

exceptional, and that examples of such kind only exist for certain “low” gen-

era. Let us point out here that in the above example, we do not find a

subvariety of Hodge type if 3 ∤ N and N ≥ 8; this follows from [dJN], Prop.

5.7 and the results of Noot in [No2] (see 6.15 below).

6.6 Oort’s conjecture was studied by the author in [Mo1]. The results here

are based on a characterization of subvarieties of Hodge type in terms of

certain “linearity properties”. We will discuss this in more detail below. One

of the results in loc. cit., is a proof of Oort’s conjecture under an additional

assumption. This is a general result, which provides further evidence for

the conjecture. Unfortunately, the extra assumption is difficult to verify in

practice.

In another direction, one can try to prove the conjecture in concrete cases.

The first non-trivial case is to consider subvarieties of a product of two modu-

lar curves. After some reduction steps first proved by Chai, André and Edix-

hoven (see [Ed2]) both found a proof for the conjecture in this case under an

additional hypothesis. Both their methods and the hypotheses involved were

rather different. Recently, André found an unconditional proof, so that we

now have the following result (see [An2]).

6.6.1 Theorem. (André) Let S1 and S2 be modular curves over C, and

let C ⊂ S1 × S2 be an irreducible algebraic curve containing infinitely many

points (x1, x2) such that both x1 ∈ S1 and x2 ∈ S2 are CM-points (in other
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words, C contains a Zariski dense set of CM-points). Then C is a subvariety

of Hodge type, i.e., either C = S1 × {x2}, where x2 is a CM-point of S2, or

C = {x1}×S2, where x1 is a CM-point of S1, or C is a component of a Hecke

correspondence.

6.7 One of the motivations for Oort to formulate his conjecture is its analogy

with the Manin-Mumford conjecture, now a theorem of Raynaud (see [Ra2]).

We recall the statement:

6.7.1 Theorem. (Raynaud) Let X be a complex abelian variety, and let

Z →֒ X be an algebraic subvariety which contains a Zariski dense collection

of torsion points. Then Z is the translate of an abelian subvariety over a

torsion point.

The analogy is obtained by using the following dictionary:

Oort’s conjecture “Manin-Mumford” = Raynaud’s thm.

Shimura variety abelian variety

CM-point (or special point) torsion point

subvariety of Hodge type translate of an abelian subvariety

over a torsion point

To push the analogy even further, let us mention that one can formulate

a conjecture which contains both Oort’s conjecture and “Manin-Mumford”

as special cases. The idea here is to look at mixed Shimura varieties. Since

we have not discussed these in detail, let us mention the following fact: if

S →֒ Ag,1,n is a subvariety of Hodge type, and if X → S is the universal

abelian scheme over it, then X can be described as a (component of a) mixed

Shimura variety. (See [Pi] and [Mi2] for further examples and details.) The

special points on X are the torsion points on fibres Xs of CM-type. However,

the axioms of mixed Shimura varieties are too restrictive for our purposes,

since, for example, an abelian variety X which is not of CM-type, cannot be

described as a mixed Shimura variety. By loosening the axioms somewhat, we

are led to what might be called “mixed Kuga varieties” and to the following

conjecture, proposed by Y. André in [An1]. (André adds the remark that this

is only a tentative statement, which may have to be adjusted.)

6.7.2 Conjecture. LetG be an algebraic group over Q, letK∞ be a maximal

compact subgroup of G(R), and let Γ be an arithmetic subgroup of G(Q).

Suppose that K∞ is defined over Q, that G(R)/K∞ has a G(R)-invariant
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complex structure and that the complex analytic space Γ\G(R)/K∞ is alge-

braizable. Let us call an irreducible algebraic subvariety S →֒ Γ\G(R)/K∞ a

special subvariety if there exists an algebraic subgroup H ⊆ G defined over Q

and an element g0 ∈ G(Q) such that S = {[g0 ·h] ∈ Γ\G(R)/K∞ | h ∈ H(R)}.
Then S is a special subvariety if and only if it contains a Zariski dense col-

lection of special points.

6.8 Assume Oort’s conjecture to be true. Then Coleman’s conjecture be-

comes the question of whether there are positive-dimensional subvarieties of

Hodge type S →֒ Ag,1 ⊗ C of which an open part is contained in the open

Torelli locus T 0
C (:= the image of the Torelli morphismMg ⊗C→ Ag,1⊗C).

This seems a difficult question, also if we replace the open Torelli locus by its

closure. Hain’s paper [H] contains interesting new results about this.6

To state Hain’s results, let us first consider an algebraic group G over Q

which gives rise to a hermitian symmetric domain X (i.e., an algebraic group

of hermitian type), and consider a locally symmetric (or arithmetic) variety

S = Γ\X, where Γ is an arithmetic subgroup of G(Q). If G is Q-simple then

we call S a simple arithmetic variety. We say that S is bad if it contains a

locally symmetric divisor (examples: G = SO(n, 2) or G = SU(n, 1), as well

as the case dim(S) = 1); otherwise call S good. This is a really a property of

G, i.e., it does not depend on Γ and the resulting S. In the next statement

we only consider the simple case; this is not a serious restriction since every

arithmetic variety has a finite cover which is a product of simple ones.

6.8.1 Theorem. (Hain) Let S be a simple arithmetic variety which is good

in the above sense.

(i) Suppose p : C → S is a family of stable curves over S such that the

Picard group Pic0(Cs) of every fibre is an abelian variety (i.e., every fibre is

a “good” curve: its dual graph is a tree), such that the generic fibre Cη is

smooth, and such that the period map S → Ag,1 is a finite map of locally

symmetric varieties. Then S is a quotient of the open complex n-ball for some

n. (So Gad
R = PSU(n, 1)× (compact factors).)

(ii) Suppose q : Y → S is a family of abelian varieties, such that every fibre

Ys is the Jacobian of a good curve, and such that the period map S → Ag,1

is a finite map of locally symmetric varieties. Write Sred (resp. Shyp) for the

locus of points such that Ys is the Jacobian of a reducible (resp. hyperelliptic)

curve, and let S∗ be the complement of Sred, which we assume to be non-

6We thank R. Hain for sending us a preliminary version of this paper.
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empty. Then either S is the quotient of the complex n-ball for some n, or

g ≥ 3, each component of Sred has codimension ≥ 2 and S∗ ∩ Shyp is a

non-empty smooth divisor in S∗.

(We point out that a family Y → S as in (ii) is not necessarily of the form

Jac(C/S) → S for a family C → S as in (i), due to the fact that the Torelli

morphism is ramified along the hyperelliptic locus. If, in (i), all fibres are

smooth then the condition that S is good can be ommitted.)

6.9 The next issue that we want to discuss is the characterization of subva-

rieties of Hodge type by their property of being “formally linear”. Here we

owe the reader some explanation. Let us first do the theory over C, which

works for arbitrary Shimura varieties.

Consider a Shimura variety ShK = ShK(G,X)C over C, and let S →֒ ShK

be a subvariety of Hodge type. Then S is a totally geodesic subvariety: if

u : X+ → Sh0
K is the uniformization of the component Sh0

K ⊆ ShK containing

S, and if S̃ ⊆ X+ is a component of u−1(S), then S̃ is a totally geodesic

submanifold of the hermitian symmetric domain X+. This property does not

characterize subvarieties of Hodge type; for a trivial example: any point x ∈ S
forms a totally geodesic algebraic subvariety, but {x} ⊆ S is a subvariety

of Hodge type if and only if x is a special point. Essentially, however, we

are dealing with the well-known distinction between “Kuga subvarieties” and

subvarieties of Hodge type. In a somewhat less general setting, this distinction

was clarified by Mumford in [Mu1]. The same idea works in general, and we

have the following characterization (see [Mo1], Thm. II.3.1, or [Mo2]).

6.9.1 Theorem. Let S →֒ ShK(G,X)C be an irreducible algebraic subva-

riety. Then S is a subvariety of Hodge type if and only if (i) S is totally

geodesic, and (ii) S contains at least one special point.

Let us mention that one can also give a description of totally geodesic

subvarieties in general (i.e., not necessarily containing a special point). It

turns out that they are intimately connected with non-rigidity phenomena.

For example, let ShK(G,X)C →֒ ShK ′(G′, X ′)C be a closed immersion of

Shimura varieties, and suppose that the adjoint group Gad decomposes (over

Q) as a product, say Gad = G1 × G2. Correspondingly, there is a decom-

position Xad = X1 × X2 of X as a product of (finite unions of) hermitian

symmetric domains. Fix a component X+
1 ⊆ X1, a point x2 ∈ X2, and a

class ηK ∈ G(Af )/K, and let SηK(X+
1 , x2) denote the image of X+

1 ×{x2} in

ShK(G,X) under the mapX ∋ x 7→ [x×ηK]. One can show that SηK(X+
1 , x2)
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is a totally geodesic algebraic subvariety of ShK ′(G′, X ′)C, and that, con-

versely, all totally geodesic algebraic subvarieties of ShK ′(G′, X ′)C are of this

form.

After passing to a suitable level (i.e., replacing K by a suitable subgroup

of finite index) we can arrange that the component Sh0
K of ShK(G,X)C con-

taining SηK(X+
1 , x2) is a product variety Sh0

K = S1×S2, with SηK(X+
1 , x2) =

S1 × {s2} for some point s2 ∈ S2. Now assume that G2 is not trivial, so

that dim(S2) > 0. We see that S1 × {s2} is non-rigid: global deformations

are obtained by moving the point s2 ∈ S2. If (G,X) is of Hodge type, say

with ShK ′(G′, X ′)C = Ag,1,n ⊗ C in the above, then we obtain a non-rigid

abelian scheme over S1. (Notice, however, that the non-rigidity may be of

a trivial nature, in the sense that all non-rigid factors of the abelian scheme

in question are isotrivial.) The gist of the results in [Mo1], §II.4 (see also

[Mo2]) is that all non-rigid abelian schemes, and all their deformations, can

be described via the above procedure. We refer to loc. cit. for further details.

6.9.2 We can jazz-up the above characterization of subvarieties of Hodge

type. This will lead to a formulation very analogous to the results in mixed

characteristics, to be discussed next.

The first important remark is that total geodesicness needs to be tested

only at one point. More precisely: if Z →֒ ShK(G,X)C is an irreducible

algebraic subvariety, and if x ∈ Z is a non-singular point of ShK(G,X)C,

then Z is totally geodesic (globally) if and only if it is totally geodesic at the

point x. This is true because ShK(G,X)C has constant curvature.

Next we define a Serre-Tate group structure on the formal completion Shx

of ShK(G,X)C at an arbitrary point x. Here we assume that K is neat, so

that ShK(G,X) is non-singular. The procedure is the following.

The point x lies in the image Sh0 of a uniformization map u : X+ →
ShK(G,X), which, by our assumption onK, is a topological covering. Choose

x̃ ∈ X+ with u(x̃) = x. We have a Borel embedding

X+ →֒ X̌ = Gad(C)/Px̃(C) ,

where Px̃ ⊂ Gad
C is the parabolic subgroup stabilizing the point x̃. Using the

Hodge decomposition of gC with respect to Ad ◦ hx̃, we obtain a parabolic

subgroup P−
x̃ ⊂ Gad

C opposite to Px̃. Write U−
x̃ for the unipotent radical of P−

x̃ ,

which is isomorphic to Ĝd
a for d = dim(X). The natural map U−

x̃ (C) → X̌

gives an isomorphism of U−
x̃ (C) onto its image U ⊂ X̌ which is the comple-
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ment of a divisor D ⊂ X̌. On formal completions we obtain an isomorphism

Ux̃ := U−
x̃ /{1}

∼−→ U/{x̃} = X̌/{x̃}

u∼−→ Sh0
/{x} =: Shx ,

and in this way Shx inherits the structure of a formal vector group. This we

call the Serre-Tate group structure on Shx. One checks that it is independent

of the choice of x̃ above x.

If Z is a subvariety as above, then by taking the formal completion at x,

we obtain a formal subscheme Zx →֒ Shx, and we call Z formally linear at x

if Zx is a formal vector subgroup of Shx. Using this terminology we have the

following result. (See [Mo2], §5.)

6.9.3 Theorem. Let Z →֒ ShK(G,X)C be an irreducible algebraic subva-

riety. If Z is totally geodesic then it is formally linear at all its points.

Conversely, if Z is formally linear at some point x ∈ Z, then it is totally

geodesic. In particular, Z is a subvariety of Hodge type if and only if (i) Z is

formally linear at some point x ∈ Z, and (ii) Z contains at least one special

point.

6.10 In mixed characteristics, our notion of formal linearity is based on

Serre-Tate deformation theory of ordinary abelian varieties. Almost every-

thing we need is treated in Katz’ paper [Ka]; additional references are [DI]

and [Me]. Without proofs, we record some statements that are most relevant

for our discussion.

Let k be a perfect field of characteristic p > 0, and let X0 be an ordinary

abelian variety over k. Set W = W (k), and write CW for the category of

artinian local W -algebras R with W/(p) = k ∼−→ R/mR. The formal deforma-

tion functor DefoX0
: CW → Sets is given by

DefoX0
(R) = {(X,ϕ) | X an abelian scheme over R; ϕ : X ⊗ k ∼−→ X0}/ ∼= .

By the general Serre-Tate theorem, this functor is isomorphic to the formal

deformation functor of the p-divisible group X0[p
∞]. Since X0 was assumed

to be ordinary, the latter is a direct sum X0[p
∞] = Gµ⊕Gét of a toroidal and

an étale part. For R ∈ CW , these two summands both have a unique lifting,

say G̃µ and G̃ét respectively, to a p-divisible group over R. We therefore have

DefoX0
(R) = {α ∈ ExtR(G̃ét, G̃µ) | α|Spec(k) is trivial} ,

and in particular we see that DefoX0
has a natural structure of a group

functor.
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Fix an algebraic closure k̄ of k, write W := W (k̄), and write TpX0 for

the “physical” Tate module of X0. The formal deformation functor of X0⊗ k̄
can be given “canonical coordinates”: if (X,ϕ) ∈ DefoX0⊗k̄(R) for some

R ∈ CW (k̄), then one associates to X a Zp-bilinear form

q(X/R;−,−) : TpX0 × TpX
t
0 −−→ Ĝm(R) = 1 + mR

and it can be shown that this yields an isomorphism of functors

DefoX0⊗k̄
∼−−→ HomZp(TpX0 ⊗ TpX

t
0, Ĝm) .

If we identify the double dual X tt and X, then we have a symmetry for-

mula q(X/R;α, αt) = q(X t/R;αt, α). Furthermore, if f0 : X0,k̄ → Y0,k̄ is a

homomorphism of ordinary abelian varieties over k̄, then f0 lifts to a ho-

momorphism f : X → Y over R ∈ CW if and only if q
(
X/R;α, f t(β)

)
=

q
(
Y/R; f(α), β

)
for every α ∈ TpX0, β ∈ TpY0.

Let λ0 : X0 → X t
0 be a principal polarization. Using the induced isomor-

phism TpX0
∼−→ TpX

t
0 we have DefoX0,k̄

∼= Hom(TpX
⊗2
0 , Ĝm), and by the previ-

ous remarks the formal deformation functor Defo(X0,k̄,λ0) of the pair (X0,k̄, λ0)

is isomorphic to the closed subfunctor Hom(Sym2(TpX0), Ĝm).

6.11 Let κ be a perfect field of characteristic p with p ∤ n, and let x ∈
(Ag,1,n ⊗ κ)ord be a closed ordinary moduli point with residue field k. Write

(X0, λ0, θ0) for the corresponding p.p.a.v. plus level structure over Spec(k).

The formal completion Ax :=
(
Ag,1,n ⊗ W (κ)

)
/{x}

is a formal torus over

Spf
(
W (k)

)
; since we consider level n structures with p ∤ n, it represents the

formal deformation functor Defo(X0,λ0). By the above, Ax has the structure

of a formal torus over W (k), called the Serre-Tate group structure.

Choose a basis {α1, . . . , αg} for TpX0, and set qij = q
(
−;αi, λ0(αj)

)
. We

have Ax⊗̂W ∼= Spf(A), where A = W [[qij − 1]]/(qij − qji) with its m-adic

topology, m = (p, qij − 1). If X → A := Ax⊗̂W is the universal formal

deformation, then there is an explicit description of the Hodge F -crystal

H = H1
dR(X/A): to the chosen basis {α1, . . . , αg} one associates an A-basis

{a1, . . . , ag, b1, . . . , bg} of H such that

(i) the Hodge filtration is given by Fil0 = H ⊃ Fil1 = A · b1 + · · ·+A · bg ⊃
Fil2 = (0),

(ii) the Gauß-Manin connection is given by ∇(ai) = 0, ∇(bj) =
∑

i ai ⊗
dlog(qij),

(iii) the Frobenius ΦH is the ϕA-linear map determined by ΦH(ai) = ai,

ΦH(bj) = p · bj .
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We will need to work with Ax is a slightly more general setting. For this,

consider a number field F , a finite prime v of F above p, and write Ag =

Ag,1,n ⊗O(v). Let x ∈
(
Ag ⊗ κ(v)

)ord
be a closed ordinary moduli point with

residue field k. Set Ov = O∧
(v), Λ := W (k)⊗W (κ(v)) Ov, Λ := W ⊗W (κ(v)) Ov.

The formal completion Ax := (Ag)/{x} now is a formal torus over Λ. It is

simply the pull-back via Spf(Λ) → Spf(W ) of the formal torus considered

above.

6.12 The lifting of X0 corresponding to the identity element 1 ∈ Ax

(
W (k)

)

is called the canonical lifting, and will be denoted Xcan
0 . The liftings over

W (k)[ζpn] corresponding to the torsion points of Ax are called the quasi-

canonical liftings.

Suppose that k is a finite field, so thatX0 is an abelian variety of CM-type.

The canonical lifting Xcan
0 is the unique lifting of X0 such that all endomor-

phisms of X0 lift to Xcan
0 . The quasi-canonical liftings of X0 are precisely

the liftings of X0 which are of CM-type; they are mutually all isogenous. For

proofs see [dJN], section 3, [Me], Appendix, [Mo1], §III.1.

6.13 Definition. Suppose, with the above notations, that Z →֒ Ag,1,n ⊗ F
is an algebraic subvariety. Let Z →֒ Ag denote its Zariski closure inside Ag.

Suppose that the closed ordinary moduli point x is a point of
(
Z⊗κ(v)

)ord →֒(
Ag ⊗ κ(v)

)ord
. Then we say that Z is formally linear (resp. formally quasi-

linear) at x if its formal completion Zx := Z/{x} →֒ Ax is a formal subtorus

(resp. if all its (formal) irreducible components are the translate of a formal

subtorus over a torsion point).

6.14 Example. Suppose Z is a component of a subvariety of PEL type,

parametrizing p.p.a.v. with an action of a given order R in a semi-simple

Q-algebra. In particular, we have ι0 : R →֒ End(X0). Consider the formal

subscheme of Ax parametrizing liftings X of X0 such that ι0 lifts to ι : R →֒
End(X). It follows from the facts in 6.10 that this is a union of translates

of formal subtori of Ax over torsion points. (The reader is encouraged to

verify this.) It follows that Z is formally quasi-linear at x. Moreover, if Z

is absolutely irreducible and the order R is maximal at p then Z is formally

linear at x.

The relation between formal linearity and subvarieties of Hodge type is

expressed by the following two results, which were obtained by Noot in [No1]

(see also [No2]) and the author in [Mo1] (see also [Mo3]), respectively.
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6.15 Theorem. (Noot) Let F be a number field, and let S →֒ Ag,1,n ⊗ F
be a subvariety of Hodge type. Let v be a prime of F above p, and write S
for the Zariski closure of S inside Ag,1,n ⊗ O(v). Let x be a closed point in

the ordinary locus
(
S ⊗ κ(v)

)ord
. Then S is formally quasi-linear at x. For v

outside a finite set of primes of OF , the formal completion Sx of S at x is a

union of formal subtori of Ax.

6.16 Theorem. Let Z →֒ Ag,1,n ⊗ F be an irreducible algebraic subvariety

over a number field F . Suppose there is a prime v ofOF such that the model Z
of Z (as above) has formally quasi-linear components at some closed ordinary

point x ∈
(
Z ⊗ κ(v)

)ord
. Then Z is of Hodge type.

We refer to [Mo1] and [Mo2] for some applications of 6.16 to Oort’s conjec-

ture. Given Z as in 6.4 (which then is defined over a number field), one tries

to prove that Z is formally linear at some ordinary point in characteristic p.

In general, we do not know how to do this; the main difficulty is that we have

little control over the CM-points on Z. With certain additional assumptions,

which we will not specify here, one can, however, prove such a statement. See

in particular [Mo2], §5.

Notice that 6.16 is a “local” version of Oort’s conjecture: an algebraizable

irreducible formal subscheme of Ax comes from a subvariety of Hodge type

if and only if it contains a dense collection of CM-points (= torsion points).

(The adjective “algebraizable” is essential.) We think of this local version

and of Raynaud’s “Manin-Mumford” theorem as “abelian” cases. Morally,

the global case of Oort’s conjecture is more difficult because it involves non-

abelian group structures.

6.17 To finish, let us take one more look at Coleman’s conjecture. A naive

attempt to disprove it runs as follows: consider the ordinary locus of Mg,Fp
,

and try to lift the corresponding curves to characteristic zero such that the

Jacobian remains of CM-type. This does not work so easily, due to the well-

known fact that the canonical lifting of a Jacobian in general no longer is a

Jacobian. In [DO], Dwork and Ogus give an “abstract” proof of this. (“Ab-

stract” as opposed to the explicit examples demonstrating this fact given

by Oort and Sekiguchi in [OS].) They call an ordinary (smooth projective)

curve C over a perfect field k of char. p a pre-Wn-canonical curve if, setting

X0 = Jac(C), the canonical lifting Xcan
0 mod pn+1 over Wn(k) is a Jaco-

bian. They then show that the locus ΣW1 of pre-W1-canonical curves (pre-

W2-canonical in their notations) forms a constructible part ofMord
g,Fp

which is
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nowhere dense if g ≥ 4.

For our “naive attempt” this still leaves hope, though. As Dwork and

Ogus write, “It would be interesting to study the “deeper” subschemes ΣWn

for higher n . . .”. Coleman’s conjecture suggests that ΣW∞
should be a finite

set of points. Oort’s conjecture together with 6.16 lead to another suggestion.

Namely, if we write τ : Mg → Ag,1 for the Torelli morphism, and if x ∈ ΣW∞

then “locally around τ(x)”, the locus τ(ΣW∞
) should be the largest subvariety

which is contained in the Torelli locus τ(Mg,Fp
) and which is formally linear

(purely in characteristic p). It seems that one can prove this by “iterating” the

method of [DO]. Unfortunately, our control of the higher-order deformation

theory is as yet insufficient to use this to show that ΣW∞
is 0-dimensional.
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construction de modèles canoniques, in: Automorphic Forms, Represen-

tations, and L-functions, Part 2, A. Borel and W. Casselman, eds., Proc.

of Symp. in Pure Math., Vol. XXXIII, American Mathematical Society,

1979, pp. 247–290.

[De4] , Hodge cycles on abelian varieties (Notes by J.S. Milne), in: Hodge

cycles, motives, and Shimura varieties, Lecture Notes in Mathematics 900,

Springer-Verlag, Berlin, 1982, pp. 9–100.

[De5] , A quoi servent les motifs? , in: Motives, Part 1, U. Jannsen,

S. Kleiman, and J-P. Serre, eds., Proc. of Symp. in Pure Math., Vol.

55, American Mathematical Society, 1994, pp. 143–161.

[DI] P. Deligne and L. Illusie, Cristaux ordinaires et coordonnées canon-

iques (with an appendix by N. Katz), Exposé V, in: Surfaces algébriques,
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des nombres de Paris, 1982-83, Progress in Math., Vol. 51, Birkhäuser,
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pp. 239–265.

[Mi2] , Canonical models of (mixed) Shimura varieties and automor-

phic vector bundles, in: Automorphic forms, Shimura varieties, and L-

functions, L. Clozel and J. S. Milne, eds., Persp. in Math., Vol. 10(I),

Academic Press, Inc., 1990, pp. 283–414.

[Mi3] , The points on a Shimura variety modulo a prime of good reduction,

in: The zeta functions of Picard modular surfaces, R. P. Langlands and

D. Ramakrishnan, eds., Les Publications CRM, Montréal, 1992, pp. 151–
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Vol. 35, Birkhäuser, Boston, 1983, pp. 327–352.

[Ri] K. Ribet, Hodge classes on certain types of abelian varieties, Am. J. of

Math., 105 (1983), pp. 523–538.

[Se2] J-P. Serre, Cohomologie Galoisienne, Cinquième édition, révisée et
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