
The Torelli locus and special subvarieties

Ben Moonen and Frans Oort

Abstract. We study the Torelli locus Tg in the moduli space Ag of abelian varieties.
We consider special subvarieties (Shimura subvarieties) contained in the Torelli
locus. We review the construction of some non-trivial examples, and we discuss
some conjectures, techniques and recent progress.
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Introduction

The Torelli morphism

An algebraic curve C has a Jacobian JC = Pic0(C), which comes equipped with
a canonical principal polarization λ : JC

∼−→ JtC. The dimension of JC equals the
genus g of the curve. One should like to understand JC knowing certain properties
of C, and, conversely, we like to obtain information about C from properties of JC
or the pair (JC, λ).

As an important tool for this we have the moduli spaces of algebraic curves and
of polarized abelian varieties. The construction that associates to C the principally
polarized abelian variety (JC, λ) defines a morphism

j : Mg → Ag ,

the Torelli morphism, which by a famous theorem of Torelli is injective on geometric
points. (Here we work with the coarse moduli schemes.) The image T◦g := j(Mg) is
called the (open) Torelli locus, also called the Jacobi locus. Its Zariski closure Tg
inside Ag is called the Torelli locus. We should like to study the interplay between
curves and their Jacobians using the geometry of Mg and of Ag, and relating these
via the inclusion Tg ⊂ Ag.

Special subvarieties

Although the moduli spaces Mg and Ag have been studied extensively, it turns
out that there are many basic questions that are still open. The moduli space Ag
locally has a group-like structure, in a sense that can be made precise. As a complex
manifold, Ag(C) is a quotient of the Siegel space, which is a principally homogeneous
space under the group CSp2g(R). Hence it is natural to study subvarieties that appear
as images of orbits of an algebraic subgroup; such a subvariety is called a special
subvariety. (We refer to Section 3 for a more precise definition of this notion.)

The zero dimensional special subvarieties are precisely the CM points, corre-
sponding to abelian varieties where End(A)⊗Q contains a commutative semi-simple
algebra of rank 2·dim(A). These are fairly well understood. The arithmetical proper-
ties of CM points form a rich and beautiful subject, that plays an important role in
the study of the moduli space. The presence of a dense set of CM points enabled
Shimura to prove for a large class of Shimura varieties that they admit a model over
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a number field. In its modern form this theory owes much to Deligne’s presentation
in [19] and [21], and the existence of canonical models for all Shimura varieties was
established by Borovoi and Milne.

For the problems we want to discuss, the special points again play a key role. It
is not hard to show that on any special subvariety of Ag over C the special points
are dense, even for the analytic topology. A conjecture by Y. André and F. Oort says
that, conversely, an algebraic subvariety with a Zariski dense set of CM points is in
fact a special variety. See 3.14. There is a nice analogy between this conjecture and
the Manin-Mumford conjecture, proven by Raynaud, which says that an algebraic
subvariety of an abelian variety that contains a Zariski dense set of torsion points is
the translate of an abelian subvariety under a torsion point.

Klingler and Yafaev, using work of Ullmo and Yafaev, have announced a proof of
the André-Oort conjecture under assumption of theGeneralized RiemannHypothesis
for CM fields.

Coleman’s Conjecture and special subvarieties in the Torelli locus

In view of the above, it is natural to investigate the subvariety Tg ⊂ Ag from
the perspective of special subvarieties of Ag. A conjecture by Coleman, again based
on the analogy with the Manin-Mumford conjecture, says that for g > 3 there are
only finitely many complex curves of genus g such that JC is an abelian variety with
CM. See 4.1.

In terms of moduli spaces, this says that for g > 3 the number of special points
on T◦g should be finite. Combining this with the André-Oort conjecture, it suggests
that for large g there are no special subvarieties Z ⊂ Ag of positive dimension that
are contained inside Tg and meet T◦g; see 4.2. We should like to point out that there
is no clear evidence for this expectation, although there are several partial results in
support of it. See for instance Theorem 4.6 below, which gives a weaker version of
Coleman’s conjecture.

As we shall explain in Section 5, Coleman’s Conjecture is not true for g ∈
{4,5,6,7}. The reason is that for these genera we can find explicit families of curves
such that the corresponding Jacobians trace out a special subvariety of positive
dimension in Ag. All known examples of this kind, for g > 4, arise from families
of abelian covers of P1, where we fix the Galois group and the local monodromies,
and we vary the branch points. For cyclic covers it can be shown that, beyond the
known examples, this construction gives no further families that give rise to a special
subvariety in Ag; see Theorem 5.13.

In this paper, we give a survey of what is known about special subvarieties in the
Torelli locus, and we try to give the reader a feeling for the difficulties one encounters
in studying these. Going further, one could ask for a complete classification of such
special subvarieties Z ⊂ Tg for every g. We should like to point out that already for
g = 4 we do not have such a classification, in any sense.
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0.1. Notation

If G is a group scheme of finite type over a field k, we denote its identity
component by G0. In case k is a subfield of R we write G(R)+ for the identity
component of G(R) with regard to the analytic topology. If G is reductive, Gad

denotes the adjoint group.
The group of symplectic similitudes. Let a positive integer g be given. Write

V := Z2g, and let φ : V × V → Z be the standard symplectic pairing, so that on
the standard ordered basis {ei}i=1,...,2g we have φ(ei, ej) = 0 if i + j 6= 2g + 1 and
φ(ei, e2g+1−i) = 1 if i 6 g. The group CSp(V ,φ) is the reductive group over Z of
symplectic similitudes of V with regard to the form φ. If there is no risk of confusion
we simply write CSp2g for this group. We denote by ν : CSp2g → Gm the multiplier
character. The kernel of ν is the symplectic group Sp2g of transformations of V that
preserve the form φ.

1. The Torelli morphism

1.1. Moduli of abelian varieties

Fix an integer g > 0. If S is a base scheme and A is an abelian scheme over S,
we write At for the dual abelian scheme. There is a canonical homomorphism
κA : A→ Att, which Cartier and Nishi proved to be an isomorphism; see [9], [10],
[56]; also see [61], Theorem 20.2.

On A×S At we have a Poincaré bundle P. A polarization of A is a symmetric
isogeny λ : A → At with the property that the pull-back of P via the morphism
(id, λ) : A→ A×S At is a relatively ample bundle on A over S. The polarization λ is
said to be principal if in addition it is an isomorphism of abelian schemes over S.
A pair (A, λ) consisting of an abelian scheme over S together with a principal po-
larization is called a principally polarized abelian scheme. We abbreviate “principally
polarized abelian scheme(s)/variety/varieties” to “ppav” (sic!).

We denote by Ag the moduli stack over Spec(Z) of g-dimensional ppav. It is a
connected Deligne-Mumford stack that is quasi-projective and smooth over Z, of
relative dimension g(g+ 1)/2. The characteristic zero fiber Ag,Q can be shown to be
geometrically irreducible by transcendental methods; cf. subsection 3.2. Using this,
Chai and Faltings have proved that the characteristic p fibers are geometrically irre-
ducible, too; see [27], [12], and [28] Chap. IV, Corollary 6.8. A pure characteristic p
proof can be obtained using the results of [64].

Note that later in this article we shall use the same notation Ag for the moduli
stack over some given base field.
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For many purposes it is relevant to consider ppav together with a level structure.
We introduce some notation and review some facts. Let again (A, λ) be a ppav of
relative dimension g over some base scheme S. Givenm ∈ Z we have a “multipli-
cation by m” endomorphism [m] : A → A. We denote by A[m] the kernel of this
endomorphism, in the scheme-theoretic sense. Assume thatm 6= 0. Then A[m] is a
finite locally free group scheme of rankm2g. There is a naturally defined bilinear
pairing

eλm : A[m]×A[m]→ µm ,

called the Weil pairing, that is non-degenerate and that is symplectic in the sense
that eλm(x, x) = 1 for all S-schemes T and all T -valued points x ∈ A[m]

(
T
)
. Ifm is

invertible in Γ(S,OS) then the group scheme A[m] is étale over S.
Fix an integerm > 1. Write Z[ζm] for Z[t]/(Φm), where Φm ∈ Z[t] is themth

cyclotomic polynomial. We shall first define a Deligne-Mumford stack A′g,[m] over
the spectrum of the ring Rm := Z[ζm, 1/m]. The moduli stack Ag,[m] is then defined
to be the same stack, but now viewed as a stack over Z[1/m], with as structural
morphism the composition

A′g,[m] → Spec(Rm)→ Spec
(
Z[1/m]

)
.

The reason that we want to view Ag,[m] as an algebraic stack over Z[1/m] is that this
is the stack whose characteristic zero fiber has a natural interpretation as a Shimura
variety; see the discussion in subsection 3.2 below.

Let S be a scheme over Rm. Note that this just means that S is a scheme
such that m is invertible in Γ(S,OS), and that we are given a primitive mth root
of unity ζ ∈ Γ(S,OS). We may view this ζ as an isomorphism of group schemes
ζ : (Z/mZ) ∼−→ µm. Let V and φ be as defined in Subsection 0.1. Given a ppav (A, λ)
of relative dimension g over S, by a (symplectic) level m structure on (A, λ) we then
mean an isomorphism of group schemes α : (V/mV) ∼−→ A[m] such that the diagram

(V/mV)× (V/mV)
φ−−−−→ (Z/mZ)

α×α
y yζ

A[m]×A[m]
eλm−−−−→ µm

is commutative.
We write A′g,[m] for the moduli stack over Rm of ppav with a levelm structure.

Again this is a quasi-projective smooth Deligne-Mumford stack with geometrically
irreducible fibers. Ifm > 3, it is a scheme. The resulting stack

Ag,[m] :=
(
A′g,[m] → Spec(Rm)→ Spec

(
Z[1/m]

))
is a quasi-projective smooth Deligne-Mumford stack over Z[1/m] whose geometric
fibers have ϕ(m) irreducible components.
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We now assume thatm > 3. The finite group G := CSp2g(Z/mZ) acts on the
stack A′g,[m] via its action on the level structures. Note that this is not an action
over Rm; only the subgroup Sp2g(Z/mZ) acts by automorphisms over Rm. We do,
however, obtain an induced action of G on Ag,[m] over Z[1/m]. The stack quotient
of Ag,[m] modulo G is just Ag ⊗ Z[1/m]. The scheme quotient of Ag,[m] modulo G

is the coarse moduli scheme Ag ⊗ Z[1/m]. For m1, m2 > 3 these coarse moduli
schemes agree over Z[1/(m1m2)]; hence we can glue them to obtain a coarse moduli
scheme Ag over Z.

The stacks Ag,[m] are not complete. There are various ways to compactify them.
The basic reference for this is the book [28]. There are toroidal compactifications
that depend on the choice of some cone decomposition Σ (see [28] for details) and
that map down to the Baily-Borel (or minimal, or Satake) compactification.

1.2. Moduli of curves

Fix an integer g > 2. We denote by Mg the moduli stack of curves of genus g
over Spec(Z). It is a quasi-projective smooth Deligne-Mumford stack over Z of
relative dimension 3g− 3 for g > 2, with geometrically irreducible fibers.

We write Mg for the Deligne-Mumford compactification of Mg; it is the stack
of stable curves of genus g. See [24]. The boundaryMg \Mg is a divisor with normal
crossings; it has irreducible components ∆i for 0 6 i 6 bg/2c. There is a non-empty
open part of ∆0 that parametrizes irreducible curves with a single node. Similarly,
for i > 0 there is a non-empty open part of ∆i parametrizing curves with precisely
two irreducible components, of genera i and g − i. The complement of ∆0 is the
open substack Mct

g ⊂ Mg of curves of compact type. Here we recall that a stable
curve C over a field k is said to be of compact type if the connected components of its
Picard scheme are proper over k. If k is algebraically closed this is equivalent to the
condition that the dual graph of the curve has trivial homology; so the irreducible
components of C are regular curves, the graph of components is a tree, and the sum
of the genera of the irreducible components equals g. Note that Mg ⊂Mct

g .
For the corresponding coarse moduli schemes we use the notation Mg and Mct

g .

1.3. The Torelli morphism and the Torelli locus

Let C be a stable curve of compact type over a base scheme S, with fibers of
genus g > 2. The Picard scheme PicC/S is a smooth separated S-group scheme
whose components are of finite type and proper over S. In particular, the identity
component JC := Pic0C/S is an abelian scheme over S. It has relative dimension g
and comes equipped with a canonical principal polarization λ.

The functor that sends C to the pair (JC, λ) defines a representable mor-
phism of algebraic stacks

j : Mct
g → Ag ,

called the Torelli morphism. It is known that this morphism is proper.



Ben Moonen and Frans Oort 555

Torelli’s celebrated theorem says that for an algebraically closed field k the
restricted morphism j : Mg → Ag is injective on k-valued points. In other words, if
C1 and C2 are smooth curves over k such that

(
JC1 , λ1

)
and

(
JC2 , λ2

)
are isomorphic

then C1 and C2 are isomorphic. This injectivity property of the Torelli morphism
does not hold over the boundary; for instance, if C is a stable curve of compact type
with two irreducible components then the Jacobian of C does not “see” at which
points the two components are glued. For a detailed study of what happens over the
boundary, see [8].

Let us now work over a field k. On coarse moduli schemes the Torelli morphism
gives rise to a morphism j : Mct

g → Ag. We define the Torelli locus Tg ⊂ Ag to be the
image of this morphism. It is a reduced closed subscheme of Ag. By the open Torelli
locus T◦g ⊂ Tg we mean the image of Mg, i.e., the subscheme of Tg whose geometric
points correspond to Jacobians of nonsingular curves. Note that T◦g ⊂ Tg is open
and dense.

The boundary Tg \ T◦g is denoted by Tdec
g . The notation refers to the fact

that a point s ∈ Tg(k) is in Tdec
g if and only if the corresponding ppav (As, λs) is

decomposable, meaning that we have ppav (B1,µ1) and (B2, λ2) of smaller dimension
such that (As, λs) ∼= (B1,µ1)× (B2,µ2) as ppav. In one direction this is clear, for if C
is a reducible curve of compact type, (JC, λ) is the product, as a ppav, of the Jacobians
of the irreducible components of C. Conversely, if (As, λs) is decomposable, it has a
symmetric theta divisor that is reducible, which implies it cannot be the Jacobian of
an irreducible (smooth and proper) curve.

Remark 1.1. Let g > 2. The Torelli morphism j : Mg → Ag is ramified at the
hyperelliptic locus. Outside the hyperelliptic locus it is an immersion. The picture
is different for the Torelli morphism j : Mg → Ag on coarse moduli schemes. The
morphism j : Mg,Q → Ag,Q on the characteristic zero fibers is an immersion; however,
in positive characteristic this is not true in general. See [68], Corollaries 2.8, 3.2
and 5.3.

2. Some abstract Hodge theory

In this section we review some basic notions from abstract Hodge theory. We
shall focus on examples related to abelian varieties.

2.1. Basic definitions

We start by recalling some basic definitions. For a more comprehensive treat-
ment we refer to [18] and [69].

Let S := ResC/R(Gm), which is an algebraic torus over R of rank 2, called
the Deligne torus. Its character group is isomorphic to Z2, on which complex
conjugation, the non-trivial element of Gal(C/R), acts by (m1,m2) 7→ (m2,m1). We
have S(R) = R∗ and S(C) = C∗ × C∗. Let w : Gm,R → S be the cocharacter given on
real points by the natural embedding R∗ ↪→ C∗; it is called the weight cocharacter.
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Let Nm : S→ Gm,R be the homomorphism given on real points by z 7→ zz̄; it is called
the norm character.

A Z-Hodge structure of weight k is a torsion-free Z-module H of finite rank,
together with a homomorphism of real algebraic groups h : S→ GL(H)R such that
h ◦ w : Gm → GL(H)R is the homomorphism given by z 7→ z−k · idH. The Hodge
decomposition

HC = ⊕p+q=kHp,qC

is obtained by taking Hp,qC to be the subspace of HC on which (z1, z2) ∈ C∗ × C∗ =
S(C) acts as multiplication by z−p1 z−q2 . (We follow the sign convention of [22]; see
loc. cit., Remark 3.3.)

As an example, the Tate structureZ(n) is the Hodge structure of weight−2nwith
underlying Z-module Z(n) = (2πi)n · Z given by the homomorphism Nmn : S→
Gm,R = GL

(
Z(n)

)
R. If H is any Hodge structure, we write H(n) for H⊗Z Z(n).

The endomorphism C = h(i) of HR is known as the Weil operator. If H is a
Z-Hodge structure of weight k, a polarization of H is a homomorphism of Hodge
structures ψ : H⊗H→ Z(−k) such that the bilinear form

HR ×HR → R

given by (x,y) 7→ (2πi)k · ψR
(
x ⊗ C(y)

)
is symmetric and positive definite. (Here

ψR is obtained from ψ by extension of scalars to R.) This condition implies that ψ is
symmetric if k is even and alternating if k is odd.

Instead of working with integral coefficients, we may also consider Q-Hodge
structures. The above definitions carry over verbatim.

Example 2.1. Let (A, λ) be a polarized complex abelian variety. The first homology
group H = H1(A,Z) carries a canonical Hodge structure of type (−1,0) + (0,−1).
(By this we mean that Hp,q = (0) for all pairs (p,q) different from (−1,0) and
(0,−1).) The polarization λ : A→ At (in the sense of the theory of abelian varieties)
induces a polarization (in the sense of Hodge theory) ψ : H ⊗ H → Z(1). Let
CSp(H,ψ) ⊂ GL(H) be the algebraic group of symplectic similitudes of H with
respect to the symplectic form ψ. The homomorphism h : S → GL(H)R that gives
the Hodge structure factors through CSp(H,ψ)R.

A crucial fact for much of the theory we want to discuss is that the map (A, λ) 7→
(H,ψ) gives an equivalence of categories

(2.2)
{
polarized complex
abelian varieties

}
eq−−→
{
polarized Hodge structures
of type (−1,0) + (0,−1)

}
.

In subsection 3.2 below we shall explain how this fact gives rise to a modular
interpretation of certain Shimura varieties. As a variant, the category of abelian
varieties is equivalent to the category of polarizable Z-Hodge structures. Another
variant is obtained by working withQ-coefficients; we get that the category of abelian
varieties up to isogeny is equivalent to the category of polarizableQ-Hodge structures
of type (−1,0) + (0,−1).
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2.2. Hodge classes and Mumford-Tate groups

Let H be a Q-Hodge structure of weight k. By a Hodge class in H we mean an
element of

H ∩H0,0
C ;

so, a rational class that is purely of type (0,0) in the Hodge decomposition. Clearly,
a non-zero Hodge class can exist only if k = 0. If the weight is 0 and Fil•HC is the
Hodge filtration, the space of Hodge classes is also equal to

H ∩ Fil0HC ,

where again the intersection is taken inside HC.
As an example, we note that a Q-linear map H→ H, viewed as an element of

EndQ(H) = H∨ ⊗ H, is a homomorphism of Hodge structures if and only it is a
Hodge class for the induced Hodge structure on EndQ(H). (Note thatH∨⊗H indeed
has weight 0.) Similarly, a polarization H⊗H→ Q(−k) gives rise to a Hodge class
in (H∨)⊗2(−k).

Let h : S→ GL(H)R be the homomorphism that defines the Hodge structure
on H. Consider the homomorphism (h, Nm) : S→ GL(H)R ×Gm,R. TheMumford-
Tate group ofH, notation MT(H), is the smallest algebraic subgroupM ⊂ GL(H)×Gm

over Q such that (h, Nm) factors throughMR. As we shall see in Example 2.3 below,
in some important cases the definition takes a somewhat simpler form.

It is known that MT(H) is a connected algebraic group. If the Hodge structureH
is polarizable, MT(H) is a reductive group; this plays an important role in many
applications.

The crucial property of the Mumford-Tate group is that it allows us to calculate
spaces of Hodge classes, as we shall now explain. For simplicity we shall assume the
Hodge structure H to be polarizable.

We consider the Hodge structures we can build from H by taking direct sums,
duals, tensor products and Tate twists. Concretely, given a triple m = (m1,m2,m3)

withm1,m2 ∈ Z>0 andm3 ∈ Z, define

T(m) := H⊗m1 ⊗ (H∨)⊗m2 ⊗Q(m3) .

The group GL(H) × Gm naturally acts on H via the projection onto its first factor;
hence it also acts on H∨. We let it act on Q(1) through the second projection. This
gives us an induced action of GL(H) × Gm on T(m). The crucial property of the
Mumford-Tate group MT(H) ⊂ GL(H)×Gm is that for any such tensor construction
T = T(m), the subspace of Hodge classes T ∩ T0,0C is precisely the subspace of MT(H)-
invariants. Note that the MT(H)-invariants are just the invariants in T under the
action of the group MT(H)

(
Q
)
of Q-rational points of the Mumford-Tate group. As

the Q-points of MT(H) are Zariski dense in the C-group MT(H)C, the subspace of
MT(H)

(
C
)
-invariants in T ⊗ C equals(

T ∩ T0,0C
)
⊗Q C .
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The above property of the Mumford-Tate group characterizes it uniquely. In
other words, ifM ⊂ GL(H) × Gm is an algebraic subgroup with the property that
for any T = T(m) the space of Hodge classes T ∩ T0,0C equals the subspace of M-
invariants in T , we haveM = MT(H). (See [22], Section 3.) In this way we have a
direct coupling between the Mumford-Tate group and the various spaces of Hodge
classes in tensor constructions obtained from H.

Example 2.3. Consider a polarized abelian variety (A, λ) over C. LetHQ = H1(A,Q)

with polarization formψ : HQ⊗HQ → Q(1) be the associatedQ-Hodge structure, and
recall that the Hodge structure is given by a homomorphism h : S→ CSp(HQ,ψ)R.
Define the Mumford-Tate group of A, notation MT(A), to be the smallest algebraic
subgroupM ⊂ CSp(HQ,ψ) over Q with the property that h factors throughMR.

The Mumford-Tate group as defined here is really the same as the Mumford-
Tate group of the Hodge structure HQ. To be precise, MT(HQ) ⊂ GL(HQ) × Gm as
defined above is the graph of the multiplier character ν : CSp(HQ,ψ)→ Gm restricted
to MT(A). When considering Hodge classes in tensor constructions T as above, we
let MT(A) act on the Tate structure Q(1) through the multiplier character.

If we want to understand how the Mumford-Tate group is used, the simplest
non-trivial examples are obtained by looking at endomorphisms. As customary
we write End0(A) for End(A)⊗Q. By the equivalence of categories of (2.2), in the
version with Q-coefficients, we have

(2.4) End0(A)
∼−→ EndQ-HS(HQ) = EndQ(HQ)

MT(A) .

Once we know the Mumford-Tate group, this allows us to calculate the endomor-
phism algebra of A. In practice we often use this the other way around, in that we
assume End0(A) known and we use (2.4) to obtain information about MT(A).

In general Hodge classes on A are not so easy to interpret geometrically; see for
instance the example in [54], § 4. (In this example, A is a simple abelian fourfold
and there are Hodge classes in H4(A2,Q) that are not in the algebra generated by
divisor classes; see [50] and [51], (2.5).) According to the Hodge conjecture, all
Hodge classes should arise from algebraic cycles on A but even for abelian varieties
this is far from being proven.

2.3. Hodge loci

We study the behavior of Mumford-Tate groups in families. The setup here is
that we consider a polarizable Q-VHS (variation of Hodge structure) of weight k
over a complex manifold S. Let H denote the underlying Q-local system. For each
s ∈ S(C) we have a Mumford-Tate group MTs ⊂ GL

(
H(s)

)
× Gm, and we should

like to understand how this group varies with s. This is best described by passing
to a universal cover π : S̃ → S. Write H̃ := π∗H, and let H := Γ(S̃, H̃). We have a
trivialization H̃

∼−→ H× S̃. Using this we may view the Mumford-Tate group MTx of
a point x ∈ S̃ (by which we really mean the Mumford-Tate group of the image of x
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in S) as an algebraic subgroup of GL(H)×Gm. So, passing to the universal cover has
the advantage that we can describe the VHS as a varying family of Hodge structures
on some given space H and that we may describe the Mumford-Tate groups MTx as
subgroups of one and the same group.

Given a triple m = (m1,m2,m3) as in subsection 2.2, consider the space

T(m) := H⊗m1 ⊗ (H∨)⊗m2 ⊗Q(m3) ,

on which we have a natural action of GL(H)×Gm. Wemay view an element t ∈ T(m)

as a global section of the local system

T̃(m) := H̃⊗m1 ⊗ (H̃∨)⊗m2 ⊗Q(m3)S̃ ,

which underlies a Q-VHS of weight (m1 −m2)k− 2m3 on S̃. (The Tate twist Q(m3)S̃
is a constant local system; it only has an effect on how we index the Hodge filtration
on T̃(m)C.) In particular, it makes sense to consider the set Y(t) ⊂ S̃ of points x ∈ S̃
for which the value tx of t at x is a Hodge class. As remarked earlier, we can only have
nonzero Hodge classes if the weight is zero, so we restrict our attention to triples
m = (m1,m2,m3) with (m1 −m2)k = 2m3. With this assumption on m, define

Y(t) :=
{
x ∈ S̃

∣∣ tx ∈ Fil0T̃(m)C(x)
}
.

As Fil0T̃(m)C ⊂ T̃(m)C is a holomorphic subbundle, Y(t) ⊂ S̃ is a countable union
of closed irreducible analytic subsets of S̃.

The first thing we deduce from this is that there is a countable union of proper
analytic subsets Σ ⊂ S such that the Mumford-Tate group MTs is constant (in a
suitable sense) on S \Σ, and gets smaller if we specialize to a point in Σ. Let us make
this precise. Define Σ̃ ⊂ S̃ by

Σ̃ := ∪ Y(t)
where, with notation as introduced above, the union is taken over all triples m with
(m1 −m2)k = 2m3, and all t ∈ Γ(S̃, T̃(m)) such that Y(t) is not the whole S̃.

The main point of this definition of Σ̃ is the following. If x ∈ S̃ \ Σ̃ and tx is a
Hodge class in the fiber of T̃(m) at the point x, we can extend tx in a unique way
to a global section t of T̃(m) over S̃, and by definition of Σ̃ this global section is a
Hodge class in every fiber. By contrast, if x ∈ Σ̃ then there is a tensor construction
T̃(m) and a Hodge class tx whose horizontal extension t is not a Hodge class in
every fiber.

It follows that for x ∈ S̃ \ Σ̃ the Mumford-Tate group MTx ⊂ GL(H) × Gm is
independent of the choice of x. We call the subgroup of GL(H)×Gm thus obtained
the generic Mumford-Tate group. Let us denote it by MTgen. Further, for any x ∈ S̃ we
have an inclusion MTx ⊆ MTgen.

The subset Σ̃ ⊂ S̃ is stable under the action of the covering group of S̃/S
and therefore defines a subset Σ ⊂ S. It follows from the construction that Σ is a
countable union of closed analytic subspaces of S. We say that a point s ∈ S(C) is
Hodge generic if s /∈ Σ. In somewhat informal terms we may restate the constancy
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of the Mumford-Tate group over S̃ \ Σ̃ by saying that over Hodge generic locus the
Mumford-Tate group is constant.

We can also draw conclusions pertaining to the loci in S where we have some
given collection of Hodge classes. Start with a point s0 ∈ S(C), let x0 ∈ S̃ be a point
above s0, and consider a finite collection of nonzero classes t(i), for i = 1, . . . , r, in
tensor spaces T(m(i)) = Γ

(
S̃, T̃(m(i))

)
that are Hodge classes for the Hodge structure

at the point x0. With notation as above, the locus of points in S̃ where all classes t(i)

are again Hodge classes is Y(t(1)) ∩ · · · ∩ Y(t(r)). The image of this locus in S is a
countable union of closed irreducible analytic subspaces. These components are
called the Hodge loci of the given VHS.

Definition 2.5. Let H be a polarizable Q-VHS over a complex manifold S. A closed
irreducible analytic subspace Z ⊆ S is called a Hodge locus ofH if there exist nonzero
classes t(1), . . . , t(r) in tensor spaces T(m(i)) = Γ

(
S̃, T̃(m(i))

)
such that Z is an irre-

ducible component of the image of Y(t(1)) ∩ · · · ∩ Y(t(r)) in S.

Remark 2.6. If we start with a polarizable Z-VHS over a nonsingular complex alge-
braic variety S then by a theorem of Cattani, Deligne and Kaplan, see Corollary 1.3
in [11], the Hodge loci are algebraic subvarieties of S. See also [81].

We note that in the definition of Hodge loci there is no loss of generality to
consider only a finite collection of Hodge classes. The requirement that a (possibly
infinite) collection of classes t(i) are all Hodge classes translates into the condition
that the homomorphism h : S→ GL(H)R that defines the Hodge structure factors
throughMR, whereM ⊂ GL(H) is the common stabilizer of the given classes. Among
the classes t(i) we can then find a finite subcollection t(i1), . . . , t(in) that haveM as
their common stabilizer; so the Hodge locus we are considering is defined by these
classes.

3. Special subvarieties of Ag, and the André-Oort conjecture

In this section we discuss the notion of a special subvariety in a given Shimura
variety. The abstract formalism of Shimura varieties provides a good framework for
this but it has the disadvantage that it requires a lot of machinery. For this reason we
shall give several equivalent definitions and we focus on concrete examples related
to moduli of abelian varieties. In particular the version given in Definition 3.7 can
be understood without any prior knowledge of Shimura varieties.

Further we state the André-Oort conjecture. A proof of this conjecture, under the
assumption of the Generalized Riemann Hypothesis (GRH), has been announced
by Klingler, Ullmo and Yafaev.

3.1. Shimura varieties

In this paper, by a Shimura datumwemean a pair (G,X) consisting of an algebraic
group G over Q together with a G(R)-conjugacy class X of homomorphisms S→ GR,
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such that the conditions (2.1.1.1–3) of [21] are satisfied. The space X is the disjoint
union of finitely many connected components. These components have the structure
of a hermitian symmetric domain of non-compact type.

Associated with such a datum is a subfield E(G,X) ⊂ C of finite degree over Q,
called the reflex field. Given a compact open subgroup K ⊂ G(Afin) we have a
Shimura variety ShK(G,X), which is a scheme of finite type over E(G,X), and for
which we have

ShK(G,X)
(
C
)
= G(Q)\

(
X×G(Afin)/K

)
.

For x ∈ X and γK ∈ G(Afin)/K we denote by [x,γK] ∈ ShK(G,X)
(
C
)
the class of

(x,γK).
If K′ ⊂ K is another compact open subgroup of G(Afin) we have a natural

morphism ShK′,K : ShK′(G,X)→ ShK(G,X).
Let γ ∈ G(Afin). Given compact open subgroups K, K′ ⊂ G(Afin) with K′ ⊂

γKγ−1 we have a morphism Tγ = [·γ] : ShK′(G,X) → ShK(G,X) that is given on
C-valued points by Tγ[x,aK′] = [x,aγK]. (For γ = 1 we recover the morphism
ShK′,K.) This induces a right action of the group G(Afin) on the projective limit

Sh(G,X) := lim←−
K

ShK(G,X) ,

and ShK(G,X) can be recovered from Sh(G,X) as the quotient modulo K. More
generally, for compact open subgroups K1, K2 ⊂ G(Afin) and γ ∈ G(Afin) we have a
Hecke correspondence Tγ from ShK1(G,X) to ShK2(G,X), given by the diagram

(3.1) ShK1(G,X)
ShK′ ,K1←−−−−− ShK′(G,X)

[·γ]−−−→ ShK2(G,X) ,

where K′ := K1 ∩ γK2γ
−1.

3.2. The description of Ag as a Shimura variety

With notation as in Subsection 0.1, letHg denote the space of homomorphisms
h : S→ CSp2g,R that define a Hodge structure of type (−1,0)+(0,−1) on V for which
±(2πi) · φ : V × V → Z(1) is a polarization. The group CSp2g(R) acts transitively
on Hg by conjugation, and the pair (CSp2g,Q,Hg) is an example of a Shimura datum.
The reflex field of this datum is Q.

The associated Shimura variety is known as the Siegel modular variety and may
be identified with the moduli space of principally polarized abelian varieties with a
level structure. To explain this in detail, we define, for a positive integerm, a compact
open subgroup Km ⊂ G(Afin) by

Km =
{
γ ∈ CSp(V ⊗ Ẑ,φ)

∣∣ γ ≡ id (mod m)
}
.

Form > 3 we then have an isomorphism

β : Ag,[m],Q
∼−→ ShKm(CSp2g,Q,Hg) .
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On C-valued points β is given as follows. To begin with, a C-valued point of Ag,[m]

is a triple (A, λ,α) consisting of a complex ppav of dimension g together with a
levelm structure that is symplectic for some choice of a primitivemth root of unity
ζ ∈ C. Write H := H1(A,Z) for the singular homology group in degree 1 of (the
complex manifold associated with) A, and let ψ : H×H→ Z(1) be the polarization
associated with λ; see (2.2). Choose a symplectic similitude s : H ∼−→ V . (Even
though ψ takes values in Z(1) and φ takes values in Z, the notion of a symplectic
similitude makes sense.) Via s, the natural Hodge structure on H corresponds
to an element x ∈ Hg. Further, we have an identification A[m]

∼−→ H/mH, such
that eλ(P,Q) = exp(ψ(y, z)/m) if P, Q ∈ A[m]

(
C
)
correspond to y, z ∈ H/mH,

respectively. (Note that exp(ψ(y, z)/m) is well-defined.) Hence the given level
structure α can be viewed, via s, as an element γKm ∈ CSp(V ⊗ (Z/mZ),φ) =

CSp(V ⊗ Ẑ,φ)/Km. The isomorphism β then sends (A, λ) to the point [x,γKm].
Form > 3, the group CSp2g(Q) acts properly discontinuously on the product

Hg × CSp2g(Afin)/Km. The space Hg has two connected components, and if H+
g

is one of these, the ϕ(m) components of Ag,[m],C all have the form Γ\H+
g for an

arithmetic subgroup Γ ⊂ CSp2g(Q). For m = 1 it is no longer true that CSp2g(Q)

acts properly discontinuously on Hg × CSp2g(Afin)/K1, and we should interpret the
quotient space CSp2g(Q)\

(
Hg × CSp2g(Afin)/K1

)
as an orbifold. Alternatively, we

may take the actual quotient space; this gives us an isomorphism

CSp2g(Q)\
(
Hg × CSp2g(Afin)/K1

) ∼−→ Ag(C)

between ShK1(CSp2g,Q,Hg)
(
C
)
and the set of C-valued points of the coarse moduli

space.

Remark 3.2. Let L = L(VQ,φ) denote the symplectic Grassmanian of Lagrangian
(i.e., maximal isotropic) subspaces of VQ with respect to the form φ. The map
Hg → L(C) that sends a Hodge structure y ∈ Hg to the corresponding Hodge
filtration Fil0 ⊂ VC is an open immersion, known as the Borel embedding. For an
arbitrary Shimura datum (G,X) we have, in a similar manner, a Borel embedding
of X into the C-points of a homogeneous projective variety.

Because Fil0 ⊂ VC is maximal isotropic, the form φ induces a perfect pairing
φ̄ : Fil0 × VC/Fil

0 → C. Via the Borel embedding, the tangent space of Hg at the
point ymaps isomorphically to the tangent space of L at the point Fil0, which gives
us

Ty(Hg)
∼−→ Homsym(Fil0,VC/Fil

0)

:=
{
β : Fil0 → VC/Fil

0 ∣∣ φ̄(v,β(v′)) = φ̄(v′,β(v)) for all v, v′ ∈ Fil0
}
.

(3.3)

The condition that φ̄(v,β(v′)) = φ̄(v′,β(v)) means that β is its own dual, via the
isomorphisms Fil0 ∼−→ (VC/Fil

0)∨ and VC/Fil
0 ∼−→ (Fil0)∨ induced by φ̄; whence the

notation Homsym.
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3.3. Special subvarieties

There are several possible approaches to the notion of a special subvariety of
a given Shimura variety. Let us start with the construction that gives the quickest
definition. We use the language of Shimura varieties; the example to keep in mind is
the Siegel modular variety Sh(CSp2g,Q,Hg). After this we shall give some alternative
definitions that lean less heavily on the abstract formalism of Shimura varieties. The
reader who prefers to avoid the language of Shimura varieties is encouraged to skip
ahead to Definition 3.7.

We fix a Shimura datum (G,X) and a compact open subgroup K ⊂ G(Afin). If
(M, Y) is a second Shimura datum, by a morphism f : (M, Y)→ (G,X) we mean a
homomorphism of algebraic groups f : M → G such that for any y : S →MR in Y
the composite f◦y : S→ GR is an element of X. The existence of such a morphism of
Shimura data implies that E(M, Y) contains E(G,X), and f gives rise to a morphism
of schemes

Sh(f) : Sh(M, Y)→ Sh(G,X)E(M,Y) .

Let γ ∈ G(Afin). The image of the composite morphism

(3.4) Sh(M, Y)C
Sh(f)−−−−→ Sh(G,X)C

[·γ]−−−→ Sh(G,X)C −→ ShK(G,X)C

is a reduced closed subscheme of ShK(G,X)C.

Definition 3.5 (Version 1). A closed subvariety Z ⊂ ShK(G,X)C is called a special
subvariety if there exists a morphism of Shimura varieties f : (M, Y)→ (G,X) and an
element γ ∈ G(Afin) such that Z is an irreducible component of the image of the
morphism (3.4).

For a second approach we fix an algebraic subgroupM ⊂ G over Q. Define
YM ⊂ X as the set of all x : S→ GR in X that factor throughMR ⊂ GR. We give YM
the topology induced by the natural topology on X. The groupM(R) acts on YM by
conjugation. It can be shown (see [45], Section I.3, or [46], 2.4) that YM is a finite
union of orbits underM(R). We remark that the condition that YM is nonempty
imposes strong restrictions onM; it implies, for instance, thatM is reductive.

Definition 3.6 (Version 2). A closed subvariety Z ⊂ ShK(G,X)C is called a special
subvariety if there exists an algebraic subgroupM ⊂ G overQ, a connected component
Y+ ⊂ YM, and an element γ ∈ G(Afin) such that Z(C) ⊂ ShK(G,X)

(
C
)
is the

image of Y+ × {γK} ⊂ X × G(Afin)/K under the natural map to ShK(G,X)
(
C
)
=

G(Q)\
(
X×G(Afin)/K

)
.

For the equivalence of this definition with Version 1 we refer to [45], Proposi-
tion 3.12 or [46], Remark 2.6.

Our third version of the definition, which in some sense is the most conceptual
one, describes special subvarieties of ShK(G,X) as the Hodge loci of certain natural
VHS associated with representations of the group G. As we wish to highlight the
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Siegelmodular case, we only state this version of the definition for special subvarieties
of Ag,[m],C for somem > 3. (See, however, Remark 3.8.)

In order to talk about Hodge loci we need some VHS. The most natural Q-VHS
on Ag,[m],C to consider is the variation H whose fiber at a point (A, λ,α) is given
by H1(A,Q). (One could also work with the Q-VHS given by the first cohomology
groups; for what we want to explain it makes no difference.) The Hodge loci of this
VHS are precisely the special subvarieties.

Definition 3.7 (Version 3). A closed subvariety Z ⊂ Ag,[m],C is called a special
subvariety if it is a Hodge locus of the Q-VHS H over Ag,[m],C whose fiber at a point
(A, λ,α) is H1(A,Q).

Concretely this means that the special subvarieties are “defined by” the existence
of certain Hodge classes, i.e., they are the maximal closed irreducible subvarieties
of Ag,[m],C on which certain given classes are Hodge classes. In order to make this
precise, one has to pass to the universal cover, where the underlying local system
can be trivialized, as explained in subsection 2.3. Note that in this case the Hodge
loci are algebraic subvarieties of Ag,[m],C; this can be shown by proving that this
notion of a special subvariety agrees with the one given by Version 1 of the definition
but it also follows from the theorem of Cattani, Deligne and Kaplan mentioned in
Remark 2.6.

Remark 3.8. Version 3 of the definition of a special subvariety, in terms of Hodge loci,
can be extended without much difficulty to arbitrary Shimura varieties ShK(G,X).
The variations of Hodge structure one considers are those associated with represen-
tations of the group G. See for instance [46], Proposition 2.8, which also proves the
equivalence with the earlier definitions. We note that, even if one is only interested
in statements about special subvarieties of Ag, there are good reasons to extend
this notion to more general Shimura varieties. The formalism of Shimura varieties
enables one to perform some useful constructions, such as the passage to an adjoint
Shimura datum, or the reduction of a problem to the case of a simple Shimura
datum.

Example 3.9. Let (A, λ,α) be a complex ppav of dimension g with a symplectic
levelm structure, for somem > 3. Let D := End0(A) be its endomorphism algebra.
We should like to describe the largest closed (irreducible) subvarietyZ ⊂ Ag,[m],C that
contains the moduli point [A, λ,α] ∈ Ag,[m]

(
C
)
, and such that all endomorphisms

of A extend to endomorphisms of the universal abelian scheme over Z. In terms
of Hodge classes this means that all elements of D, viewed as Hodge classes in
EndQ

(
H1(A,Q)

)
, should extend to Hodge classes in the whole Q-VHS over Z given

by the endomorphisms of the first homology groups. (Note that we may pass to Q-
coefficients, for if f ∈ End(A) is an endomorphism such that some positive multiple
nf extends to an endomorphism of the whole family, f itself extends.)
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As before, choose a symplectic similitude s : H1(A,Z)
∼−→ V with respect to the

polarization forms on both sides. This gives VQ the structure of a left module over
the algebra D. Let h0 ∈ Hg be the point given by the Hodge structure on H1(A,Z),
viewed as a Hodge structure on V via s. Further, letM ⊂ CSp2g,Q = CSp(VQ,φ) be
the algebraic subgroup given by

M = CSp(VQ,φ) ∩GLD(VQ) .

The homomorphism h0 : S → CSp2g,R factors throughMR. Conversely, if h ∈ Hg
factors throughMR then D acts by endomorphisms on the corresponding abelian
variety. This means that Z ⊂ ShKm(CSp2g,Q,Hg)C = Ag,[m],C is the special subvariety
that is obtained, with notation as in Definition 3.6, as the image of Y+M × {γKm}

in Ag,[m],C, were Y+M ⊂ YM is the connected component containing h0 and γKm ∈
CSp2g(Afin)/Km is the class corresponding (via s) with the given level structure α.

We conclude that the closed subvarietiesZ ⊂ Ag,[m],C “defined by” the existence
of endomorphisms, as made precise above, are examples of special subvarieties.

Remark 3.10. The special subvarieties considered in Example 3.9 are referred to
as special subvarieties of PEL type; the name comes from the fact that they have
a modular interpretation in terms of abelian varieties with a polarization, given
endomorphisms and a level structure.

In the above example our focus is on the concrete modular interpretation of
these special subvarieties. For many purposes it is relevant to also have a good
description of these examples in the language of Shimura varieties; see also [19],
Section 4. Here one starts with data (D, ∗,V ,φ) where D is a finite dimensional
semisimple Q-algebra, ∗ is a positive involution, V is a faithful (left) D-module of
finite type, and φ : V × V → Q is an alternating form such that

(3.11) φ(dv, v′) = φ(v,d∗v′) for all v, v′ ∈ V and d ∈ D.

Let G = CSp(V ,φ) ∩GLD(V) be the group of D-linear symplectic similitudes of V .
Next one considers a G0(R)-conjugacy class X of homomorphisms S→ GR defining
on V a Hodge structure of type (−1,0) + (0,−1) such that ±2πi ·φ is a polarization.
The pair (G0,X) is then a Shimura datum.

In Example 3.9, the data (D,V ,φ) are given, and we take for ∗ the involu-
tion on D defined by (3.11). For X we take the conjugacy class of the homo-
morphism h0. By construction, the inclusion G ↪→ CSp2g defines a morphism
of Shimura data f : (G0,X)→ (CSp2g,Hg), and the special subvariety Z ⊂ Ag,[m],C
of 3.9 is an irreducible component of a Hecke translate of the image of Sh(G0,X) in
ShKm(CSp2g,Q,Hg)C = Ag,[m],C.

Example 3.12. Let (G,X) be a Shimura datum. If x : S→ GR is an element of X, we
define the Mumford-Tate group of x to be the smallest algebraic subgroup MTx ⊂ G
over Q such that x factors through MTx,R.
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Let s = [x,γK] ∈ ShK(G,X)
(
C
)
. Up to conjugation by an element of G(Q),

the Mumford-Tate group MTx ⊂ G is independent of the choice of the chosen
representative (x,γK) for s. Hence we may define the Mumford-Tate group of s to
be MTs := MTx.

A point x ∈ X is called a special point if MTx is a torus. A point s ∈ ShK(G,X)
(
C
)

is a special subvariety of ShK(G,X)C if and only if MTs is a torus, i.e., if for some
(equivalently, any) representative [x,γK] the point x ∈ X is special.

In the Siegel modular variety Ag over C, the special points are precisely the CM
points, i.e., the points corresponding to ppav (A, λ) such that A is an abelian variety
of CM type; see Mumford [54], § 2.

3.4. Basic properties of special subvarieties

We list a number of elementary properties.

(a) Hecke images of special subvarieties are again special. More precisely, consider
a Hecke correspondence Tγ as given by (3.1). Let Z ⊂ ShK1(G,X)C be a special
subvariety. Write Tγ(Z) for the image of Sh−1

K′,K1
(Z) under the map [·γ]. Then all

irreducible components of Tγ(Z) are special subvarieties of ShK2(G,X)C.
As a particular case, if we have compact open subgroups K′ ⊂ K ⊂ G(Afin)

and if Y ⊂ ShK′(G,X)C is a special subvariety, the image of Y in ShK(G,X)C is
again a special subvariety. Conversely, if Z ⊂ ShK(G,X)C is a special subvariety,
the irreducible components of Sh−1

K′,K(Z) are special subvarieties of ShK′(G,X)C. In
the study of special subvarieties, these remarks often allow us to choose the level
subgroup K as small as needed.

(b) The special points in a special subvariety are dense. If Z ⊂ ShK(G,X)C is a special
subvariety then the special points in Z are dense for the analytic topology on Z(C);
in particular they are Zariski dense. In order to prove this, the essential point is to
show that Z contains at least one special point. The density of special points then
follows from the fact that, with notation as in Def. 3.6, the set of special points in YM
is stable under the action ofM(Q), and thatM(Q) is analytically dense inM(R).

In view of the importance of special points, let us sketch a proof of the existence
of at least one special point, following [54], § 3. The argument uses the fact from the
theory of reductive groups that, given a maximal torus T ⊂ GR, the G(R)-conjugacy
class of T contains a maximal torus that is defined over Q.

Start with any x : S→ GR in X. Let C ⊂ GR be the centralizer of x(S), which is a
connected reductive subgroup of GR. (See [78], Lemma 15.3.2.) Choose a maximal
torus T ⊂ C. Because x(S) is contained in the center of C, we have x(S) ⊆ T . Hence,
if T ′ ⊂ GR is any torus that contains T then T ′ centralizes x(S) and therefore T ′ ⊂ C.
It follows that T is also a maximal torus of GR. By the general fact stated above,
there exists an element g ∈ G(R) and a maximal torus S ⊂ G (over Q) such that
gTg−1 = SR. Then gx = Inn(g) ◦ x : S → GR factors through SR; hence gx ∈ X is a
special point.
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A more refined version of the existence of special points plays a role in the
theory of canonical models of Shimura varieties. See [19], Theorem 5.1.

(c) Intersections of special subvarieties are again special. This is easily seen using Version 2
of the definition.

(d) After passage to an appropriate level cover, special subvarieties are locally symmetric.
Suppose Z ⊂ ShK(G,X) is a special subvariety. We may then find a subgroup K′ ⊂ K
of finite index and an irreducible component Z′ ⊂ ShK′(G,X) of the inverse image
of Z such that Z′ is a locally symmetric variety. (We shall recall the definition of this
notion in subsection 4.2 below.)

Remark 3.13. A situation we often encounter is that we have an abelian scheme
A→ T over some complex algebraic variety T (assumed to be irreducible), with a
principal polarization λ : A→ At and a levelm structure α. This gives us a morphism
τ : T → Ag,[m],C, and we should like to know if the scheme-theoretic image of τ is
a special subvariety. (In this situation, the scheme-theoretic image is the reduced
closed subscheme of Ag,[m] that has as underlying set the Zariski closure of the
topological image of τ.)

We remark that the answer to this question only depends on A up to isogeny,
and is independent of the polarization and the level structure.

Of course, if we change the polarization or the level structure, or if we replace
A/T by an isogenous abelian scheme, the morphism τ is replaced by another mor-
phism τ′ : T → Ag,[m], but if the image of τ is special, so is the image of τ′. (For
simplicity of exposition, we here assume the new polarization is again principal,
but even this assumption can be dropped.) The reason that this is true is that the
Mumford-Tate group of an abelian variety A only depends on A up to isogeny, and
not on any additional structures.

The conclusion, then, is that one may set up the situation as one finds it
convenient. We could equip (A, λ) with a level structure (possibly after replacing T
with a cover), allowing us to work with a fine moduli scheme Ag,[m]. Alternatively,
one could forget about the level structure and consider the morphism T → Ag to the
moduli stack; in this case we should talk about special substacks of Ag, which makes
perfectly good sense. Yet another option is to consider the morphism T → Ag to the
coarse moduli scheme. For the question whether the closed image of T is special, it
does not matter which version we consider.

Further, since we are only interested in the closure of τ(T), we may replace T
by an open subset, and in fact it suffices to know the generic fiber of A/T .

Conjecture 3.14 (André-Oort, [2], [62], [63]). Let (G,X) be a Shimura datum. Let
K ⊂ G(Afin) be a compact open subgroup and let Z ⊂ ShK(G,X)C be an irreducible closed
algebraic subvariety such that the special points on Z are dense for the Zariski topology.
Then Z is a special subvariety.
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An alternative way of stating the conjecture is that, given a set of special points
S ⊂ ShK(G,X)

(
C
)
, the irreducible components of the Zariski closure ofS are special

subvarieties.
We refer to Noot’s Bourbaki lecture [60] for an excellent overview of what was

known about the conjecture in 2004.
Klingler and Yafaev [38], using the work of Ullmo and Yafaev [79], have an-

nounced a proof of the André-Oort conjecture, assuming the Generalized Riemann
hypothesis (GRH) for CM fields.

Theorem 3.15 (Klingler-Yafaev). Assume the GRH holds for all CM fields. Then the
André-Oort conjecture is true.

There are some special cases of the André-Oort conjecture that are known to
hold without any assumptions on the GRH. See for instance [47], Theorem 5.7,
later refined by Yafaev in [82], Theorem 1.2 of [26], and Theorem 1.2.1 (with
condition (2)) of [38]. In all these cases, however, further assumptions are needed on
the set of special points. Apart from trivial cases, the only completely unconditional
case of the André-Oort conjecture that we know of, is the main result of André’s
paper [3], which proves the conjecture for subvarieties of a product of two modular
curves, and the more recent extension of this by Pila [70] to arbitrary products of
modular curves.

Remark 3.16. As in Remark 3.13, consider a principally polarized abelian scheme
(A, λ) over some complex algebraic variety T . Again we consider the question whether
the closed image of the morphism τ : T → Ag is a special subvariety. Suppose that
A/T is isogenous to a product A1 × A2 with dim(Ai/T) = gi. After choosing
polarizations (principal, say) on the factors Ai we get morphisms τi : T → Agi . In
this situation, if the closure of τ(T) in Ag is a special subvariety, the closure of τi(T)
in Agi is special, too. If one believes the André-Oort conjecture this is clear, and it is
in fact not very difficult to show this using our definitions of a special subvariety.

The converse implication does not hold, in general. So, if the closures of τ1(T)
and τ2(T) are special, this does not imply that the closure of τ(T) is special. Looking
at it from the perspective of the André-Oort conjecture, suppose that for each of the
two factors Ai/T separately, we have a Zariski dense collection of points in T(C) at
which the fiber of Ai/T is of CM type. Then it is not true, in general, that there is a
dense set of points at which the fibers are simultaneously of CM type. (For a concrete
example, take T to be an open part of A1 \ {0,1}, let A1/T be a family of elliptic
curves that is not isotrivial, and take for A2 the same family with a suitable shift in
the parameter, i.e., such that A2,t = A1,t+ε for some fixed ε ∈ C.)

4. Special subvarieties in the Torelli locus

Throughout this section we work over C.
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Conjecture 4.1 (Coleman, [16], Conjecture 6). Given g > 4 there are only finitely
many non-singular projective curves C over C, up to isomorphism, of genus g and the
Jacobian JC is a CM abelian variety.

As we shall discuss below, the conjecture is known to be false for g 6 7, so a
corrected version of the conjecture should have as an assumption that g > 8.

Both Coleman’s conjecture 4.1 and the André-Oort conjecture 3.14 were in-
spired by the analogy with the Manin-Mumford conjecture, now a theorem of
Raynaud. For proofs of the Manin-Mumford conjecture, see [72], [73]; for an easy
proof see [71]. The analogy between this conjecture and the André-Oort conjecture
is discussed for instance in [48], Section 6 and in [60], Section 3. As we shall discuss
next, the André-Oort conjecture also has important implications for Coleman’s
conjecture.

Expectation 4.2 (Oort, [63], § 5). For large g (in any case g > 8), there does not exist
a special subvariety Z ⊂ Ag with dim(Z) > 1 such that Z ⊆ Tg and Z ∩ T◦g is nonempty.

Note that the assumption that Z∩T◦g is nonempty implies that this intersection
is open and dense in Z.

Remark 4.3. The condition that Zmeets T◦g is important. Indeed, it is easy to see
that for any g > 2 there exist special subvarieties Z ⊂ Ag of positive dimension with
Z ⊂ Tg. For g 6 3 this is clear, as Tg = Ag is special. Assume g > 3. Choose a base
variety T and a stable curve C → T of genus 3, such that the closure of the image
of T in A3 is a special subvariety of positive dimension d. Let J→ T be the Jacobian,
λ its canonical principal polarization. Next take an elliptic curve E with complex
multiplication, and let µ be its principal polarization. Then for every t ∈ T(C) the
moduli point ξt ∈ Ag(C) of the ppav (Jt, λ) × (E,µ)g−3 lies in the closed Torelli
locus Tg, as it is the Jacobian of the curve that is obtained from Ct by attaching to it
a tail of g− 3 copies of E. Moreover, it is not hard to see that the closure of the set of
points ξt is a d-dimensional special subvariety of Ag. In this way we can produce
many positive dimensional special subvarieties in Tg for any g > 2.

Remark 4.4. Assume we have an integer g for which Expectation 4.2 holds. As-
sume furthermore that the André-Oort Conjecture 3.14 is true. Then Coleman’s
Conjecture 4.1 is true in genus g. In fact, let CM(T◦g) ⊂ T(C) be the set of all
CM Jacobians of dimension g. If this set is infinite, its Zariski closure in Ag has at
least one irreducible component Z of positive dimension, which by 3.14 is special,
contradicting 4.2. Hence 4.2 and 3.14 together imply 4.1.

Remark 4.5. For g > 3 we know that Tg itself is not a special subvariety, and in fact
there is no special subvariety S ( Ag that contains Tg. (Note that Tg 6= Ag for g > 3.)
The simplest argument we know for this is to use information about the geometric
monodromy. For convenience, let us pass to moduli spaces with a levelm structure,
for some m > 3. Write Tg,[m] ⊂ Ag,[m] for the Torelli locus in Ag,[m]. Over Ag,[m]
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we have the natural Q-VHSH considered before (see just before Definition 3.7), and
the assertion that Tg is not contained in any special subvariety S ( Ag is implied by
the fact that the generic Mumford-Tate group of the restriction of H to Tg,[m] is the
full group CSp2g,Q.

Write H′ for the restriction of H to Tg,[m]. Choose a Hodge generic base point
b ∈ Tg,[m], let H be the fiber of H′ at b, and let ψ be the polarization form on H.
Further, letM ⊂ CSp2g,Q = CSp(H,ψ) be the Mumford-Tate group at b, which is
the generic Mumford-Tate group of H′. ThenM contains Gm · 1. On the other hand
we have a monodromy representation

ρ : π1(Tg,[m],b)→ GL(H) ,

and since we have passed to a level cover, ρ factors through Sp(H,ψ). By a result of
Deligne, see [20], Proposition 7.5, the image of ρ has a subgroup of finite index that
is contained inM(C).

So we are done if we can show that the image of ρ is Zariski dense in Sp(H,ψ).
This can be seen, for instance, using transcendental methods. In fact, the homomor-
phism ρ : π1(Tg,[m],b) → Sp(H,ψ) may be identified with the natural homomor-
phism Γg → Sp(H,ψ) from the mapping class group in genus g to the symplectic
group, and it is a classical result that this homomorphism is surjective. (See for
instance [5], Chap. 15, especially § 3.)

The argument given here is entirely based on information about the geometric
monodromy, and there are other loci in Tg to which the same reasoning applies.
As an example, if Hg ⊂ Tg is the hyperelliptic locus, the image of the geometric
monodromy representation on Hg is again dense in the symplectic group Sp(H,ψ);
see [1], Theorem 1. By the above argument, it follows that there is no special
subvariety S ( Ag that contains Hg.

4.1. A modified version of Coleman’s Conjecture

In [13] we find amodified version of 4.1 which does hold, at least conditionally,
for every g > 3. A g-dimensional abelian variety A, say over C, is said to be aWeyl
CM abelian variety if L := End0(A) is a field of degree 2g over Q whose Galois closure
has degree 2g · g! over Q. It can be shown that, in a suitable sense, most CM abelian
varieties are of this type.

Theorem 4.6 (Chai and Oort). Assume the André-Oort Conjecture 3.14 to be true. Then
for every g > 3 the number of Weyl CM points in T◦g is finite.

See [13], 3.7. We remark that for g > 4 we do not know any example of a
Jacobian of Weyl CM type. In connection with this, note that for a non-hyperelliptic
curve C of genus g(C) > 1 with Aut(C) 6= {id} the Jacobian JC does not give a Weyl
CM point.
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4.2. Results of Hain

In his paper [32], Hain proved some results inspired by 4.2. Though the results
are conditional, they point in an interesting direction, as they suggest that ball
quotients should play a special role. (The open unit ball in Cn is the symmetric
space SU(n,1)/U(n).) It should be pointed out that all non-trivial examples known
to us, in genus at least 4, are indeed ball quotients; see the next sections.

In order to state Hain’s results, let us first recall that a complex algebraic variety S
is called a locally symmetric variety if there is a semisimple algebraic group G over Q,
a maximal compact subgroup K ⊂ G(R), and an arithmetic subgroup Γ ⊂ G(Q),
such that the symmetric space G(R)/K is hermitian and S = Γ\G(R)/K. As we have
seen in subsection 3.4, special subvarieties are (at least after passage to a level cover)
locally symmetric.

If S1 = Γ1\G1(R)/K1 and S2 = Γ2\G2(R)/K2 are locally symmetric varieties, a
morphism f : S1 → S2 is called a map of locally symmetric varieties if it is induced
by a homomorphism of algebraic groups G1 → G2 over Q.

Hain calls a locally symmetric variety S good if it has no locally symmetric
divisors. Further, he mostly restricts his attention to locally symmetric varieties S for
which the corresponding Q-group G is almost simple (i.e., Gad is simple); for the
problems that interest us this is no loss of generality. In case G is almost simple, it
can be shown that S is not good only if theQ-rank ofG is6 2 and if the non-compact
factors of GR are all of the form SO(n,2) or SU(n,1), up to isogeny.

Define a locally symmetric family of abelian varieties to be a principally polarized
abelian scheme X→ S such that S is a locally symmetric variety and the correspond-
ing morphism S→ Ag is a map of locally symmetric varieties. By a locally symmetric
family of curves we mean a curve C→ S of compact type such that the corresponding
relative Jacobian J→ S is a locally symmetric family of abelian varieties.

Theorem 4.7 (Hain). Let π : C→ S be a locally symmetric family of curves that is not
isotrivial. Assume the Q-group that gives S is almost simple. Assume further that either π is
smooth, or S is good and the generic fiber of π is smooth. Then S is a quotient of a complex
n-ball.

See [32], Theorem 1.
It should be realized that for applications to Coleman’s conjecture, the assump-

tions of the theorem are too strong. The main problem is that a special subvariety Z
as in 4.2 only gives us (possibly after passing to a level cover) a locally symmetric
family of abelian varieties J→ Z such that the geometric generic fiber is a Jacobian.
We may find a dominant morphism Z′ → Z such that the pullback J′ → Z′ is the
relative Jacobian of a smooth curve C → Z′ but in general it is not possible to
do this with Z′ an open part of a locally symmetric variety. See [32], in particular
Proposition 8.3.

Under weaker assumptions, Hain proves a second result.
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Theorem 4.8 (Hain). Let A→ S be a locally symmetric family of abelian varieties such
that the morphism p : S → Ag is not constant and factors through the Torelli locus Tg.
Write

Sdec :=
{
s ∈ S(C)

∣∣ As is the Jacobian of a singular curve,}
S∗ := S(C) \ Sdec ,

She :=
{
s ∈ S(C)

∣∣ As is the Jacobian of a hyperelliptic curve.}
We assume the Q-group that gives S is almost simple, S is good, and S∗ 6= ∅. Then either S
is a ball quotient, or else g > 3, each component of Sdec has complex codimension > 2 in S,
the family does not lift to a locally symmetric family of curves, and S∗ ∩ She is a non-empty
divisor in S∗, which moreover for g > 3 is nonsingular.

See [32], Theorem 2.
The proofs of Hain’s results rely on a rigidity property of mapping class groups,

which is a special case of the theorem of Farb and Masur in [29].
De Jong and Zhang [36] have pushed Hain’s results further, based on the

observation that the hyperelliptic locus in Ag \ Adec
g is affine.

Theorem 4.9 (de Jong and Zhang). With assumptions as in Theorem 4.8, either S is a
ball quotient, or Sdec has codimension 6 2 in S, or the Baily-Borel compactification of S
has a boundary of codimension 6 2.

Corollary 4.10. Let S ⊂ Ag, with g > 4, be a Hecke translate of a Hilbert modular
subvariety of Ag, i.e., S is a special subvariety of PEL type obtained from a totally real field F
of degree g. Then S is not contained in Tg.

The Corollary was proved in [36], except when g = 4 and F contains a quadratic
subfield. That case was settled by Bainbridge and Möller in [6].

In addition to the results discussed here, there are several other results inspired
by 4.2. Among these are papers of Möller, Viehweg and Zuo; see [43], [44] and [80],
and the recent paper [4] by F. Andreatta. These results support the Expectation 4.2.

4.3. Results of Ciliberto, van der Geer and Teixidor i Bigas

In [15] and [14], Ciliberto, van der Geer and Teixidor i Bigas have obtained
some interesting results about the number of moduli of curves whose Jacobians
have nontrivial endomorphisms. As we shall discuss below, when combined with
the results of Hain and de Jong-Zhang, these results can be used to obtain some
restrictions on the special subvarieties of PEL type that are contained in the Torelli
locus.

As always in this section we work over C.

Theorem 4.11 (Ciliberto, van der Geer and Teixidor i Bigas, [15]). Let Z ⊂ Mg, for
g > 2, be an irreducible closed subvariety. Let Ω be an algebraic closure of the function
field C(Z), let C/Ω be the curve corresponding to the geometric generic point of Z, and
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assume that the Jacobian JC/Ω has the property that Z ( End(JC). Then dim(Z) 6 2g−2,
and the intersection of Z with the hyperelliptic locus in Mg has dimension at most g.

Note that in this theorem it is not assumed that the image of Z in Ag is a special
subvariety.

In addition to the result as quoted here, the authors have some finer results
about the case when dim(Z) > 2g−3. For instance, they show that if dim(Z) = 2g−2
then either C is a cover of a non-constant elliptic curve E over Ω, or g = 2 and
End0(JC) is a real quadratic field. (The case dim(Z) = 2g−3 is analyzed by Ciliberto
and van der Geer in [14].)

4.4. Excluding certain special subvarieties of PEL type

One may use the results we have discussed to obtain restrictions on the special
subvarieties Z ⊂ Ag of PEL type that can be contained in Tg with Z ∩ T◦g 6= ∅. (We
do not, however, see a way to apply such arguments to arbitrary special subvarieties.)
Our result is as follows.

Theorem 4.12. Consider a a special subvariety S ⊂ Ag of PEL type, arising from PEL
data (D, ∗,V ,φ) as in Remark 3.10, with dimQ(V) = 2g.

(i) Suppose D = F is a totally real field. (Albert Type I.) If g > 4 then S is not
contained in Tg.

(ii) Suppose D is a quaternion algebra over a totally real field F that splits at all
infinite places of F. (Albert Type II.) If g > 8 then S is not contained in Tg.

For Albert’s classification of the possible endomorphism algebras of abelian
varieties we refer to [55], Section 21.

Proof. In both cases it follows from the results of [76] that D equals the endomor-
phism algebra of the abelian variety corresponding to the geometric generic point
of S. Hence the generic abelian variety in our family is geometrically simple; in
particular, if S ⊂ Tg then S ∩ T◦g 6= ∅.

First suppose D = F is a totally real field. Let e = [F : Q], which is an integer
dividing g. Then S arises as a quotient of a product of e copies of the Siegel space
Hh with h = g/e. This gives

dim(S) = e · h(h+ 1)
2

=
g(g+ e)

2e
.

Theorem 4.11 gives the inequality g(g+ e)/2e 6 2g− 2, so we find

e >
g2

3g− 4
>
g

3
.

As e divides g, either g is even and e = g/2 or e = g. However, for g > 4 the case
e = g is excluded by Corollary 4.10. Assume then g > 4 is even and e = g/2; in
this case dim(S) = 3g/2. The assumptions in Hain’s theorem 4.8 are satisfied and S
is not a ball quotient. Hence we obtain that the intersection with the hyperelliptic
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locus is a nonempty divisor and therefore has dimension (3g/2)−1. This contradicts
Theorem 4.11.

Next we consider the case where D is a quaternion algebra over a totally real
field F such that D⊗Q R is isomorphic to a product of e = [F : Q] copies ofM2(R).
In this case 2e divides g and S is a quotient of a product of e copies of Hh with
h = g/2e; so dim(S) = e · h(h + 1)/2 and S is not a ball quotient. The boundary
in the Baily-Borel compactification has codimension g/2 > 2. By Theorem 4.9 it
therefore suffices to show that Sdec cannot have codimension 6 2.

There are two possibilities for the geometric generic point of a component
of Sdec. Either the corresponding abelian variety is isogenous to a product X1 × X2,
where X1 and X2 both have an action by an order in D. Straightforward calculation
gives that in this case the codimension is at least e · (h − 1). Using the relation
g = 2eh we find that for g > 8 the codimension is > 2. The other possibility is
that there is a subfield F′ ⊂ F and a quaternion algebra D′ with center F′ such that
D ∼= F⊗F′D′. With e′ = [F′ : Q] the codimension in this case equals (e−e′)·h(h+1)/2.
Straightforward checking of the possibilities shows that for g > 8 this is greater
than 2. �

It seems that similar arguments will also work for the Albert Type III, and even
for Type IV we expect that we can obtain some non-trivial conclusions. We have not
yet pursued this.

4.5. The Schottky problem

Expectation 4.2 is of course intimately related to the Schottky problem, which
is the problem of characterizing which ppav (A, λ) are Jacobians of curves. There are
several solutions or conjectural solutions of this problem. We refer to the overview
papers [7], [17], [31] for an introduction to this beautiful topic. It seems that none
of the (conjectural) solutions discussed in these papers can be directly applied
to problems such as Conjecture 4.1 or Expectation 4.2. Though for both sides—
algebraic curves and their moduli on the one hand, abelian varieties and special
subvarieties in the moduli space on the other hand—we have many techniques and
results at our disposal, it is difficult to find a language, or a set of techniques, using
which both sides can be described simultaneously. This is a difficulty that we believe
lies at the heart of the matter.

5. Examples of special subvarieties in the Torelli locus

In this section we discuss examples of special subvarieties S ⊂ Tg of positive
dimension, with g > 4 and S∩T◦g 6= ∅. The examples we consider arise from families
of cyclic covers of P1. Throughout this section we work over C.

We first look at a concrete example, following [35]. (The example was already
given in [77].)
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Example 5.1. Consider the family of curves given by

y5 = x(x− 1)(x− t) ,

where t ∈ C \ {0,1} is a parameter. The complete and regular model Ct of this curve
is a cyclic cover of P1 with group µ5, with total ramification above 0, 1, t and∞.
The Hurwitz formula gives χ = 5 ·−2+ 4 · (5− 1) = 6 so g(Ct) = 4. In the moduli
space A4 the corresponding family of Jacobians gives a 1-dimensional subvariety,
whose closure we call Z ⊂ A4. Clearly these Jacobians admit an action by Z[ζ5], the
ring of integers of the cyclotomic field F := Q[ζ5].

Consider the special subvariety S ⊂ A4 containing Z that is defined by this
action of Z[ζ5]. More formally, fix a base point b ∈ C \ {0,1} and choose a symplectic
similitude s : H1(Cb,Z)

∼−→ V as in subsection 3.2. Via s, the Hodge structure on
H1(Cb,Q) corresponds to a point y ∈ H4 and we obtain the structure of an F-vector
space on VQ. LetM ⊂ GQ = CSp(V ,φ)Q be the algebraic subgroup obtained as the
intersection of G with GLF(VQ). With notation as in Def. 3.6, y lies in YM. If we
choose the base point b such that the Jacobian Jb is not of CM type (which is certainly
possible) then there is a unique connected component Y+ ⊂ YM containing y, and
S ⊂ A4 is the special subvariety obtained as the image of this Y+ under the quotient
map H4 → CSp(V ,φ)\H4

∼−→ A4(C).
As we shall show, dim(S) = 1. Assuming we know this, we conclude that Z,

which is also 1-dimensional and is contained in S, contains an open dense subset
of S, in which case it follows from property (b) in subsection 3.4 that there are
infinitely many values of t such that the Jacobian of Ct is of CM type.

In order to calculate the dimension of S, we need to know how F acts on the
tangent space of the Jacobian Jt at the origin. More precisely, T0(Jt) has the structure
of a module over the ring F ⊗Q C =

∏
σ : F→C C. Hence we obtain a direct sum

decomposition T0(Jt) = ⊕σ T(σ). Let nσ denote the C-dimension of T(σ). These
multiplicities nσ do not depend on t. By using the polarization, one can show that
nσ + nσ̄ = 2g/ϕ(5) = 2 for all σ, where σ̄ denotes the complex conjugate of σ.
With this notation we have Hder

R
∼=
∏

SU(nσ,nσ̄) and dim(S) =
∑
nσnσ̄, where the

sum is taken over a set of representatives of the complex embeddings of Fmodulo
complex conjugation. See [76], Theorem 5, and see below for further details.

As T0(Jt) is canonically dual toH0(Ct,ω), we can calculate the multiplicities nσ
by writing down a basis of regular differentials on Ct. (In fact, as we shall explain
below the Chevalley-Weil formula gives a much quicker method.) In the example at
hand, if Pi, for i ∈ {0,1, t,∞}, is the unique point above i, we have

div(x) = 5P0 − 5P∞ , div(y) = P0 + P1 + Pt − 3P∞ ,

and

div(dx) = 4P0 + 4P1 + 4Pt − 6P∞ .
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As a basis of regular differentials we find

dx

y2
,

dx

y3
,

dx

y4
,

xdx

y4
.

The weights of the first two are dual, whereas the last two forms have the same weight.
The conclusion, then, is that there is one pair (σ, σ̄) with multiplicities (2,0), and
one pair where the multiplicities are (1,1). Hence dim(S) = 1 · 1 + 2 · 0 = 1, and
we conclude that S = Z is a special subvariety contained in T4 with S ∩ T◦4 6= ∅. In
particular this proves that Coleman’s conjecture 4.1 does not hold for g = 4.

Remark 5.2. In the above example, we do not know a method to decide for which
values of the parameter t the Jacobian of Ct is a CM abelian variety. The same remark
applies to the examples we shall discuss next.

5.1. Families of cyclic covers

To obtain further such examples, the idea is to fix an integerm > 2, an integer
N > 4, and monodromy elements a1, . . . ,aN in Z/mZ; then we consider cyclic
covers of P1 with group µm, branch points t1, . . . , tN in P1 and local monodromy
exp(2πiaj/m) ∈ µm about tj. If the branch points are all in A1, this cover is given
by the affine equation

(5.3) ym = (x− t1)
a1(x− t2)

a2 · · · (x− tN)aN ,

with ζ ∈ µm acting by (x,y) 7→ (x, ζ · y). Varying the branch points ti gives us a
family of curves, and it turns out that for certain choices of the data involved, the
corresponding family of Jacobians traces out a special subvariety in Ag.

Write a = (a1, . . . ,aN). The triple (m,N,a) that serves as input for our con-
struction has to satisfy some conditions. As already indicated, we wantm > 2, as
takingm = 1 is clearly of no interest. Next, we require thatN > 4. The reason is that
from our family we obtain an (N− 3)-dimensional subvariety in the moduli space
(see below), and we are interested in special subvarieties of positive dimension. We
assume that ai 6≡ 0 (mod m) for all i, and that a1 + · · · + aN ≡ 0 (mod m). This
means that the ti are branch points and that there are no further branch points. Fur-
ther we need to assume that the elements ai generate the group Z/mZ for otherwise
the (smooth projective) curves given by (5.3) are reducible.

We can find an open subscheme T ⊂ (P1)N, disjoint from the big diagonals,
and a smooth proper curve f : C→ T such that the fiber of f at a point t = (t1, . . . , tN)
in T(C) with all ti in A1(C) is the complete regular curve given by (5.3). The genus
of these curves is given by

(5.4) g = 1+
(N− 2)m−

∑N
i=1 gcd(ai,m)

2
.

The relative Jacobian J → T then defines a morphism τ : T → Ag, and we define
Z(m,N,a) ⊂ Ag as the closure of the image of τ. Note that since we are only
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interested in the closure of τ(T) there is no need to specify exactly which open
subscheme T ⊂ (A1)N we choose; see Remark 3.13.

We call two triples (m,N,a) and (m′,N′,a′) equivalent ifm = m′ and N = N′

and if the classes of a and a′ in (Z/mZ)N are in the same orbit under (Z/mZ)∗×SN.
Here (Z/mZ)∗ acts diagonally on (Z/mZ)N by multiplication, and the symmetric
groupSN acts by permutation of the indices. The closed subvariety Z(m,N,a) ⊂ Ag
only depends on the equivalence class of the triple (m,N,a).

The morphism τ : T → Ag factors through the quotient of T modulo the action
of the group PGL2(C) ×SN, with PGL2(C) = Aut(P1) acting diagonally on (P1)N

and SN acting by permutation of the diagonals. (Without loss of generality we may
assume T ⊂ (P1)N is stable under PGL2(C)×SN.) The subvariety Z(m,N,a) ⊂ Ag
has dimension N − 3. Note that we may also fix three of the branch points to lie
at 0, 1 and ∞, as we did in Example 5.1; this has the effect of replacing T with a
closed subvariety of dimension N− 3 on which the morphism φ is generically finite.
For instance, the example considered in 5.1 corresponds to the triple (m,N,a) =(
5,4, (1,1,1,2)

)
.

The Jacobians Jt in our family come equipped with an action of the group
ring Z[µm]. Let S(µm) ⊂ Ag be the special subvariety containing Z(m,N,a) that is
defined by this action. (In order to make this precise we follow the recipe given in
Example 5.1.) In all cases we have the inequality

(5.5) N− 3 6 dimS(µm) ,

and if we have N− 3 = dimS(µm) then the conclusion is that Z(m,N,a) = S(µm)

is a special subvariety in the Torelli locus that meets the open Torelli locus. (If
N− 3 < dimS(µm) then a priori we know nothing; see subsection 5.4 below.) The
question is therefore how to calculate the dimension of S(µm). Before we discuss
this in general, let us look at another example.

Example 5.6. Consider the family of curves given by

y9 = x(x− 1)(x− t) .

With notation as above we havem = 9 and N = 4, with local monodromy about
the branch points given by a = (1,1,1,6).

The complete regular model Ct is a cyclic cover of P1 with group µ9. The points
0, 1 and t are totally ramified, so we have unique points P0, P1, and Pt above them.
There are three points P(1)∞ , P(2)∞ and P(3)∞ above∞, each with ramification index 3.
The Hurwitz formula gives χ = 9 · −2 + 3 · 8 + 3 · 2 = 12 so g = 7, which agrees
with (5.4).

The Jacobian Jt contains as an isogeny factor the Jacobian of the curve C′t given
by u3 = x(x−1)(x− t). By a similar calculation, C′t has genus 1. Its Jacobian J

′
t is an

elliptic curve with complex multiplication by Z[ζ3], and the family of Jacobians J′t
is isotrivial over P1 \ {0,1}. (Note that in the given equation for C′t there is no
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ramification over∞, so C′t is geometrically isomorphic to the curve given by s3 =

v(v− 1). More explicitly, let T̃ → P1 \ {0,1} be the cyclic cover of degree 3 given by
the equation µ3 = t(t− 1). After base change to T̃ the family of curves C′t becomes
isomorphic to the constant curve defined by s3 = v(v−1) via the isomorphism given
by s = µu/(x− t) and v = (1− t)x/(x− t). )

Let Jnewt (the “new part”) be the quotient of Jt modulo J′t; this is an abelian
variety of dimension 6 on which we have an action by Z[ζ9]. In order to determine
the dimension of the special subvariety in A6 given by this action, we again calculate
the multiplicities of the action on the tangent space. In this case, we already know in
advance that there will be one non-primitive character of µ9 occurring in H0(Ct,ω).
We have

div(x) = 9P0 − 3P(1)∞ − 3P(2)∞ − 3P(2)∞ , div(y) = P0 + P1 + Pt − P(1)∞ − P(2)∞ − P(3)∞ ,

and

div(dx) = 8P0 + 8P1 + 8Pt − 4P(1)∞ − 4P(2)∞ − 4P(3)∞ .

As a basis of regular differentials we find

dx

y4
,

dx

y5
,

dx

y6
,

dx

y7
,

dx

y8
,

xdx

y7
,

xdx

y8
.

As predicted, this gives one non-primitive character of µ9 (corresponding to dx/y6);
for the rest we find one complex conjugate pair with multiplicities (1,1), and two
complex conjugate pairs for which the multiplicities are (2,0). The special subvariety
in A6 given by the action ofQ[ζ9] with this collection of multiplicities has dimension
1 · 1+ 2 · 0+ 2 · 0 = 1. It follows that the Jnewt trace out a dense open subset of this
special subvariety. As the original Jacobians Jt are isogenous to J′t × Jnewt with J′t an
isotrivial family with fibers of CM type, we conclude that the family of Jt traces out
in A7 a (dense subset of a) special subvariety. As before, this implies that there are
infinitely many values of t for which Jt is of CM type. (The t for which this happens
are even analytically dense in P1(C).)

Remark 5.7. Let (M, Y) be a Shimura datum. The dimension of the associated
Shimura varieties ShK(M, Y) only depends on the structure of the real adjoint
group Mad

R . Indeed, the dimension of the Shimura variety equals the complex
dimension of the space Y, and the components of Y can be described as hermitian
symmetric domains associated with the connected Lie groupMad(R)+, where the su-
perscript “+” denotes the identity component for the analytic topology. In particular,
ifMad

R
∼= Q1×· · ·×Ql is the decomposition ofMad

R as a product of R-simple groups,
the dimension of ShK(M, Y) can be calculated as a sum δ(Q1) + · · ·+ δ(Ql), where
the contribution δ(Qi) of the factor Qi can be looked up in [33], Table V. (Caution:
the dimensions given there are the real dimensions.) The cases most relevant for our
discussion are the following.

(1) δ(Qi) = 0 if Qi is anisotropic, i.e., if Qi(R) is compact;
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(2) δ(Qi) = h(h+ 1)/2 if Qi ∼= PSp2h,R;
(3) δ(Qi) = pq if Qi ∼= PSU(p,q).

5.2. Calculating the dimension of S(µm)

We return to the general situation of a family of curves f : C→ T associated with
the data (m,N,a). Our next goal is to calculate the dimension of the special subvari-
ety S(µm) ⊂ Ag that contains Z = Z(m,N,a). Choose a Hodge-generic base point
b ∈ T(C), choose a symplectic similitude s : H1(Cb,Z)

∼−→ V as in subsection 3.2,
and let y ∈ Hg be the point corresponding to the Hodge structure on H1(Cb,Z),
viewed as a Hodge structure on V via s.

The Jacobian J→ T comes equipped with an action of the group ring Z[µm].
The Hodge classes we want to have over S(µm) are these endomorphisms, which
means we are in the situation of Example 3.9. The algebraic groupM ⊂ CSp(VQ,φ)
we need to consider is given by

M := CSp(VQ,φ) ∩GLQ[µm](VQ) .

We can calculate the dimension of S(µm) via a deformation argument. In
other words, if YM ⊂ Hg is as defined just before Definition 3.6, we calculate the
dimension of the tangent space of YM at te point y.

The Hodge structure on VQ is of type (−1,0) + (0,−1), and the polarization
gives us a symplectic form φ : VQ × VQ → Q(1). As discussed in Remark 3.2, the
Hodge filtration Fil0 = V0,−1

C ⊂ VC is a Lagrangian subspace, so we have an induced
isomorphism φ̄ : Fil0 ∼−→ VC/Fil

0. The tangent space of Hg at the point y is given
by (3.3).

The extra structure we now have is an action of the algebra D := Q[µm] on VQ.
Let d 7→ d̄ denote the involution of D induced by the inversion in the group µm.
The form φ has the property that φ(dv, v′) = φ(v, d̄v′) for all d ∈ D and v, v′ ∈ VQ.

The D-action on VQ induces on V−1,0
C and V0,−1

C the structure of a module over
the ring

D⊗Q C =
∏

n∈Z/mZ

C .

Correspondingly, we have decompositions

VC/Fil
0 = V−1,0

C =
⊕

n∈Z/mZ

V−1,0
C,(n) and Fil0 = V0,−1

C =
⊕

n∈Z/mZ

V0,−1
C,(n) .

The involution ofDC obtained by linear extension of the involution d 7→ d̄ exchanges
the factors C indexed by the classes n and −n. It follows that the perfect pairing
φ̄ : Fil0 × (VC/Fil

0)→ C restricts to perfect pairings

φ̄n : V
0,−1
C,(n) × V

−1,0
C,(−n) → C .

For n ∈ Z/mZ, define

dn := dimC V
0,−1
C,(n) .
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Note that d(0 modm) = 0, i.e., VC,(0 modm) = (0), as the µm-invariant subspace in V is
the first homology of the base curve P1, which is zero. We shall see in Proposition 5.9
below how to calculate the dn in terms of the given data (m,N,a).

The tangent space Ty(YM) ⊂ Ty(Hg) is the C-subspace consisting of those
elements β ∈ Homsym(Fil0,VC/Fil

0) that are DC-linear. Any such β can be written
as β =

∑
βn, where the βn : V

0,−1
C,(n) → V−1,0

C,(n) are C-linear maps that satisfy

(5.8) φ̄n
(
v,β−n(v

′)
)
= φ̄−n

(
v′,βn(v)

)
for all v ∈ V0,−1

C,(n) and v
′ ∈ V0,−1

C,(−n).

If n 6≡ −n (mod m), this last condition gives a duality between β−n and βn; this
means the linear map βn can be chosen arbitrarily and β−n is determined by βn. The
situation is different if n ≡ −n (mod m). Of course, this only occurs (with n 6≡ 0)
ifm = 2k is even. In this case we have a perfect pairing φ̄k : V

0,−1
C,(k)×V

−1,0
C,(k) → C, and

(5.8) gives

βk ∈ Homsym(V0,−1
C,(k),V

−1,0
C,(k)

)
:=
{
β : V0,−1

C,(k) → V−1,0
C,(k)

∣∣ φ̄k(v,βk(v′)) = φ̄k(v′,βk(v)) for all v, v′ ∈ V0,−1
C,(k)
}
.

(Cf. (3.3).) We find that the dimension of Ty(YM) equals

∑
±n∈(Z/mZ)/{±1}
2n 6≡0 (mod m)

d−ndn +


dk·
(
dk+1

)
2 ifm = 2k is even;

0 ifm is odd.

As the final step in the calculation we need to calculate the dimensions dn in
terms of the given triple (m,N,a). The result is as follows.

Proposition 5.9 (Hurwitz, Chevalley-Weil). The dimensions dn := dimC V
0,−1
C,(n) are

given by dn = 0 if n ≡ 0 (mod m) and

(5.10) dn = −1+

N∑
i=1

〈
−nai
m

〉
if n 6≡ 0 (mod m),

where 〈x〉 = x− bxc denotes the fractional part of a number x.

We note that V0,−1
C is naturally isomorphic to the space H0(Cb,Ω1) of global

differentials on the curve. The given formula is then a special case of a classical
result by Chevalley and Weil about the structure of H0(Cb,Ω1) as a representation
of the Galois group µm, which in the cyclic case is already due to Hurwitz. See [52]
Section 3 for a modern proof. Another proof, using the holomorphic Lefschetz
formula, can be found in [75], Lemma 1.6b.

Putting everything together, the dimension of S(µm) is given by the following
result.
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Proposition 5.11. Consider a triple (m,N,a) as in subsection 5.1. Then the dimension
of the special subvariety S(µm) that contains Z(m,N,a) is given by

dimS(µm) =
∑

d−ndn +


dk·
(
dk+1

)
2 if m = 2k is even;

0 if m is odd,

where the sum runs over the pairs ±n in Z/mZ with 2n 6≡ 0 (mod m), and where the
dn are given by (5.10).

Remark 5.12. Instead of using a tangent space computation, we may calculate the
dimension of S(µm) by analyzing the real adjoint groupMR; see Remark 5.7 and [49].
It can be shown that

Mad
R

∼=
∏

PSU(dn,d−n)×

{
PSp2dk,R ifm = 2k is even;

{1} ifm is odd,

where the first product runs over the pairs ±n in Z/mZ with 2n 6≡ 0 (mod m).

5.3. An inventory of known special subvarieties in the Torelli locus

Now that we have an explicit formula for the dimension of S(µm) in terms of
the given data, it is easy to check, in each given example, if in the inequality (5.5)
we have an equality. Recall that if N− 3 = dimS(µm), we conclude that Z(m,N,a)
is dense in the special subvariety S(µm) ⊂ Ag, in which case it follows that the
family of Jacobians J→ T (as in subsection 5.1) contains infinitely many different
Jacobians of CM type.

In order to illustrate how well this works, let us redo Example 5.1. We have
(m,N,a) =

(
5,4, (1,1,1,2)

)
. The Hurwitz-Chevalley-Weil formula gives

d1 = −1+ 3 ·
〈
−1
5

〉
+

〈
−2
5

〉
= 2 ,

and in a similar way we find

d2 = 1 , d3 = 1 , d4 = 0 ,

which agrees with the basis of regular differentials we have found. Proposition 5.11
gives dimS(µm) = 1 = N− 3, and as before we conclude that Z(m,N,a) is a special
subvariety.

Using a computer it is not hard to do a systematic search for triples (m,N,a)
with N− 3 = dimS(µm). Up to equivalence (as defined in Section 5.1), one finds
twenty such triples. They are listed in Table 1. Moreover, it was proven by Rohde
in [74] that these are the only triples, up to equivalence, for whichN−3 = dimS(µm).

5.4. Excluding further examples

In the discussion so far, the argument is based on the fact that Z(m,N,a) ⊂ Ag
is visibly contained in the special subvariety S(µm), and we look for examples where
the two have the same dimension. If in some given casewe find that dimZ(m,N,a) =
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Table 1. Examples of special subvarieties in the Torelli locus

genus m N a

(1) 1 2 4 (1,1,1,1)

(2) 2 2 6 (1,1,1,1,1,1)

(3) 2 3 4 (1,1,2,2)

(4) 2 4 4 (1,2,2,3)

(5) 2 6 4 (2,3,3,4)

(6) 3 3 5 (1,1,1,1,2)

(7) 3 4 4 (1,1,1,1)

(8) 3 4 5 (1,1,2,2,2)

(9) 3 6 4 (1,3,4,4)

(10) 4 3 6 (1,1,1,1,1,1)

genus m N a

(11) 4 5 4 (1,3,3,3)

(12) 4 6 4 (1,1,1,3)

(13) 4 6 4 (1,1,2,2)

(14) 4 6 5 (2,2,2,3,3)

(15) 5 8 4 (2,4,5,5)

(16) 6 5 5 (2,2,2,2,2)

(17) 6 7 4 (2,4,4,4)

(18) 6 10 4 (3,5,6,6)

(19) 7 9 4 (3,5,5,5)

(20) 7 12 4 (4,6,7,7)

N − 3 < dimS(µm), this does not, a priori, imply that Z(m,N,a) is not special.
Put differently, in addition to the endomorphisms in Z[µm], there might be Hodge
classes in our family of Jacobians J → T that we just happen not to see. Even in
individual examples, it is usually not so easy to exclude this.

One method to do this was given by de Jong and Noot in [35], Section 5;
they prove there that for m > 7 not divisible by 3 the family of curves given by
ym = x(x− 1)(x− t), which in our language corresponds to the triple (m,N,a) =(
m,4, (1,1,1,m − 3)

)
, does not give a special subvariety. The method is based on

results of Dwork and Ogus in [25].
Extending this to arbitrary families, it was proven in [49] that the twenty ex-

amples we have found are the only ones such that the image Z(m,N,a) ⊂ Ag is a
special subvariety.

Theorem 5.13. Consider data (m,N,a) as in subsection 5.1. Then Z(m,N,a) ⊂ Ag is
a special subvariety if and only if (m,N,a) is equivalent to one of the twenty triples listed
in Table 1.

Remark 5.14. Examples (6), (8), (10), (11), (16) and (17) in Table 1 were given
by Shimura in [77]. Examples (10), (11) and (17) were given, in a language that
is closer to the present paper, by de Jong and Noot in [35]; they also explained the
relevance of such examples for Coleman’s conjecture. (The fact that these examples
already occurred in [77] was recognized only later. In connection with this, note
that [77] appeared more than twenty years before Coleman stated his conjecture.)

In retrospect, it is surprising that the complete list of examples was obtained
only recently. Example (19) was found by one of us in 2003; see [65]. All twenty
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examples were found by Rohde in [74] (Example (2) is somewhat hidden there, but
see op. cit. Corollary 5.5.2) and independently by one of us, with the help of a small
computer program. See 6.7 below for some further examples, coming from families
of covers with a non-cyclic Galois group.

It should be mentioned that there is some connection between these examples
and the theory of Deligne and Mostow in [23], [53]; see also Looijenga’s overview
paper [40]. The relation is that, in the setting of subsection 5.1, the family of
Jacobians J→ T has a “new part” (cf. Example 5.6), and that the monodromy of the
corresponding VHS can be described as themonodromy on a space of hypergeometric
functions. In this context there is an easy criterion for the arithmeticity of the
monodromy group; see [23], Proposition 12.7 or [40], Theorem 4.3. As far as we
know there is, however, no easy way to obtain from this, and the resulting tables in
[23] and [53], a classification result such as in Theorem 5.13. Apart from the fact that
the Deligne-Mostow arithmeticity criterion only applies under some condition on
the local monodromy elements (condition (INT) of [23], p. 25) that in our situation
is not always satisfied, it only gives us information about certain direct summands
of the VHS that we want to study, and as already explained in Remark 3.16 we in
general need more.

6. Some questions

In this section, with the exception of subsections 6.2 and 6.3, the base field
is C. Most questions below could also be formulated over an algebraic closure of Q.

Question 6.1. How do we construct curves for which the Jacobian is a CM abelian variety?
If we have a special subvariety in Tg that intersects T◦g, the existence of CM Jacobians
follows from property (b) in subsection 3.4. Note that in such cases we typically
have no control over which fibers in our family are the CM fibers; cf. Remark 5.2.

On the other hand, we could look for curves that have many automorphisms.
For instance, the Fermat curves Xn + Yn + Zn = 0 in P2 have Jacobians of CM type.
Similarly, cyclic covers of P1 with 3 branch points have CM Jacobians. For a given
g > 2 there are only finitely many such covers of genus g, however. Further such
examples are given in [66], 5.15.

In [66], a curve C is called a curve with many automorphisms if the deformation
functor of the pair

(
C, Aut(C)

)
is a 0-dimensional scheme. In many cases such a

curve has a CM Jacobian.
These are the only methods known to us to construct, or to prove the existence

of, CM Jacobians.

Question 6.2. Do we know the existence of, or can we construct, a curve C of genus at
least 4 such that Aut(C) = {id} and such that the Jacobian of C is an abelian variety of
CM type?
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Question 6.3. Does there exist g > 3 and a special subvariety Z ⊂ Ag contained in the
Torelli locus Tg such that the geometric generic fiber over T gives an abelian variety with
endomorphism ring equal to Z ? We do not know a single example.

Remark 6.4. In 4.2 we have seen an expectation about the (non-)existence of special
subvarieties in the Torelli locus. In order to make the question more precise, consider,
for g ∈ Z>0 the set

ST(g) :=
{
special subvarieties Z ⊂ Tg with dim(Z) > 0 and Z ∩ T◦g 6= ∅

}
of special subvarieties of positive dimension, contained in the Torelli locus, and not
fully contained in the boundary of Tg. The expectation is that for g � 0 we have
ST(g) = ∅; see 4.2.

We would like to classify all pairs (g,Z) with Z ∈ ST(g). For g = 2 and g = 3
we have Tg = Ag and in this case every special subvariety of Ag is of PEL type;
see [51]. Hence in this case we can classify all pairs (g,Z), up to Hecke translation,
by listing all possible endomorphism algebras. We know that ST(g) 6= ∅ for all g < 8.
However, already for g = 4 we do not have a good description of ST(4). It seems
very difficult to describe ST(g) for arbitrary g.

6.1. Non-PEL Shimura curves for g = 4

In [54], § 4, Mumford shows there exist 1-dimensional special subvarieties
Z ⊂ A4 that are not of PEL type. The abelian variety corresponding to the geometric
generic fiber of Z has endomorphism algebra Z. The curves Z are complete. Note
that T4 ⊂ A4 is a closed subvariety of codimension one, which by a result of Igusa
[34] is ample as a divisor. Hence we see that Z ∩ T4 6= ∅.

Question 6.5. Is there a “Mumford curve” Z ⊂ A4 that is contained in T4 ?

If Z ⊂ A4 is a 1-dimensional special subvariety of the type constructed by
Mumford, the abelian variety corresponding to the geometric generic point of Z has
endomorphism ring Z; hence if Z ⊂ T4 then Zmeets T◦4.

The examples constructed by Mumford, and generalizations thereof, have been
studied in detail by Noot in [58] and [59]. In particular, [59], Section 3 contains a
detailed analysis of the possible CM points on the special curves Z ⊂ A4 constructed
by Mumford. In particular, it is shown there that the (geometric) CM fibers are either
absolutely simple or are isogenous to a product E × Y with E an elliptic curve, Y
an abelian threefold, and End0(E) isomorphic to a subfield of End0(Y). It might be
possible to use this to get some non-trivial information related to the above question.
In connection with what was discussed in subsection 4.1, let us note that there are
no Weyl type CM fibers in these families.

Question 6.6. For which g > 2 does there exist a positive dimensional subvariety Z ⊂ Tg
with Z ∩ T◦g 6= ∅, such that the abelian variety corresponding with the geometric generic
point of Z is isogenous to a product of elliptic curves?
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This question was stimulated by results in [39], which say that under more
restrictive conditions such a family does not exist for large g.

Question 6.7. In Section 5 we have seen examples of special subvarieties Z ⊂ Tg
with Z ∩ T◦g 6= ∅ arising from families of cyclic covers of P1. Can one obtain further
such examples by taking non-cyclic covers, or from a family of covers of another base curve?

To make this more precise, consider a (complete, nonsingular) curve B over C
of genus h, and let G be a finite group. Define a group Π = Π(h,N) by

Π :=
〈
α1, . . . ,αh,β1, . . . ,βh,γ1, . . . ,γN

∣∣ [α1,β1] · · · [αh,βh] · γ1 · · ·γN = 1
〉
.

Given t1, . . . , tN in B, fix a presentation

π1
(
B \ {t1, . . . , tN}

) ∼−→ Π ,

and fix a surjective homomorphism ψ : Π � G such that ψ(γi) 6= 1 for all i =

1, . . . ,N. Correspondingly, we have a Galois cover Ct → B with group G, branch
points t1, . . . , tN in B, and with local monodromy about ti given by the element
ψ(γi). Varying the branch points, we get a family of curves C→ T , for some open
T ⊂ BN. The corresponding family of Jacobians gives a moduli map T → Ag; denote
the image by Z◦, with Zariski closure Z ⊂ Tg ⊂ Ag. Having set the scene in this way
we can ask for which choices of the data involved Z is a special subvariety of positive
dimension.

(a) Are there examples with non-cyclic Galois group such that Z ⊂ Ag is a special
subvariety of positive dimension?

(b) Are there examples where B is not a rational curve, and such that Z ⊂ Ag is a
special subvariety of positive dimension? Note that if Z is special, the Jacobian
of B is a CM abelian variety.

As for question (a), we do have some examples that are obtained from families
of covers of P1 with a non-cyclic abelian Galois groups. The examples presently
known to us are listed in Table 2. In these examples we consider families of covers
of P1 with Galois group of the form A = (Z/m1Z) × (Z/m2Z) with m1|m2, with
N > 4 branch points, and with local monodromy about the branch points ti given by
anN-tuple a = (a1, . . . ,aN) in AN. This gives rise to an (N− 3)-dimensional closed
irreducible subvariety Z(m,N,a), where nowm = (m1,m2). For the Jacobians Jt in
our family we have a (generally non-injective) homomorphism Q[A]→ End0(Jt);
this defines a special subvariety S(m) ⊂ Ag of PEL type with Z(m,N,a) ⊆ S(m).
We calculate dim

(
S(m)

)
, and if this dimension equals N− 3 then we conclude that

Z(m,N,a) is special.

Let us give some further details concerning Example (24). In this case the covers
Ct → P1 are branched over 4 points t1, . . . , t4. There are 6 points above t1, each with
ramification index e = 2. Likewise, there are 2 points above t2, both with e = 6, there
are 4 points above t3, each with e = 3, and finally there are 6 points above t4, each
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Table 2. Examples of special subvarieties in the Torelli locus (continued)

genus group N a

(21) 1 (Z/2Z)× (Z/2Z) 4
(
(1,0), (1,0), (0,1), (0,1)

)
(22) 3 (Z/2Z)× (Z/4Z) 4

(
(1,0), (1,1), (0,1), (0,2)

)
(23) 3 (Z/2Z)× (Z/4Z) 4

(
(1,0), (1,2), (0,1), (0,1)

)
(24) 4 (Z/2Z)× (Z/6Z) 4

(
(1,0), (1,1), (0,2), (0,3)

)
(25) 4 (Z/3Z)× (Z/3Z) 4

(
(1,0), (1,0), (1,2), (0,1)

)
(26) 2 (Z/2Z)× (Z/2Z) 5

(
(1,0), (1,0), (1,0), (1,1), (0,1)

)
(27) 3 (Z/2Z)× (Z/2Z) 6

(
(1,0), (1,0), (1,1), (1,1), (0,1), (0,1)

)

with e = 2. The Hurwitz formula gives χ = −24+6 ·1+2 ·5+4 ·2+6 ·1 = 6, so g = 4.
The group ring Q[A], with A = (Z/2Z) × (Z/6Z), is isomorphic to Q4 × Q(ζ3)

4.
Accordingly, the Jacobians Jt split, up to isogeny, as a product of eight factors. The
simple factors of Q[A] correspond with the Gal(Q/Q)-orbits in Hom(A,Q∗), which
in this example may be identified with the set of complex characters ρ ∈ Hom(A,C∗)
taken modulo complex conjugation. Given a complex character ρ : A → C∗, the
corresponding factor Jρ,t of Jt can be described as follows. We consider the cover
πρ,t : Cρ,t → P1 with group ρ(A), branched only above the points ti, with local
monodromy ρ(ai) about ti. Note that ρ(ai) may be the identity element of ρ(A),
in which case ti is not a branch point of πρ,t. Also note that πρ,t is a cyclic cover,
which brings us back to the situation considered in Section 4. Then Jρ,t is the new
part of the Jacobian of Cρ,t. With this description, it is easy to verify that:

• there are five pairs (ρ, ρ) for which Jρ,t = 0; this includes the four real
characters, for which ρ = ρ,

• there are two pairs (ρ, ρ) for which Jρ,t is an elliptic curve with CM by an
order in Q(ζ3),

• there is one pair (ρ, ρ) for which Jρ,t is 2-dimensional, carrying an action
by an order in Q(ζ3); varying t these give a family that is isogenous to the
family of Jacobians of Example (5) in Table 1.

It follows from this description that the special subvariety S(m) containingZ(m,N,a)
is 1-dimensional, and therefore Z(m,N,a) = S(m) is special.

It should be noted that Example (24) is a sub-family of the family given in
Example (14). To see this, let Dt be the quotient of Ct modulo the action of
{1}× (Z/6Z), and factor πt : Ct → P1 as

Ct
qt−−→ Dt

rt−−→ P1 .
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We have Dt ∼= P1. The cover qt has group (Z/6Z) and is branched above five
points, namely the unique point t̃2 of Dt above t2, the two points t̃3,1 and t̃3,2
above t3, and the two points t̃4,1 and t̃4,2 above t4. The local monodromy about
these points is given by the 5-tuple (2,2,2,3,3) in (Z/6Z)5, which gives exactly the
data of Example (14). The sub-family considered here is given by the constraint that
the five branch points on Dt ∼= P1 do not move freely but form three orbits under
the action of Z/2Z on Dt.

6.2. The Serre-Tate formal group structure and linearity properties

Letm > 3. On Ag,[m](C) we have a metric, obtained from the uniformization
by the Siegel space Hg; see subsection 3.2. In [46] it is proven that an irreducible alge-
braic subvariety Z ⊂ Ag,[m] is a special subvariety if and only if Z is totally geodesic
and contains at least one special point. This may be viewed as a characterization of
special subvarieties in terms of linearity properties.

This characterization has a nice arithmetic analogue, by which it was in fact
inspired. Recall that if k is a perfect field of characteristic p > 0 and x ∈ Ag(k)

corresponds to a ppav (A, λ) over k such that A is ordinary, the formal completion
Ax of Ag,[m] at the point x has a canonical structure of a formal torus over the ring of
Witt vectorsW(k); see [37] or [41], Chap. 5. Using this we can again give meaning to
the notion of “linearity”. Let us elucidate this. Consider a closed irreducible algebraic
subvariety Z ⊂ Ag,[m],F, where F is a number field. Let Z denote the Zariski closure
of Z inside Ag,[m] over OF. If some ordinary point x as above lies in Z(k), the formal
completion of Z at x gives a formal subscheme Zx ⊂ Ax. It was shown by Noot
in [57] that if Z is a special subvariety, the components of the formal subscheme
Zx ⊂ Ax overW(k) are translates of formal subtori of Ax over torsion points. At the
cost of excluding finitely many primes ofOF this may be sharpened to the conclusion
that the components of the formal subschemes Zx are formal subtori; see also [47],
Theorem 4.2(ii).

The converse of Noot’s result was proven in [47]; the result is that ifZ ⊂ Ag,[m],F

is a closed irreducible algebraic subvariety such that for some ordinary point x ∈ Z(k)

some component of Zx ⊂ Ax is a translate of a formal subtorus of Ax over a torsion
point, Z is a special subvariety. These results again give a characterization of special
subvarieties in terms of linearity properties. It was shown in [46] that the result
over C may reformulated in terms of formal group structures, in a way that makes
the analogy between the two situations even clearer.

These results lead us to investigate the structure of the Torelli locus Tg ⊂ Ag (or
its analogue with a level structure) locally near an ordinary point x in characteristic p.
The identity section of the formal torus Ax gives a lifting of the ppav (A, λ) over k
to a polarized abelian scheme (Acan, λcan) over the ring of Witt vectorsW(k). This
lifting is called the Serre-Tate canonical lifting of (A, λ). Note, however, that if (A, λ)
is the Jacobian of a curve, the canonical lifting (Acan, λcan) overW(k) need not be
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a Jacobian; see [25], [67]. This leads to another view on Expectation 4.2. Indeed,
suppose we have a special subvariety Z ⊂ Tg with Z ∩ T◦g 6= ∅. Then Z is defined
over some number field F, and, with notation as above, we can find ordinary points
x ∈ Z(k), for finite fields k, such that the corresponding ppav (A, λ) is the Jacobian
of a curve C/k, and such that the formal completion Zx ⊂ Ax is a union of formal
subtori (or even just a formal subtorus). In this situation, the canonical lifting
(Acan, λcan) is again the Jacobian of a curve, which is a highly nontrivial fact. Indeed,
the main results of Dwork and Ogus in [25] are based on the observation that in
general, already the first-order canonical lifting, over the ringW2(k) of Witt vectors
of length 2, is no longer a Jacobian.

For the next two questions, let m > 3 be an integer, and fix a genus g that is
large enough, at least g > 7.

Question 6.8. Let Tg,[m],Z ⊂ Ag,[m],Z denote the scheme-theoretic image of the
Torelli morphismMg,[m] → Ag,[m] over Spec(Z). Let k be a perfect field of character-
istic p > 0, and suppose x ∈ Tg,[m],Z(k) is an ordinary point, i.e., the corresponding
abelian variety is ordinary. Is it true that the formal completion Tx ⊂ Ax of Tg,[m],Z at
the point x does not contain a formal subscheme Z, flat overW(k), of positive dimension,
such that Z is a formal subtorus of Ax?

A positive answer to this question would confirm Expectation 4.2. It should be
noted, however, that what we ask here is stronger than what we need for 4.2. The
difference is that in 6.8 we do not require the formal subscheme Z to be algebraic,
i.e., to be the formal completion of an algebraic subvariety of Ag,[m] passing through
the point x. The interesting point, however, is that Question 6.8 only depends on
the formal completion of the Torelli locus at a single ordinary point. One might
expect that, in terms of the “linear structure” provided by the Serre-Tate structure of
a formal torus on Ax, the Torelli locus Tx ⊂ Ax should be highly non-linear.

Over C we have a question that is similar in spirit.

Question 6.9. Does the Torelli locus Tg,[m],C ⊂ Ag,[m],C contain any totally geodesic
subvarieties of positive dimension?

Again this question is stronger than what is needed for Expectation 4.2, as we
do not require the totally geodesic subvariety to be algebraic. (In addition we should
ask that the subvariety contains at least one CM point.)

Let us mention the paper [42], in which Möller investigates algebraic curves
in Mg over C that are totally geodesic with respect to the Teichmüller metric (these
are called Teichmüller curves), such that the image of this curve in Ag is a special
subvariety. It is shown in [42] that for g = 2 and g > 6 there are no such curves.
For g = 3 and g = 4 there is precisely one example, corresponding to Examples (7)
and (12) in Table 1.
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6.3. An analogy

We can view the boundary of Ag in a compactification as the locus of degener-
ating abelian varieties, but one can also view, working over Zp, say, the spaceAg⊗Fp
as a boundary of Ag ⊗ Zp. In this last case the abelian variety does not degenerate,
but the p-structure does change. These two points of view have striking similarities.
Often geometric questions are settled by studying properties at the boundary, and
then to lift back to the interior of the moduli space considered.

Here we want to draw attention to the analogy between the results in [25] and
the results of [30] and [4]. In the first case Dwork and Ogus study ordinary Jacobians
in positive characteristic and their Serre-Tate canonical lifts to characteristic zero. In
analogy with this, Fresnel and van der Put [30] and Andreatta [4] study liftings of
Jacobians of degenerate curves. In both cases the authors show that, for g > 3, these
liftings in general do not lie in the Torelli locus. In particular, Andreatta explains
in [4] that special subvarieties in Ag have a linear structure at the boundary in a
toroidal compactification of Ag, and he shows that the closure of the Torelli locus is
not linear at the boundary.
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