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Abstract. It is shown how the use of a certain integral basis for cyclotomic fields 
enables one to perform the basic operations in their ring of integers efficiently. 
In particular, from the representation with respect to this basis, one obtains 
immediately the smallest possible cyclotomic field in which a given sum of 
roots of unity lies. This is of particular interest when computing with the 
ordinary representations of a finite group. 
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I. Introduction 

The objective of this paper is to lay the foundations for efficient computation in 
cyclotomic fields. In particular, we show that the fundamental operations in a 
cyclotomic field can be performed very efficiently by the use of a certain integral 
basis. 

The need for fast arithmetic in (rings of integers of) cyclotomic number fields 
arises in the context of the representation theory of finite groups. Extensive 
calculations in cyclotomic fields occur in applications of character and representa- 
tion theory, for instance in physics (see [5]), and in the construction of discrete 
Fourier transforms (see [1-3]). 

If G is a finite group with exponent e, then the matrices corresponding to the 
ordinary (complex) representations of G have their coefficients in Q(~e), where (e 
denotes a primitive e-th root of unity. In practice, a particular representation of G 
may lie in a small subfield Q((a) of Q((e). As the cost of computing in Q((a) will be 
directly proportional to d, it is highly desirable to work always in the smallest 
possible cyclotomic field. Therefore, it is desirable to be able to identify quickly the 
smallest cyclotomic field in which a given sum of roots of unity lies. 

* 1980 Mathematics subject classification (1985): 11R, IlY 
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The solution involves constructing an integral basis for Q((,) having the 
property that it contains an integral basis of Q((d) for every divisor d of n. Given the 
representation of an element 7 with respect to this particular basis, one can 
immediately recognize the smallest cyclotomic subfield to which it belongs. 

It seems that only the problem of recognizing whether 7 is rational has been 
treated explicitly in the literature. For this the choice of a Q-vector space basis, or 
equivalently, of an integral basis, suffices (see Sect. 4). 

Note that our problem is not that of determining the smallest field whatsoever 
in which a given sum of roots of unity lies; this can be solved by applying some 
elementary Galois theory: determine the invariant field under the stabilizer in the 
Galois group of the given element. We are interested in the smallest cyclotomic field 
containing the given element, and an advantage of our approach over the general 
method is that our special integral basis for the cyclotomic field will solve the 
problem for any of its elements. 

Although we do not claim that the results we describe are particularly novel, 
they do not seem to be generally known. They have been implemented in the 
character module of the Cayley system for computational algebra. 

Section 2 contains basic definitions and results concerning roots of unity. In 
Sect. 3 we review results about linear relations between roots of unity. These are 
applied in Sect. 4 in the construction of integral bases consisting of powers of a 
primitive root of unity. The use of such a basis solves the problem of recognizing 
rational elements in cyclotomic fields. Finally, in Sect. 5, we construct integral 
bases that contain a basis for every cyclotomic subfield. 

2. Roots of Unity 

In this section we quote some basic properties about roots of unity, and we fix the 
notation. For proofs the reader may consult [8]. Throughout this paper p will 
denote a prime number. 

Let n be a positive integer and let K be a field. An element ( of K satisfying (" = 1 
is called an n-th root of unity; it is called a primitive n-th root of unity if it is not a 
d-th root of unity for any d smaller than n. The symbol (,  will denote a primitive 
n-th root of unity. 

From now on we will assume that K has characteristic 0. The minimal 
polynomial of ~, over Q is the cyclotomic polynomial ~,. The degree of ~,  is (D(n), 
the value of Euler's function 4), so that the degree of the cyclotomic field Q((,) is 
also q~(n). Over Z we have 

x " -  1 = VI 
din 

The ring of integers of Q(~.) is Z[~.]. 
The relation between the cyclotomic fields of different degrees is very 

transparent. If d divides n then Q(~d)cQ(~.); if on the other hand m and n are 
coprime, then Q(~,,)c~Q(~.) = Q and Q(~m, ~,) = Q(~m,). As a consequence, Q(~,,, ~,) 
= Q((lom(m,,)), and Q((,,)nQ((,) = Q((gcd(~,,)), for arbitrary positive integers m and 
n. Hence it often suffices to consider the fields Q((pk). 

One minor complication should be noted: since Q itself contains the second 
roots of unity, Q((2k) = Q((k) for every oddk. Indeed, - (k is a primitive 2k-th root 
of unity. Since Q((,)= Q ((~] for n - 2  mod 4, we may restrict ourselves to integers 

\ 

n ~ 2 mod4. As a consequence, 4 rather than 2 will appear to be the "even prime". 
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2.1. Definitions. A modified squarefree integer is an integer m that is 
(i) not divisible by the square of an odd prime, and that is 

(ii) either odd or congruent to 4 mod8. 
Hence either m is odd, or it is exactly divisible by 22 with the odd part of m 

squarefree. 
From now on p* will denote a modified prime number, that is, p* =p  ifp is odd 

and p * = 4  if p=2 .  
Let n ~ 2 m o d 4 .  The modified squarefree part of n is 

m = H p * .  
pin 

So the modified squarefree part of n is the product of the prime divisors of n in case 
n is odd, and 4 times the product of the odd prime divisors for even n, with 
n ~ 2 m o d 4 .  Also, n is modified squarefree if and only if it equals its modified 
squarefree part. 

2.2. Example. For motivation, we give an example ofa cyclotomic integer that is in 
fact rational. Let ~ e Z[~3o] be defined by 

~=1+~3o+(37o + 13 (30. ~ 20 ~'3o+ 19 (3o. 

We try to rewrite c~. First of all, n = 3 0 - 2  mod4, so we reduce to Z[(15]. Using 
(30 = -(15,  we find 

~l--~15--(175--(~35--~'19~15~b15"t-y20 
6 12 (3 @ 5  

= (15+ 1 - - ( 1 5 ( 1 + ( 1 5 +  15) (15 
_ [ _ 4 + 1  5 --1--(15(1+~ 2 ~5 (s)+(15- 

We have also used the fact that (3 5 is a primitive fifth root of unity. As is well 
known, the sum of all fifth roots of unity equals zero, and the same holds for the 
third roots of unity (see also Sect. 3 below); hence 

~=l-~15(-~3)+~1~5=1 + ~ I ° + ( ~ 5 = 1  + ( ~ + ~ 3 = 0 .  

This shows that a=0 ,  which is not obvious at first sight. For computational 
purposes it is obviously highly desirable to recognize this immediately. 

2.3. Remark. We have chosen ~5 =~35 and ~3 =(55 in (2.2). One should be aware 
that this really involves a choice for a particular primitive fifth, respectively third 
root of unity, and is not due to an intrinsic relation. Sometimes it is convenient to 
choose primitive fifth and third roots of unity in such a way that (15 = ff3~5; then 
clearly (3 = (~o and ~5 = (65. Nowhere in this paper do we assume anything about 
the embedding of cyclotomic fields in the field of complex numbers. 

3. Linear Relations 

Linear relations between roots of unity basically all derive from the fact that the 
sum of all p-th roots of unity is zero: 

1 + ~ v + . . . + ( ~ - l = 0  (3.1) 

for every prime p. In fact, (3.1) is easily seen to be true for every positive integer p, as 
we sum over all roots of polynomial X p -  1 (in some algebraic closure of Q). 
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The symbol Wn will denote the set of all n-th roots of unity, i.e., 

W.={~i.,O<=i<n}. 

The following theorems have been adapted from [6]. 

3.2. Theorem. Let n ~ 2 m o d 4  and let m be the modified squarefree part of n. Then: 

Furthermore, if zije Z , then: 

m m - 1  ra-1 n E ' J - -  Zij(m~n - -  0 "¢*" L Zij(im = 0 f o r  0 < j  < - - .  
j = O  i = 0  i = 0  m 

Proof Let ~n 6 IV,; choosing b - h mod n and a such that h---- a n + b mod n, proves 
the first assertion, m m 

For  the second, observe that 

, , , - i f  " .~ 
x " -  1 = II t x ' -  

i = 0  

?1 

in Q(~m). Now (.  is a zero of one of the factors, say X m - ~ ;  this factor must be 
irreducible, because its degree is given by 

[Q((,)- Q] qS(n) n 
[Q((,) : Q((,,)] - 

[Q((m) : Q] ~b(m) m 

Therefore, if bj e Q((,,), 

n _  1 
m 
E 

j = O  

That proves (3.2). 

n 
bj( j=O => bj=O for 0 < j < - - .  

m 

3.3. Remarks. Let n =pk be the power of an odd prime p. The first assertion of (3.2) 
states that all pk-th roots of unity can be represented in the , b form ~p~k, with 0 < a < p 
and O<b<p k-1. 

If we use this representation, any Z-linear combination of pk-th roots of unity 
can be written as an element of Z[~pk] with coefficients in Z[~p]: 

' = 0  i 

Now the second part of (3.2) asserts that such a sum is zero if and only if all the 
coefficients are zero in Z[(p]. 

If n = 2 k, with k > 2, all n-th roots of unity can be written as (~(~, with 0 < a < 4 
and 0 < b < 2 k- 2. A Z-linear combination of 2k-th roots of unity is zero if and only if 
its coefficients in Z[(4] in the above representation are all zero. 

In general, (3.2) reduces the problem of deciding whether a given element of 
Z[~,] is zero, to the same question for elements in Z[~m], where m is the modified 
squarefree part of n. Theorem (3.4) deals with this case. 
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3.4. Theorem. Let n ~ 2 mod4, and suppose that n = p'r, with p a prime divisor of n 
and r not divisible by p. Then: 

a b andO<=b<r}=W,. {(p*(r : 0 < a < p *  

Furthermore, if zij~ Z, the following hold. I f  p is odd: 

p * - I  r - 1  r - 1  r - 1  
V V i j i __  i zij~r(p *=0"~  Z zij~,-  Y. ZiO(r for l=<j<p*.  

j = O  i = 0  i=O i = 0  

I f  p=2,  so that p*=4,  then: 

p * - i  r - -1  r - 1  r--1 r - 1  r - 1  

zi2(r- Z ZiO(r and Z Z zil(r" 
j = O  i = 0  i = 0  i = 0  i=O i = 0  

Proof. The proof is much the same as that of(3.2); this time we use the fact that the 
p*-th cyclotomic polynomial q,p, is irreducible over Q((,) together with (3.1). 

3.5. Remarks. Continuing the discussion of (3.3), suppose now that n = p, an odd 
prime. Then (3.4) merely asserts (with r =  1) that a Z-linear combination of p-th 
roots of unity 

p 1 

2 
j - O  

is zero, only when all coefficients zj are equal. Hence (3.1) is, up to scalar 
multiplication, the only non-trivial linear relation between p-th roots of unity, and 
together with the remarks made in (3.3) this determines all linear relations between 
pk-th roots of unity. 

For n = 4 the "primitive relation" over Z is ~2 + (o = 0, from which (] + ~4 = 0 
follows. 

More generally, (3.4) implies that for a modified squarefree integer m, any 
Z-linear combination of m-th roots of unity can be written as an element of Z[(p.] 
with coefficients in Z[ (~ ] ,  for any modified prime divisor p* of m. The second 

L e A  
assertion of (3.4) states that such a sum can only be zero if all its coefficients in 
Z [ ( ~ ]  are equal. 

3.6. Corollary. Let n be a positive integer, n ~: 2 mod4, with modified squarefree part 
m. For every prime p dividing n, let the set A v consist of p* integers from distinct 

n 
-- integers from distinct residue residue classes modulo p*, and let Bn consist of m 

classes modulo n. Then 
m 

Proof Immediate from (3.2) and (3.4). 
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4. Integral Bases 

An easy test for equality in Q(~.), or any of its cyclotomic subfields, follows 
immediately from (3.2) and (3.4). However, that does not suffice to solve the 
problem of determining whether or not a given element is contained in a proper 
subfield, or even to determine whether or not it is rational. However, it is now easy 
to describe subsets of W. that form integral bases for Q(~,). 

An integral basis for Q(~,) consists of ~b(n) cyclotomic integers 

21, •2 , ' "  ", "~b(n) ~ Z[-(n']  

such that every ~ ~ Z[ ( , ]  can be expressed uniquely in the form 

= za2 a + z2)~ 2 + . . .  + Zea(n)J,O(n) , with z 1, z2, ..., zot,) e Z .  

We study those integral bases for Q((,) contained in IV,; by (3.2) these are of the 
form 

o 
I A  = IA(m) = {~m~n : a (4.1) 

where A(m) C {0, 1, ..., m -  1 }, and m is the modified squarefree part of n. We will 
often simply write A for A(m). 

4.2. Theorem. Let n be a positive integer, n ~ 2 mod4, with modified squarefree part 
m. Let A C {0,1 . . . .  , m -  1}. I f  for every modified prime divisor p* of m we have both 

#{amodp*:a~A}=q~(p*) and ~ { a m o d 2 : a ~ a } = 2 ,  

then the set I A, defined by (4.1), forms an integral basis for Q(~,). 

Proof. First note that the set A has the correct cardinality: by the Chinese 
remainder theorem it consists of 

1~ ~b(p*)= ~b(m) 
plm 

elements. Therefore I A has 4)(m)n = ~b(n) elements, as required. 

To show that there are no linear dependencies between elements of IA, suppose 
that for zlj ~ Z, 

n 

Y E ' J -  z~fi,.~.- 0. 
j = 0  i ~ A  

Then, by (3.2) 

i __ 
Zij~m - -  0 (4.3) 

leA 

n 
for 0 < j <  --. We claim that the conditions on A imply that all zii must be zero; to 

m 
prove this, we apply induction on the number f of (modified) prime divisors of m. 

If f =  1, then m = p*. When p is an odd prime, it follows from (3.4) that (4.3) can 
only hold if all the coefficients of ~ .  are equal; but # A =  ~b(p*)=p*-1, so for at 
least one i this coefficient is zero, hence all zij must be zero. If p = 2, the conditions 
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on A imply that it contains integers in two residue classes modulo 4 that are 
different modulo 2. By the final assertion in (3.4) again all zij are zero. 

Suppose now f >  1. Let p* be a modified prime divisor of m; if we write 
(,, = (,, (p,, then (4.3) can be written as 

p *  

p * - -  1 
i k 

k = 0  \ieAkp* p*] 

where Ak, is the set {a e A : a -= k modp*}. For at least one k the set Ak, is empty, by 
our hypothesis on A. Theorem (3.4) implies that for every k 

Z z~j(~=O. 
i ~ Ak* p* 

But Ak, is a subset of A that also satisfies the hypothesis of the theorem, while ~** 
k ~ 

has f -  1 prime divisors. By the induction hypothesis, zij = 0 for i e Akp,. Hence this 
holds for every k and since A is the union of all Ak,, each coefficient zij is zero. 

That completes the proof of (4.2). 

4.4. Corollary. Let n be a positive integer, n ~ 2 rood4, with modified squarefree part 
m. For every prime p dividing n let the set A* consist of O(P*) integers from distinct 

residue classes modulo p, and let B, consist of n integers from distinct residue classes 
m 

modulo n. Then 
m 

{(plllr ~p,)~b'aeA*,and beB,}  

forms an integral basis for Q(~,). 

Proof Immediate. 

4.5. Remarks. Theorem (4.2) gives a sufficient condition on A for I a to be an 
integral basis, but it is not necessary. For instance, the set 

9 C' . . . . . . . . .  }cw.  

forms an integral basis for Q(~,), for arbitrary n. But A = {0, 1,..., ~b(n)-l} for 
squarefree n with n ~ 2 rood4, so that this set contains integers in all residue classes 
modulo every prime divisor of n. 

This is the reason why this natural choice for an integral basis of Q(~,) is 
unsuitable for our purposes. 

We can always choose the first basis element to be 1 in an integral basis for 
Q((,). Under this assumption, an element of Z[( , ]  represented with respect to an 
integral basis will be in Z if and only if all coefficients other than the first are zero. 
This solves the problem of recognizing the rational integers in Z[(,,] (cf. [4, 6, 7]). 
The following example will elucidate this, and it also shows that the more general 
question has not yet been answered. 

4.6. Example. Let n=48, so m=12. Let c~,fl~Z[(4s ] be defined by 

_ t ~ _ . y 3  y l l  j _ y l 9  / ' 2 3  2 " 4 7  and /~ U I 3 - L  y 2 9  
0~ - -  • / ~ d - 8  - -  b 4 8  / b 4 8  - -  b 4 8  - -  ~ 4 8  , /-" ~ ~ 4 8  / b 4 8  • 



First write (~8 = (]~(~8, for any i, with 0 =< r < 4, 0_-< s < 3, and 0 < t < 4 (= n/m), as 

Next we express ~ and fl relative to the integral basis defined by (4.4), taking 
A,~ = {0, 1}, taking A~ = {0, 1}, and taking B48 = {0, 1, 2, 3}. Three elements in the 
above list are not yet written in terms of this basis, namely (41~, ~48,23 and (48.47 For 
these, note that 2 0 3 1 2 0 1 ~4 = - G  ~3 = - ~ 3 -  ~3- ~4 = -~4, that and that Hence 

From these basis representations we see 

is a rational integer, while 

is not rational. 
Thus this basis provides a simple method for determining whether or not a 

given element is in Q. However, noting that 

we see that fl is contained in the cyclotomic subfield Q(~16), which is not obvious 
from the above basis representation. 

Finally, we describe an integral basis for Q(~,) contained in W n that contains a basis 
for every cyclotomic subfield. To find such a basis, it suffices to choose the set Bn in 
(4.4) carefully. 

5.1. Theorem. Let n be a positive integer, n $ 2 rood4, with modified squarefree part 
m. For every prime p dividing n let the set A* consist of ¢(p*) integers from distinct 
residue classes modulo p. For every maximal prime power divisor p* of n, let the set 
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pk 
B~ consist of r -~ integers from distinct residue classes modulo ~ .  Then the set 

forms a basis for Q((n) over Q. 
Moreover, for every divisor d of n, the set 

I d = {(i ~ I:  (i e Q((d)} 

forms an integral basis for Q((d). 

Proof The fact that 1 forms of an integral basis for Q((,) is an immediate 
consequence of Corollary (4.4). 

To see that I contains a basis for every cyclotomic subfield, recall that Q((d) 
c~Q((~) = Q for coprime d and e. Thus it suffices to prove the assertion for the case 
where n is a prime power pk. If n = p*, the assertion is trivial. If n ~: p*, note that for 
everyj the set Bp*+~ contains integers pbi, where the b~ constitute a set of the form 
Bp*. Since (~k ~ Q((p~-~), induction completes the proof. 

5.3. Remarks. We define the canonical basis for Q((,) to be the basis I arising from 
(5.1) by making the obvious choices A* = {0, 1 . . . .  , p - 2 }  and 

• _ ~ P~ 1t Bpk-- tO, 1 , . . . , ~  J 

As an explicit subset of 14/,, 

I= (~= 2 p= ~ a e A * , a n d b ~ B * }  
p 

where we define B* to be the set of n integers 
m 

n 

pk~[ln~ cp' 
pk 

for all different choices of integers 0 < cp < ~ .  

By writing (i in its lowest form, we mean replacing ffi, by 

(~, with j =  gcd(n, i) and k=  gcd(n,i) if this k ~ 2 m o d 4 ,  

i n otherwise. 
- (~,  with j --  gcd(n, i) and k=  2. gcd(n, i) 

Since gcd(j, k)= 1 and k ~ 2 rood4, the field Q((k) is the smallest cyclotomic field 
containing (~,. For example, writing (68 and ~ s  in their lowest form, we get (s and 
- (3, respectively. 

We can find the smallest subfield containing an element 7 of Q(~,) as follows. 
If we represent the element 7 with respect to the basis for Q((,) given in 

Theorem (5.1), then the smallest cyclotomic field containing 7 is the subfield 
generated by the basis elements which have non-zero coefficients in the represen- 
tation. This is the field Q(~d), where d is the least common multiple of those integers 
k for which (~, written in its lowest form, has non-zero coefficient. 

We illustrate this procedure with the example discussed in (4.6). 
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5.4. Example. According to Theorem (5.1) and Remark (5.3), the elements (~(~(~8 
will constitute the canonical basis for Q((48) if we choose r ~ A* = {0,1}, s ~ A* 
= {0,1 }, and t e B* 8 = {0, 3, 6, 9}. Then the set I C W48 is 

0 3 6 9 12 ?.15 ?.16 ?.18 ?.19 ?.21 22 ?.25 ?'28 ?.31 ?.34 ?.37"1 
{ (48 '  (48 '  (48 '  (48 '  ~48, (48 '  %48, %48, %48, ~48, ~48 . [ ,  %48, %48~ b48~ %48~ %48, 

which, after rewriting the elements in lowest forms, yields the set 

{ 1 , ( 1 6  ' 3 5 3 ?.19 ?.7 ?.11 ?.25 ?.7 31 17 (48}37 
(8 ,  (16 '  ( 4 '  (16 '  ( 3 '  (8,  "~48' %16, 524'  %48, 512'  (48 '  (24~ 

The lattice of cyclotomic subfields of Q((48) and that of the corresponding integral 
bases is displayed in Fig. 1. 

/ Q ( ( 4 8  ) [y19 r25 r31 ?'37). L~48, ~48, ~4-8, ~48J 
J J 

Q((16) /Q((24) 3 9 15 {(48' (48} 

~ Q ( ~  Q(~12) 6 18 

Fig. 1 

Looking at the representation of the element H--%48R - -  r 1 3  + %48r29 relative to this basis, and 
proceeding as before, we find 

13 yl? . ly9 _ y37 
( 4 8 = - - % 4 % 3 % 4 8 - - - - % 4 8  

and 
(~_?.l?.or9 +?.17.1?9 21+?.37. 

--%4%3%48 %4%3~48="(48 %48~ 

+?.29 21 
t h u s f l = ( ~  s 4 8 = ( 4 8 = ( ~ 6 6 Q ( ( 1 6 ) .  
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